1
|
Ning W, Lv S, Wang Q, Xu Y. The pivotal role of microglia in injury and the prognosis of subarachnoid hemorrhage. Neural Regen Res 2025; 20:1829-1848. [PMID: 38993136 DOI: 10.4103/nrr.nrr-d-24-00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/25/2024] [Indexed: 07/13/2024] Open
Abstract
Subarachnoid hemorrhage leads to a series of pathological changes, including vascular spasm, cellular apoptosis, blood-brain barrier damage, cerebral edema, and white matter injury. Microglia, which are the key immune cells in the central nervous system, maintain homeostasis in the neural environment, support neurons, mediate apoptosis, participate in immune regulation, and have neuroprotective effects. Increasing evidence has shown that microglia play a pivotal role in the pathogenesis of subarachnoid hemorrhage and affect the process of injury and the prognosis of subarachnoid hemorrhage. Moreover, microglia play certain neuroprotective roles in the recovery phase of subarachnoid hemorrhage. Several approaches aimed at modulating microglia function are believed to attenuate subarachnoid hemorrhage injury. This provides new targets and ideas for the treatment of subarachnoid hemorrhage. However, an in-depth and comprehensive summary of the role of microglia after subarachnoid hemorrhage is still lacking. This review describes the activation of microglia after subarachnoid hemorrhage and their roles in the pathological processes of vasospasm, neuroinflammation, neuronal apoptosis, blood-brain barrier disruption, cerebral edema, and cerebral white matter lesions. It also discusses the neuroprotective roles of microglia during recovery from subarachnoid hemorrhage and therapeutic advances aimed at modulating microglial function after subarachnoid hemorrhage. Currently, microglia in subarachnoid hemorrhage are targeted with TLR inhibitors, nuclear factor-κB and STAT3 pathway inhibitors, glycine/tyrosine kinases, NLRP3 signaling pathway inhibitors, Gasdermin D inhibitors, vincristine receptor α receptor agonists, ferroptosis inhibitors, genetic modification techniques, stem cell therapies, and traditional Chinese medicine. However, most of these are still being evaluated at the laboratory stage. More clinical studies and data on subarachnoid hemorrhage are required to improve the treatment of subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Wenjing Ning
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Shi Lv
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| |
Collapse
|
2
|
Zhang Y, Zou M, Wu H, Zhu J, Jin T. The cGAS-STING pathway drives neuroinflammation and neurodegeneration via cellular and molecular mechanisms in neurodegenerative diseases. Neurobiol Dis 2024; 202:106710. [PMID: 39490400 DOI: 10.1016/j.nbd.2024.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a type of common chronic progressive disorders characterized by progressive damage to specific cell populations in the nervous system, ultimately leading to disability or death. Effective treatments for these diseases are still lacking, due to a limited understanding of their pathogeneses, which involve multiple cellular and molecular pathways. The triggering of an immune response is a common feature in neurodegenerative disorders. A critical challenge is the intricate interplay between neuroinflammation, neurodegeneration, and immune responses, which are not yet fully characterized. In recent years, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway, a crucial immune response for intracellular DNA sensing, has gradually gained attention. However, the specific roles of this pathway within cellular types such as immune cells, glial and neuronal cells, and its contribution to ND pathogenesis, remain not fully elucidated. In this review, we systematically explore how the cGAS-STING signaling links various cell types with related cellular effector pathways under the context of NDs for multifaceted therapeutic directions. We emphasize the discovery of condition-dependent cellular heterogeneity in the cGAS-STING pathway, which is integral for understanding the diverse cellular responses and potential therapeutic targets. Additionally, we review the pathogenic role of cGAS-STING activation in Parkinson's disease, ataxia-telangiectasia, and amyotrophic lateral sclerosis. We focus on the complex bidirectional roles of the cGAS-STING pathway in Alzheimer's disease, Huntington's disease, and multiple sclerosis, revealing their double-edged nature in disease progression. The objective of this review is to elucidate the pivotal role of the cGAS-STING pathway in ND pathogenesis and catalyze new insights for facilitating the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meijuan Zou
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Shao A, Jin L, Ge Y, Ye Z, Xu M, Zhou Y, Li Y, Wang L, Xu P, Jin K, Mao Z, Ye J. C176-loaded and phosphatidylserine-modified nanoparticles treat retinal neovascularization by promoting M2 macrophage polarization. Bioact Mater 2024; 39:392-405. [PMID: 38855060 PMCID: PMC11157223 DOI: 10.1016/j.bioactmat.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/08/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024] Open
Abstract
Retinal neovascularization (RNV), a typical pathological manifestation involved in most neovascular diseases, causes retinal detachment, vision loss, and ultimately irreversible blindness. Repeated intravitreal injections of anti-VEGF drugs were developed against RNV, with limitations of incomplete responses and adverse effects. Therefore, a new treatment with a better curative effect and more prolonged dosage is demanding. Here, we induced macrophage polarization to anti-inflammatory M2 phenotype by inhibiting cGAS-STING signaling with an antagonist C176, appreciating the role of cGAS-STING signaling in the retina in pro-inflammatory M1 polarization. C176-loaded and phosphatidylserine-modified dendritic mesoporous silica nanoparticles were constructed and examined by a single intravitreal injection. The biosafe nanoparticles were phagocytosed by retinal macrophages through a phosphatidylserine-mediated "eat me" signal, which persistently release C176 to suppress STING signaling and thereby promote macrophage M2 polarization specifically. A single dosage can effectively alleviate pathological angiogenesis phenotypes in murine oxygen-induced retinopathy models. In conclusion, these C176-loaded nanoparticles with enhanced cell uptake and long-lasting STING inhibition effects might serve as a promising way for treating RNV.
Collapse
Affiliation(s)
- An Shao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yanni Ge
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Ziqiang Ye
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yifan Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yingyu Li
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Linyan Wang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Pinglong Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310030, China
| | - Kai Jin
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| |
Collapse
|
4
|
Li Y, Zhao D, Chen D, Sun Q. Targeting protein condensation in cGAS-STING signaling pathway. Bioessays 2024; 46:e2400091. [PMID: 38962845 DOI: 10.1002/bies.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
The cGAS-STING signaling pathway plays a pivotal role in sensing cytosolic DNA and initiating innate immune responses against various threats, with disruptions in this pathway being associated with numerous immune-related disorders. Therefore, precise regulation of the cGAS-STING signaling is crucial to ensure appropriate immune responses. Recent research, including ours, underscores the importance of protein condensation in driving the activation and maintenance of innate immune signaling within the cGAS-STING pathway. Consequently, targeting condensation processes in this pathway presents a promising approach for modulating the cGAS-STING signaling and potentially managing associated disorders. In this review, we provide an overview of recent studies elucidating the role and regulatory mechanism of protein condensation in the cGAS-STING signaling pathway while emphasizing its pathological implications. Additionally, we explore the potential of understanding and manipulating condensation dynamics to develop novel strategies for mitigating cGAS-STING-related disorders in the future.
Collapse
Affiliation(s)
- Yajie Li
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Dongbo Zhao
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming, China
- Southwest United Graduate School, Kunming, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Fryer AL, Abdullah A, Mobilio F, Jobling A, Moore Z, de Veer M, Zheng G, Wong BX, Taylor JM, Crack PJ. Pharmacological inhibition of STING reduces neuroinflammation-mediated damage post-traumatic brain injury. Br J Pharmacol 2024; 181:3118-3135. [PMID: 38710660 DOI: 10.1111/bph.16347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND AND PURPOSE Traumatic brain injury (TBI) remains a major public health concern worldwide with unmet effective treatment. Stimulator of interferon genes (STING) and its downstream type-I interferon (IFN) signalling are now appreciated to be involved in TBI pathogenesis. Compelling evidence have shown that STING and type-I IFNs are key in mediating the detrimental neuroinflammatory response after TBI. Therefore, pharmacological inhibition of STING presents a viable therapeutic opportunity in combating the detrimental neuroinflammatory response after TBI. EXPERIMENTAL APPROACH This study investigated the neuroprotective effects of the small-molecule STING inhibitor n-(4-iodophenyl)-5-nitrofuran-2-carboxamide (C-176) in the controlled cortical impact mouse model of TBI in 10- to 12-week-old male mice. Thirty minutes post-controlled cortical impact surgery, a single 750-nmol dose of C-176 or saline (vehicle) was administered intravenously. Analysis was conducted 2 h and 24 h post-TBI. KEY RESULTS Mice administered C-176 had significantly smaller cortical lesion area when compared to vehicle-treated mice 24 h post-TBI. Quantitative temporal gait analysis conducted using DigiGait™ showed C-176 administration attenuated TBI-induced impairments in gait symmetry, stride frequency and forelimb stance width. C-176-treated mice displayed a significant reduction in striatal gene expression of pro-inflammatory cytokines Tnf-α, Il-1β and Cxcl10 compared to their vehicle-treated counterparts 2 h post-TBI. CONCLUSION AND IMPLICATIONS This study demonstrates the neuroprotective activity of C-176 in ameliorating acute neuroinflammation and preventing white matter neurodegeneration post-TBI. This study highlights the therapeutic potential of small-molecule inhibitors targeting STING for the treatment of trauma-induced inflammation and neuroprotective potential.
Collapse
Affiliation(s)
- Amelia L Fryer
- Neuropharmacology Laboratory, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
| | - Amar Abdullah
- Neuropharmacology Laboratory, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Frank Mobilio
- Neuropharmacology Laboratory, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
| | - Andrew Jobling
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| | - Zachery Moore
- Neuropharmacology Laboratory, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Michael de Veer
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Gang Zheng
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Bruce X Wong
- Neuropharmacology Laboratory, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
| | - Juliet M Taylor
- Neuropharmacology Laboratory, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
| | - Peter J Crack
- Neuropharmacology Laboratory, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
| |
Collapse
|
6
|
Preeti K, Sood A, Fernandes V, Khan I, Khatri DK, Singh SB. Experimental Type 2 diabetes and lipotoxicity-associated neuroinflammation involve mitochondrial DNA-mediated cGAS/STING axis: implication of Type-1 interferon response in cognitive impairment. Mol Neurobiol 2024; 61:6217-6244. [PMID: 38285288 DOI: 10.1007/s12035-024-03933-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/05/2024] [Indexed: 01/30/2024]
Abstract
Type-1 IFN (interferon)-associated innate immune response is increasingly getting attention in neurodegenerative and metabolic diseases like type 2 diabetes (T2DM). However, its significance in T2DM/lipotoxicity-induced neuroglia changes and cognitive impairment is missing. The present study aims to evaluate the involvement of cGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon gene), IRF3 (interferon regulatory factor-3), TBK (TANK binding kinase)-mediated Type-1 IFN response in the diabetic brain, and lipotoxicity (palmitate-bovine serum albumin conjugate/PA-BSA)-induced changes in cells (neuro2a and BV2). T2DM was induced in C57/BL6 mice by feeding on a high-fat diet (HFD, 60% Kcal) for 16 weeks and injecting a single dose of streptozotocin (100 mg/kg, i.p) in the 12th week. Plasma biochemical parameter analysis, neurobehavioral assessment, protein expression, and quantitative polymerase chain reaction study were carried out to decipher the hypothesis. T2DM-associated metabolic and lipotoxic stress led to mitochondrial impairment causing leakage of mtDNA to the cytoplasm further commencing cGAS activation and its downstream signaling. The diseased hippocampus and cortex showed decreased expression of synaptophysin (p < 0.01) and PSD-95 (p < 0.01, p < 0.05) with increased expression of cGAS (p < 0.001), p-STING (p < 0.001), p-STAT1 (signal transducer and activator of transcription) (p < 0.01), and IFN-β (p < 0.001) compared to normal control. The IFN-β/p-STAT1-mediated microglia activation was executed employing a conditioned media approach. C-176, a selective STING inhibitor, alleviated cGAS/p-STING/IFN-β expression and proinflammatory microglia/M1-associated markers (CD16 expression, CXCL10, TNF-α, IL-1β mRNA fold change) in the diabetic brain. The present study suggests Type-1IFN response may result in neuroglia dyshomeostasis affecting normal brain function. Alleviating STING signaling has the potential to protect T2DM-associated central ailment.
Collapse
Affiliation(s)
- Kumari Preeti
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Anika Sood
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Valencia Fernandes
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Islauddin Khan
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
- Department of Pharmacology, Shobhaben Pratapbai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Mumbai, 400056, India.
| | - Shashi Bala Singh
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
7
|
Yang Y, Ke J, Cao Y, Gao Y, Lin C. Melatonin regulates microglial M1/M2 polarization via AMPKα2-mediated mitophagy in attenuating sepsis-associated encephalopathy. Biomed Pharmacother 2024; 177:117092. [PMID: 38976956 DOI: 10.1016/j.biopha.2024.117092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a disease characterized by neuroinflammation and cognitive dysfunction caused by systemic infection. Inflammation-induced microglial activation is closely associated with neuroinflammation in SAE. It is widely understood that melatonin has strong anti-inflammatory and immunomodulatory properties beneficial for sepsis-related brain damage. However, the mechanism of melatonin action in SAE has not been fully elucidated. METHODS The SAE cell model and SAE mouse model were induced by lipopolysaccharide (LPS). Behavioral tests were performed to analyze cognitive function. Microglial markers and M1/M2 markers were measured by immunofluorescence. Mitophagy was assessed by western blot, mt-Keima and transmission electron microscopy experiments. Immunoprecipitation and co-immunoprecipitation assays investigated the interactions between AMP-activated protein kinase α2 (AMPKα2) and PTEN-induced putative kinase 1 (PINK1). RESULTS Melatonin suppresses LPS-induced microglia M1 polarization by enhancing mitophagy, thereby attenuating LPS-induced neuroinflammation and behavioral deficits. However, inhibition or knockdown of AMPKα2 can inhibit the enhancement of melatonin on mitophagy, then weaken its promotion of microglia polarization towards M2 phenotype, and eliminate its protective effect on brain function. Furthermore, melatonin enhances mitophagy through activating AMPKα2, promotes PINK1 Ser495 site phosphorylation, and ultimately regulates microglial polarization from M1 to M2. CONCLUSIONS Our findings demonstrate that melatonin facilitates microglia polarization towards M2 phenotype to alleviate LPS-induced neuroinflammation, primarily through AMPKα2-mediated enhancement of mitophagy.
Collapse
Affiliation(s)
- Yang Yang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Jinyong Ke
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Yang Cao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Yue Gao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Chunshui Lin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
8
|
Zhang H, Ren K, Hu Y, Liu B, He Y, Xu H, Ma K, Tian W, Dai L, Zhao D. Neuritin promotes autophagic flux by inhibiting the cGAS-STING pathway to alleviate brain injury after subarachnoid haemorrhage. Brain Res 2024; 1836:148909. [PMID: 38570154 DOI: 10.1016/j.brainres.2024.148909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Early brain injury (EBI) is closely associated with poor prognosis in patients with subarachnoid haemorrhage (SAH), with autophagy playing a pivotal role in EBI. However, research has shown that the stimulator of interferon genes (STING) pathway impacts autophagic flux. While the regulatory impact of neuritin on EBI and autophagic flux has been established previously, the underlying mechanism remains unclear. This study aimed to determine the role of the cGAS-STING pathway in neuritin-mediated regulation of autophagic flux following SAH. METHODS A SAH model was established in male Sprague-Dawley rats via intravascular perforation. Neuritin overexpressions using adeno-associated virus, the STING antagonist "C-176," and the activator, "CMA," were determined to investigate the cGAS-STING pathway's influence on autophagic flux and brain injury post-SAH, along with the neuritin's regulatory effect on STING. In this study, SAH grade, neurological score, haematoxylin and eosin (H&E) staining, brain water content (BWC), sandwich enzyme-linked immunosorbent assay, Evans blue staining, immunofluorescence staining, western blot analysis, and transmission electron microscopy (TEM) were examined. RESULTS Neuritin overexpression significantly ameliorated neurobehavioural scores, blood-brain barrier injury, brain oedema, and impaired autophagic flux in SAH-induced rats. STING expression remarkably increased post-SAH. C-176 and CMA mitigated and aggravated autophagic flux injury and brain injury, respectively, while inhibiting and enhancing STING, respectively. Particularly, CMA treatment nullified the protective effects of neuritin against autophagic flux and mitigated brain injury. CONCLUSION Neuritin alleviated EBI by restoring impaired autophagic flux after SAH through the regulation of the cGAS-STING pathway.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Shihezi University, Shihezi 832000, China
| | - Kunhao Ren
- Department of Neurosurgery, the First Affiliated Hospital of Shihezi University, Shihezi 832000, China
| | - Youjie Hu
- Department of Neurosurgery, the First Affiliated Hospital of Shihezi University, Shihezi 832000, China
| | - Bin Liu
- Department of Neurosurgery, the First Affiliated Hospital of Shihezi University, Shihezi 832000, China
| | - Yaowen He
- Department of Neurosurgery, the First Affiliated Hospital of Shihezi University, Shihezi 832000, China
| | - Hui Xu
- Department of Neurosurgery, the First Affiliated Hospital of Shihezi University, Shihezi 832000, China
| | - Ketao Ma
- Shihezi University School of Medicine, Shihezi 832000, China
| | - Weidong Tian
- Department of Neurosurgery, the First Affiliated Hospital of Shihezi University, Shihezi 832000, China
| | - Linzhi Dai
- Department of Neurosurgery, the First Affiliated Hospital of Shihezi University, Shihezi 832000, China.
| | - Dong Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Shihezi University, Shihezi 832000, China.
| |
Collapse
|
9
|
Yang Y, Luo X, Wang Y, Xu A, Peng L, Zhang X, Wang Z, Ying Y, Li K. β-Mangostin targets and suppresses glioma via STING activation and tumor-associated microglia polarization. Biomed Pharmacother 2024; 177:117074. [PMID: 38972149 DOI: 10.1016/j.biopha.2024.117074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/09/2024] Open
Abstract
Glioma, a common and highly malignant central nervous system tumor, markedly influences patient prognosis via interactions with glioma-associated macrophages. Previous research has revealed the anticancer potential of β-mangostin, a xanthone derivative obtained from the mangosteen fruit. This research investigated the role of β-mangostin on microglia in the glioma microenvironment and evaluated the efficacy of β-mangostin combined with anti-PD-1 antibody (αPD-1) in glioma-bearing mice. The results showed that, β-mangostin attenuated M2 polarization in BV2 cells and promoted M1-related interleukin (IL)-1β and IL-6 secretion, thereby inhibiting glioma invasion. In addition, β-mangostin improved the anti-glioma effects of αPD-1 and increased CD8+T cell and M1-type microglia infiltration. Mechanistically, β-mangostin bound to the stimulator of interferon genes (STING) protein, which is crucial for the anti-tumor innate immune response, and promoted STING phosphorylation in microglia, both in vivo and in vitro. These results provide insights into its mode of action and supporting further investigation into β-mangostin as a therapeutic agent.
Collapse
Affiliation(s)
- Yimin Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xuling Luo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yaling Wang
- Center for Laboratory Medicine, Allergy center, Department of Transfusion medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Aibo Xu
- Center for Laboratory Medicine, Allergy center, Department of Transfusion medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Lina Peng
- Center for Laboratory Medicine, Allergy center, Department of Transfusion medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiaoting Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy center, Department of Transfusion medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang 310063, China.
| | - Youmin Ying
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Kaiqiang Li
- Center for Laboratory Medicine, Allergy center, Department of Transfusion medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang 310063, China.
| |
Collapse
|
10
|
Wu L, Liu Y, He Q, Ao G, Xu N, He W, Liu X, Huang L, Yu Q, Kanamaru H, Dong S, Zhu S, Yuan Y, Han M, Ling Y, Liu L, Wu C, Zhou Y, Sherchan P, Flores JJ, Tang J, Chen X, He X, Zhang JH. PEDF-34 attenuates neurological deficit and suppresses astrocyte-dependent neuroinflammation by modulating astrocyte polarization via 67LR/JNK/STAT1 signaling pathway after subarachnoid hemorrhage in rats. J Neuroinflammation 2024; 21:178. [PMID: 39034417 PMCID: PMC11264993 DOI: 10.1186/s12974-024-03171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Reactive astrocytes participate in various pathophysiology after subarachnoid hemorrhage (SAH), including neuroinflammation, glymphatic-lymphatic system dysfunction, brain edema, BBB disruption, and cell death. Astrocytes transform into two new reactive phenotypes with changed morphology, altered gene expression, and secretion profiles, termed detrimental A1 and beneficial A2. This study investigates the effect of 67LR activation by PEDF-34, a PEDF peptide, on neuroinflammation and astrocyte polarization after the experimental SAH. METHODS A total of 318 male adult Sprague-Dawley rats were used in experiments in vivo, of which 272 rats were subjected to the endovascular perforation model of SAH and 46 rats underwent sham surgery. 67LR agonist (PEDF-34) was administrated intranasally 1 h after SAH. 67LR-specific inhibitor (NSC-47924) and STAT1 transcriptional activator (2-NP) were injected intracerebroventricularly 48 h before SAH. Short- and long-term neurological tests, brain water content, immunostaining, Nissl staining, western blot, and ELISA assay were performed. In experiments in vitro, primary astrocyte culture with hemoglobin (Hb) stimulation was used to mimic SAH. The expression of the PEDF-34/67LR signaling pathway and neuro-inflammatory cytokines were assessed using Western blot, ELISA, and immunohistochemistry assays both in vivo and in vitro. RESULTS Endogenous PEDF and 67LR expressions were significantly reduced at 6 h after SAH. 67LR was expressed in astrocytes and neurons. Intranasal administration of PEDF-34 significantly reduced brain water content, pro-inflammatory cytokines, and short-term and long-term neurological deficits after SAH. The ratio of p-JNK/JNK and p-STAT1/STAT1 and the expression of CFB and C3 (A1 astrocytes marker), significantly decreased after PEDF-34 treatment, along with fewer expression of TNF-α and IL-1β at 24 h after SAH. However, 2-NP (STAT1 transcriptional activator) and NSC-47924 (67LR inhibitor) reversed the protective effects of PEDF-34 in vivo and in vitro by promoting A1 astrocyte polarization with increased inflammatory cytokines. CONCLUSION PEDF-34 activated 67LR, attenuating neuroinflammation and inhibiting astrocyte A1 polarization partly via the JNK/STAT1 pathway, suggesting that PEDF-34 might be a potential treatment for SAH patients.
Collapse
Affiliation(s)
- Lei Wu
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
| | - Yanchao Liu
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Qiuguang He
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Guangnan Ao
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ningbo Xu
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
- Department of Interventional Therapy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Wangqing He
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xiao Liu
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Lei Huang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Qian Yu
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Hideki Kanamaru
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Siyuan Dong
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Shiyi Zhu
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Ye Yuan
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Mingyang Han
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Yeping Ling
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Lu Liu
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Chenyu Wu
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - You Zhou
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Jerry J Flores
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Xionghui Chen
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA.
- Department of Emergency Surgery, First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - Xuying He
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA.
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
11
|
Mao HQ, Zhou L, Li JQ, Wen YH, Chen Z, Zhang L. STING inhibition alleviates bone resorption in apical periodontitis. Int Endod J 2024; 57:951-965. [PMID: 38411951 DOI: 10.1111/iej.14057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/03/2024] [Accepted: 02/18/2024] [Indexed: 02/28/2024]
Abstract
AIM The goal of this study was to investigate the potential effects of an immunotherapeutic drug targeting STING to suppress the overreactive innate immune response and relieve the bone defect in apical periodontitis. METHODOLOGY We established an apical periodontitis mouse model in Sting-/- and WT mice in vivo. The progression of apical periodontitis was analysed by micro-CT analysis and H&E staining. The expression level and localization of STING in F4/80+ cells were identified by IHC and immunofluorescence staining. RANKL in periapical tissues was tested by IHC staining. TRAP staining was used to detect osteoclasts. To clarify the effect of STING inhibitor C-176 as an immunotherapeutic drug, mice with apical periodontitis were treated with C-176 and the bone loss was identified by H&E, TRAP, RANKL staining and micro-CT. Bone marrow-derived macrophages (BMMs) were isolated from Sting-/- and WT mice and induced to osteoclasts in a lipopolysaccharide (LPS)-induced inflammatory environment in vitro. Moreover, WT BMMs were treated with C-176 to determine the effect on osteoclast differentiation by TRAP staining. The expression levels of osteoclast-related genes were tested using qRT-PCR. RESULTS Compared to WT mice, the bone resorption and inflammatory cell infiltration were reduced in exposed Sting-/- mice. In the exposed WT group, STING was activated mainly in F4/80+ macrophages. Histological staining revealed the less osteoclasts and lower expression of osteoclast-related factor RANKL in Sting-/- mice. The treatment of the STING inhibitor C-176 in an apical periodontitis mice model alleviated inflammation progression and bone loss, similar to the effect observed in Sting-/- mice. Expression of RANKL and osteoclast number in periapical tissues were also decreased after C-176 administration. In vitro, TRAP staining showed fewer positive cells and qRT-PCR reflected decreased expression of osteoclastic marker, Src and Acp5 were detected during osteoclastic differentiation in Sting-/- and C-176 treated BMMs. CONCLUSIONS STING was activated and was proven to be a positive factor in bone loss and osteoclastogenesis in apical periodontitis. The STING inhibitor C-176 administration could alleviate the bone loss via modulating local immune response, which provided immunotherapy to the treatment of apical periodontitis.
Collapse
Affiliation(s)
- Han-Qing Mao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
| | - Lu Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
- Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jia-Qi Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
| | - Yuan-Hao Wen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
- Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
- Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Shen Y, Zhang W, Chang H, Li Z, Lin C, Zhang G, Mao L, Ma C, Liu N, Lu H. Galectin-3 modulates microglial activation and neuroinflammation in early brain injury after subarachnoid hemorrhage. Exp Neurol 2024; 377:114777. [PMID: 38636772 DOI: 10.1016/j.expneurol.2024.114777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Aneurysmal subarachnoid hemorrhage (SAH) is a devastating acute cerebrovascular event with high mortality and permanent disability rates. Higher galectin-3 levels on days 1-3 have been shown to predict the development of delayed cerebral infarction or adverse outcomes after SAH. Recent single-cell analysis of microglial transcriptomic diversity in SAH revealed that galectin could influence the development and course of neuroinflammation after SAH. METHODS This study aimed to investigate the role and mechanism of galectin-3 in SAH and to determine whether galectin-3 inhibition prevents early brain injury by reducing microglia polarization using a mouse model of SAH and oxyhemoglobin-treated activation of mouse BV2 cells in vitro. RESULTS We found that the expression of galectin-3 began to increase 12 h after SAH and continued to increase up to 72 h. Importantly, TD139-inhibited galectin-3 expression reduced the release of inflammatory factors in microglial cells. In the experimental SAH model, TD139 treatment alleviated neuroinflammatory damage after SAH and improved defects in neurological functions. Furthermore, we demonstrated that galectin-3 inhibition affected the activation and M1 polarization of microglial cells after SAH. TD139 treatment inhibited the expression of TLR4, p-NF-κB p65, and NF-κB p65 in microglia activated by oxyhemoglobin as well as eliminated the increased expression and phosphorylation of JAK2 and STAT3. CONCLUSION These findings suggest that regulating microglia polarization by galectin-3 after SAH to improve neuroinflammation may be a potential therapeutic target.
Collapse
Affiliation(s)
- Yuqi Shen
- Department of Neurosurgery, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210029, Jiangsu, China
| | - Weiwei Zhang
- Department of Ophthalmology, Third Medical Center of Chinese, PLA General Hospital, Beijing 100000, China
| | - Hanxiao Chang
- Department of Neurosurgery, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210029, Jiangsu, China
| | - Zheng Li
- Department of Neurosurgery, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210029, Jiangsu, China
| | - Chao Lin
- Department of Neurosurgery, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210029, Jiangsu, China
| | - Guangjian Zhang
- Department of Neurosurgery, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210029, Jiangsu, China
| | - Lei Mao
- Department of Neurosurgery, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210029, Jiangsu, China
| | - Chencheng Ma
- Department of Neurosurgery, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210029, Jiangsu, China
| | - Ning Liu
- Department of Neurosurgery, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210029, Jiangsu, China.
| | - Hua Lu
- Department of Neurosurgery, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
13
|
Maimaiti M, Li C, Cheng M, Zhong Z, Hu J, Yang L, Zhang L, Hong Z, Song J, Pan M, Ma X, Cui S, Zhang P, Hao H, Wang C, Hu H. Blocking cGAS-STING pathway promotes post-stroke functional recovery in an extended treatment window via facilitating remyelination. MED 2024; 5:622-644.e8. [PMID: 38663402 DOI: 10.1016/j.medj.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/15/2024] [Accepted: 03/27/2024] [Indexed: 06/17/2024]
Abstract
BACKGROUND Ischemic stroke is a major cause of worldwide death and disability, with recombinant tissue plasminogen activator being the sole effective treatment, albeit with a limited treatment window. The cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) pathway is emerging as the major DNA-sensing pathway to invoke immune responses in neuroinflammatory disorders. METHODS By performing a series of neurobehavioral assessments, electrophysiological analysis, high-throughput sequencing, and cell-based assays based on the transient middle cerebral artery occlusion (tMCAO) mouse stroke model, we examined the effects and underlying mechanisms of genetic and pharmacological inhibition of the cGAS-STING pathway on long-term post-stroke neurological functional outcomes. FINDINGS Blocking the cGAS-STING pathway, even 3 days after tMCAO, significantly promoted functional recovery in terms of white matter structural and functional integrity as well as sensorimotor and cognitive functions. Mechanistically, the neuroprotective effects via inhibiting the cGAS-STING pathway were contributed not only by inflammation repression at the early stage of tMCAO but also by modifying the cell state of phagocytes to facilitate remyelination at the sub-acute phase. The activation of the cGAS-STING pathway significantly impeded post-stroke remyelination through restraining myelin debris uptake and degradation and hindering oligodendrocyte differentiation and maturation. CONCLUSIONS Manipulating the cGAS-STING pathway has an extended treatment window in promoting long-term post-stroke functional recovery via facilitating remyelination in a mouse stroke model. Our results highlight the roles of the cGAS-STING pathway in aggregating stroke pathology and propose a new way for improving functional recovery after ischemic stroke. FUNDING This work was primarily funded by the National Key R&D Program of China.
Collapse
Affiliation(s)
- Munire Maimaiti
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chenhui Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| | - Mingxing Cheng
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ziwei Zhong
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jiameng Hu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lei Yang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lele Zhang
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ze Hong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinyi Song
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Mingyu Pan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaonan Ma
- Cellular and Molecular Biology Center, China Pharmaceutical University, Nanjing, China
| | - Shufang Cui
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Peng Zhang
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, China; School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| | - Haiyang Hu
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China; Chongqing Innovation Institute of China Pharmaceutical University, Chongqing, China.
| |
Collapse
|
14
|
Li B, Xu L, Wang Z, Shi Q, Cui Y, Fan W, Wu Q, Tong X, Yan H. Neutrophil Extracellular Traps Regulate Surgical Brain Injury by Activating the cGAS-STING Pathway. Cell Mol Neurobiol 2024; 44:36. [PMID: 38637346 PMCID: PMC11026279 DOI: 10.1007/s10571-024-01470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024]
Abstract
Surgical brain injury (SBI), induced by neurosurgical procedures or instruments, has not attracted adequate attention. The pathophysiological process of SBI remains sparse compared to that of other central nervous system diseases thus far. Therefore, novel and effective therapies for SBI are urgently needed. In this study, we found that neutrophil extracellular traps (NETs) were present in the circulation and brain tissues of rats after SBI, which promoted neuroinflammation, cerebral edema, neuronal cell death, and aggravated neurological dysfunction. Inhibition of NETs formation by peptidylarginine deiminase (PAD) inhibitor or disruption of NETs with deoxyribonuclease I (DNase I) attenuated SBI-induced damages and improved the recovery of neurological function. We show that SBI triggered the activation of cyclic guanosine monophosphate-adenosine monophosphate synthase stimulator of interferon genes (cGAS-STING), and that inhibition of the cGAS-STING pathway could be beneficial. It is worth noting that DNase I markedly suppressed the activation of cGAS-STING, which was reversed by the cGAS product cyclic guanosine monophosphate-adenosine monophosphate (cGMP-AMP, cGAMP). Furthermore, the neuroprotective effect of DNase I in SBI was also abolished by cGAMP. NETs may participate in the pathophysiological regulation of SBI by acting through the cGAS-STING pathway. We also found that high-dose vitamin C administration could effectively inhibit the formation of NETs post-SBI. Thus, targeting NETs may provide a novel therapeutic strategy for SBI treatment, and high-dose vitamin C intervention may be a promising translational therapy with an excellent safety profile and low cost.
Collapse
Affiliation(s)
- Bingbing Li
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
| | - Lixia Xu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Zhengang Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
| | - Qi Shi
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
| | - Yang Cui
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
| | - Weijia Fan
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Qiaoli Wu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Xiaoguang Tong
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China.
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, China.
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, China.
| | - Hua Yan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China.
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, China.
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, China.
| |
Collapse
|
15
|
Jia X, Ju J, Li Z, Peng X, Wang J, Gao F. Inhibition of spinal BRD4 alleviates pyroptosis and M1 microglia polarization via STING-IRF3 pathway in morphine-tolerant rats. Eur J Pharmacol 2024; 969:176428. [PMID: 38432572 DOI: 10.1016/j.ejphar.2024.176428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Morphine tolerance has been a challenging medical issue. Neuroinflammation is considered as a critical mechanism for the development of morphine tolerance. Bromodomain-containing protein 4 (BRD4), a key regulator in cell damage and inflammation, participates in the development of chronic pain. However, whether BRD4 is involved in morphine tolerance and the underlying mechanisms remain unknown. METHODS The morphine-tolerant rat model was established by intrathecal administration of morphine twice daily for 7 days. Behavior test was assessed by a tail-flick latency test. The roles of BRD4, pyroptosis, microglia polarization and related signaling pathways in morphine tolerance were elucidated by Western blot, real-time quantitative polymerase chain reaction, and immunofluorescence. RESULTS Repeated morphine administration upregulated BRD4 level, induced pyroptosis, and promoted microglia M1-polarization in spinal cord, accompanied by the release of proinflammatory cytokines, such as TNF-α and IL-1β. JQ-1, a BRD4 antagonist, alleviated the development of morphine tolerance, diminished pyroptosis and induced the switch of microglia from M1 to M2 phenotype. Mechanistically, stimulator of interferon gene (STING)- interferon regulatory factor 3 (IRF3) pathway was activated and the protective effect of JQ-1 against morphine tolerance was at least partially mediated by inhibition of STING-IRF3 pathway. CONCLUSION This study demonstrated for the first time that spinal BRD4 contributes to pyroptosis and switch of microglia polarization via STING-IRF3 signaling pathway during the development of morphine tolerance, which extend the understanding of the neuroinflammation mechanism of morphine tolerance and provide an alternative strategy for the precaution against of this medical condition.
Collapse
Affiliation(s)
- Xiaoqian Jia
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Ju
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zheng Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoling Peng
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jihong Wang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Gao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
16
|
Wu C, Zhang S, Sun H, Li A, Hou F, Qi L, Liao H. STING inhibition suppresses microglia-mediated synapses engulfment and alleviates motor functional deficits after stroke. J Neuroinflammation 2024; 21:86. [PMID: 38584255 PMCID: PMC11000342 DOI: 10.1186/s12974-024-03086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/01/2024] [Indexed: 04/09/2024] Open
Abstract
Ischemic stroke is the leading cause of adult disability. Ischemia leads to progressive neuronal death and synapse loss. The engulfment of stressed synapses by microglia further contributes to the disruption of the surviving neuronal network and related brain function. Unfortunately, there is currently no effective target for suppressing the microglia-mediated synapse engulfment. Stimulator of interferon genes (STING) is an important participant in innate immune response. In the brain, microglia are the primary cell type that mediate immune response after brain insult. The intimate relationship between STING and microglia-mediated neuroinflammation has been gradually established. However, whether STING affects other functions of microglia remains elusive. In this study, we found that STING regulated microglial phagocytosis of synapses after photothrombotic stroke. The treatment of STING inhibitor H151 significantly improved the behavioral performance of injured mice in grid-walking test, cylinder test, and adhesive removal test after stroke. Moreover, the puncta number of engulfed SYP or PSD95 in microglia was reduced after consecutive H151 administration. Further analysis showed that the mRNA levels of several complement components and phagocytotic receptors were decreased after STING inhibition. Transcriptional factor STAT1 is known for regulating most of the decreased molecules. After STING inhibition, the nucleus translocation of phosphorylated STAT1 was also suppressed in microglia. Our data uncovered the novel regulatory effects of STING in microglial phagocytosis after stroke, and further emphasized STING as a potential drug-able target for post-stroke functional recovery.
Collapse
Affiliation(s)
- Chaoran Wu
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Shiwen Zhang
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Hao Sun
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Ao Li
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Fengsheng Hou
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Long Qi
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Hong Liao
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
17
|
Ji Y, Ma Y, Ma Y, Wang Y, Zhao X, Jin D, Xu L, Ge S. SS-31 inhibits mtDNA-cGAS-STING signaling to improve POCD by activating mitophagy in aged mice. Inflamm Res 2024; 73:641-654. [PMID: 38411634 DOI: 10.1007/s00011-024-01860-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Neuroinflammation is crucial in the development of postoperative cognitive dysfunction (POCD), and microglial activation is an active participant in this process. SS-31, a mitochondrion-targeted antioxidant, is widely regarded as a potential drug for neurodegenerative diseases and inflammatory diseases. In this study, we sought to explore whether SS-31 plays a neuroprotective role and the underlying mechanism. METHODS Internal fixation of tibial fracture was performed in 18-month-old mice to induce surgery-associated neurocognitive dysfunction. LPS was administrated to BV2 cells to induce neuroinflammation. Neurobehavioral deficits, hippocampal injury, protein expression, mitophagy level and cell state were evaluated after treatment with SS-31, PHB2 siRNA and an STING agonist. RESULTS Our study revealed that SS-31 interacted with PHB2 to activate mitophagy and improve neural damage in surgically aged mice, which was attributed to the reduced cGAS-STING pathway and M1 microglial polarization by decreased release of mitochondrial DNA (mtDNA) but not nuclear DNA (nDNA). In vitro, knockdown of PHB2 and an STING agonist abolished the protective effect of SS-31. CONCLUSIONS SS-31 conferred neuroprotection against POCD by promoting PHB2-mediated mitophagy activation to inhibit mtDNA release, which in turn suppressed the cGAS-STING pathway and M1 microglial polarization.
Collapse
Affiliation(s)
- Yelong Ji
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Yuanyuan Ma
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Yimei Ma
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Ying Wang
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Xining Zhao
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Danfeng Jin
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Li Xu
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Shengjin Ge
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
18
|
Fritsch LE, Kelly C, Leonard J, de Jager C, Wei X, Brindley S, Harris EA, Kaloss AM, DeFoor N, Paul S, O'Malley H, Ju J, Olsen ML, Theus MH, Pickrell AM. STING-Dependent Signaling in Microglia or Peripheral Immune Cells Orchestrates the Early Inflammatory Response and Influences Brain Injury Outcome. J Neurosci 2024; 44:e0191232024. [PMID: 38360749 PMCID: PMC10957216 DOI: 10.1523/jneurosci.0191-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024] Open
Abstract
While originally identified as an antiviral pathway, recent work has implicated that cyclic GMP-AMP-synthase-Stimulator of Interferon Genes (cGAS-STING) signaling is playing a critical role in the neuroinflammatory response to traumatic brain injury (TBI). STING activation results in a robust inflammatory response characterized by the production of inflammatory cytokines called interferons, as well as hundreds of interferon stimulated genes (ISGs). Global knock-out (KO) mice inhibiting this pathway display neuroprotection with evidence that this pathway is active days after injury; yet, the early neuroinflammatory events stimulated by STING signaling remain understudied. Furthermore, the source of STING signaling during brain injury is unknown. Using a murine controlled cortical impact (CCI) model of TBI, we investigated the peripheral immune and microglial response to injury utilizing male chimeric and conditional STING KO animals, respectively. We demonstrate that peripheral and microglial STING signaling contribute to negative outcomes in cortical lesion volume, cell death, and functional outcomes postinjury. A reduction in overall peripheral immune cell and neutrophil infiltration at the injury site is STING dependent in these models at 24 h. Transcriptomic analysis at 2 h, when STING is active, reveals that microglia drive an early, distinct transcriptional program to elicit proinflammatory genes including interleukin 1-β (IL-1β), which is lost in conditional knock-out mice. The upregulation of alternative innate immune pathways also occurs after injury in these animals, which supports a complex relationship between brain-resident and peripheral immune cells to coordinate the proinflammatory response and immune cell influx to damaged tissue after injury.
Collapse
Affiliation(s)
- Lauren E Fritsch
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia 24016
| | - Colin Kelly
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia 24016
| | - John Leonard
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Caroline de Jager
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia 24016
| | - Xiaoran Wei
- Biomedical and Veterinary Sciences Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Samantha Brindley
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Elizabeth A Harris
- Biomedical and Veterinary Sciences Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Alexandra M Kaloss
- Biomedical and Veterinary Sciences Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Nicole DeFoor
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Swagatika Paul
- Biomedical and Veterinary Sciences Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Hannah O'Malley
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Jing Ju
- Biomedical and Veterinary Sciences Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Alicia M Pickrell
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| |
Collapse
|
19
|
Lin X, Li X, Li C, Wang H, Zou L, Pan J, Zhang X, He L, Rong X, Peng Y. Activation of STING signaling aggravates chronic alcohol exposure-induced cognitive impairment by increasing neuroinflammation and mitochondrial apoptosis. CNS Neurosci Ther 2024; 30:e14689. [PMID: 38516831 PMCID: PMC10958405 DOI: 10.1111/cns.14689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/18/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
AIMS Chronic alcohol exposure leads to persistent neurological disorders, which are mainly attributed to neuroinflammation and apoptosis. Stimulator of IFN genes (STING) is essential in the cytosolic DNA sensing pathway and is involved in inflammation and cellular death processes. This study was to examine the expression pattern and biological functions of STING signaling in alcohol use disorder (AUD). METHODS Cell-free DNA was extracted from human and mouse plasma. C57BL/6J mice were given alcohol by gavage for 28 days, and behavior tests were used to determine their mood and cognition. Cultured cells were treated with ethanol for 24 hours. The STING agonist DMXAA, STING inhibitor C-176, and STING-siRNA were used to intervene the STING. qPCR, western blot, and immunofluorescence staining were used to assess STING signaling, inflammation, and apoptosis. RESULTS Circulating cell-free mitochondrial DNA (mtDNA) was increased in individuals with AUD and mice chronically exposed to alcohol. Upregulation of STING signaling under alcohol exposure led to inflammatory responses in BV2 cells and mitochondrial apoptosis in PC12 cells. DMXAA exacerbated alcohol-induced cognitive impairment and increased the activation of microglia, neuroinflammation, and apoptosis in the medial prefrontal cortex (mPFC), while C-176 exerted neuroprotection. CONCLUSION Activation of STING signaling played an essential role in alcohol-induced inflammation and mitochondrial apoptosis in the mPFC. This study identifies STING as a promising therapeutic target for AUD.
Collapse
Affiliation(s)
- Xinrou Lin
- Department of Neurology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Nanhai Translational Innovation Center of Precision ImmunologySun Yat‐Sen Memorial HospitalFoshanChina
| | - Xiangpen Li
- Department of Neurology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Shenshan Medical Center, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityShanweiChina
| | - Chenguang Li
- Department of Neurology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Hongxuan Wang
- Department of Neurology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Lubin Zou
- Department of Neurology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Nanhai Translational Innovation Center of Precision ImmunologySun Yat‐Sen Memorial HospitalFoshanChina
| | - Jingrui Pan
- Department of Neurology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Shenshan Medical Center, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityShanweiChina
| | - Xiaoni Zhang
- Department of Neurology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Lei He
- Department of Neurology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Xiaoming Rong
- Department of Neurology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Ying Peng
- Department of Neurology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Nanhai Translational Innovation Center of Precision ImmunologySun Yat‐Sen Memorial HospitalFoshanChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
20
|
Yang K, Tang Z, Xing C, Yan N. STING signaling in the brain: Molecular threats, signaling activities, and therapeutic challenges. Neuron 2024; 112:539-557. [PMID: 37944521 PMCID: PMC10922189 DOI: 10.1016/j.neuron.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Stimulator of interferon genes (STING) is an innate immune signaling protein critical to infections, autoimmunity, and cancer. STING signaling is also emerging as an exciting and integral part of many neurological diseases. Here, we discuss recent advances in STING signaling in the brain. We summarize how molecular threats activate STING signaling in the diseased brain and how STING signaling activities in glial and neuronal cells cause neuropathology. We also review human studies of STING neurobiology and consider therapeutic challenges in targeting STING to treat neurological diseases.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhen Tang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cong Xing
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
21
|
Sun XG, Chu XH, Godje Godje IS, Liu SY, Hu HY, Zhang YB, Zhu LJ, Wang H, Sui C, Huang J, Shen YJ. Aerobic Glycolysis Induced by mTOR/HIF-1α Promotes Early Brain Injury After Subarachnoid Hemorrhage via Activating M1 Microglia. Transl Stroke Res 2024; 15:1-15. [PMID: 36385451 DOI: 10.1007/s12975-022-01105-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/19/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
M1 microglial activation is crucial for the pathogenesis of early brain injury (EBI) following subarachnoid hemorrhage (SAH), and there is growing evidence that glucose metabolism is frequently involved in microglial activation. However, the molecular mechanism of glycolysis and its role in M1 microglial activation in the context of EBI are not yet fully understood. In this study, firstly, the relationship between aerobic glycolysis and M1 microglial activation as well as SAH-induced EBI was researched in vivo. Then, intervention on mammalian target of rapamycin (mTOR) was performed to investigate the effects on glycolysis-dependent M1 microglial activation and EBI and its relationship with hypoxia-inducible factor-1α (HIF-1α) in vivo. Next, Hif-1α was inhibited to analyze its role in aerobic glycolysis, M1 microglial activation, and EBI in vivo. Lastly, both in vivo and in vitro, mTOR inhibition and Hif-1α enhancement were administered simultaneously, and the combined effects were further confirmed again. The results showed that aerobic glycolysis and M1 microglial polarization were increased after SAH, and glycolytic inhibition could attenuate M1 microglial activation and EBI. Inhibition of mTOR reduced glycolysis-dependent M1 microglial polarization and EBI severity by down-regulating HIF-1α expression, while enhancement had the opposite effects. Blockading HIF-1α had the similar effects as suppressing mTOR, while HIF-1α agonist worked against mTOR antagonist when administered simultaneously. In conclusion, the present study showed new evidence that aerobic glycolysis induced by mTOR/HIF-1α might promote EBI after SAH by activating M1 microglia. This finding provided new insights for the treatment of EBI.
Collapse
Affiliation(s)
- Xin-Gang Sun
- Department of Neurology, The Second Hospital Affiliated to Shanxi Medical University, Taiyuan, 030000, Shanxi, China.
| | - Xue-Hong Chu
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | | | - Shao-Yu Liu
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Hui-Yu Hu
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Yi-Bo Zhang
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Li-Juan Zhu
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Hai Wang
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Chen Sui
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Juan Huang
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Ying-Jie Shen
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| |
Collapse
|
22
|
Jin J, Chen M, Wang H, Li S, Ma L, Wang B. Schizandrin A attenuates early brain injury following subarachnoid hemorrhage through suppressing neuroinflammation. Mol Biol Rep 2024; 51:236. [PMID: 38285214 DOI: 10.1007/s11033-023-08956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/17/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Early brain injury (EBI) is the vital factor in determining the outcome of subarachnoid hemorrhage (SAH). Schizandrin A (Sch A), the bioactive ingredient extracted from Schisandra chinensis, has been proved to exert beneficial effects in multiple human diseases. However, the effect of Sch A on SAH remains unknown. The current study was designed to explored role and mechanism of Sch A in the pathophysiological process of EBI following SAH. METHOD A total of 74 male C57BL/6 J mice were subjected to endovascular perforation to establish the SAH model. Different dosages of Sch A were administrated post-modeling. The post-modeling assessments included neurological test, brain water content, RT-PCR, immunofluorescence, Nissl staining. Oxygenated hemoglobin was introduced into microglia to establish a SAH model in vitro. RESULT Sch A significantly alleviated SAH-induced brain edema and neurological impairment. Moreover, application of Sch A remarkably inhibited SAH-induced neuroinflammation, evidenced by the decreased microglial activation and downregulated TNF-α, IL-1β and IL-6 and expression. Additionally, Sch A, both in vivo and in vitro, protected neurons against SAH-induced inflammatory injury. Mechanismly, administration of Sch A inhibited miR-155/NF-κB axis and attenuated neuroinflammation, as well as alleviating neuronal injury. CONCLUSION Our data suggested that Sch A could attenuated EBI following SAH via modulating neuroinflammation. The anti-inflammatory effect was exerted, at least partly through the miR-155/NF-κB axis, which may shed light on a possible therapeutic target for SAH.
Collapse
Affiliation(s)
- Jianxiang Jin
- Department of Neurosurgery, Li Huili Hospital, Ningbo Medical Center, Xingning Road 57th, Yinzhou District, Ningbo, 315000, China
| | - Maosong Chen
- Department of Neurosurgery, Li Huili Hospital, Ningbo Medical Center, Xingning Road 57th, Yinzhou District, Ningbo, 315000, China
| | - Hongcai Wang
- Department of Neurosurgery, Li Huili Hospital, Ningbo Medical Center, Xingning Road 57th, Yinzhou District, Ningbo, 315000, China
| | - Shiwei Li
- Department of Neurosurgery, Li Huili Hospital, Ningbo Medical Center, Xingning Road 57th, Yinzhou District, Ningbo, 315000, China
| | - Lei Ma
- Department of Neurosurgery, Li Huili Hospital, Ningbo Medical Center, Xingning Road 57th, Yinzhou District, Ningbo, 315000, China
| | - Boding Wang
- Department of Neurosurgery, Li Huili Hospital, Ningbo Medical Center, Xingning Road 57th, Yinzhou District, Ningbo, 315000, China.
| |
Collapse
|
23
|
Liu J, Zhou J, Luan Y, Li X, Meng X, Liao W, Tang J, Wang Z. cGAS-STING, inflammasomes and pyroptosis: an overview of crosstalk mechanism of activation and regulation. Cell Commun Signal 2024; 22:22. [PMID: 38195584 PMCID: PMC10775518 DOI: 10.1186/s12964-023-01466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Intracellular DNA-sensing pathway cGAS-STING, inflammasomes and pyroptosis act as critical natural immune signaling axes for microbial infection, chronic inflammation, cancer progression and organ degeneration, but the mechanism and regulation of the crosstalk network remain unclear. Cellular stress disrupts mitochondrial homeostasis, facilitates the opening of mitochondrial permeability transition pore and the leakage of mitochondrial DNA to cell membrane, triggers inflammatory responses by activating cGAS-STING signaling, and subsequently induces inflammasomes activation and the onset of pyroptosis. Meanwhile, the inflammasome-associated protein caspase-1, Gasdermin D, the CARD domain of ASC and the potassium channel are involved in regulating cGAS-STING pathway. Importantly, this crosstalk network has a cascade amplification effect that exacerbates the immuno-inflammatory response, worsening the pathological process of inflammatory and autoimmune diseases. Given the importance of this crosstalk network of cGAS-STING, inflammasomes and pyroptosis in the regulation of innate immunity, it is emerging as a new avenue to explore the mechanisms of multiple disease pathogenesis. Therefore, efforts to define strategies to selectively modulate cGAS-STING, inflammasomes and pyroptosis in different disease settings have been or are ongoing. In this review, we will describe how this mechanistic understanding is driving possible therapeutics targeting this crosstalk network, focusing on the interacting or regulatory proteins, pathways, and a regulatory mitochondrial hub between cGAS-STING, inflammasomes, and pyroptosis. SHORT CONCLUSION This review aims to provide insight into the critical roles and regulatory mechanisms of the crosstalk network of cGAS-STING, inflammasomes and pyroptosis, and to highlight some promising directions for future research and intervention.
Collapse
Affiliation(s)
- Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jing Zhou
- The Second Hospital of Ningbo, Ningbo, 315099, China
| | - Yuling Luan
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200080, China
| | - Xiangrui Meng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Zheilei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
24
|
Wei F, Wang T, Wang C, Zhang Z, Zhao J, Heng W, Tang Z, Du M, Yan X, Li X, Guo Z, Qian J, Zhou C. Cytoplasmic Escape of Mitochondrial DNA Mediated by Mfn2 Downregulation Promotes Microglial Activation via cGas-Sting Axis in Spinal Cord Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305442. [PMID: 38009491 PMCID: PMC10811505 DOI: 10.1002/advs.202305442] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/16/2023] [Indexed: 11/29/2023]
Abstract
Neuroinflammation is associated with poor outcomes in patients with spinal cord injury (SCI). Recent studies have demonstrated that stimulator of interferon genes (Sting) plays a key role in inflammatory diseases. However, the role of Sting in SCI remains unclear. In the present study, it is found that increased Sting expression is mainly derived from activated microglia after SCI. Interestingly, knockout of Sting in microglia can improve the recovery of neurological function after SCI. Microglial Sting knockout restrains the polarization of microglia toward the M1 phenotype and alleviates neuronal death. Furthermore, it is found that the downregulation of mitofusin 2 (Mfn2) expression in microglial cells leads to an imbalance in mitochondrial fusion and division, inducing the release of mitochondrial DNA (mtDNA), which mediates the activation of the cGas-Sting signaling pathway and aggravates inflammatory response damage after SCI. A biomimetic microglial nanoparticle strategy to deliver MASM7 (named MSNs-MASM7@MI) is established. In vitro, MSNs-MASM7@MI showed no biological toxicity and effectively delivered MASM7. In vivo, MSNs-MASM7@MI improves nerve function after SCI. The study provides evidence that cGas-Sting signaling senses Mfn2-dependent mtDNA release and that its activation may play a key role in SCI. These findings provide new perspectives and potential therapeutic targets for SCI treatment.
Collapse
Affiliation(s)
- Fei‐Long Wei
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Tian‐Fu Wang
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Chao‐Li Wang
- Department of Pharmaceutical AnalysisSchool of PharmacyFourth Military Medical UniversityXi'an710032China
| | - Zhen‐Peng Zhang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences BeijingResearch Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical SciencesInstitute of LifeomicsBeijing102206China
| | - Jing‐Wei Zhao
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Wei Heng
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Zhen Tang
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Ming‐Rui Du
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Xiao‐Dong Yan
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Xiao‐Xiang Li
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Zheng Guo
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Ji‐Xian Qian
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Cheng‐Pei Zhou
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| |
Collapse
|
25
|
Liu Y, Luo Y, Zhang A, Wang Z, Wang X, Yu Q, Zhang Z, Zhu Z, Wang K, Chen L, Nie X, Zhang JH, Zhang J, Fang Y, Su Z, Chen S. Long Non-coding RNA H19 Promotes NLRP3-Mediated Pyroptosis After Subarachnoid Hemorrhage in Rats. Transl Stroke Res 2023; 14:987-1001. [PMID: 36418735 DOI: 10.1007/s12975-022-01104-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
Abstract
NLRP3 inflammasomes have been reported to be an essential mediator in the inflammatory response during early brain injury (EBI) following subarachnoid hemorrhage (SAH). Recent studies have indicated that NLRP3 inflammasome-mediated pyroptosis and long non-coding RNA (lncRNA) H19 can participate in the inflammatory response. However, the roles and functions of lncRNA H19 in NLRP3 inflammasome-mediated pyroptosis during EBI after SAH are unknown and need to be further elucidated. NLRP3 inflammasome proteins were significantly elevated in CSF of human with SAH induced EBI and presented a positive correlation with severity. In ipsilateral hemisphere cortex of rats, these NLRP3 inflammasome proteins were also increased and accompanied with upregulation of H19, and both of NLRP3 and H19 were peaked at 24 h after SAH. However, knockdown of H19 markedly decreased the expression of NLRP3 inflammasome proteins at 24 h after SAH in rats and also ameliorated EBI, showing improved neurobehavioral deficits, cerebral edema, and neuronal injury. Moreover, knocking down of H19 downregulated the expression of Gasdermin D (GSDMD) in microglia in SAH rats. Similarly, knockdown of H19 also alleviated OxyHb-induced pyroptosis and NLRP3-mediated inflammasomes activation in primary microglia. Lastly, H19 competitively sponged with rno-miR-138-5p and then upregulated NLRP3 expression in the post-SAH inflammatory response. lncRNA H19 promotes NLRP3-mediated pyroptosis by functioning as rno-miR-138-5p sponge in rats during EBI after SAH, which might provide a potential therapeutic target for post-SAH inflammation regulation.
Collapse
Affiliation(s)
- Yibo Liu
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Yujie Luo
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong, China
| | - Anke Zhang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Zefeng Wang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Xiaoyu Wang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Qian Yu
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Zeyu Zhang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Zhoule Zhu
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Kaikai Wang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Luxi Chen
- Department of Medical Genetics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohu Nie
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| | - Jianmin Zhang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Yuanjian Fang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| | - Zhongzhou Su
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.
| | - Sheng Chen
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
26
|
Tian Q, Li Y, Feng S, Liu C, Guo Y, Wang G, Wei H, Chen Z, Gu L, Li M. Inhibition of CCR1 attenuates neuroinflammation via the JAK2/STAT3 signaling pathway after subarachnoid hemorrhage. Int Immunopharmacol 2023; 125:111106. [PMID: 37925951 DOI: 10.1016/j.intimp.2023.111106] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND AND PURPOSE Neuroinflammation is an important mechanism underlying brain injury caused by subarachnoid hemorrhage (SAH). C-C chemokine receptor type 1 (CCR1)-mediated inflammation is involved in the pathology of many central nervous system diseases. Herein, we investigated whether inhibition of CCR1 alleviated neuroinflammation after experimental SAH and aimed to elucidate the mechanisms of its potential protective effects. METHODS To analyze SAH transcriptome data R studio was used, and a mouse model of SAH was established using endovascular perforations. In this model, the selective CCR1 antagonist Met-RANTES (Met-R) and the CCR1 agonist recombinant CCL5 (rCCL5) were administered 1 h after SAH induction. To investigate the possible downstream mechanisms of CCR1, the JAK2 inhibitor AG490 and the JAK2 activator coumermycin A1 (C-A1) were administered 1 h after SAH induction. Furthermore, post-SAH evaluation, including SAH grading, neurological function tests, Western blot, the terminal deoxynucleotidyl transferase dUTP nick end labeling assay, and Fluoro-Jade B and fluorescent immunohistochemical staining were performed. Cerebrospinal fluid (CSF) samples were detected by ELISA. RESULTS CCL5 and CCR1 expression levels increased significantly following SAH. Met-R significantly improved neurological deficits in mice, decreased apoptosis and degeneration of ipsilateral cerebral cortex neurons, reduced infiltrating neutrophils, and promoted microglial activation after SAH induction. Furthermore, Met-R inhibited the expression of p-JAK2, p-STAT3, interleukin-1β, and tumor necrosis factor-α. However, the protective effects of Met-R were abolished by C-A1 treatment. Furthermore, rCCL5 injection aggravated neurological dysfunction and increased the expression of p-JAK2, p-STAT3, interleukin-1β, and tumor necrosis factor-α in SAH mice, all of which were reversed by the administration of AG490. Finally, the levels of CCL5 and CCR1 were elevate in the CSF of SAH patient and high level of CCL5 and CCR1 levels were associated with poor outcome. CONCLUSION The present results suggested that inhibition of CCR1 attenuates neuroinflammation after SAH via the JAK2/STAT3 signaling pathway, which may provide a new target for the treatment of SAH.
Collapse
Affiliation(s)
- Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Shi Feng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yujia Guo
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Guijun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Heng Wei
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zhibiao Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
27
|
Chen H, Xu C, Zeng H, Zhang Z, Wang N, Guo Y, Zheng Y, Xia S, Zhou H, Yu X, Fu X, Tang T, Wu X, Chen Z, Peng Y, Cai J, Li J, Yan F, Gu C, Chen G, Chen J. Ly6C-high monocytes alleviate brain injury in experimental subarachnoid hemorrhage in mice. J Neuroinflammation 2023; 20:270. [PMID: 37978532 PMCID: PMC10657171 DOI: 10.1186/s12974-023-02939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is an uncommon type of potentially fatal stroke. The pathophysiological mechanisms of brain injury remain unclear, which hinders the development of drugs for SAH. We aimed to investigate the pathophysiological mechanisms of SAH and to elucidate the cellular and molecular biological response to SAH-induced injury. METHODS A cross-species (human and mouse) multiomics approach combining high-throughput data and bioinformatic analysis was used to explore the key pathophysiological processes and cells involved in SAH-induced brain injury. Patient data were collected from the hospital (n = 712). SAH was established in adult male mice via endovascular perforation, and flow cytometry, a bone marrow chimera model, qPCR, and microglial depletion experiments were conducted to explore the origin and chemotaxis mechanism of the immune cells. To investigate cell effects on SAH prognosis, murine neurological function was evaluated based on a modified Garcia score, pole test, and rotarod test. RESULTS The bioinformatics analysis confirmed that inflammatory and immune responses were the key pathophysiological processes after SAH. Significant increases in the monocyte levels were observed in both the mouse brains and the peripheral blood of patients after SAH. Ly6C-high monocytes originated in the bone marrow, and the skull bone marrow contribute a higher proportion of these monocytes than neutrophils. The mRNA level of Ccl2 was significantly upregulated after SAH and was greater in CD11b-positive than CD11b-negative cells. Microglial depletion, microglial inhibition, and CCL2 blockade reduced the numbers of Ly6C-high monocytes after SAH. With CCR2 antagonization, the neurological function of the mice exhibited a slow recovery. Three days post-SAH, the monocyte-derived dendritic cell (moDC) population had a higher proportion of TNF-α-positive cells and a lower proportion of IL-10-positive cells than the macrophage population. The ratio of moDCs to macrophages was higher on day 3 than on day 5 post-SAH. CONCLUSIONS Inflammatory and immune responses are significantly involved in SAH-induced brain injury. Ly6C-high monocytes derived from the bone marrow, including the skull bone marrow, infiltrated into mouse brains via CCL2 secreted from microglia. Moreover, Ly6C-high monocytes alleviated neurological dysfunction after SAH.
Collapse
Affiliation(s)
- Huaijun Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Chaoran Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Hanhai Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Zhihua Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Ning Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Yinghan Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Yonghe Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Siqi Xia
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Hang Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Xiaobo Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Xiongjie Fu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Tianchi Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Xinyan Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Zihang Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Yucong Peng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Jing Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Chi Gu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China.
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China.
| | - Jingyin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China.
| |
Collapse
|
28
|
Wang B, Wang Y, Qiu J, Gao S, Yu S, Sun D, Lou H. The STING inhibitor C-176 attenuates MPTP-induced neuroinflammation and neurodegeneration in mouse parkinsonian models. Int Immunopharmacol 2023; 124:110827. [PMID: 37619411 DOI: 10.1016/j.intimp.2023.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Recent emerging evidence reveals that cGAS-STING-mediated Type I interferon (IFN) signaling axis takes part in the microglial-associated neuroinflammation. However, the potential role of pharmacological inhibition of STING on neuroinflammation and dopaminergic neurodegeneration remains unknown. In the present study, we investigated whether pharmacological inhibition of STING attenuates neuroinflammation and neurodegeneration in experimental models of Parkinson's disease. We report that therapeutic inhibition of STING with C-176 significantly inhibited the activation of downstream signaling pathway, suppressed neuroinflammation, and ameliorated MPTP-induced dopaminergic neurotoxicity and motor deficit. Furthermore, pharmacological inhibition of STING with C-176 attenuated proinflammatory response in BV2 microglial cells exposed to LPS/MPP+. More importantly, C-176 also reduced NLRP3 inflammasome activation both in vitro and in vivo. The results of our study suggest that pharmacologic inhibition of STING protects against dopaminergic neurodegeneration and neuroinflammation that may act at least in part through suppressing NLRP3 inflammasome activation. STING signaling may hold great promise for the development of new treatment strategy for PD.
Collapse
Affiliation(s)
- Baozhu Wang
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yanwei Wang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Jingru Qiu
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shixuan Gao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shuyan Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Deqing Sun
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Haiyan Lou
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
29
|
Zhu Z, Lu H, Jin L, Gao Y, Qian Z, Lu P, Tong W, Lo PK, Mao Z, Shi H. C-176 loaded Ce DNase nanoparticles synergistically inhibit the cGAS-STING pathway for ischemic stroke treatment. Bioact Mater 2023; 29:230-240. [PMID: 37502677 PMCID: PMC10371767 DOI: 10.1016/j.bioactmat.2023.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
The neuroinflammatory responses following ischemic stroke cause irreversible nerve cell death. Cell free-double strand DNA (dsDNA) segments from ischemic tissue debris are engulfed by microglia and sensed by their cyclic GMP-AMP synthase (cGAS), which triggers robust activation of the innate immune stimulator of interferon genes (STING) pathway and initiate the chronic inflammatory cascade. The decomposition of immunogenic dsDNA and inhibition of the innate immune STING are synergistic immunologic targets for ameliorating neuroinflammation. To combine the anti-inflammatory strategies of STING inhibition and dsDNA elimination, we constructed a DNase-mimetic artificial enzyme loaded with C-176. Nanoparticles are self-assembled by amphiphilic copolymers (P[CL35-b-(OEGMA20.7-co-NTAMA14.3)]), C-176, and Ce4+ which is coordinated with nitrilotriacetic acid (NTA) group to form corresponding catalytic structures. Our work developed a new nano-drug that balances the cGAS-STING axis to enhance the therapeutic impact of stroke by combining the DNase-memetic Ce4+ enzyme and STING inhibitor synergistically. In conclusion, it is a novel approach to modulating central nervus system (CNS) inflammatory signaling pathways and improving stroke prognosis.
Collapse
Affiliation(s)
- Zhixin Zhu
- Department of Orthopedics, 1st Affiliated Hospital of Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, 31000, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haipeng Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhefeng Qian
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Pan Lu
- Department of Orthopedics, 1st Affiliated Hospital of Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, 31000, China
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Pik Kwan Lo
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haifei Shi
- Department of Orthopedics, 1st Affiliated Hospital of Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, 31000, China
| |
Collapse
|
30
|
Yang L, Lu P, Qi X, Yang Q, Liu L, Dou T, Guan Q, Yu C. Metformin inhibits inflammatory response and endoplasmic reticulum stress to improve hypothalamic aging in obese mice. iScience 2023; 26:108082. [PMID: 37860765 PMCID: PMC10582490 DOI: 10.1016/j.isci.2023.108082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/20/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
The hypothalamus, as a vital brain region for endocrine and metabolism regulation, undergoes functional disruption during obesity.The anti-aging effect of metformin has come into focus. However, whether it has the potential to ameliorate hypothalamic aging and dysfunction in the obese state remains unclear. In this study, obese mice were utilized to investigate the effects of metformin on the hypothalamus of obese mice. According to the results, metformin treatment resulted in improved insulin sensitivity, reduced blood glucose and lipid levels, as well as attenuation of hypothalamic aging, demonstrated by decreased SA-β-gal staining and downregulation of senescence markers. Additionally, metformin decreased the expression of endoplasmic reticulum stress-related proteins in neurons and reduced the inflammatory response triggered by microglia activation. Further mechanistic analysis revealed that metformin inhibited the expression and activation of STING and NLRP3 in microglia. These results reveal a possible mechanism by which metformin ameliorates hypothalamic aging.
Collapse
Affiliation(s)
- Leilei Yang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Peng Lu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Xiangyu Qi
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Qian Yang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Luna Liu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Tao Dou
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Qingbo Guan
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Chunxiao Yu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| |
Collapse
|
31
|
Ma X, Xin D, She R, Liu D, Ge J, Mei Z. Novel insight into cGAS-STING pathway in ischemic stroke: from pre- to post-disease. Front Immunol 2023; 14:1275408. [PMID: 37915571 PMCID: PMC10616885 DOI: 10.3389/fimmu.2023.1275408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
Ischemic stroke, a primary cause of disability and the second leading cause of mortality, has emerged as an urgent public health issue. Growing evidence suggests that the Cyclic GMP-AMP synthase (cGAS)- Stimulator of interferon genes (STING) pathway, a component of innate immunity, is closely associated with microglia activation, neuroinflammation, and regulated cell death in ischemic stroke. However, the mechanisms underlying this pathway remain inadequately understood. This article comprehensively reviews the existing literature on the cGAS-STING pathway and its multifaceted relationship with ischemic stroke. Initially, it examines how various risk factors and pre-disease mechanisms such as metabolic dysfunction and senescence (e.g., hypertension, hyperglycemia, hyperlipidemia) affect the cGAS-STING pathway in relation to ischemic stroke. Subsequently, we explore in depth the potential pathophysiological relationship between this pathway and oxidative stress, endoplasmic reticulum stress, neuroinflammation as well as regulated cell death including ferroptosis and PANoptosis following cerebral ischemia injury. Finally, it suggests that intervention targeting the cGAS-STING pathway may serve as promising therapeutic strategies for addressing neuroinflammation associated with ischemic stroke. Taken together, this review concludes that targeting the microglia cGAS-STING pathway may shed light on the exploration of new therapeutic strategies against ischemic stroke.
Collapse
Affiliation(s)
- Xiaoqi Ma
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dan Xin
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruining She
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Danhong Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
32
|
Shao J, Meng Y, Yuan K, Wu Q, Zhu S, Li Y, Wu P, Zheng J, Shi H. RU.521 mitigates subarachnoid hemorrhage-induced brain injury via regulating microglial polarization and neuroinflammation mediated by the cGAS/STING/NF-κB pathway. Cell Commun Signal 2023; 21:264. [PMID: 37770901 PMCID: PMC10537158 DOI: 10.1186/s12964-023-01274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/13/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND The poor prognosis of subarachnoid hemorrhage (SAH) is often attributed to neuroinflammation. The cGAS-STING axis, a cytoplasmic pathway responsible for detecting dsDNA, plays a significant role in mediating neuroinflammation in neurological diseases. However, the effects of inhibiting cGAS with the selective small molecule inhibitor RU.521 on brain injury and the underlying mechanisms after SAH are still unclear. METHODS The expression and microglial localization of cGAS following SAH were investigated with western blot analysis and immunofluorescent double-staining, respectively. RU.521 was administered after SAH. 2'3'-cGAMP, a second messenger converted by activated cGAS, was used to activate cGAS-STING. The assessments were carried out by adopting various techniques including neurological function scores, brain water content, blood-brain barrier permeability, western blot analysis, TUNEL staining, Nissl staining, immunofluorescence, morphological analysis, Morris water maze test, Golgi staining, CCK8, flow cytometry in the in vivo and in vitro settings. RESULTS Following SAH, there was an observed increase in the expression levels of cGAS in rat brain tissue, with peak levels observed at 24 h post-SAH. RU.521 resulted in a reduction of brain water content and blood-brain barrier permeability, leading to an improvement in neurological deficits after SAH. RU.521 had beneficial effects on neuronal apoptosis and microglia activation, as well as improvements in microglial morphology. Additionally, RU.521 prompted a shift in microglial phenotype from M1 to M2. We also noted a decrease in the production of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, and an increase in the level of the anti-inflammatory cytokine IL-10. Finally, RU.521 treatment was associated with improvements in cognitive function and an increase in the number of dendritic spines in the hippocampus. The therapeutic effects were mediated by the cGAS/STING/NF-κB pathway and were found to be abolished by 2'3'-cGAMP. In vitro, RU.521 significantly reduced apoptosis and neuroinflammation. CONCLUSION The study showed that SAH leads to neuroinflammation caused by microglial activation, which contributes to early brain injury. RU.521 improved neurological outcomes and reduced neuroinflammation by regulating microglial polarization through the cGAS/STING/NF-κB pathway in early brain injury after SAH. RU.521 may be a promising candidate for the treatment of neuroinflammatory pathology after SAH. Video Abstract.
Collapse
Affiliation(s)
- Jiang Shao
- Department of Neurosurgery, the First Affiliated Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Yuxiao Meng
- Department of Neurosurgery, the First Affiliated Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Kaikun Yuan
- Department of Neurosurgery, the First Affiliated Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Qiaowei Wu
- Department of Neurosurgery, the First Affiliated Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Shiyi Zhu
- Department of Neurosurgery, the First Affiliated Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Yuchen Li
- Department of Neurosurgery, the First Affiliated Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Pei Wu
- Department of Neurosurgery, the First Affiliated Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Jiaolin Zheng
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246#, Nangang District, Harbin, 150001, Heilongjiang Province, China.
| | - Huaizhang Shi
- Department of Neurosurgery, the First Affiliated Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
33
|
Liu M, Chen Z, Zhang H, Cai Z, Liu T, Zhang M, Wu X, Ai F, Liu G, Zeng C, Shen J. Urolithin A alleviates early brain injury after subarachnoid hemorrhage by regulating the AMPK/mTOR pathway-mediated autophagy. Neurochirurgie 2023; 69:101480. [PMID: 37598622 DOI: 10.1016/j.neuchi.2023.101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
OBJECTIVE Unfavorable outcomes in patients with subarachnoid hemorrhage (SAH) are mainly attributed to early brain injury (EBI). Reduction of neuronal death can improve the prognosis in SAH patients. Autophagy and apoptosis are critical players in neuronal death. Urolithin A (UA) is a natural compound produced by gut bacteria from ingested ellagitannins and ellagic acid. Here, we detected the role of UA in EBI post-SAH. METHODS We established an animal model of SAH in rats by endovascular perforation, with administration of UA, 3-methyladenine (3-MA) and Compound C. SAH grading, neurological function, brain water content, western blotting analysis of levels of proteins related to apoptosis, autophagy and pathways, blood-brain barrier (BBB) integrity, TUNEL staining, and immunofluorescence staining of LC3 were evaluated at 24h after SAH. RESULTS SAH induction led to neurological dysfunctions, BBB disruption, and cerebral edema at 24h post-SAH in rats, which were relieved by UA. Additionally, cortical neuronal apoptosis in SAH rats was also attenuated by UA. Moreover, UA restored autophagy level in SAH rats. Mechanistically, UA activated the AMPK/mTOR pathway. Furthermore, inhibition of autophagy and AMPK limited UA-mediated protection against EBI post-SAH CONCLUSION: UA alleviates neurological deficits, BBB permeability, and cerebral edema by inhibiting cortical neuronal apoptosis through regulating the AMPK/mTOR pathway-dependent autophagy in rats following SAH.
Collapse
Affiliation(s)
- Meiqiu Liu
- Department of Neurosurgery, Ningde Municipal Hospital of Ningde Normal University, Ningde 352000, China
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Huan Zhang
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Zhiji Cai
- Department of Neurosurgery, Ningde Municipal Hospital of Ningde Normal University, Ningde 352000, China
| | - Tiancheng Liu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Mengli Zhang
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Xian Wu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Fen Ai
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Ganzhe Liu
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Chao Zeng
- Department of Neurosurgery, Ningde Municipal Hospital of Ningde Normal University, Ningde 352000, China.
| | - Jiancheng Shen
- Department of Neurosurgery, Ningde Municipal Hospital of Ningde Normal University, Ningde 352000, China.
| |
Collapse
|
34
|
Dharshika C, Gonzales J, Chow A, Morales-Soto W, Gulbransen BD. Stimulator of interferon genes (STING) expression in the enteric nervous system and contributions of glial STING in disease. Neurogastroenterol Motil 2023; 35:e14553. [PMID: 37309618 PMCID: PMC10266835 DOI: 10.1111/nmo.14553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Appropriate host-microbe interactions are essential for enteric glial development and subsequent gastrointestinal function, but the potential mechanisms of microbe-glial communication are unclear. Here, we tested the hypothesis that enteric glia express the pattern recognition receptor stimulator of interferon genes (STING) and communicate with the microbiome through this pathway to modulate gastrointestinal inflammation. METHODS In situ transcriptional labeling and immunohistochemistry were used to examine STING and IFNβ expression in enteric neurons and glia. Glial-STING KO mice (Sox10CreERT2+/- ;STINGfl/fl ) and IFNβ ELISA were used to characterize the role of enteric glia in canonical STING activation. The role of glial STING in gastrointestinal inflammation was assessed in the 3% DSS colitis model. RESULTS Enteric glia and neurons express STING, but only enteric neurons express IFNβ. While both the myenteric and submucosal plexuses produce IFNβ with STING activation, enteric glial STING plays a minor role in its production and seems more involved in autophagy processes. Furthermore, deleting enteric glial STING does not affect weight loss, colitis severity, or neuronal cell proportions in the DSS colitis model. CONCLUSION Taken together, our data support canonical roles for STING and IFNβ signaling in the enteric nervous system through enteric neurons but that enteric glia do not use these same mechanisms. We propose that enteric glial STING may utilize alternative signaling mechanisms and/or is only active in particular disease conditions. Regardless, this study provides the first glimpse of STING signaling in the enteric nervous system and highlights a potential avenue of neuroglial-microbial communication.
Collapse
Affiliation(s)
- Christine Dharshika
- Department of Physiology, Neuroscience Program, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824 USA
- College of Human Medicine, Michigan State University, 804 Service Road, East Lansing, MI, 48824 USA
| | - Jacques Gonzales
- Department of Physiology, Neuroscience Program, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824 USA
| | - Aaron Chow
- Department of Physiology, Neuroscience Program, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824 USA
| | - Wilmarie Morales-Soto
- Department of Physiology, Neuroscience Program, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824 USA
| | - Brian D. Gulbransen
- Department of Physiology, Neuroscience Program, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824 USA
| |
Collapse
|
35
|
Wu Z, Tang W, Ibrahim FEEM, Chen X, Yan H, Tao C, Wang Z, Guo Y, Fu Y, Wang Q, Ge Y. Aβ Induces Neuroinflammation and Microglial M1 Polarization via cGAS-STING-IFITM3 Signaling Pathway in BV-2 Cells. Neurochem Res 2023:10.1007/s11064-023-03945-5. [PMID: 37210413 DOI: 10.1007/s11064-023-03945-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/22/2023]
Abstract
Microglia, innate immune cells of the brain, constantly monitor the dynamic changes of the brain microenvironment under physiological conditions and respond in time. Growing evidence suggests that microglia-mediated neuroinflammation plays an important role in the pathogenesis of Alzheimer's disease. In this study, we investigated that the expression of IFITM3 was significantly upregulated in microglia under the Aβ treatment, and knockdown of IFITM3 in vitro suppressed the M1-like polarization of microglia. Moreover, IFITM3 was regulated by cGAS-STING signaling in activated microglia, and inhibition of cGAS-STING signaling reduces IFITM3 expression. Taken together, our findings suggested that the cGAS-STING-IFITM3 axis may be involved in Aβ-induced neuroinflammation in microglia.
Collapse
Affiliation(s)
- Zheng Wu
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, 116023, Liaoning Province, China
| | - Wei Tang
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian City, China
| | - Fatima Elzahra E M Ibrahim
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, 116023, Liaoning Province, China
| | - Xuejing Chen
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, 116023, Liaoning Province, China
| | - Hongting Yan
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, 116023, Liaoning Province, China
| | - Chunmei Tao
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, 116023, Liaoning Province, China
| | - Zhiming Wang
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, 116023, Liaoning Province, China
| | - Yunchu Guo
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, 116023, Liaoning Province, China
| | - Yu Fu
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, 116023, Liaoning Province, China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, 116023, Liaoning Province, China.
| | - Yusong Ge
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, 116023, Liaoning Province, China.
| |
Collapse
|
36
|
Hu Y, Chen Y, Liu T, Zhu C, Wan L, Yao W. The bidirectional roles of the cGAS-STING pathway in pain processing: Cellular and molecular mechanisms. Biomed Pharmacother 2023; 163:114869. [PMID: 37182515 DOI: 10.1016/j.biopha.2023.114869] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/30/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023] Open
Abstract
Pain is a common clinical condition. However, the mechanisms underlying pain are not yet fully understood. It is known that the neuroimmune system plays a critical role in the pathogenesis of pain. Recent studies indicated that the cyclic-GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway can activate the innate immune system by sensing both extrinsic and intrinsic double-stranded DNA in the cytoplasm, which is involved in pain processing. In this review, we summarise (1) the roles of the cGAS-STING pathway in different pain models, (2) the effect of the cGAS-STING pathway in different cells during pain regulation, and (3) the downstream molecular mechanisms of the cGAS-STING pathway in pain regulation. This review provides evidence that the cGAS-STING pathway has pro- and anti-nociceptive effects in pain models. It has different functions in neuron, microglia, macrophage, and T cells. Its downstream molecules include IFN-I, NF-κB, NLRP3, and eIF2α. The bidirectional roles of the cGAS-STING pathway in pain processing are mediated by regulating nociceptive neuronal sensitivity and neuroinflammatory responses. However, their effects in special brain regions, activation of astrocytes, and the different phases of pain require further exploration.
Collapse
Affiliation(s)
- Yingjie Hu
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuye Chen
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongtong Liu
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chang Zhu
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Wan
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenlong Yao
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
37
|
Fritsch LE, Kelly C, Pickrell AM. The role of STING signaling in central nervous system infection and neuroinflammatory disease. WIREs Mech Dis 2023; 15:e1597. [PMID: 36632700 PMCID: PMC10175194 DOI: 10.1002/wsbm.1597] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/27/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023]
Abstract
The cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) synthase-Stimulator of Interferon Genes (cGAS-STING) pathway is a critical innate immune mechanism for detecting the presence of double-stranded DNA (dsDNA) and prompting a robust immune response. Canonical cGAS-STING activation occurs when cGAS, a predominantly cytosolic pattern recognition receptor, binds microbial DNA to promote STING activation. Upon STING activation, transcription factors enter the nucleus to cause the production of Type I interferons, inflammatory cytokines whose primary function is to prime the host for viral infection by producing a number of antiviral interferon-stimulated genes. While the pathway was originally described in viral infection, more recent studies have implicated cGAS-STING signaling in a number of different contexts, including autoimmune disease, cancer, injury, and neuroinflammatory disease. This review focuses on how our understanding of the cGAS-STING pathway has evolved over time with an emphasis on the role of STING-mediated neuroinflammation and infection in the nervous system. We discuss recent findings on how STING signaling contributes to the pathology of pain, traumatic brain injury, and stroke, as well as how mitochondrial DNA may promote STING activation in common neurodegenerative diseases. We conclude by commenting on the current knowledge gaps that should be filled before STING can be an effective therapeutic target in neuroinflammatory disease. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology Infectious Diseases > Molecular and Cellular Physiology Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Lauren E. Fritsch
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia, USA
| | - Colin Kelly
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia, USA
| | - Alicia M. Pickrell
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
38
|
Yu ZC, Fu R, Li Y, Zhao DY, Jiang H, Han D. The STING inhibitor C-176 attenuates osteoclast-related osteolytic diseases by inhibiting osteoclast differentiation. FASEB J 2023; 37:e22867. [PMID: 36906288 DOI: 10.1096/fj.202201600r] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/11/2022] [Accepted: 02/27/2023] [Indexed: 03/13/2023]
Abstract
Inflammatory osteolysis occurs primarily in the context of osteoarthritis, aseptic inflammation, prosthesis loosening, and other conditions. An excessive immune inflammatory response causes excessive activation of osteoclasts, leading to bone loss and bone destruction. The signaling protein stimulator of interferon gene (STING) can regulate the immune response of osteoclasts. C-176 is a furan derivative that can inhibit activation of the STING pathway and exert anti-inflammatory effects. The effect of C-176 on osteoclast differentiation is not yet clear. In this study, we found that C-176 could inhibit STING activation in osteoclast precursor cells and inhibit osteoclast activation induced by nuclear factor κB ligand receptor activator in a dose-dependent manner. After treatment with C-176, the expression of the osteoclast differentiation marker genes nuclear factor of activated T-cells c1(NFATc1), cathepsin K, calcitonin receptor, and V-ATPase a3 decreased. In addition, C-176 reduced actin loop formation and bone resorption capacity. The WB results showed that C-176 downregulated the expression of the osteoclast marker protein NFATc1 and inhibited activation of the STING-mediated NF-κB pathway. We also found that C-176 could inhibit the phosphorylation of mitogen-activated protein kinase signaling pathway factors induced by RANKL. Moreover, we verified that C-176 could reduce LPS-induced bone absorption in mice, reduce joint destruction in knee arthritis induced by meniscal instability, and protect against cartilage matrix loss in ankle arthritis induced by collagen immunity. In summary, our findings demonstrated that C-176 could inhibit the formation and activation of osteoclasts and could be used as a potential therapeutic agent for inflammatory osteolytic diseases.
Collapse
Affiliation(s)
- Zhen-Cheng Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rao Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Li
- Department of Burns & Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Dan-Yang Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Jiang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Han
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Sun Z, Liu H, Hu Y, Luo G, Yuan Z, Tu B, Ruan H, Li J, Fan C. STING contributes to trauma-induced heterotopic ossification through NLRP3-dependent macrophage pyroptosis. Clin Immunol 2023; 250:109300. [PMID: 36963448 DOI: 10.1016/j.clim.2023.109300] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/26/2023]
Abstract
Trauma-induced heterotopic ossification (HO) is featured by aberrant bone formation at extra-skeletal site. STING is a master adaptor protein linking cellular damage to immune responses, while its role in HO remains elusive. A murine burn/tenotomy model was used to mimic trauma-induced HO in vivo. We demonstrated elevated STING expression in macrophages in inflammatory stage after burn/tenotomy, and STING inhibition significantly alleviated HO formation. Activated NLRP3-dependent macrophage pyroptosis was also found in inflammatory stage after burn/tenotomy. Either STING or NLRP3 suppression reduced mature HO by weakening macrophage pyroptotic inflammation, while protective effects of STING were abolished by NLRP3 overexpression. Further, in vitro, we also found a prominent STING level in pyroptotic BMDMs. STING suppression relieved macrophage pyroptotic inflammation, while abolished by NLRP3 overexpression. Our results reveal that STING poses regulatory effects on trauma-induced HO formation, via modulating NLRP3-dependent macrophage pyroptosis. Targeting STING-NLRP3 axis represents an attractive approach for trauma-induced HO prevention.
Collapse
Affiliation(s)
- Ziyang Sun
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, PR China
| | - Hang Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, PR China
| | - Yuehao Hu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Gang Luo
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, PR China
| | - Zhengqiang Yuan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, PR China
| | - Bing Tu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, PR China
| | - Hongjiang Ruan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, PR China.
| | - Juehong Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, PR China.
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, PR China.
| |
Collapse
|
40
|
Zhao J, Ma LY, Xie YX, Zhu LQ, Ni WS, Wang R, Song YN, Li XY, Yang HF. The role of stimulator of interferon genes-mediated AMPK/mTOR/P70S6K autophagy pathway in cyfluthrin-induced testicular injury. ENVIRONMENTAL TOXICOLOGY 2023; 38:727-742. [PMID: 36515635 DOI: 10.1002/tox.23723] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/25/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Cyfluthrin is widely used in the field of sanitary pest control by its wide insecticidal spectrum, high efficiency and low toxicity, low residue, and good biodegradability. But, as a double-edged sword, a large amount of cyfluthrin remains are still in the environment. The residual cyfluthrin is absorbed into the food chain through vegetation and then poses a risk to soil organisms and human health. Several studies have suggested that cyfluthrin is one of the main factors causing testicular damage, but the mechanism remains unclear. In this study, we established in vivo and in vitro models of testicular injury in rats and GC-2 cells exposed to cyfluthrin to explore whether stimulator of interferon genes (STING) gene mediates the regulation of AMPK/mTOR/p70S6K autophagy pathway, which lays a foundation for further study of the mechanism of testicular injury induced by cyfluthrin. The results showed that the activity of super oxide dismutase in testis decreased and the activity of malonic dialdehyde increased with the increase of concentration in vivo and in vitro. At the same time, the levels of mitochondrial damage and inflammation in the testis also increased, which further activated autophagy. In this process, the increased level of inflammation is related to the increased expression of STING gene, and AMPK/mTOR/p70S6K autophagy pathway is also involved. To sum up, cyfluthrin has certain reproductive toxicity, and long-term exposure can induce testicular cell damage. STING gene can participate in cyfluthrin-induced testicular injury through AMPK/mTOR/P70S6K autophagy pathway.
Collapse
Affiliation(s)
- Ji Zhao
- Department of Occupational and Environmental Health, School of Public Healthy and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, People's Republic of China
| | - Li-Ya Ma
- Department of Occupational and Environmental Health, School of Public Healthy and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, People's Republic of China
- The Sinopharm Yiji Hospital, Baotou, People's Republic of China
| | - Yong-Xin Xie
- Department of Occupational and Environmental Health, School of Public Healthy and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, People's Republic of China
| | - Ling-Qin Zhu
- Department of Occupational and Environmental Health, School of Public Healthy and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, People's Republic of China
| | - Wen-Si Ni
- Department of Occupational and Environmental Health, School of Public Healthy and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, People's Republic of China
| | - Rui Wang
- Department of Occupational and Environmental Health, School of Public Healthy and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, People's Republic of China
| | - Ya-Nan Song
- Department of Occupational and Environmental Health, School of Public Healthy and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, People's Republic of China
| | - Xiao-Yu Li
- Department of Occupational and Environmental Health, School of Public Healthy and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, People's Republic of China
| | - Hui-Fang Yang
- Department of Occupational and Environmental Health, School of Public Healthy and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, People's Republic of China
| |
Collapse
|
41
|
Jeltema D, Abbott K, Yan N. STING trafficking as a new dimension of immune signaling. J Exp Med 2023; 220:213837. [PMID: 36705629 PMCID: PMC9930166 DOI: 10.1084/jem.20220990] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
The cGAS-STING pathway is an evolutionarily conserved immune signaling pathway critical for microbial defense. Unlike other innate immune pathways that largely rely on stationary cascades of signaling events, STING is highly mobile in the cell. STING is activated on the ER, but only signals after it arrives on the Golgi, and then it is quickly degraded by the lysosome. Each step of STING trafficking through the secretory pathway is regulated by host factors. Homeostatic STING trafficking via COPI-, COPII-, and clathrin-coated vesicles is important for maintaining baseline tissue and cellular immunity. Aberrant vesicular trafficking or lysosomal dysfunction produces an immune signal through STING, which often leads to tissue pathology in mice and humans. Many trafficking-mediated diseases of STING signaling appear to impact the central nervous system, leading to neurodegeneration. Therefore, STING trafficking introduces a new dimension of immune signaling that likely has broad implications in human disease.
Collapse
Affiliation(s)
- Devon Jeltema
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kennady Abbott
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nan Yan
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA,Correspondence to Nan Yan:
| |
Collapse
|
42
|
Activation of the STING pathway induces peripheral sensitization via neuroinflammation in a rat model of bone cancer pain. Inflamm Res 2023; 72:117-132. [PMID: 36346430 PMCID: PMC9902424 DOI: 10.1007/s00011-022-01663-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroinflammation in the peripheral nervous system has been linked to cancer metastasis-induced bone pain. The stimulator of interferon genes (STING), an innate immune sensor for cytosolic DNA, plays an important role in inflammation and cancer metastasis and is reported to be a critical regulator of nociception. Here, we examined the role of STING in primary nociceptive neurons and chronic pain to determine if it could be a new target for treating bone cancer pain (BCP). METHODS Walker 256 cancer cells were injected intratibially to induce bone cancer pain in rats. STING and its downstream inflammatory factors in dorsal root ganglia (DRG) were detected using western blotting and immunofluorescent staining. Transmission electron microscopy and the BCL2-associated X (Bax) expression were used to detect the mitochondrial stress in DRG neurons. C-176, a specific inhibitor of STING, was used to block STING activation and to test the pain behavior. RESULTS Mechanical hyperalgesia and spontaneous pain were observed in BCP rats, accompanied by the upregulation of the STING expression in the ipsilateral L4-5 DRG neurons which showed significant mitochondrion stress. The STING/TANK-binding kinase 1 (TBK1)/nuclear factor-kappa B (NF-κB) pathway activation was observed in the DRGs of BCP rats as well as increased IL-1β, IL-6, and TNF-α expression. C-176 alleviated bone cancer pain and reduced the STING and its downstream inflammatory pathway. CONCLUSION We provide evidence that STING pathway activation leads to neuroinflammation and peripheral sensitization. Pharmacological blockade of STING may be a promising novel strategy for preventing BCP.
Collapse
|
43
|
Wang X, Xu P, Liu Y, Wang Z, Lenahan C, Fang Y, Lu J, Zheng J, Wang K, Wang W, Zhou J, Chen S, Zhang J. New Insights of Early Brain Injury after Subarachnoid Hemorrhage: A Focus on the Caspase Family. Curr Neuropharmacol 2023; 21:392-408. [PMID: 35450528 PMCID: PMC10190145 DOI: 10.2174/1570159x20666220420115925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/10/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
Spontaneous subarachnoid hemorrhage (SAH), primarily caused by ruptured intracranial aneurysms, remains a prominent clinical challenge with a high rate of mortality and morbidity worldwide. Accumulating clinical trials aiming at the prevention of cerebral vasospasm (CVS) have failed to improve the clinical outcome of patients with SAH. Therefore, a growing number of studies have shifted focus to the pathophysiological changes that occur during the periods of early brain injury (EBI). New pharmacological agents aiming to alleviate EBI have become a promising direction to improve outcomes after SAH. Caspases belong to a family of cysteine proteases with diverse functions involved in maintaining metabolism, autophagy, tissue differentiation, regeneration, and neural development. Increasing evidence shows that caspases play a critical role in brain pathology after SAH. Therefore, caspase regulation could be a potential target for SAH treatment. Herein, we provide an overview pertaining to the current knowledge on the role of caspases in EBI after SAH, and we discuss the promising therapeutic value of caspase-related agents after SAH.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Penglei Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zefeng Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Burrell College of Osteopathic Medicine, Las Cruces, New Mexico
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kaikai Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingyi Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
| | - Jianming Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
44
|
Growth Differentiation Factor 7 Prevents Sepsis-Induced Acute Lung Injury in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3676444. [PMID: 36588594 PMCID: PMC9800101 DOI: 10.1155/2022/3676444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 12/24/2022]
Abstract
Objective Acute lung injury (ALI) is a life-threatening complication during sepsis and contributes to multiple organ failure and high mortality for septic patients. The present study aims to investigate the role and molecular basis of growth differentiation factor 7 (GDF7) in sepsis-induced ALI. Methods Mice were subcutaneously injected with recombinant mouse GDF7 Protein (rmGDF7) and then intratracheally injected with lipopolysaccharide (LPS) to generate sepsis-induced ALI. Primary peritoneal macrophages were isolated to further evaluate the role and underlying mechanism of GDF7 in vitro. Results GDF7 was downregulated in LPS-stimulated lung tissues, and rmGDF7 treatment significantly inhibited inflammation and oxidative stress in ALI mice, thereby preventing LPS-induced pulmonary injury and dysfunction. Mechanistically, we found that rmGDF7 activated AMP-activated protein kinase (AMPK), and AMPK inhibition significantly blocked the anti-inflammatory and antioxidant effects of rmGDF7 during LPS-induced ALI. Further findings revealed that rmGDF7 activated AMPK through a downregulated stimulator of interferon gene (STING) in vivo and in vitro. Conclusion GDF7 prevents LPS-induced inflammatory response, oxidative stress, and ALI by regulating the STING/AMPK pathway. Our findings for the first time identify GDF7 as a potential agent for the treatment of sepsis-induced ALI.
Collapse
|
45
|
Sun J, Zhou YQ, Xu BY, Li JY, Zhang LQ, Li DY, Zhang S, Wu JY, Gao SJ, Ye DW, Mei W. STING/NF-κB/IL-6-Mediated Inflammation in Microglia Contributes to Spared Nerve Injury (SNI)-Induced Pain Initiation. J Neuroimmune Pharmacol 2022; 17:453-469. [PMID: 34727296 DOI: 10.1007/s11481-021-10031-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/24/2021] [Indexed: 01/13/2023]
Abstract
Innate immune response acts as the first line of host defense against damage and is initiated following the recognition of pathogen-associated molecular patterns (PAMPs). For double-stranded DNA (dsDNA) sensing, interferon gene stimulator (STING) was discovered to be an integral sensor and could mediate the immune and inflammatory response. Selective STING antagonist C-176 was administered and pain behaviors were assessed following spared nerve injury (SNI)-induced neuropathic pain. The level of serum dsDNA following neuropathic pain was assessed using Elisa analysis. STING signaling pathway, microglia activation, and proinflammatory cytokines were assessed by qPCR, western blots, Elisa, and immunofluorescence staining. STING agonist DMXAA was introduced into BV-2 cells to assess the inflammatory response in microglial cells. dsDNA was significantly increased following SNI and STING/TANK-binding kinase 1 (TBK1)/nuclear factor-kappa B (NF-κB) pathway was activated in vivo and vitro. Early but not the late intrathecal injection of C-176 attenuated SNI-induced pain hypersensitivity, microglia activation, proinflammatory factors, and phosphorylated JAK2/STAT3 in the spinal cord dorsal horn, and the analgesic effect of C-176 was greatly abolished by recombinant IL-6 following SNI. We provided evidence clarifying dsDNA mediated activation of microglia STING signaling pathway, after which promoting expression of proinflammatory cytokines that are required for hyperalgesia initiation in the spinal cord dorsal horn of SNI model. Further analysis showed that microglial STING/TBK1/NF-κB may contribute to pain initiation via IL-6 signaling. Pharmacological blockade of STING may be a promising target in the treatment of initiation of neuropathic pain.
Collapse
Affiliation(s)
- Jia Sun
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing-Yang Xu
- Institute of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jia-Yan Li
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long-Qing Zhang
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan-Yang Li
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Zhang
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Yi Wu
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Jie Gao
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wei Mei
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
46
|
Zhuang X, Ma J, Xu G, Sun Z. SHP-1 knockdown suppresses mitochondrial biogenesis and aggravates mitochondria-dependent apoptosis induced by all trans retinal through the STING/AMPK pathways. Mol Med 2022; 28:125. [PMID: 36273174 PMCID: PMC9588232 DOI: 10.1186/s10020-022-00554-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Oxidative stress-caused damage to the retinal pigment epithelium (RPE) underlies the onset and progression of age-related macular degeneration (AMD). Impaired mitochondrial biogenesis sensitizes RPE cells to mitochondrial dysfunction, energy insufficiency and death. Src-homology 2 domain-containing phosphatase (SHP)-1 is important in regulating immune responses and cell survival. However, its roles in cell survival are not always consistent. Until now, the effects of SHP-1 on RPE dysfunction, especially mitochondrial homeostasis, remain to be elucidated. We sought to clarify the effects of SHP-1 in RPE cells in response to atRAL-induced oxidative stress and determine the regulatory mechanisms involved. METHODS In the all trans retinal (atRAL)-induced oxidative stress model, we used the vector of lentivirus to knockdown the expression of SHP-1 in ARPE-19 cells. CCK-8 assay, Annexin V/PI staining and JC-1 staining were utilized to determine the cell viability, cell apoptosis and mitochondrial membrane potential. We also used immunoprecipitation to examine the ubiquitination modification of stimulator of interferon genes (STING) and its interaction with SHP-1. The expression levels of mitochondrial marker, proteins related to mitochondrial biogenesis, and signaling molecules involved were examined by western blotting analysis. RESULTS We found that SHP-1 knockdown predisposed RPE cells to apoptosis, aggravated mitochondrial damage, and repressed mitochondrial biogenesis after treatment with atRAL. Immunofluoresent staining and immunoprecipitation analysis confirmed that SHP-1 interacted with the endoplasmic reticulum-resident STING and suppressed K63-linked ubiquitination and activation of STING. Inhibition of STING with the specific antagonist H151 attenuated the effects of SHP-1 knockdown on mitochondrial biogenesis and oxidative damage. The adenosine monophosphate-activated protein kinase (AMPK) pathway acted as the crucial downstream target of STING and was involved in the regulatory processes. CONCLUSIONS These findings suggest that SHP-1 knockdown potentiates STING overactivation and represses mitochondrial biogenesis and cell survival, at least in part by blocking the AMPK pathway in RPE cells. Therefore, restoring mitochondrial health by regulating SHP-1 in RPE cells may be a potential therapeutic strategy for degenerative retinal diseases including AMD.
Collapse
Affiliation(s)
- Xiaonan Zhuang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Jun Ma
- Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Gezhi Xu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Zhongcui Sun
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China.
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.
| |
Collapse
|
47
|
Zhang X, Li X, Wang W, Zhang Y, Gong Z, Peng Y, Wu J, You X. STING Contributes to Cancer-Induced Bone Pain by Promoting M1 Polarization of Microglia in the Medial Prefrontal Cortex. Cancers (Basel) 2022; 14:5188. [PMID: 36358605 PMCID: PMC9656586 DOI: 10.3390/cancers14215188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2023] Open
Abstract
The medial prefrontal cortex (mPFC) is the main cortical area for processing both sensory and affective aspects of pain. Recently, mPFC was reported to participate in cancer-induced bone pain (CIBP) via the mechanism of central inflammation. STING is a key component of neuroinflammation in the central neuron system by activating downstream TBK1 and NF-κB signaling pathways. We aimed to investigate whether STING regulated neuroinflammation in the mPFC in rat models of CIBP. It is worth noting that we found a significant upregulation of STING in the mPFC after CIBP, accompanied by activation of TBK1 and NF-κB signaling pathways. In addition, pain and anxiety-like behaviors were alleviated by intraperitoneal injection of the STING inhibitor C-176. Furthermore, in microglia GMI-R1 cells, C-176 reversed LPS-induced M1 polarization. Collectively, this evidence indicated that STING may contribute to cancer-induced bone pain by activating TBK1 and NF-κB, and by promoting M1 polarization of microglia in the mPFC.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xin Li
- School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wei Wang
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuxin Zhang
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhihao Gong
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuan Peng
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jingxiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xingji You
- School of Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
48
|
Hu X, Zhang H, Zhang Q, Yao X, Ni W, Zhou K. Emerging role of STING signalling in CNS injury: inflammation, autophagy, necroptosis, ferroptosis and pyroptosis. J Neuroinflammation 2022; 19:242. [PMID: 36195926 PMCID: PMC9531511 DOI: 10.1186/s12974-022-02602-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Stimulator of interferons genes (STING), which is crucial for the secretion of type I interferons and proinflammatory cytokines in response to cytosolic nucleic acids, plays a key role in the innate immune system. Studies have revealed the participation of the STING pathway in unregulated inflammatory processes, traumatic brain injury (TBI), spinal cord injury (SCI), subarachnoid haemorrhage (SAH) and hypoxic–ischaemic encephalopathy (HIE). STING signalling is markedly increased in CNS injury, and STING agonists might facilitate the pathogenesis of CNS injury. However, the effects of STING-regulated signalling activation in CNS injury are not well understood. Aberrant activation of STING increases inflammatory events, type I interferon responses, and cell death. cGAS is the primary pathway that induces STING activation. Herein, we provide a comprehensive review of the latest findings related to STING signalling and the cGAS–STING pathway and highlight the control mechanisms and their functions in CNS injury. Furthermore, we summarize and explore the most recent advances toward obtaining an understanding of the involvement of STING signalling in programmed cell death (autophagy, necroptosis, ferroptosis and pyroptosis) during CNS injury. We also review potential therapeutic agents that are capable of regulating the cGAS–STING signalling pathway, which facilitates our understanding of cGAS–STING signalling functions in CNS injury and the potential value of this signalling pathway as a treatment target.
Collapse
Affiliation(s)
- Xinli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.,Department of Orthopedics, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Xicheng, Beijing, 100053, People's Republic of China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Qianxin Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.,Department of Cardiology, Zhejiang Yuhuan People's Hospital, Yuhuan, 317600, Zhejiang, China
| | - Xue Yao
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, 300050, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China. .,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China. .,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
| |
Collapse
|
49
|
Wu W, Zhang X, Wang S, Li T, Hao Q, Li S, Yao W, Sun R. Pharmacological inhibition of the cGAS-STING signaling pathway suppresses microglial M1-polarization in the spinal cord and attenuates neuropathic pain. Neuropharmacology 2022; 217:109206. [PMID: 35926582 DOI: 10.1016/j.neuropharm.2022.109206] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 12/23/2022]
Abstract
Neuroinflammation plays a vital role in the development of neuropathic pain and is mediated mainly by microglia. Suppressing microglial M1-polarization attenuates neuropathic pain. Recently, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has emerged as a key mediator of inflammation and shows potential in modulating microglial polarization. In this study, we evaluated whether cGAS-STING is a potential therapeutic target. Spared nerve injury (SNI) surgery was conducted in adult male rats to establish a neuropathic pain model. We showed that SNI promoted microglial M1-polarization and induced cGAS-STING pathway activation in the spinal cord. Double-label immunofluorescence assays showed that cGAS-STING activation mainly occurred in neurons and microglia but not astrocytes. We further conducted in vitro experiments using BV-2 microglial cells. The results showed that LPS-induced microglial M1-polarization was accompanied by cGAS-STING pathway activation, but cGAS-STING inhibition by antagonists suppressed LPS-induced microglial M1-polarization. In vivo, we also showed that a cGAS antagonist and a STING antagonist suppressed the microglial M1-polarization and ameliorated the mechanical allodynia induced by SNI. These findings suggested that the cGAS-STING pathway might be a potential therapeutic target for treating neuropathic pain. However, further research is warranted to verify our findings in female rodents.
Collapse
Affiliation(s)
- Wenyao Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quanshui Hao
- Department of Anesthesiology, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenlong Yao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rao Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
50
|
Alpha-Ketoglutarate Alleviates Neuronal Apoptosis Induced by Central Insulin Resistance through Inhibiting S6K1 Phosphorylation after Subarachnoid Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9148257. [PMID: 36062190 PMCID: PMC9436633 DOI: 10.1155/2022/9148257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
Neuronal apoptosis after subarachnoid hemorrhage (SAH) is believed to play an important role in early brain injury after SAH. The energy metabolism of neuron is closely related to its survival. The transient hyperglycemia caused by insulin resistance (IR) after SAH seriously affects the prognosis of patients. However, the specific mechanisms of IR after SAH are still not clear. Studies have shown that α-KG takes part in the regulation of IR and cell apoptosis. In this study, we aim to investigate whether α-KG can reduce IR after SAH, improve the disorder of neuronal glucose metabolism, alleviate neuronal apoptosis, and ultimately play a neuroprotective role in SAH-induced EBI. We first measured α-KG levels in the cerebrospinal fluid (CSF) of patients with SAH. Then, we established a SAH model through hemoglobin (Hb) stimulation with HT22 cells for further mechanism research. Furthermore, an in vivo SAH model in mice was established by endovascular perforation. Our results showed that α-KG levels in CSF significantly increased in SAH patients and could be used as a potential prognostic biomarker. In in vitro model of SAH, we found that α-KG not only inhibited IR-induced reduction of glucose uptake in neurons after SAH but also alleviated SAH-induced neuronal apoptosis. Mechanistically, we found that α-KG inhibits neuronal IR by inhibiting S6K1 activation after SAH. Moreover, neuronal apoptosis significantly increased when glucose uptake was reduced. Furthermore, our results demonstrated that α-KG could also alleviate neuronal apoptosis in vivo SAH model. In conclusion, our study suggests that α-KG alleviates apoptosis by inhibiting IR induced by S6K1 activation after SAH.
Collapse
|