1
|
Mulazzani E, Böhm L, Christmann T, Krumbholz M, Kümpfel T, Havla J. Optical coherence tomography assessment of disease activity in cryopyrin-associated periodic syndrome. Eur J Neurol 2024; 31:e16301. [PMID: 38628041 PMCID: PMC11235936 DOI: 10.1111/ene.16301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND AND PURPOSE Cryopyrin-associated periodic syndrome is a rare autoinflammatory disease caused by gain-of-function mutations or variants in the NLRP3 gene. Clinically, patients suffer from a broad spectrum of both systemic and neurological symptoms. The aim of this study was to determine whether systemic inflammation demonstrated by serum amyloid A (SAA) elevation is associated with neuroinflammation assessed by optical coherence tomography (OCT). METHODS Thirty eyes of 15 patients with NLRP3 low penetrance mutations (PwNLRP3) and 20 eyes of 10 age- and sex-matched healthy controls were examined by spectral-domain OCT as part of routine clinical care. All retinal layers and clinical features were evaluated. RESULTS At baseline no significant retinal neuroaxonal inflammation or degeneration was observed in all measured retinal layers amongst PwNLRP3 compared with healthy controls. In a pooled analysis of all individual OCT time points a significant difference regarding the macular retinal nerve fibre layer was detected. Increased levels of SAA showed a positive association with averaged combined outer plexiform layer and outer nuclear layer volumes (ρ < 0.0001, r2 = 0.35). CONCLUSION In cryopyrin-associated periodic syndrome increased combined outer plexiform layer and outer nuclear layer volumes are mirrored by SAA increase, an acute phase reactant indicating systemic inflammation. Our findings identify OCT as a candidate biomarker to monitor subclinical neuroinflammation and to assess disease activity in PwNLRP3.
Collapse
Affiliation(s)
- E. Mulazzani
- Institute of Clinical NeuroimmunologyLMU University Hospital, LMU MunichMunichGermany
| | - L. Böhm
- Institute of Clinical NeuroimmunologyLMU University Hospital, LMU MunichMunichGermany
| | - T. Christmann
- Institute of Clinical NeuroimmunologyLMU University Hospital, LMU MunichMunichGermany
| | - M. Krumbholz
- Department of Neurology and Pain Treatment, Immanuel Klinik RüdersdorfUniversity Hospital of the Brandenburg Medical School Theodor FontaneRüdersdorf bei BerlinGermany
- Faculty of Health Sciences BrandenburgBrandenburg Medical School Theodor FontaneRüdersdorf bei BerlinGermany
- Department of Neurology and StrokeUniversity Hospital of TübingenTübingenGermany
| | - T. Kümpfel
- Institute of Clinical NeuroimmunologyLMU University Hospital, LMU MunichMunichGermany
| | - J. Havla
- Institute of Clinical NeuroimmunologyLMU University Hospital, LMU MunichMunichGermany
| |
Collapse
|
2
|
Reygaerts T, Laohamonthonkul P, Hrovat-Schaale K, Moghaddas F, Baker PJ, Gray PE, Masters SL. Pyrin variant E148Q potentiates inflammasome activation and the effect of pathogenic mutations in cis. Rheumatology (Oxford) 2024; 63:882-890. [PMID: 37481715 PMCID: PMC10907813 DOI: 10.1093/rheumatology/kead376] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/24/2023] Open
Abstract
OBJECTIVE The p.E148Q variant in pyrin is present in different populations at a frequency of up to 29%, and has been associated with diseases, including vasculitis and FMF. The pathogenicity of p.E148Q in FMF is unclear, even when observed in cis or in trans to a single, typically recessive, pathogenic mutation. We performed functional validation to determine whether p.E148Q increases the ability of pyrin to form an active inflammasome complex in cell lines. METHODS We interrogated the Australian Autoinflammatory Disease RegistrY (AADRY) to find candidate inheritance patterns for the p.E148Q variant in pyrin. Different pyrin variant combinations were tested in HEK293T cells stably expressing the adaptor protein apoptosis-associated speck-like (ASC), which were analysed by flow cytometry to visualize inflammasome formation, with and without stimulation by Clostridioides difficile toxin B (TcdB). Inflammasome-dependent cytokine secretion was also quantified by ELISA of supernatants from THP-1 cells transduced with lentiviral expression vectors. RESULTS In AADRY, we observed the p.E148Q allele in individuals with autoinflammatory diseases alone or in conjunction with other pyrin variants. Two FMF families harboured the allele p.E148Q-M694I in cis with dominant heritability. In vitro, p.E148Q pyrin could spontaneously potentiate inflammasome formation, with increased IL-1β and IL-18 secretion. p.E148Q in cis to classical FMF mutations provided significant potentiation of inflammasome formation. CONCLUSION The p.E148Q variant in pyrin potentiates inflammasome activation in vitro. In cis, this effect is additive to known pathogenic FMF mutations. In some families, this increased effect could explain why FMF segregates as an apparently dominant disease.
Collapse
Affiliation(s)
- Thomas Reygaerts
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Pawat Laohamonthonkul
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Katja Hrovat-Schaale
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Fiona Moghaddas
- Immunology and Allergy Centre, North Bristol NHS Trust, Bristol, UK
| | - Paul J Baker
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Paul E Gray
- Department of Medicine, University of Western Sydney, Campbelltown, NSW, Australia
- Department of Immunology and Infectious Diseases, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
3
|
Yao J, Wang Z, Song W, Zhang Y. Targeting NLRP3 inflammasome for neurodegenerative disorders. Mol Psychiatry 2023; 28:4512-4527. [PMID: 37670126 DOI: 10.1038/s41380-023-02239-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
Neuroinflammation is a key pathological feature in neurological diseases, including Alzheimer's disease (AD). The nucleotide-binding domain leucine-rich repeat-containing proteins (NLRs) belong to the pattern recognition receptors (PRRs) family that sense stress signals, which play an important role in inflammation. As a member of NLRs, the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) is predominantly expressed in microglia, the principal innate immune cells in the central nervous system (CNS). Microglia release proinflammatory cytokines to cause pyroptosis through activating NLRP3 inflammasome. The active NLRP3 inflammasome is involved in a variety of neurodegenerative diseases (NDs). Recent studies also indicate the key role of neuronal NLRP3 in the pathogenesis of neurological disorders. In this article, we reviewed the mechanisms of NLRP3 expression and activation and discussed the role of active NLRP3 inflammasome in the pathogenesis of NDs, particularly focusing on AD. The studies suggest that targeting NLRP3 inflammasome could be a novel approach for the disease modification.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325000, Zhejiang, China.
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
| |
Collapse
|
4
|
Broderick L, Hoffman HM. IL-1 and autoinflammatory disease: biology, pathogenesis and therapeutic targeting. Nat Rev Rheumatol 2022; 18:448-463. [PMID: 35729334 PMCID: PMC9210802 DOI: 10.1038/s41584-022-00797-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 11/21/2022]
Abstract
Over 20 years ago, it was first proposed that autoinflammation underpins a handful of rare monogenic disorders characterized by recurrent fever and systemic inflammation. The subsequent identification of novel, causative genes directly led to a better understanding of how the innate immune system is regulated under normal conditions, as well as its dysregulation associated with pathogenic mutations. Early on, IL-1 emerged as a central mediator for these diseases, based on data derived from patient cells, mutant mouse models and definitive clinical responses to IL-1 targeted therapy. Since that time, our understanding of the mechanisms of autoinflammation has expanded beyond IL-1 to additional innate immune processes. However, the number and complexity of IL-1-mediated autoinflammatory diseases has also multiplied to include additional monogenic syndromes with expanded genotypes and phenotypes, as well as more common polygenic disorders seen frequently by the practising clinician. In order to increase physician awareness and update rheumatologists who are likely to encounter these patients, this review discusses the general pathophysiological concepts of IL-1-mediated autoinflammation, the epidemiological and clinical features of specific diseases, diagnostic challenges and approaches, and current and future perspectives for therapy.
Collapse
Affiliation(s)
- Lori Broderick
- Division of Allergy, Immunology & Rheumatology, Department of Paediatrics, University of California, San Diego, CA, USA.
- Rady Children's Hospital, San Diego, CA, USA.
| | - Hal M Hoffman
- Division of Allergy, Immunology & Rheumatology, Department of Paediatrics, University of California, San Diego, CA, USA.
- Rady Children's Hospital, San Diego, CA, USA.
| |
Collapse
|
5
|
Lindahl H, Bryceson YT. Neuroinflammation Associated With Inborn Errors of Immunity. Front Immunol 2022; 12:827815. [PMID: 35126383 PMCID: PMC8807658 DOI: 10.3389/fimmu.2021.827815] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/27/2021] [Indexed: 01/16/2023] Open
Abstract
The advent of high-throughput sequencing has facilitated genotype-phenotype correlations in congenital diseases. This has provided molecular diagnosis and benefited patient management but has also revealed substantial phenotypic heterogeneity. Although distinct neuroinflammatory diseases are scarce among the several thousands of established congenital diseases, elements of neuroinflammation are increasingly recognized in a substantial proportion of inborn errors of immunity, where it may even dominate the clinical picture at initial presentation. Although each disease entity is rare, they collectively can constitute a significant proportion of neuropediatric patients in tertiary care and may occasionally also explain adult neurology patients. We focus this review on the signs and symptoms of neuroinflammation that have been reported in association with established pathogenic variants in immune genes and suggest the following subdivision based on proposed underlying mechanisms: autoinflammatory disorders, tolerance defects, and immunodeficiency disorders. The large group of autoinflammatory disorders is further subdivided into IL-1β-mediated disorders, NF-κB dysregulation, type I interferonopathies, and hemophagocytic syndromes. We delineate emerging pathogenic themes underlying neuroinflammation in monogenic diseases and describe the breadth of the clinical spectrum to support decisions to screen for a genetic diagnosis and encourage further research on a neglected phenomenon.
Collapse
Affiliation(s)
- Hannes Lindahl
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Yenan T. Bryceson
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Brogelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Hu Y, Wang B, Li S, Yang S. Pyroptosis, and its Role in Central Nervous System Disease. J Mol Biol 2021; 434:167379. [PMID: 34838808 DOI: 10.1016/j.jmb.2021.167379] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 02/07/2023]
Abstract
Pyroptosis is an inflammatory form of cell death executed by transmembrane pore-forming proteins known as gasdermins and can be activated in an inflammasome-dependent or -independent manner. Inflammasome-dependent pyroptosis is triggered in response to pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) and has emerged as an important player in the pathogenesis of multiple inflammatory diseases, mainly by releasing inflammatory contents. More recently, numerous studies have revealed the intricate mechanisms of pyroptosis and its role in the development of neuroinflammation in central nervous system (CNS) diseases. In this review, we summarize current understandings of the molecular and regulatory mechanisms of pyroptosis. In addition, we discuss how pyroptosis can drive different forms of neurological diseases and new promising therapeutic strategies targeting pyroptosis that can be leveraged to treat neuroinflammation.
Collapse
Affiliation(s)
- Yingchao Hu
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, Gusu School, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Bingwei Wang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Sheng Li
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Shuo Yang
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, Gusu School, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
7
|
Diprose WK, Jordan A, Anderson NE. Autoinflammatory syndromes in neurology: when our first line of defence misbehaves. Pract Neurol 2021; 22:145-153. [PMID: 34599092 DOI: 10.1136/practneurol-2021-003031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 02/03/2023]
Abstract
Autoinflammatory syndromes result from a defective innate immune system. They are characterised by unexplained fever and systemic inflammation involving the skin, muscle, joints, serosa and eyes, along with elevated acute phase reactants. Autoinflammatory syndromes are increasingly recognised as a cause of neurological disease with a diverse range of manifestations. Corticosteroids, colchicine and targeted therapies are effective if started early, and hence the importance of recognising these syndromes. Here, we review the neurological features of specific autoinflammatory syndromes and our approach (as adult neurologists) to their diagnosis.
Collapse
Affiliation(s)
- William K Diprose
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand .,Department of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Anthony Jordan
- Department of Clinical Immunology and Allergy, Auckland City Hospital, Auckland, New Zealand
| | - Neil E Anderson
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
8
|
Mulazzani E, Zolyniak N, Noe E, Mulazzani M, Azad SC, Kümpfel T, Kraft E. Clinical and psychological phenomenology of pain in autoinflammatory diseases. BMC Rheumatol 2020; 4:71. [PMID: 33334368 PMCID: PMC7747389 DOI: 10.1186/s41927-020-00168-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 10/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pain is the clinical hallmark of patients in patients with autoinflammatory diseases (AID) caused by variants of the NLRP3-, MEFV- or TNFRSF1A gene. However, no systematical analysis of the clinical and psychological presentation of pain has been performed to date. METHODS Twenty-one symptomatic patients with variants in the NLRP3-, MEFV- and TNFRSF1A gene and clinical signs suggestive of an AID were retrospectively included in this monocentric cross-sectional case-series study. Patients were examined and interviewed using the German pain questionnaire. The hospital anxiety and depression scale (HADS) was applied to screen patients for anxiety and depression. RESULTS Twenty out of 21 AID patients (95%) reported pain at the time of examination. Mean current pain intensity in all AID patients comprised 3.6 ± 1.3 and mean maximum pain intensity was 7.0 ± 1.6 on a 11-point numeric ranging scale (NRS). In 15 patients (71%), pain was present for more than 60 months. Ten patients (48%) experienced recurrent attacks with asymptomatic intervals and 7 patients (33%) suffered from constant pain, while 4 patients (19%) experienced both. Nociceptive pain including musculoskeletal and visceral affection was the most prominent type of pain (n = 20; 95%). Pain symptoms were treated continuously with analgesic or co-analgesic drugs in 10 patients (48%). Five patients (24%) have been positively screened for concomitant depression or anxiety. CONCLUSIONS Early and prompt diagnosis is necessary to provide multimodal pain treatment and to avoid the development of chronic pain in patients with AID.
Collapse
Affiliation(s)
- Elisabeth Mulazzani
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximillian University, Munich, Germany.
| | - Nicole Zolyniak
- Department of Orthopaedics, Physical Medicine and Rehabilitation, Ludwig- Maximilians University, Munich, Germany
| | - Elisabeth Noe
- Department of Orthopaedics, Physical Medicine and Rehabilitation, Ludwig- Maximilians University, Munich, Germany
| | - Matthias Mulazzani
- Walter and Eliza Institute of Medical Research, Immunology Division, Melbourne, Australia
| | | | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximillian University, Munich, Germany
| | - Eduard Kraft
- Department of Orthopaedics, Physical Medicine and Rehabilitation, Ludwig- Maximilians University, Munich, Germany
| |
Collapse
|