1
|
Liu S, Hao J, Yu T, Tuchin VV, Li J, Li D, Zhu D. Diabetes Mellitus Impairs Blood-Brain Barrier Integrality and Microglial Reactivity. JOURNAL OF BIOPHOTONICS 2025:e202400482. [PMID: 39870511 DOI: 10.1002/jbio.202400482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/29/2025]
Abstract
Diabetes mellitus (DM), a chronic metabolic disorder that adversely affects the blood-brain barrier (BBB) and microglial function in the central nervous system (CNS), contributing to neuronal damage and neurodegenerative diseases. However, the underlying molecular mechanisms linking diabetes to BBB dysfunction and microglial dysregulation remain poorly understood. Here, we assessed the impacts of diabetes on BBB and microglial reactivity and investigated its mechanisms. We found diabetes severely disrupted the BBB integrity and microglial response to vascular injury. We also revealed a potential relationship between BBB disruption and impaired microglial function, whereby increasing BBB permeability led to a downregulation of microglial P2RY12 expression, thereby impairing microglial protection against cerebrovascular injury. Understanding these mechanisms may contribute to the developing of therapeutic strategies for diabetes-related neurological complications.
Collapse
Affiliation(s)
- Shaojun Liu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
- Wuhan National Laboratory for Optoelectronics-Advanced Biomedical Imaging Facility, HUST, Wuhan, China
| | - Jie Hao
- Affiliated Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
- Wuhan National Laboratory for Optoelectronics-Advanced Biomedical Imaging Facility, HUST, Wuhan, China
| | - Valery V Tuchin
- Institute of Physics and Science Medical Center, Saratov State University, Saratov, Russian Federation
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russian Federation
- Institute of Precision Mechanics and Control, FRS "Saratov Scientific Centre of the RAS", Saratov, Russian Federation
| | - Junming Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Dongyu Li
- Wuhan National Laboratory for Optoelectronics-Advanced Biomedical Imaging Facility, HUST, Wuhan, China
- School of Optical Electronic Information-Advanced Biomedical Imaging Facility, HUST, Wuhan, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
- Wuhan National Laboratory for Optoelectronics-Advanced Biomedical Imaging Facility, HUST, Wuhan, China
| |
Collapse
|
2
|
Zhang R, Guo S, Zhou J, Lin X, Wang Y, Wang Y, Li M, Zhao K, Bao W, Shui K, Liu C, Liu C, Dong Z. Monitoring of single-nucleus chromatin landscape of ischemic stroke in mouse cerebral cortex across time. Sci Data 2025; 12:47. [PMID: 39794343 PMCID: PMC11724039 DOI: 10.1038/s41597-025-04367-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Ischemic stroke constitutes a multifaceted neurological affliction that spans various cellular types. Lack of dynamic chromatin accessibility data after stroke is one of the obstacles to understanding this process. To gain insights into the variations in transcriptional regulation among various cell types subsequent to a stroke, we employed single-nucleus ATAC-seq to curate a chromatin accessibility compendium from the cerebral cortex of mice subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). Tissue samples were collected at various time points including 0, 6, 12, 24 hours, and 7, 14 days post-reperfusion, in addition to Sham control group. We obtained 99,271 high-quality nuclei across nine cell types, thereby establishing the single-nucleus chromatin accessibility atlas. This atlas provides data for interpreting the regulatory mechanisms that pervade the continuum of ischemic stroke. The data presented herein constitutes a valuable resource for the comprehension of regulatory interplays within the pathology-afflicted cerebrum.
Collapse
Affiliation(s)
- Ruolin Zhang
- Hubei Clinical Research Center of Central Nervous System Repair and Functional Reconstruction, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Jie Zhou
- BGI Research, Hangzhou, 310030, China
| | | | - Ying Wang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiqi Wang
- Hubei Clinical Research Center of Central Nervous System Repair and Functional Reconstruction, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muyang Li
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaichen Zhao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wendai Bao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ke Shui
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanyu Liu
- BGI Research, Shenzhen, 518083, China
- Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Chang Liu
- BGI Research, Shenzhen, 518083, China.
- Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, 030001, China.
| | - Zhiqiang Dong
- Hubei Clinical Research Center of Central Nervous System Repair and Functional Reconstruction, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Zeng T, Liu J, Zhang W, Yu Y, Ye X, Huang Q, Li P, Jiang Q. Update on the mechanism of microglia involvement in post-stroke cognitive impairment. Front Aging Neurosci 2024; 16:1366710. [PMID: 38887610 PMCID: PMC11181926 DOI: 10.3389/fnagi.2024.1366710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Post-stroke cognitive impairment (PSCI) is a clinical syndrome characterized by cognitive deficits that manifest following a stroke and persist for up to 6 months post-event. This condition is grave, severely compromising patient quality of life and longevity, while also imposing substantial economic burdens on societies worldwide. Despite significant advancements in identifying risk factors for PSCI, research into its underlying mechanisms and therapeutic interventions remains inadequate. Microglia, the brain's primary immune effector cells, are pivotal in maintaining, nurturing, defending, and repairing neuronal function, a process intrinsically linked to PSCI's progression. Thus, investigating microglial activation and mechanisms in PSCI is crucial. This paper aims to foster new preventive and therapeutic approaches for PSCI by elucidating the roles, mechanisms, and characteristics of microglia in the condition.
Collapse
Affiliation(s)
- Tianxiang Zeng
- Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, Jiangxi, China
| | - Jun Liu
- Department of Neurosurgery, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Wenjun Zhang
- Department of Recovery Medicine, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, Jiangxi, China
| | - Yanyan Yu
- Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, Jiangxi, China
| | - Xinyun Ye
- Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, Jiangxi, China
| | - Qianliang Huang
- Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, Jiangxi, China
| | - Peng Li
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Qiuhua Jiang
- Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, Jiangxi, China
| |
Collapse
|
4
|
Zhao H, Zhang T, Zhang H, Wang Y, Cheng L. Exercise-with-melatonin therapy improves sleep disorder and motor dysfunction in a rat model of ischemic stroke. Neural Regen Res 2024; 19:1336-1343. [PMID: 37905883 PMCID: PMC11467917 DOI: 10.4103/1673-5374.385844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/15/2023] [Accepted: 08/15/2023] [Indexed: 11/02/2023] Open
Abstract
Exercise-with-melatonin therapy has complementary and synergistic effects on spinal cord injury and Alzheimer’s disease, but its effect on stroke is still poorly understood. In this study, we established a rat model of ischemic stroke by occluding the middle cerebral artery for 60 minutes. We treated the rats with exercise and melatonin therapy for 7 consecutive days. Results showed that exercise-with-melatonin therapy significantly prolonged sleep duration in the model rats, increased delta power values, and regularized delta power rhythm. Additionally, exercise-with-melatonin therapy improved coordination, endurance, and grip strength, as well as learning and memory abilities. At the same time, it led to higher hippocampal CA1 neuron activity and postsynaptic density thickness and lower expression of glutamate receptor 2 than did exercise or melatonin therapy alone. These findings suggest that exercise-with-melatonin therapy can alleviate sleep disorder and motor dysfunction by increasing glutamate receptor 2 protein expression and regulating hippocampal CA1 synaptic plasticity.
Collapse
Affiliation(s)
- Haitao Zhao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
- Laboratory of Brain Injury Repair and Rehabilitation, China Rehabilitation Science Institute, Beijing, China
| | - Tong Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
- Laboratory of Brain Injury Repair and Rehabilitation, China Rehabilitation Science Institute, Beijing, China
| | - Haojie Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- Laboratory of Brain Injury Repair and Rehabilitation, China Rehabilitation Science Institute, Beijing, China
| | - Yunlei Wang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- Laboratory of Brain Injury Repair and Rehabilitation, China Rehabilitation Science Institute, Beijing, China
| | - Lingna Cheng
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- Laboratory of Brain Injury Repair and Rehabilitation, China Rehabilitation Science Institute, Beijing, China
| |
Collapse
|
5
|
Deng L, Wang G, Ju S. Correlation between inflammatory factors, autophagy protein levels, and infection in granulation tissue of diabetic foot ulcer. Immun Inflamm Dis 2024; 12:e1233. [PMID: 38577990 PMCID: PMC10996373 DOI: 10.1002/iid3.1233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVE To observe the expression of inflammatory factors and autophagy-related proteins in granulation tissue of diabetic foot ulcer (DFU) patients and analyze their relationship with infection. METHODS This is a retrospective cohort study. One hundred and fifty-two patients with DFU in our hospital from July 2020 to March 2022 were selected as the DFU group, including 98 cases in infection stage group and 54 cases in infection control group. The patients were further graded as the mild (51 cases), the moderate (65 cases), and the severe infection group (36 cases) according to the Wagner grading criteria. Sixty-seven patients with foot burns during the same period were selected as the control group. The distribution of pathogenic bacteria on the ulcer surface was examined using fully automated bacterial analyzer. The expression of inflammatory factors (procalcitonin [PCT], tumor necrosis factor-α [TNF-α], and interleukin-6 [IL-6]) was valued by real-time fluorescence quantitative PCR (qRT-PCR). Protein expression was measured by immunohistochemistry (IHC). The correlation was analyzed by Pearson. RESULTS The surface infection of DFU patients was mostly induced by gram-negative and gram-positive bacteria, with Pseudomonas aeruginosa predominating among the Gram-negative bacteria and Staphylococcus aureus among the gram-positive bacteria. The infection stage group had higher content of PCT, TNF-α, and IL-6 and lower content of Beclin-1 and LC3 than the infection control group (p < .001). The levels of PCT, TNF-α, and IL-6 in the DFU patients with cardiovascular events were higher than those in the nonoccurrence group (p < .001). Glycated hemoglobin in patients with DFU was positively correlated with PCT, TNF-α, and IL-6 levels (p < .05), and negatively correlated with Beclin-1 and LC3 levels (p < .001). CONCLUSION P. aeruginosa and S. aureus were predominant bacterial in DFU infections. Inflammatory factor and autophagy protein expression were closely correlated with the degree of infection.
Collapse
Affiliation(s)
- Lijuan Deng
- Department of Peripheral Vascular, Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
| | - Gang Wang
- Department of Peripheral Vascular, Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
| | - Shang Ju
- Department of Peripheral Vascular, Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
6
|
Mayer MG, Fischer T. Microglia at the blood brain barrier in health and disease. Front Cell Neurosci 2024; 18:1360195. [PMID: 38550920 PMCID: PMC10976855 DOI: 10.3389/fncel.2024.1360195] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/23/2024] [Indexed: 01/24/2025] Open
Abstract
The blood brain barrier (BBB) plays a crucial role in maintaining brain homeostasis by selectively preventing the entry of substances from the peripheral blood into the central nervous system (CNS). Comprised of endothelial cells, pericytes, and astrocytes, this highly regulated barrier encompasses the majority of the brain's vasculature. In addition to its protective function, the BBB also engages in significant crosstalk with perivascular macrophages (MΦ) and microglia, the resident MΦ of the brain. These interactions play a pivotal role in modulating the activation state of cells comprising the BBB, as well as MΦs and microglia, themselves. Alterations in systemic metabolic and inflammatory states can promote endothelial cell dysfunction, reducing the integrity of the BBB and potentially allowing peripheral blood factors to leak into the CNS compartment. This may mediate activation of perivascular MΦs, microglia, and astrocytes, and initiate further immune responses within the brain parenchyma, suggesting neuroinflammation can be triggered by signaling from the periphery, without primary injury or disease originating within the CNS. The intricate interplay between the periphery and the CNS through the BBB highlights the importance of understanding the role of microglia in mediating responses to systemic challenges. Despite recent advancements, our understanding of the interactions between microglia and the BBB is still in its early stages, leaving a significant gap in knowledge. However, emerging research is shedding light on the involvement of microglia at the BBB in various conditions, including systemic infections, diabetes, and ischemic stroke. This review aims to provide a comprehensive overview of the current research investigating the intricate relationship between microglia and the BBB in health and disease. By exploring these connections, we hope to advance our understanding of the role of brain immune responses to systemic challenges and their impact on CNS health and pathology. Uncovering these interactions may hold promise for the development of novel therapeutic strategies for neurological conditions that involve immune and vascular mechanisms.
Collapse
Affiliation(s)
- Meredith G. Mayer
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Tracy Fischer
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
7
|
Fadoul G, Ikonomovic M, Zhang F, Yang T. The cell-specific roles of Nrf2 in acute and chronic phases of ischemic stroke. CNS Neurosci Ther 2024; 30:e14462. [PMID: 37715557 PMCID: PMC10916447 DOI: 10.1111/cns.14462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/17/2023] Open
Abstract
Ischemic stroke refers to the sudden loss of blood flow in a specific area of the brain. It is the fifth leading cause of mortality and the leading cause of permanent disability. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) controls the production of several antioxidants and protective proteins and it has been investigated as a possible pharmaceutical target for reducing harmful oxidative events in brain ischemia. Each cell type exhibits different roles and behaviors in different phases post-stroke, which is comprehensive yet important to understand to optimize management strategies and goals for care for stroke patients. In this review, we comprehensively summarize the protective effects of Nrf2 in experimental ischemic stroke, emphasizing the role of Nrf2 in different cell types including neurons, astrocytes, oligodendrocytes, microglia, and endothelial cells during acute and chronic phases of stroke and providing insights on the neuroprotective role of Nrf2 on each cell type throughout the long term of stroke care. We also highlight the importance of targeting Nrf2 in clinical settings while considering a variety of important factors such as age, drug dosage, delivery route, and time of administration.
Collapse
Affiliation(s)
- George Fadoul
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders and RecoveryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Milos Ikonomovic
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - Feng Zhang
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders and RecoveryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Tuo Yang
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders and RecoveryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Internal MedicineUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| |
Collapse
|
8
|
Alshammari A, Pillai B, Kamat P, Jones TW, Bosomtwi A, Khan MB, Hess DC, Li W, Somanath PR, Sayed MA, Ergul A, Fagan SC. Angiotensin II Type 2 Receptor Agonism Alleviates Progressive Post-stroke Cognitive Impairment in Aged Spontaneously Hypertensive Rats. Transl Stroke Res 2024:10.1007/s12975-024-01232-1. [PMID: 38302738 DOI: 10.1007/s12975-024-01232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/27/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Hypertension and aging are leading risk factors for stroke and vascular contributions to cognitive impairment and dementia (VCID). Most animal models fail to capture the complex interplay between these pathophysiological processes. In the current study, we examined the development of cognitive impairment in 18-month-old spontaneously hypertensive rats (SHR) before and following ischemic stroke. Sixty SHRs were housed for 18 months with cognitive assessments every 6 months and post-surgery. MRI scans were performed at baseline and throughout the study. On day 3 post-stroke, rats were randomized to receive either angiotensin II type 2 receptor (AT2R) agonist Compound 21 (C21) or plain water for 8 weeks. SHRs demonstrated a progressive cognitive decline and significant MRI abnormalities before stroke. Perioperative mortality within 72 h of stroke was low. Stroke resulted in significant acute brain swelling, chronic brain atrophy, and sustained sensorimotor and behavioral deficits. There was no evidence of anhedonia at week 8. C21 enhanced sensorimotor recovery and ischemic lesion resolution at week 8. SHRs represent a clinically relevant animal model to study aging and stroke-associated VCID. This study underscores the importance of translational disease modeling and provides evidence that modulation of the AT2R signaling via C21 may be a useful therapeutic option to improve sensorimotor and cognitive outcomes even in aged animals.
Collapse
Affiliation(s)
- Abdulkarim Alshammari
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Health Care System and College of Pharmacy, University of Georgia, Augusta, GA, USA
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Bindu Pillai
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Health Care System and College of Pharmacy, University of Georgia, Augusta, GA, USA
| | - Pradip Kamat
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Timothy W Jones
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Health Care System and College of Pharmacy, University of Georgia, Augusta, GA, USA
| | - Asamoah Bosomtwi
- Georgia Cancer Center and Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | | | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Weiguo Li
- Ralph H. Johnson Veterans Affairs Health Care System and Department of Pathology & Lab. Medicine, Medical University of South Carolina, 171 Ashley Ave. MSC 908, Charleston, SC, 29492, USA
| | - Payaningal R Somanath
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Health Care System and College of Pharmacy, University of Georgia, Augusta, GA, USA
| | | | - Adviye Ergul
- Ralph H. Johnson Veterans Affairs Health Care System and Department of Pathology & Lab. Medicine, Medical University of South Carolina, 171 Ashley Ave. MSC 908, Charleston, SC, 29492, USA.
| | - Susan C Fagan
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Health Care System and College of Pharmacy, University of Georgia, Augusta, GA, USA
| |
Collapse
|
9
|
Askew KE, Beverley J, Sigfridsson E, Szymkowiak S, Emelianova K, Dando O, Hardingham GE, Duncombe J, Hennessy E, Koudelka J, Samarasekera N, Salman RA, Smith C, Tavares AAS, Gomez‐Nicola D, Kalaria RN, McColl BW, Horsburgh K. Inhibiting CSF1R alleviates cerebrovascular white matter disease and cognitive impairment. Glia 2024; 72:375-395. [PMID: 37909242 PMCID: PMC10952452 DOI: 10.1002/glia.24481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
White matter abnormalities, related to poor cerebral perfusion, are a core feature of small vessel cerebrovascular disease, and critical determinants of vascular cognitive impairment and dementia. Despite this importance there is a lack of treatment options. Proliferation of microglia producing an expanded, reactive population and associated neuroinflammatory alterations have been implicated in the onset and progression of cerebrovascular white matter disease, in patients and in animal models, suggesting that targeting microglial proliferation may exert protection. Colony-stimulating factor-1 receptor (CSF1R) is a key regulator of microglial proliferation. We found that the expression of CSF1R/Csf1r and other markers indicative of increased microglial abundance are significantly elevated in damaged white matter in human cerebrovascular disease and in a clinically relevant mouse model of chronic cerebral hypoperfusion and vascular cognitive impairment. Using the mouse model, we investigated long-term pharmacological CSF1R inhibition, via GW2580, and demonstrated that the expansion of microglial numbers in chronic hypoperfused white matter is prevented. Transcriptomic analysis of hypoperfused white matter tissue showed enrichment of microglial and inflammatory gene sets, including phagocytic genes that were the predominant expression modules modified by CSF1R inhibition. Further, CSF1R inhibition attenuated hypoperfusion-induced white matter pathology and rescued spatial learning impairments and to a lesser extent cognitive flexibility. Overall, this work suggests that inhibition of CSF1R and microglial proliferation mediates protection against chronic cerebrovascular white matter pathology and cognitive deficits. Our study nominates CSF1R as a target for the treatment of vascular cognitive disorders with broader implications for treatment of other chronic white matter diseases.
Collapse
Affiliation(s)
| | - Joshua Beverley
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Emma Sigfridsson
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Stefan Szymkowiak
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| | - Katherine Emelianova
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| | - Owen Dando
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| | - Giles E. Hardingham
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| | - Jessica Duncombe
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Edel Hennessy
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Juraj Koudelka
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| | - Neshika Samarasekera
- Centre for Clinical Brain Sciences and Sudden Death Brain BankUniversity of EdinburghEdinburghUK
| | - Rustam Al‐Shahi Salman
- Centre for Clinical Brain Sciences and Sudden Death Brain BankUniversity of EdinburghEdinburghUK
| | - Colin Smith
- Centre for Clinical Brain Sciences and Sudden Death Brain BankUniversity of EdinburghEdinburghUK
| | - Adriana A. S. Tavares
- British Heart Foundation Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
| | | | - Raj N. Kalaria
- Clinical and Translational Research InstituteNewcastle UniversityNewcastleUK
| | - Barry W. McColl
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| | - Karen Horsburgh
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
10
|
Cao GZ, Tian LL, Hou JY, Zhang Y, Xu H, Yang HJ, Zhang JJ. Integrating RNA-sequencing and network analysis to explore the mechanism of topical Pien Tze Huang treatment on diabetic wounds. Front Pharmacol 2024; 14:1288406. [PMID: 38293673 PMCID: PMC10826880 DOI: 10.3389/fphar.2023.1288406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction: Diabetic ulcers have become one of the major complications of diabetes mellitus (DM) and are a leading cause of death and disabling disease. However, current therapies are not effective enough to meet clinical needs. A traditional Chinese medicine (TCM) formula, Pien Tze Huang (PZH), is known as a medicine that is used to treat diabetic ulcers. Methods: In this study, PZH (0.05 g/cm2 and 0.15 g/cm2) and the positive drug-rhEGF were topically administered in a high-fat diet (HFD) and streptozotocin (STZ)-induced diabetic full-thickness incisional wounds, respectively. Wound healing was assessed by wound closure rate, two-photon microscope (SHG), staining with Hematoxylin and eosin (H&E), and Masson's trichrome (MTC). Then, RNA sequencing (RNA-seq) analysis, Enzyme-linked immunosorbent assay (ELISA), western blotting, and immunofluorescence (IF), network analysis, were performed. Results and discussion: The results showed that PZH significantly accelerated wound healing, as well as enhanced the expression of collagen. RNA-seq analysis showed that PZH has functions on various biological processes, one of the key biological processes is inflammatory response. Tlr9, Klrk1, Nod2, Tlr2, and Ifng were identified as vital targets and the NF-κB signaling pathway was identified as the vital pathway. Additionally, PZH profoundly reduced the levels of Cleaved caspase-3 and promoted the expression of CD31 and TGF-β1. Mechanically, PZH significantly decreased expression of NKG2-D, NOD2, and TLR2, and further inhibited the activation of downstream NF-κB signaling pathway and inhibited expression of inflammatory factors (IFN-γ and IL-1β). Importantly, we found that several active ingredients may play a significant role in diabetic wound healing, including Notoginsenoside R1, Deoxycorticosterone, Ursolic acid, and 4-Methoxyphenol. In summary, our study sheds light on the complicated mechanisms underlying the promising anti-diabetic wounds of PZH and provides the discovery of agents treating diabetic ulcers.
Collapse
Affiliation(s)
- Guang-Zhao Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang-Liang Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing-Yi Hou
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - He Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong-Jun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing-Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Simon Machado R, Mathias K, Joaquim L, Willig de Quadros R, Petronilho F, Tezza Rezin G. From diabetic hyperglycemia to cerebrovascular Damage: A narrative review. Brain Res 2023; 1821:148611. [PMID: 37793604 DOI: 10.1016/j.brainres.2023.148611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/04/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
Diabetes mellitus is a globally significant disease that can lead to systemic complications, particularly vascular damage, including cardiovascular and cerebrovascular diseases of relevance. The physiological changes resulting from the imbalance in blood glucose levels play a crucial role in initiating vascular endothelial damage. Elevated glucose levels can also penetrate the central nervous system, triggering diabetic encephalopathy characterized by oxidative damage to brain components and activation of alternative and neurotoxic pathways. This brain damage increases the risk of ischemic stroke, a leading cause of mortality worldwide and a major cause of disability among surviving patients. The aim of this review is to highlight important pathways related to hyperglycemic damage that extend to the brain and result in vascular dysfunction, ultimately leading to the occurrence of a stroke. Understanding how diabetes mellitus contributes to the development of ischemic stroke and its impact on patient outcomes is crucial for implementing therapeutic strategies that reduce the incidence of diabetes mellitus and its complications, ultimately decreasing morbidity and mortality associated with the disease.
Collapse
Affiliation(s)
- Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil.
| | - Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Rafaella Willig de Quadros
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| |
Collapse
|
12
|
Ni J, Liu X, Zhang R, Wang H, Liang J, Hou Y, Dou H. Systemic administration of Shikonin ameliorates cognitive impairment and neuron damage in NPSLE mice. J Neuroimmunol 2023; 382:578166. [PMID: 37536051 DOI: 10.1016/j.jneuroim.2023.578166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Shikonin is an anti-inflammatory natural herbal drug extracted from Lithospermum erythrorhizon and its therapeutic effect on neuropsychiatric systemic lupus erythematosus (NPSLE) is yet unknown. In our study, Shikonin significantly reversed the cognitive impairment and alleviated the brain tissue damage in NPSLE mice. The permeability of blood-brain barrier was also verified to be repaired in Shikonin-treated NPSLE mice. In particular, we found that Shikonin alleviated neuroinflammation through inhibiting β-catenin signaling pathway, thereby depressing the activation of microglia and the loss of neuronal synapses. Overall, Shikonin may be a promising candidate drug for NPSLE through diminishing neuroinflammation and repairing neuron damage.
Collapse
Affiliation(s)
- Jiali Ni
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, PR China
| | - Xuan Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, PR China
| | - Ruowen Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, PR China
| | - Hailin Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, PR China
| | - Jun Liang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, PR China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, PR China.
| |
Collapse
|
13
|
Levine DA, Chen B, Galecki AT, Gross AL, Briceño EM, Whitney RT, Ploutz-Snyder RJ, Giordani BJ, Sussman JB, Burke JF, Lazar RM, Howard VJ, Aparicio HJ, Beiser AS, Elkind MSV, Gottesman RF, Koton S, Pendlebury ST, Sharma A, Springer MV, Seshadri S, Romero JR, Hayward RA. Associations Between Vascular Risk Factor Levels and Cognitive Decline Among Stroke Survivors. JAMA Netw Open 2023; 6:e2313879. [PMID: 37195662 PMCID: PMC10193182 DOI: 10.1001/jamanetworkopen.2023.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/30/2023] [Indexed: 05/18/2023] Open
Abstract
Importance Incident stroke is associated with accelerated cognitive decline. Whether poststroke vascular risk factor levels are associated with faster cognitive decline is uncertain. Objective To evaluate associations of poststroke systolic blood pressure (SBP), glucose, and low-density lipoprotein (LDL) cholesterol levels with cognitive decline. Design, Setting, and Participants Individual participant data meta-analysis of 4 US cohort studies (conducted 1971-2019). Linear mixed-effects models estimated changes in cognition after incident stroke. Median (IQR) follow-up was 4.7 (2.6-7.9) years. Analysis began August 2021 and was completed March 2023. Exposures Time-dependent cumulative mean poststroke SBP, glucose, and LDL cholesterol levels. Main Outcomes and Measures The primary outcome was change in global cognition. Secondary outcomes were change in executive function and memory. Outcomes were standardized as t scores (mean [SD], 50 [10]); a 1-point difference represents a 0.1-SD difference in cognition. Results A total of 1120 eligible dementia-free individuals with incident stroke were identified; 982 (87.7%) had available covariate data and 138 (12.3%) were excluded for missing covariate data. Of the 982, 480 (48.9%) were female individuals, and 289 (29.4%) were Black individuals. The median age at incident stroke was 74.6 (IQR, 69.1-79.8; range, 44.1-96.4) years. Cumulative mean poststroke SBP and LDL cholesterol levels were not associated with any cognitive outcome. However, after accounting for cumulative mean poststroke SBP and LDL cholesterol levels, higher cumulative mean poststroke glucose level was associated with faster decline in global cognition (-0.04 points/y faster per each 10-mg/dL increase [95% CI, -0.08 to -0.001 points/y]; P = .046) but not executive function or memory. After restricting to 798 participants with apolipoprotein E4 (APOE4) data and controlling for APOE4 and APOE4 × time, higher cumulative mean poststroke glucose level was associated with a faster decline in global cognition in models without and with adjustment for cumulative mean poststroke SBP and LDL cholesterol levels (-0.05 points/y faster per 10-mg/dL increase [95% CI, -0.09 to -0.01 points/y]; P = .01; -0.07 points/y faster per 10-mg/dL increase [95% CI, -0.11 to -0.03 points/y]; P = .002) but not executive function or memory declines. Conclusions and Relevance In this cohort study, higher poststroke glucose levels were associated with faster global cognitive decline. We found no evidence that poststroke LDL cholesterol and SBP levels were associated with cognitive decline.
Collapse
Affiliation(s)
- Deborah A. Levine
- Department of Internal Medicine and Cognitive Health Services Research Program, University of Michigan, Ann Arbor
- Department of Neurology and Stroke Program, University of Michigan, Ann Arbor
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor
| | - Bingxin Chen
- Department of Nursing, University of Michigan, Ann Arbor
| | - Andrzej T. Galecki
- Department of Internal Medicine and Cognitive Health Services Research Program, University of Michigan, Ann Arbor
- Department of Biostatistics, University of Michigan, Ann Arbor
| | - Alden L. Gross
- Department of Epidemiology, Johns Hopkins Bloomberg School Public Health, Baltimore, Maryland
| | - Emily M. Briceño
- Department of Internal Medicine and Cognitive Health Services Research Program, University of Michigan, Ann Arbor
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor
| | - Rachael T. Whitney
- Department of Internal Medicine and Cognitive Health Services Research Program, University of Michigan, Ann Arbor
| | | | - Bruno J. Giordani
- Department of Psychiatry and Michigan Alzheimer’s Disease Center, University of Michigan, Ann Arbor
| | - Jeremy B. Sussman
- Department of Internal Medicine and Cognitive Health Services Research Program, University of Michigan, Ann Arbor
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - James F. Burke
- Department of Neurology, Ohio State University College of Medicine, Columbus
| | - Ronald M. Lazar
- Department of Neurology and Evelyn F. McKnight Brain Institute, Heersink School of Medicine, University of Alabama at Birmingham
| | - Virginia J. Howard
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health
| | - Hugo J. Aparicio
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts
| | - Alexa S. Beiser
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Mitchell S. V. Elkind
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Rebecca F. Gottesman
- Stroke Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Silvia Koton
- Department of Epidemiology, Johns Hopkins Bloomberg School Public Health, Baltimore, Maryland
- Department of Nursing, The Stanley Steyer School of Health Professions, Tel Aviv University, Tel Aviv, Israel
| | - Sarah T. Pendlebury
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- NIHR Biomedical Research Centre, Departments of Medicine and Geratology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Anu Sharma
- Department of Internal Medicine and Cognitive Health Services Research Program, University of Michigan, Ann Arbor
| | - Mellanie V. Springer
- Department of Neurology and Stroke Program, University of Michigan, Ann Arbor
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor
| | - Sudha Seshadri
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts
- Department of Neurology and Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, Joe R. and Teresa Lozano Long School of Medicine, University of Texas San Antonio
| | - Jose R. Romero
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts
| | - Rodney A. Hayward
- Department of Internal Medicine and Cognitive Health Services Research Program, University of Michigan, Ann Arbor
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan
| |
Collapse
|
14
|
Yan J, Liu T, Li Y, Zhang J, Shi B, Zhang F, Hou X, Zhang X, Cui W, Li J, Yao H, Li X, Gao Y, Jiang J. Effects of magnetically targeted iron oxide@polydopamine-labeled human umbilical cord mesenchymal stem cells in cerebral infarction in mice. Aging (Albany NY) 2023; 15:1130-1142. [PMID: 36812482 PMCID: PMC10008509 DOI: 10.18632/aging.204540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
Mesenchymal stem cells are a potential therapeutic candidate for cerebral infarction due to their anti-inflammatory proprieties. However, ensuring the engraftment of sufficient cells into the affected brain area remains a challenge. Herein, magnetic targeting techniques were used for the transplantation of a large number of cells noninvasively. Mice subjected to pMCAO surgery were administered MSCs labeled or not with iron oxide@polydopamine nanoparticles by tail vein injection. Iron oxide@polydopamine particles were characterized by transmission electron microscopy, and labeled MSCs were characterized by flow cytometry and their differentiation potential was assessed in vitro. Following the systemic injection of iron oxide@polydopamine-labeled MSCs into pMCAO-induced mices, magnetic navigation increased the MSCs localization to the brain lesion site and reduced the lesion volume. Treatment with iron oxide@polydopamine-labeled MSCs also significantly inhibited M1 microglia polarization and increased M2 microglia cell infiltration. Furthermore, western blotting and immunohistochemical analysis demonstrated that microtubule-associated protein 2 and NeuN levels were upregulated the brain tissue of mice treated with iron oxide@polydopamine-labeled MSCs. Thus, iron oxide@polydopamine-labeled MSCs attenuated brain injury and protected neurons by preventing pro-inflammatory microglia activation. Overall, the proposed iron oxide@polydopamine-labeled MSCs approach may overcome the major drawback of the conventional MSCs therapy for the treatment of cerebral infarction.
Collapse
Affiliation(s)
- Jun Yan
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin, China.,Central Laboratory, Dalian Municipal Women and Children’s Medical Center (Group), Xigang District, Dalian 116012, China
| | - Te Liu
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Yang Li
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Jun Zhang
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Bo Shi
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Fuqiang Zhang
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Xuejia Hou
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Xiaowen Zhang
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Wanxing Cui
- Georgetown University Hospital, Washington, DC 20007, USA
| | - Jing Li
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Hua Yao
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Xiuying Li
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Yufei Gao
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun 130031, Jilin, China
| | - Jinlan Jiang
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin, China
| |
Collapse
|
15
|
Li W, Abdul Y, Chandran R, Jamil S, Ward RA, Abdelsaid M, Dong G, Fagan SC, Ergul A. Deferoxamine prevents poststroke memory impairment in female diabetic rats: potential links to hemorrhagic transformation and ferroptosis. Am J Physiol Heart Circ Physiol 2023; 324:H212-H225. [PMID: 36563009 PMCID: PMC9870589 DOI: 10.1152/ajpheart.00490.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Diabetes increases the risk of poststroke cognitive impairment (PSCI). Greater hemorrhagic transformation (HT) after stroke is associated with vasoregression and cognitive decline in male diabetic rats. Iron chelator deferoxamine (DFX) prevents vasoregression and improves outcomes. Although diabetic female rats develop greater HT, its impact on poststroke cerebrovascularization and cognitive outcomes remained unknown. We hypothesized that diabetes mediates pathological neovascularization, and DFX attenuates poststroke cerebrovascular remodeling and improves neurological outcomes in female diabetic rats. Female control and diabetic animals were treated with DFX or vehicle for 7 days after stroke. Vascular indices, microglial activation, and blood-brain barrier (BBB) integrity were evaluated on day 14. Results from diabetic female rats were partially compared with our previously published findings in male counterparts. Hemin-induced programmed cell death was studied in male and female brain microvascular endothelial cell lines (BMVEC). There was no vasoregression after stroke in either control or diabetic female animals. DFX prevented diabetes-mediated gliovascular remodeling and compromised BBB integrity while improving memory function in diabetes. Comparisons of female and male rats indicated sex differences in cognitive and vascular outcomes. Hemin mediated ferroptosis in both male and female BMVECs. DFX improved survival but had differential effects on ferroptosis signaling in female and male cells. These results suggest that stroke and associated HT do not affect cerebrovascularization in diabetic female rats, but iron chelation may provide a novel therapeutic strategy in the prevention of poststroke memory impairment in females with diabetes via the preservation of gliovascular integrity and improvement of endothelial cell survival.NEW & NOTEWORTHY The current study shows for the first time that diabetes does not promote aberrant cerebrovascularization in female rats. This contrasts with what we reported in male animals in various diabetes models. Deferoxamine preserved recognition memory function in diabetic female animals after stroke. The effect(s) of stroke and deferoxamine on cerebrovascular density and microglial activation also appear(s) to be different in female diabetic rats. Lastly, deferoxamine exerts detrimental effects on animals and BMVECs under control conditions.
Collapse
Affiliation(s)
- Weiguo Li
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, South Carolina
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Yasir Abdul
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, South Carolina
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Raghavendar Chandran
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, South Carolina
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Sarah Jamil
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, South Carolina
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Rebecca A Ward
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Guangkuo Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Susan C Fagan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, Georgia
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Adviye Ergul
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, South Carolina
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
16
|
Mi Y, Xu J, Shi R, Meng Q, Xu L, Liu Y, Guo T, Zhou D, Liu J, Li W, Li N, Hou Y. Okanin from Coreopsis tinctoria Nutt. alleviates cognitive impairment in bilateral common carotid artery occlusion mice by regulating the miR-7/NLRP3 axis in microglia. Food Funct 2023; 14:369-387. [PMID: 36511396 DOI: 10.1039/d2fo01476a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cognitive impairment is the main clinical feature following stroke, and microglia-mediated inflammatory response is a major contributor to it. Coreopsis tinctoria Nutt., an edible chrysanthemum, is commonly used as a functional ingredient in healthcare beverages and food. Okanin, the main active ingredient of Coreopsis tinctoria Nutt. flower, inhibits microglial activation. However, the role of okanin in cognitive impairment following ischemic stroke is still unknown. In this study, we investigated the effect of okanin on ischemic stroke and its underlying mechanism both in vivo and in vitro. Okanin was found to attenuate cognitive impairment in bilateral common carotid artery occlusion (BCCAO) mice, inhibit neuronal loss and microglial activation, decrease NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation, and increase miR-7 expression. Okanin suppressed NLRP3 inflammasome activation in oxygen-glucose deprivation (OGD) and lipopolysaccharide (LPS)-stimulated microglia by increasing miR-7 expression and inhibited microglia-induced neuronal injury. This study provides new insights into the role of okanin in ischemic stroke and shows that the miR-7/NLRP3 axis plays an important role in mediating the beneficial effects of okanin on cerebral ischemia. These findings suggest that okanin has great potential as a functional food for stroke recovery.
Collapse
Affiliation(s)
- Yan Mi
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China. .,Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Jikai Xu
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China. .,Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Ruijia Shi
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China.
| | - Qingqi Meng
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China.
| | - Libin Xu
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China.
| | - Yeshu Liu
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China.
| | - Tingting Guo
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China.
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China.
| | - Jingyu Liu
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China.
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China.
| | - Yue Hou
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China. .,Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| |
Collapse
|
17
|
Lee K, Chen J, Wang C. Association between diabetes mellitus and post-stroke cognitive impairment. J Diabetes Investig 2022; 14:6-11. [PMID: 36181402 PMCID: PMC9807143 DOI: 10.1111/jdi.13914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 01/07/2023] Open
Abstract
Stroke survivors suffer from various physical, emotional, and cognitive impairments. These changes are dynamic and depend on multiple factors, including underlying diseases, baseline brain function and pathology, the site of the stroke and the post-stroke inflammation, neurogenesis as well as the subsequent remodeling of the neuro-network. First we review the structural and pathological changes of the brain in stroke survivors with diabetes mellitus, which may lead to post-stroke cognitive dysfunction. Second, we provide evidence of hyperglycemia, diabetes mellitus, hypoglycemia, and their relationship with post-stroke cognitive impairment (PSCI) and post-stroke dementia (PSD). In addition to conventional biomarkers, such as HbA1c, we also provide other novel tools to predict PSCI/PSD, such as glycemic variability, receptor for advanced glycation end products, and gut microbiota. Finally, we attempt to provide some modifying methods for glycemic control, focusing on the prevention of PSCI/PSD.
Collapse
Affiliation(s)
- Kang‐Po Lee
- College of MedicineI‐Shou UniversityKaohsiungTaiwan,Stroke Center and Department of NeurologyE‐Da HospitalKaohsiungTaiwan
| | | | - Chih‐Yuan Wang
- Division of Endocrinology and Metabolism, Department of Internal MedicineCollege of Medicine, National Taiwan University Hospital, National Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
18
|
Wang Y, Leak RK, Cao G. Microglia-mediated neuroinflammation and neuroplasticity after stroke. Front Cell Neurosci 2022; 16:980722. [PMID: 36052339 PMCID: PMC9426757 DOI: 10.3389/fncel.2022.980722] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke remains a major cause of long-term disability and mortality worldwide. The immune system plays an important role in determining the condition of the brain following stroke. As the resident innate immune cells of the central nervous system, microglia are the primary responders in a defense network covering the entire brain parenchyma, and exert various functions depending on dynamic communications with neurons, astrocytes, and other neighboring cells under both physiological or pathological conditions. Microglia activation and polarization is crucial for brain damage and repair following ischemic stroke, and is considered a double-edged sword for neurological recovery. Microglia can exist in pro-inflammatory states and promote secondary brain damage, but they can also secrete anti-inflammatory cytokines and neurotrophic factors and facilitate recovery following stroke. In this review, we focus on the role and mechanisms of microglia-mediated neuroinflammation and neuroplasticity after ischemia and relevant potential microglia-based interventions for stroke therapy.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Guodong Cao Yuan Wang
| | - Rehana K. Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
- *Correspondence: Guodong Cao Yuan Wang
| |
Collapse
|
19
|
Rosmus DD, Lange C, Ludwig F, Ajami B, Wieghofer P. The Role of Osteopontin in Microglia Biology: Current Concepts and Future Perspectives. Biomedicines 2022; 10:biomedicines10040840. [PMID: 35453590 PMCID: PMC9027630 DOI: 10.3390/biomedicines10040840] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 12/14/2022] Open
Abstract
The innate immune landscape of the central nervous system (CNS), including the brain and the retina, consists of different myeloid cell populations with distinct tasks to fulfill. Whereas the CNS borders harbor extraparenchymal CNS-associated macrophages whose main duty is to build up a defense against invading pathogens and other damaging factors from the periphery, the resident immune cells of the CNS parenchyma and the retina, microglia, are highly dynamic cells with a plethora of functions during homeostasis and disease. Therefore, microglia are constantly sensing their environment and closely interacting with surrounding cells, which is in part mediated by soluble factors. One of these factors is Osteopontin (OPN), a multifunctional protein that is produced by different cell types in the CNS, including microglia, and is upregulated in neurodegenerative and neuroinflammatory conditions. In this review, we discuss the current literature about the interaction between microglia and OPN in homeostasis and several disease entities, including multiple sclerosis (MS), Alzheimer’s and cerebrovascular diseases (AD, CVD), amyotrophic lateral sclerosis (ALS), age-related macular degeneration (AMD) and diabetic retinopathy (DR), in the context of the molecular pathways involved in OPN signaling shaping the function of microglia. As nearly all CNS diseases are characterized by pathological alterations in microglial cells, accompanied by the disturbance of the homeostatic microglia phenotype, the emergence of disease-associated microglia (DAM) states and their interplay with factors shaping the DAM-signature, such as OPN, is of great interest for therapeutical interventions in the future.
Collapse
Affiliation(s)
| | - Clemens Lange
- Eye Center, Freiburg Medical Center, University of Freiburg, 79106 Freiburg, Germany; (C.L.); (F.L.)
- Ophtha-Lab, Department of Ophthalmology, St. Franziskus Hospital, 48145 Muenster, Germany
| | - Franziska Ludwig
- Eye Center, Freiburg Medical Center, University of Freiburg, 79106 Freiburg, Germany; (C.L.); (F.L.)
| | - Bahareh Ajami
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Peter Wieghofer
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany;
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Medical Faculty, Augsburg University, 86159 Augsburg, Germany
- Correspondence:
| |
Collapse
|
20
|
Chen S, Bennet L, McGregor AL. Delayed citalopram administration reduces brain inflammation and enhances skilled motor function after ischaemic stroke in 'MacGreen' mice. Eur J Neurosci 2022; 55:1344-1355. [PMID: 35060208 PMCID: PMC9305149 DOI: 10.1111/ejn.15601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
Recent evidence suggests that treatment with antidepressants may promote functional recovery. However, the timeframe in which these pharmacological agents can influence stroke recovery is not well understood. This research investigated whether delayed administration of citalopram, used clinically in the management of post-stroke depression, could improve long-term functional recovery following experimental stroke. MacGreen mice carrying an enhanced green fluorescent protein reporter gene in monocyte and macrophage populations were subjected to 45 min occlusion of the middle cerebral artery. Animals were administered citalopram (10 mg/kg/day, n = 20) or saline (n = 20) starting 3 days after stroke for 28 days. Neurological deficits and skilled motor performance in the staircase task were recorded for 9 weeks post stroke. Grey and white matter structural lesions were quantified at Week 9, and enhanced green fluorescent protein immunohistochemistry was used to evaluate the effect of citalopram on inflammation. Twenty-five animals were included in the final analysis. Citalopram-treated animals (n = 13) showed a significant increase in impaired forepaw use in the staircase task compared with saline-treated animals (n = 12) 2, 3 and 7 weeks post stroke but no difference in neurological score at any time point examined. Citalopram treatment was associated with decreased monocyte/macrophage cell density and increased white matter tract integrity within the ipsilateral cortex. In conclusion, delayed administration of citalopram decreased brain inflammation and produced functional gains in our mouse model of stroke. Beneficial effects on skilled motor functions were long-lasting.
Collapse
Affiliation(s)
- Siyi Chen
- Department of Physiology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | | |
Collapse
|
21
|
Identification of Potential Biomarkers of Type 2 Diabetes Mellitus-Related Immune Infiltration Using Weighted Gene Coexpression Network Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9920744. [PMID: 35187175 PMCID: PMC8849810 DOI: 10.1155/2022/9920744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 12/03/2022]
Abstract
Background Type 2 diabetes mellitus (T2DM) is characterized by chronic low-grade inflammation, showing an increasing trend. The infiltration of immune cells into adipose tissue has been shown to be an important pathogenic cause of T2DM. The purpose of this study is to use the relevant database to identify some abnormally expressed or dysfunctional genes related to diabetes from the perspective of immune infiltration. Methods Weighted gene coexpression network analysis (WGCNA) was employed to systematically identify the coexpressed gene modules and hub genes associated with T2DM development based on a microarray dataset (GSE23561) from the Gene Expression Omnibus (GEO) database. The key genes in modules highly related to clinical features were calculated and screened by using R software, and their participation in T2DM was determined by gene enrichment analysis. The mRNA levels of CSF1R, H2AFV, LCK, and TLR9 in pre-T2DM mice and normal wild-type mice were detected by WGCNA screening and real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Results We constructed 14 coexpressed gene modules, and the brown module was shown to be significantly related to T2DM. Through verification of the protein-protein interaction (PPI) network, four upregulated hub genes, CSF1R, H2AFV, LCK, and TLR9, were screened from the brown module and successfully distinguishedT2DM patients from healthy people. These hub genes may be used as biomarkers and important indicators for patient diagnosis. Enrichment analysis showed that these hub genes were highly associated with IL-6-related inflammatory metabolism, immune regulation, and immune cell infiltration. Finally, we verified the hub genes CSF1R, LCK, and TLR9 in a T2DM animal model and found that their mRNA levels were significantly higher in animals with T2DM than in control group mice (NC). Conclusions In summary, our results suggest that these hub genes (CSF1R, LCK, and TLR9) can serve as biomarkers and immunotherapeutic targets for T2DM.
Collapse
|
22
|
Spiteri AG, Wishart CL, Pamphlett R, Locatelli G, King NJC. Microglia and monocytes in inflammatory CNS disease: integrating phenotype and function. Acta Neuropathol 2022; 143:179-224. [PMID: 34853891 PMCID: PMC8742818 DOI: 10.1007/s00401-021-02384-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023]
Abstract
In neurological diseases, the actions of microglia, the resident myeloid cells of the CNS parenchyma, may diverge from, or intersect with, those of recruited monocytes to drive immune-mediated pathology. However, defining the precise roles of each cell type has historically been impeded by the lack of discriminating markers and experimental systems capable of accurately identifying them. Our ability to distinguish microglia from monocytes in neuroinflammation has advanced with single-cell technologies, new markers and drugs that identify and deplete them, respectively. Nevertheless, the focus of individual studies on particular cell types, diseases or experimental approaches has limited our ability to connect phenotype and function more widely and across diverse CNS pathologies. Here, we critically review, tabulate and integrate the disease-specific functions and immune profiles of microglia and monocytes to provide a comprehensive atlas of myeloid responses in viral encephalitis, demyelination, neurodegeneration and ischemic injury. In emphasizing the differential roles of microglia and monocytes in the severe neuroinflammatory disease of viral encephalitis, we connect inflammatory pathways common to equally incapacitating diseases with less severe inflammation. We examine these findings in the context of human studies and highlight the benefits and inherent limitations of animal models that may impede or facilitate clinical translation. This enables us to highlight common and contrasting, non-redundant and often opposing roles of microglia and monocytes in disease that could be targeted therapeutically.
Collapse
|
23
|
Zhang J, Zhang Y, Yuan Y, Liu L, Zhao Y, Wang X. Gut Microbiota Alteration Is Associated With Cognitive Deficits in Genetically Diabetic (Db/db) Mice During Aging. Front Aging Neurosci 2022; 13:815562. [PMID: 35153726 PMCID: PMC8826473 DOI: 10.3389/fnagi.2021.815562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
Recent studies have revealed that the microbiota may be implicated in diabetes-related cognitive dysfunction. However, the relationship between gut microbiota and cognitive dysfunction during the progression of type 2 diabetes remains elusive. We used 16S rRNA sequencing combined with conventional behavioral tests to explore the longitudinal changes of gut microbiota and cognition in diabetic db/db mice (leptin receptor knockout mice) and their wild-type littermates at different ages. Prussian blue staining was performed to detect the microhemorrhage in the brain, and immunofluorescent study was applied to analyze microglia activation. Moreover, a Meso Scale Discovery kit was used to determine the cytokine levels in the brain. Db/db mice exhibited age dependent pathological characteristics, including cognitive deficits, neuron damage, spontaneous hemorrhages and neuroinflammation. Furthermore, we observed that the diversity and composition of gut microbiota significantly differed between the wild-type and db/db mice during aging. We found that compared to age-matched wild-type mice, genus Helicobacter was significant higher in db/db mice at 18 and 26 weeks. Correlation analysis revealed that Helicobacter is positively associated with Iba-1 positive cells and TNF-α expression. Collectively, our longitudinal study suggests that diabetic cognitive impairment during aging is associated with abnormal gut microbiota composition, which may play a role in the regulation of neuroinflammation.
Collapse
|
24
|
Przykaza Ł. Understanding the Connection Between Common Stroke Comorbidities, Their Associated Inflammation, and the Course of the Cerebral Ischemia/Reperfusion Cascade. Front Immunol 2021; 12:782569. [PMID: 34868060 PMCID: PMC8634336 DOI: 10.3389/fimmu.2021.782569] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/29/2021] [Indexed: 01/13/2023] Open
Abstract
Despite the enormous progress in the understanding of the course of the ischemic stroke over the last few decades, a therapy that effectively protects neurovascular units (NVUs) and significantly improves neurological functions in stroke patients has still not been achieved. The reasons for this state are unclear, but it is obvious that the cerebral ischemia and reperfusion cascade is a highly complex phenomenon, which includes the intense neuroinflammatory processes, and comorbid stroke risk factors strongly worsen stroke outcomes and likely make a substantial contribution to the pathophysiology of the ischemia/reperfusion, enhancing difficulties in searching of successful treatment. Common concomitant stroke risk factors (arterial hypertension, diabetes mellitus and hyperlipidemia) strongly drive inflammatory processes during cerebral ischemia/reperfusion; because these factors are often present for a long time before a stroke, causing low-grade background inflammation in the brain, and already initially disrupting the proper functions of NVUs. Broad consideration of this situation in basic research may prove to be crucial for the success of future clinical trials of neuroprotection, vasculoprotection and immunomodulation in stroke. This review focuses on the mechanism by which coexisting common risk factors for stroke intertwine in cerebral ischemic/reperfusion cascade and the dysfunction and disintegration of NVUs through inflammatory processes, principally activation of pattern recognition receptors, alterations in the expression of adhesion molecules and the subsequent pathophysiological consequences.
Collapse
Affiliation(s)
- Łukasz Przykaza
- Laboratory of Experimental and Clinical Neurosurgery, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
25
|
Abdul Y, Li W, Ward R, Abdelsaid M, Hafez S, Dong G, Jamil S, Wolf V, Johnson MH, Fagan SC, Ergul A. Deferoxamine Treatment Prevents Post-Stroke Vasoregression and Neurovascular Unit Remodeling Leading to Improved Functional Outcomes in Type 2 Male Diabetic Rats: Role of Endothelial Ferroptosis. Transl Stroke Res 2021; 12:615-630. [PMID: 32875455 PMCID: PMC7917163 DOI: 10.1007/s12975-020-00844-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 12/28/2022]
Abstract
It is a clinically well-established fact that patients with diabetes have very poor stroke outcomes. Yet, the underlying mechanisms remain largely unknown. Our previous studies showed that male diabetic animals show greater hemorrhagic transformation (HT), profound loss of cerebral vasculature in the recovery period, and poor sensorimotor and cognitive outcomes after ischemic stroke. This study aimed to determine the impact of iron chelation with deferoxamine (DFX) on (1) cerebral vascularization patterns and (2) functional outcomes after stroke in control and diabetic rats. After 8 weeks of type 2 diabetes induced by a combination of high-fat diet and low-dose streptozotocin, male control and diabetic animals were subjected to thromboembolic middle cerebral artery occlusion (MCAO) and randomized to vehicle, DFX, or tPA/DFX and followed for 14 days with behavioral tests. Vascular indices (vascular volume and surface area), neurovascular remodeling (AQP4 polarity), and microglia activation were measured. Brain microvascular endothelial cells (BMVEC) from control and diabetic animals were evaluated for the impact of DFX on ferroptotic cell death. DFX treatment prevented vasoregression and microglia activation while improving AQP4 polarity as well as blood-brain barrier permeability by day 14 in diabetic rats. These pathological changes were associated with improvement of functional outcomes. In control rats, DFX did not have an effect. Iron increased markers of ferroptosis and lipid reactive oxygen species (ROS) to a greater extent in BMVECs from diabetic animals, and this was prevented by DFX. These results strongly suggest that (1) HT impacts post-stroke vascularization patterns and recovery responses in diabetes, (2) treatment of bleeding with iron chelation has differential effects on outcomes in comorbid disease conditions, and (3) iron chelation and possibly inhibition of ferroptosis may provide a novel disease-modifying therapeutic strategy in the prevention of post-stroke cognitive impairment in diabetes.
Collapse
Affiliation(s)
- Yasir Abdul
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
- Department of Pathology and Laboratory Sciences, Medical University of South Carolina, 171 Ashley Ave. MSC 908, Charleston, SC, 29425, USA
| | - Weiguo Li
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
- Department of Pathology and Laboratory Sciences, Medical University of South Carolina, 171 Ashley Ave. MSC 908, Charleston, SC, 29425, USA
| | - Rebecca Ward
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Sherif Hafez
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, USA
| | - Guangkuo Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, GA, USA
| | - Sarah Jamil
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
- Department of Pathology and Laboratory Sciences, Medical University of South Carolina, 171 Ashley Ave. MSC 908, Charleston, SC, 29425, USA
| | - Victoria Wolf
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
- Department of Pathology and Laboratory Sciences, Medical University of South Carolina, 171 Ashley Ave. MSC 908, Charleston, SC, 29425, USA
| | - Maribeth H Johnson
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, GA, USA
| | - Susan C Fagan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - Adviye Ergul
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
- Department of Pathology and Laboratory Sciences, Medical University of South Carolina, 171 Ashley Ave. MSC 908, Charleston, SC, 29425, USA.
| |
Collapse
|
26
|
Huang X, Li F, Yang T, Li H, Liu T, Wang Y, Xu M, Yan L, Zhang Y, Wang Y, Fu L, Geng D. Increased serum interleukin-34 levels as a novel diagnostic and prognostic biomarker in patients with acute ischemic stroke. J Neuroimmunol 2021; 358:577652. [PMID: 34217885 DOI: 10.1016/j.jneuroim.2021.577652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/05/2021] [Accepted: 06/27/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Recent data reveal that interleukin-34 (IL-34) can drive inflammatory response, thereby participating in the pathogenesis of inflammatory diseases. However, the potential effect of IL-34 in acute ischemic stroke (AIS) remains unknown. The purpose of this study was to explore whether the levels of serum IL-34 were correlated with clinical severity or prognosis in AIS patients. METHODS In this prospective cohort study, serum IL-34 levels were detected in 150 healthy controls and 155 AIS patients. Univariate and multivariate logistic regression analysis were conducted to investigate the effect of IL-34 on the diagnosis and prognosis of AIS. ROC curve was utilized to evaluate predictive values for IL-34. RESULTS Serum IL-34 levels at admission were significantly higher in AIS patients than those in the healthy controls. Univariate and multivariate logistics regression analysis showed that IL-34 was an independent predictor of occurrence and functional outcome of AIS. The ROC curve demonstrated that IL-34 had a good predictive effect on the diagnosis and prognosis of AIS. CONCLUSIONS IL-34 can be used as a novel and independent diagnostic and predicting prognostic biomarker in AIS.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Fengzhan Li
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Tingting Yang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Hao Li
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Tan Liu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Yingying Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Minmin Xu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Lisha Yan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Yong Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China.
| | - Yuzhong Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Linlin Fu
- Department of Pathogenic Biology and Lab of Infection and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China.
| |
Collapse
|
27
|
Guo Z, Wu X, Fan W. Clarifying the effects of diabetes on the cerebral circulation: Implications for stroke recovery and beyond. Brain Res Bull 2021; 171:67-74. [PMID: 33662495 DOI: 10.1016/j.brainresbull.2021.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
Given the sheer increased number of victims per year and the availability of only one effective treatment, acute ischemic stroke (AIS) remains to be one of the most under-treated serious diseases. Diabetes not only increases the incidence of ischemic stroke, but amplifies the ischemic damage, upon which if patients with diabetes suffer from stroke, he/she will confront increased risks of long-term functional deficits. The grim reality makes it a pressing need to intensify efforts at the basic science level to understand how diabetes impairs stroke recovery. This review retrospects the clinical and experimental studies in order to elucidate the detrimental effect of diabetes on cerebrovascular circulation including the major arteries/arterioles, collateral circulation, and neovascularization to shed light on further exploration of novel strategies for cerebral circulation protection before and after AIS in patients with diabetes.
Collapse
Affiliation(s)
- Zhihui Guo
- Department of Neurology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Xuqing Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Wei Fan
- Department of Neurology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
28
|
Jackson-Cowan L, Eldahshan W, Dumanli S, Dong G, Jamil S, Abdul Y, Althomali W, Baban B, Fagan SC, Ergul A. Delayed Administration of Angiotensin Receptor (AT2R) Agonist C21 Improves Survival and Preserves Sensorimotor Outcomes in Female Diabetic Rats Post-Stroke through Modulation of Microglial Activation. Int J Mol Sci 2021; 22:ijms22031356. [PMID: 33572986 PMCID: PMC7866408 DOI: 10.3390/ijms22031356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/31/2022] Open
Abstract
About 70% of stroke victims present with comorbid diseases such as diabetes and hypertension. The integration of comorbidities in pre-clinical experimental design is important in understanding the mechanisms involved in the development of stroke injury and recovery. We recently showed that administration of compound C21, an angiotensin II type 2 receptor agonist, at day 3 post-stroke improved sensorimotor outcomes by lowering neuroinflammation in diabetic male animals. In the current study, we hypothesized that a delayed administration of C21 would also lower chronic inflammation post-stroke in diabetic female animals. Young female diabetic rats were subjected to 1 h of middle cerebral artery occlusion (MCAO). Three days post-stroke, rats were administered C21 or vehicle in drinking water at a dose of 0.12 mg/kg/day for 4 weeks. The impact of C21 on microglial polarization was analyzed by flow cytometry in vivo and in vitro. Compound 21 treatment improved fine motor skills after MCAO through modulation of the microglia/macrophage inflammatory properties. In addition, C21 increased M2 polarization and reduced the M1:M2 ratio in vitro. In conclusion, delayed administration of C21 downregulates post-stroke inflammation in female diabetic animals. C21 may be a useful therapeutic option to lower neuro-inflammation and improve the post-stroke recovery in diabetes.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Cell Line
- Cognition/drug effects
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/physiopathology
- Female
- Infarction, Middle Cerebral Artery/complications
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/physiopathology
- Mice
- Microglia/drug effects
- Microglia/pathology
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Rats
- Rats, Wistar
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/metabolism
- Stroke/complications
- Stroke/drug therapy
- Stroke/physiopathology
Collapse
Affiliation(s)
- LaDonya Jackson-Cowan
- Department of Medicine, Augusta University/University of Georgia Medical Partnership, Athens, GA 30602, USA
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Wael Eldahshan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| | - Selin Dumanli
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Guangkuo Dong
- Department Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sarah Jamil
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Yasir Abdul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Waleed Althomali
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| | - Babak Baban
- Department of Oral Biology, Dental College of Georgia, Augusta, GA 30912, USA
| | - Susan C Fagan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| | - Adviye Ergul
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| |
Collapse
|
29
|
Barić A, Dobrivojević Radmilović M. Microglia and bradykinin cross talk in poststroke cognitive impairment in diabetes. Am J Physiol Cell Physiol 2021; 320:C613-C618. [PMID: 33502951 DOI: 10.1152/ajpcell.00402.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stroke is one of the leading causes of mortality and the leading cause of long-term disability worldwide. Although cognitive impairment is a common consequence of stroke, the underlying pathophysiological processes that lead to it are still poorly understood. Recently, more studies have shown evidence of the involvement of diabetes in producing a chronic neuroinflammatory state, which ultimately alters the recovery of function and cognition after stroke. To better understand the impact of diabetes on poststroke recovery, here we highlight the recent insights on the role of diabetes in neuroinflammation, especially regarding its effect on microglial function, and the emerging data on the involvement of kinins in both diabetes and neuroinflammation.
Collapse
Affiliation(s)
- Anja Barić
- Department of Histology and Embryology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marina Dobrivojević Radmilović
- Department of Histology and Embryology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
30
|
Zhang D, Li S, Hou L, Jing L, Ruan Z, Peng B, Zhang X, Hong JS, Zhao J, Wang Q. Microglial activation contributes to cognitive impairments in rotenone-induced mouse Parkinson's disease model. J Neuroinflammation 2021; 18:4. [PMID: 33402167 PMCID: PMC7786472 DOI: 10.1186/s12974-020-02065-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background Cognitive decline occurs frequently in Parkinson’s disease (PD), which greatly decreases the quality of life of patients. However, the mechanisms remain to be investigated. Neuroinflammation mediated by overactivated microglia is a common pathological feature in multiple neurological disorders, including PD. This study is designed to explore the role of microglia in cognitive deficits by using a rotenone-induced mouse PD model. Methods To evaluate the role of microglia in rotenone-induced cognitive deficits, PLX3397, an inhibitor of colony-stimulating factor 1 receptor, and minocycline, a widely used antibiotic, were used to deplete or inactivate microglia, respectively. Cognitive performance of mice among groups was detected by Morris water maze, objective recognition, and passive avoidance tests. Neurodegeneration, synaptic loss, α-synuclein phosphorylation, glial activation, and apoptosis were determined by immunohistochemistry and Western blot or immunofluorescence staining. The gene expression of inflammatory factors and lipid peroxidation were further explored by using RT-PCR and ELISA kits, respectively. Results Rotenone dose-dependently induced cognitive deficits in mice by showing decreased performance of rotenone-treated mice in the novel objective recognition, passive avoidance, and Morris water maze compared with that of vehicle controls. Rotenone-induced cognitive decline was associated with neurodegeneration, synaptic loss, and Ser129-phosphorylation of α-synuclein and microglial activation in the hippocampal and cortical regions of mice. A time course experiment revealed that rotenone-induced microglial activation preceded neurodegeneration. Interestingly, microglial depletion by PLX3397 or inactivation by minocycline significantly reduced neuronal damage and α-synuclein pathology as well as improved cognitive performance in rotenone-injected mice. Mechanistically, PLX3397 and minocycline attenuated rotenone-induced astroglial activation and production of cytotoxic factors in mice. Reduced lipid peroxidation was also observed in mice treated with combined PLX3397 or minocycline and rotenonee compared with rotenone alone group. Finally, microglial depletion or inactivation was found to mitigate rotenone-induced neuronal apoptosis. Conclusions Taken together, our findings suggested that microglial activation contributes to cognitive impairments in a rotenone-induced mouse PD model via neuroinflammation, oxidative stress, and apoptosis, providing novel insight into the immunopathogensis of cognitive deficits in PD. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02065-z.
Collapse
Affiliation(s)
- Dongdong Zhang
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Sheng Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Liyan Hou
- School of Public Health, Dalian Medical University, Dalian, 116044, China.,National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Lu Jing
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Zhengzheng Ruan
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Bingjie Peng
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Xiaomeng Zhang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Jau-Shyong Hong
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina, USA
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| | - Qingshan Wang
- School of Public Health, Dalian Medical University, Dalian, 116044, China. .,National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
31
|
Wang X, Miao Z, Xu X, Schultzberg M, Zhao Y. Reduced Levels of Plasma Lipoxin A4 Are Associated with Post-Stroke Cognitive Impairment. J Alzheimers Dis 2020; 79:607-613. [PMID: 33337374 DOI: 10.3233/jad-201050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Specialized pro-resolving mediators (SPMs) are bioactive lipids derived from n-3 and n-6 polyunsaturated fatty acids. SPMs promote resolution of inflammation and are reduced in Alzheimer's disease. It is unknown whether SPMs are associated with post-stroke cognitive impairment (PSCI). OBJECTIVE In the present report, we aimed to study the levels of SPMs in PSCI patients in the acute phase of ischemic stroke. METHODS Levels of SPMs in the plasma from 36 patients with PSCI and 33 patients with post-stroke non-cognitive impairment (PSNCI) were measured by enzyme immunoassay. RESULTS We found that levels of the SPM lipoxin A4 (LXA4) were significantly reduced in PSCI patients compared with PSNCI patients. Interestingly, the LXA4 levels were positively correlated with Mini-Mental State Examination scores, but not with the National Institutes of Health Stroke Scale scores. Such alteration and correlation were not found in any of the other SPMs analyzed, i.e., including resolvin D1, resolvin D2, and maresin 1. CONCLUSION We conclude that the plasma levels of LXA4 were reduced in PSCI patents in the acute phase of ischemic stroke and were correlated to cognitive function.
Collapse
Affiliation(s)
- Xiuzhe Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhijuan Miao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaofeng Xu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Marianne Schultzberg
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Yuwu Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
32
|
Spiteri AG, Wishart CL, King NJC. Immovable Object Meets Unstoppable Force? Dialogue Between Resident and Peripheral Myeloid Cells in the Inflamed Brain. Front Immunol 2020; 11:600822. [PMID: 33363542 PMCID: PMC7752943 DOI: 10.3389/fimmu.2020.600822] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammation of the brain parenchyma is characteristic of neurodegenerative, autoimmune, and neuroinflammatory diseases. During this process, microglia, which populate the embryonic brain and become a permanent sentinel myeloid population, are inexorably joined by peripherally derived monocytes, recruited by the central nervous system. These cells can quickly adopt a morphology and immunophenotype similar to microglia. Both microglia and monocytes have been implicated in inducing, enhancing, and/or maintaining immune-mediated pathology and thus disease progression in a number of neuropathologies. For many years, experimental and analytical systems have failed to differentiate resident microglia from peripherally derived myeloid cells accurately. This has impeded our understanding of their precise functions in, and contributions to, these diseases, and hampered the development of novel treatments that could target specific cell subsets. Over the past decade, microglia have been investigated more intensively in the context of neuroimmunological research, fostering the development of more precise experimental systems. In light of our rapidly growing understanding of these cells, we discuss the differential origins of microglia and peripherally derived myeloid cells in the inflamed brain, with an analysis of the problems resolving these cell types phenotypically and morphologically, and highlight recent developments enabling more precise identification.
Collapse
Affiliation(s)
- Alanna G. Spiteri
- Discipline of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Claire L. Wishart
- Discipline of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Nicholas J. C. King
- Discipline of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Cytometry Facility, The University of Sydney and Centenary Institute, Sydney, NSW, Australia
- Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity (MBI), Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Nano Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
33
|
Jackson-Cowan L, Cole EF, Silverberg JI, Lawley LP. Childhood atopic dermatitis is associated with cognitive dysfunction: A National Health Interview Survey study from 2008 to 2018. Ann Allergy Asthma Immunol 2020; 126:661-665. [PMID: 33189871 DOI: 10.1016/j.anai.2020.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a common inflammatory skin disease in children and adults. Little is known regarding the association of childhood AD with cognitive dysfunction. OBJECTIVE To evaluate the association of AD and cognitive dysfunction, including memory impairment, developmental delays and attention deficit (hyperactivity) disorder in US children (age <18 years). METHODS Data was analyzed from the National Health Interview Survey 2008 to 2018, which used a multistage, clustered, cross-sectional design. RESULTS The prevalences of cognitive dysfunction, such as memory impairment (0.87% vs 0.42%), developmental delays (6.96% vs 3.87%), and attention deficit (hyperactivity) disorder (10.78% vs 8.10%), were higher in children with vs without AD. In multivariable logistic regression models adjusting for age, sex, race, region, socioeconomic factors, allergic conditions, and mental health, childhood AD was associated with higher odds of memory impairment (adjusted odds ratio [95% confidence interval]: 1.84 [1.34-2.51]), developmental delays (1.54 [1.40-1.70]), and attention deficit (hyperactivity) disorder (1.31 [1.20-1.42]) compared with children without AD. Childhood atopic disease (defined as comorbid AD, asthma, allergic rhinitis, and food allergies) further increased the prevalence of developmental delays to 13.44% (2.10 [1.20-3.70]) in boys but not in girls. CONCLUSION In a nationally representative sample of the US population, a statistically significant and positive association between childhood AD and atopic disease with cognitive dysfunction was identified (P < .001). Furthermore, a dimorphic relationship with developmental delays was identified between sexes.
Collapse
Affiliation(s)
- LaDonya Jackson-Cowan
- The Medical College of Georgia at Augusta University, Augusta University/University of Georgia Medical Partnership, Athens, Georgia.
| | - Emily F Cole
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | - Jonathan I Silverberg
- Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Leslie P Lawley
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
34
|
Benito A, Hajji N, O’Neill K, Keun HC, Syed N. β-Hydroxybutyrate Oxidation Promotes the Accumulation of Immunometabolites in Activated Microglia Cells. Metabolites 2020; 10:metabo10090346. [PMID: 32859120 PMCID: PMC7570092 DOI: 10.3390/metabo10090346] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 01/24/2023] Open
Abstract
Metabolic regulation of immune cells has arisen as a critical set of processes required for appropriate response to immunological signals. While our knowledge in this area has rapidly expanded in leukocytes, much less is known about the metabolic regulation of brain-resident microglia. In particular, the role of alternative nutrients to glucose remains poorly understood. Here, we use stable-isotope (13C) tracing strategies and metabolomics to characterize the oxidative metabolism of β-hydroxybutyrate (BHB) in human (HMC3) and murine (BV2) microglia cells and the interplay with glucose in resting and LPS-activated BV2 cells. We found that BHB is imported and oxidised in the TCA cycle in both cell lines with a subsequent increase in the cytosolic NADH:NAD+ ratio. In BV2 cells, stimulation with LPS upregulated the glycolytic flux, increased the cytosolic NADH:NAD+ ratio and promoted the accumulation of the glycolytic intermediate dihydroxyacetone phosphate (DHAP). The addition of BHB enhanced LPS-induced accumulation of DHAP and promoted glucose-derived lactate export. BHB also synergistically increased LPS-induced accumulation of succinate and other key immunometabolites, such as α-ketoglutarate and fumarate generated by the TCA cycle. Finally, BHB upregulated the expression of a key pro-inflammatory (M1 polarisation) marker gene, NOS2, in BV2 cells activated with LPS. In conclusion, we identify BHB as a potentially immunomodulatory metabolic substrate for microglia that promotes metabolic reprogramming during pro-inflammatory response.
Collapse
Affiliation(s)
- Adrian Benito
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London W12 0NN, UK; (A.B.); (N.H.); (K.O.)
| | - Nabil Hajji
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London W12 0NN, UK; (A.B.); (N.H.); (K.O.)
| | - Kevin O’Neill
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London W12 0NN, UK; (A.B.); (N.H.); (K.O.)
| | - Hector C. Keun
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
- Correspondence: (H.C.K.); (N.S.)
| | - Nelofer Syed
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London W12 0NN, UK; (A.B.); (N.H.); (K.O.)
- Correspondence: (H.C.K.); (N.S.)
| |
Collapse
|
35
|
Pterostilbene Attenuates Cocultured BV-2 Microglial Inflammation-Mediated SH-SY5Y Neuronal Oxidative Injury via SIRT-1 Signalling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3986348. [PMID: 32831997 PMCID: PMC7426790 DOI: 10.1155/2020/3986348] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
Microglial inflammation plays an important part in the progression of multiple neurological diseases, including neurodegenerative diseases, stroke, depression, and traumatic encephalopathy. Here, we aimed to explore the role of pterostilbene (PTE) in the microglial inflammatory response and subsequent damage of cocultured neural cells and partially explain the underlying mechanisms. In the coculture system of lipopolysaccharide-activated BV-2 microglia and SH-SY5Y neuroblastoma, PTE (only given to BV-2) exhibited protection on SH-SY5Y cells, evidenced by improved SH-SY5Y morphology and viability and LDH release. It also attenuated SH-SY5Y apoptosis and oxidative stress, evidenced by TUNEL and DCFH-DA staining, as well as MDA, SOD, and GSH levels. Moreover, PTE upregulated SIRT-1 expression and suppressed acetylation of NF-κB p65 subunit in BV-2 microglia, thus decreasing the inflammatory factors, including TNF-α and IL-6. Furthermore, the effects above were reversed by SIRT-1 inhibitor EX527. These results suggest that PTE reduces the microglia-mediated inflammatory response and alleviates subsequent neuronal apoptosis and oxidative injury via increasing SIRT-1 expression and inhibiting the NF-κB signalling pathway.
Collapse
|