1
|
Bartos LM, Kunte ST, Wagner S, Beumers P, Schaefer R, Zatcepin A, Li Y, Griessl M, Hoermann L, Wind-Mark K, Bartenstein P, Tahirovic S, Ziegler S, Brendel M, Gnörich J. Astroglial glucose uptake determines brain FDG-PET alterations and metabolic connectivity during healthy aging in mice. Neuroimage 2024; 300:120860. [PMID: 39332748 DOI: 10.1016/j.neuroimage.2024.120860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/24/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
PURPOSE 2-Fluorodeoxyglucose-PET (FDG-PET) is a powerful tool to study glucose metabolism in mammalian brains, but cellular sources of glucose uptake and metabolic connectivity during aging are not yet understood. METHODS Healthy wild-type mice of both sexes (2-21 months of age) received FDG-PET and cell sorting after in vivo tracer injection (scRadiotracing). FDG uptake per cell was quantified in isolated microglia, astrocytes and neurons. Cerebral FDG uptake and metabolic connectivity were determined by PET. A subset of mice received measurement of blood glucose levels to study associations with cellular FDG uptake during aging. RESULTS Cerebral FDG-PET signals in healthy mice increased linearly with age. Cellular FDG uptake of neurons increased between 2 and 12 months of age, followed by a strong decrease towards late ages. Contrarily, FDG uptake in microglia and astrocytes exhibited a U-shaped function with respect to age, comprising the predominant cellular source of higher cerebral FDG uptake in the later stages. Metabolic connectivity was closely associated with the ratio of glucose uptake in astroglial cells relative to neurons. Cellular FDG uptake was not associated with blood glucose levels and increasing FDG brain uptake as a function of age was still observed after adjusting for blood glucose levels. CONCLUSION Trajectories of astroglial glucose uptake drive brain FDG-PET alterations and metabolic connectivity during aging.
Collapse
Affiliation(s)
- Laura M Bartos
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian T Kunte
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stephan Wagner
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Philipp Beumers
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Rebecca Schaefer
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Artem Zatcepin
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Germany
| | - Yunlei Li
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Maria Griessl
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Leonie Hoermann
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Karin Wind-Mark
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Johannes Gnörich
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Germany.
| |
Collapse
|
2
|
Zatcepin A, Gnörich J, Rauchmann BS, Bartos LM, Wagner S, Franzmeier N, Malpetti M, Xiang X, Shi Y, Parhizkar S, Grosch M, Wind-Mark K, Kunte ST, Beyer L, Meyer C, Brösamle D, Wendeln AC, Osei-Sarpong C, Heindl S, Liesz A, Stoecklein S, Biechele G, Finze A, Eckenweber F, Lindner S, Rominger A, Bartenstein P, Willem M, Tahirovic S, Herms J, Buerger K, Simons M, Haass C, Rupprecht R, Riemenschneider MJ, Albert NL, Beyer M, Neher JJ, Paeger L, Levin J, Höglinger GU, Perneczky R, Ziegler SI, Brendel M. Regional desynchronization of microglial activity is associated with cognitive decline in Alzheimer's disease. Mol Neurodegener 2024; 19:64. [PMID: 39238030 PMCID: PMC11375924 DOI: 10.1186/s13024-024-00752-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Microglial activation is one hallmark of Alzheimer disease (AD) neuropathology but the impact of the regional interplay of microglia cells in the brain is poorly understood. We hypothesized that microglial activation is regionally synchronized in the healthy brain but experiences regional desynchronization with ongoing neurodegenerative disease. We addressed the existence of a microglia connectome and investigated microglial desynchronization as an AD biomarker. METHODS To validate the concept, we performed microglia depletion in mice to test whether interregional correlation coefficients (ICCs) of 18 kDa translocator protein (TSPO)-PET change when microglia are cleared. Next, we evaluated the influence of dysfunctional microglia and AD pathophysiology on TSPO-PET ICCs in the mouse brain, followed by translation to a human AD-continuum dataset. We correlated a personalized microglia desynchronization index with cognitive performance. Finally, we performed single-cell radiotracing (scRadiotracing) in mice to ensure the microglial source of the measured desynchronization. RESULTS Microglia-depleted mice showed a strong ICC reduction in all brain compartments, indicating microglia-specific desynchronization. AD mouse models demonstrated significant reductions of microglial synchronicity, associated with increasing variability of cellular radiotracer uptake in pathologically altered brain regions. Humans within the AD-continuum indicated a stage-depended reduction of microglia synchronicity associated with cognitive decline. scRadiotracing in mice showed that the increased TSPO signal was attributed to microglia. CONCLUSION Using TSPO-PET imaging of mice with depleted microglia and scRadiotracing in an amyloid model, we provide first evidence that a microglia connectome can be assessed in the mouse brain. Microglia synchronicity is closely associated with cognitive decline in AD and could serve as an independent personalized biomarker for disease progression.
Collapse
Affiliation(s)
- Artem Zatcepin
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| | - Johannes Gnörich
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Boris-Stephan Rauchmann
- Institute of Neuroradiology, University Hospital LMU, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Laura M Bartos
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Stephan Wagner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Maura Malpetti
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Xianyuan Xiang
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, ShenzhenShenzhen, 518055, China
| | - Yuan Shi
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Samira Parhizkar
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Maximilian Grosch
- German Center for Vertigo and Balance Disorders, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Karin Wind-Mark
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Sebastian T Kunte
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Carolin Meyer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Desirée Brösamle
- German Center for Neurodegenerative Disease (DZNE), Neuroimmunology and Neurodegenerative Diseases, Göttingen, Germany
- Dept. of Cellular Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- Metabolic Biochemistry, Faculty of Medicine, Biomedical Center Munich (BMC), LMU Munich, Munich, Germany
| | - Ann-Christin Wendeln
- German Center for Neurodegenerative Disease (DZNE), Neuroimmunology and Neurodegenerative Diseases, Göttingen, Germany
- Dept. of Cellular Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Collins Osei-Sarpong
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseasesand , University of Bonn and West German Genome Center, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Immunogenomics & Neurodegeneration, Bonn, Germany
| | - Steffanie Heindl
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sophia Stoecklein
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Gloria Biechele
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Anika Finze
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Florian Eckenweber
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, Inselpital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Michael Willem
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Molecular Neurosciences, Regensburg, Germany
| | | | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Munich, 69120, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany
| | - Marc Beyer
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseasesand , University of Bonn and West German Genome Center, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Immunogenomics & Neurodegeneration, Bonn, Germany
| | - Jonas J Neher
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Disease (DZNE), Neuroimmunology and Neurodegenerative Diseases, Göttingen, Germany
- Dept. of Cellular Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- Metabolic Biochemistry, Faculty of Medicine, Biomedical Center Munich (BMC), LMU Munich, Munich, Germany
| | - Lars Paeger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, W6 8RP, UK
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, S10 2HQ, UK
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
3
|
Kong Y, Cao L, Wang J, Zhuang J, Xie F, Zuo C, Huang Q, Shi K, Rominger A, Li M, Wu P, Guan Y, Ni R. In vivo reactive astrocyte imaging using [ 18F]SMBT-1 in tauopathy and familial Alzheimer's disease mouse models: A multi-tracer study. J Neurol Sci 2024; 462:123079. [PMID: 38878650 DOI: 10.1016/j.jns.2024.123079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Reactive astrocytes play an important role in the development of Alzheimer's disease and primary tauopathies. Here, we aimed to investigate the relationships between reactive astrocytes. Microgliosis and glucose metabolism with Tau and amyloid beta pathology by using multi-tracer imaging in widely used tauopathy and familial Alzheimer's disease mouse models. RESULTS Positron emission tomography imaging using [18F]PM-PBB3 (tau), [18F]florbetapir (amyloid-beta), [18F]SMBT-1 (monoamine oxidase-B), [18F]DPA-714 (translocator protein) and [18F]fluorodeoxyglucose was carried out in 3- and 7-month-old rTg4510 tau mice, 5 × FAD familial Alzheimer's disease mice and wild-type mice. Immunofluorescence staining was performed to validate the pathological distribution in the mouse brain after in vivo imaging. We found increased regional levels of [18F]PM-PBB3, [18F]SMBT-1, and [18F]DPA-714 and hypoglucose metabolism in the brains of 7-month-old rTg4510 mice compared to age-matched wild-type mice. Increased [18F]SMBT-1 uptake was observed in the brains of 3, 7-month-old 5 × FAD mice, with elevated regional [18F]florbetapir and [18F]DPA-714 uptakes in the brains of 7-month-old 5 × FAD mice, compared to age-matched wild-type mice. Positive correlations were shown between [18F]SMBT-1 and [18F]PM-PBB3, [18F]DPA-714 and [18F]PM-PBB3 in rTg4510 mice, and between [18F]florbetapir and [18F]DPA-714 SUVRs in 5 × FAD mice. CONCLUSION In summary, these findings provide in vivo evidence that reactive astrocytes, microglial activation, and cerebral hypoglucose metabolism are associated with tau and amyloid pathology development in animal models of tauopathy and familial Alzheimer's disease.
Collapse
Affiliation(s)
- Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Cao
- PET Center, Huashan Hospital, Fudan University, Shanghai, China; Inst. Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Jiao Wang
- Lab of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Junyi Zhuang
- Lab of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qi Huang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Kuangyu Shi
- Dept. Nuclear Medicine, Bern University Hospital, Bern, Switzerland
| | - Axel Rominger
- Dept. Nuclear Medicine, Bern University Hospital, Bern, Switzerland
| | - Ming Li
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Wu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Ruiqing Ni
- Inst. Regenerative Medicine, University of Zurich, Zurich, Switzerland; Dept. Nuclear Medicine, Bern University Hospital, Bern, Switzerland; Inst. Biomedical Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Biechele G, Rauchmann BS, Janowitz D, Buerger K, Franzmeier N, Weidinger E, Guersel S, Schuster S, Finze A, Harris S, Lindner S, Albert NL, Wetzel C, Rupprecht R, Rominger A, Palleis C, Katzdobler S, Burow L, Kurz C, Zaganjori M, Trappmann LK, Goldhardt O, Grimmer T, Haeckert J, Keeser D, Stoecklein S, Morenas-Rodriguez E, Bartenstein P, Levin J, Höglinger GU, Simons M, Perneczky R, Brendel M. Associations between sex, body mass index and the individual microglial response in Alzheimer's disease. J Neuroinflammation 2024; 21:30. [PMID: 38263017 PMCID: PMC10804830 DOI: 10.1186/s12974-024-03020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVES 18-kDa translocator protein position-emission-tomography (TSPO-PET) imaging emerged for in vivo assessment of neuroinflammation in Alzheimer's disease (AD) research. Sex and obesity effects on TSPO-PET binding have been reported for cognitively normal humans (CN), but such effects have not yet been systematically evaluated in patients with AD. Thus, we aimed to investigate the impact of sex and obesity on the relationship between β-amyloid-accumulation and microglial activation in AD. METHODS 49 patients with AD (29 females, all Aβ-positive) and 15 Aβ-negative CN (8 female) underwent TSPO-PET ([18F]GE-180) and β-amyloid-PET ([18F]flutemetamol) imaging. In 24 patients with AD (14 females), tau-PET ([18F]PI-2620) was additionally available. The brain was parcellated into 218 cortical regions and standardized-uptake-value-ratios (SUVr, cerebellar reference) were calculated. Per region and tracer, the regional increase of PET SUVr (z-score) was calculated for AD against CN. The regression derived linear effect of regional Aβ-PET on TSPO-PET was used to determine the Aβ-plaque-dependent microglial response (slope) and the Aβ-plaque-independent microglial response (intercept) at the individual patient level. All read-outs were compared between sexes and tested for a moderation effect of sex on associations with body mass index (BMI). RESULTS In AD, females showed higher mean cortical TSPO-PET z-scores (0.91 ± 0.49; males 0.30 ± 0.75; p = 0.002), while Aβ-PET z-scores were similar. The Aβ-plaque-independent microglial response was stronger in females with AD (+ 0.37 ± 0.38; males with AD - 0.33 ± 0.87; p = 0.006), pronounced at the prodromal stage. On the contrary, the Aβ-plaque-dependent microglial response was not different between sexes. The Aβ-plaque-independent microglial response was significantly associated with tau-PET in females (Braak-II regions: r = 0.757, p = 0.003), but not in males. BMI and the Aβ-plaque-independent microglial response were significantly associated in females (r = 0.44, p = 0.018) but not in males (BMI*sex interaction: F(3,52) = 3.077, p = 0.005). CONCLUSION While microglia response to fibrillar Aβ is similar between sexes, women with AD show a stronger Aβ-plaque-independent microglia response. This sex difference in Aβ-independent microglial activation may be associated with tau accumulation. BMI is positively associated with the Aβ-plaque-independent microglia response in females with AD but not in males, indicating that sex and obesity need to be considered when studying neuroinflammation in AD.
Collapse
Affiliation(s)
- Gloria Biechele
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Institute of Neuroradiology, LMU University Hospital, LMU Munich, Munich, Germany
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
| | - Katharina Buerger
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Gothenburg, Sweden
| | - Endy Weidinger
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Selim Guersel
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Schuster
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Anika Finze
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Stefanie Harris
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Christian Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
- Department of Nuclear Medicine, University of Bern, Inselspital, Bern, Switzerland
| | - Carla Palleis
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lena Burow
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Carolin Kurz
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Mirlind Zaganjori
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lena-Katharina Trappmann
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Oliver Goldhardt
- Department of Psychiatry and Psychotherapy, School of Medicine and Health, Technical University Munich, Klinikum Rechts Der Isar, Munich, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, School of Medicine and Health, Technical University Munich, Klinikum Rechts Der Isar, Munich, Germany
| | - Jan Haeckert
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sophia Stoecklein
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Peter Bartenstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Neuronal Cell Biology, TU Munich, Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
5
|
Knyzeliene A, Wimberley C, MacAskill MG, Alcaide-Corral CJ, Morgan TEF, Henry MC, Lucatelli C, Pimlott SL, Sutherland A, Tavares AAS. Sexually dimorphic murine brain uptake of the 18 kDa translocator protein PET radiotracer [ 18F]LW223. Brain Commun 2024; 6:fcae008. [PMID: 38304004 PMCID: PMC10833650 DOI: 10.1093/braincomms/fcae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/09/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024] Open
Abstract
The 18 kDa translocator protein is a well-known biomarker of neuroinflammation, but also plays a role in homeostasis. PET with 18 kDa translocator protein radiotracers [11C]PBR28 in humans and [18F]GE180 in mice has demonstrated sex-dependent uptake patterns in the healthy brain, suggesting sex-dependent 18 kDa translocator protein expression, although humans and mice had differing results. This study aimed to assess whether the 18 kDa translocator protein PET radiotracer [18F]LW223 exhibited sexually dimorphic uptake in healthy murine brain and peripheral organs. Male and female C57Bl6/J mice (13.6 ± 5.4 weeks, 26.8 ± 5.4 g, mean ± SD) underwent 2 h PET scanning post-administration of [18F]LW223 (6.7 ± 3.6 MBq). Volume of interest and parametric analyses were performed using standard uptake values (90-120 min). Statistical differences were assessed by unpaired t-test or two-way ANOVA with Šidak's test (alpha = 0.05). The uptake of [18F]LW223 was significantly higher across multiple regions of the male mouse brain, with the most pronounced difference detected in hypothalamus (P < 0.0001). Males also exhibited significantly higher [18F]LW223 uptake in the heart when compared to females (P = 0.0107). Data support previous findings on sexually dimorphic 18 kDa translocator protein radiotracer uptake patterns in mice and highlight the need to conduct sex-controlled comparisons in 18 kDa translocator protein PET imaging studies.
Collapse
Affiliation(s)
- Agne Knyzeliene
- British Heart Foundation-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Catriona Wimberley
- Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Mark G MacAskill
- British Heart Foundation-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Carlos J Alcaide-Corral
- British Heart Foundation-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Timaeus E F Morgan
- British Heart Foundation-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Martyn C Henry
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Sally L Pimlott
- West of Scotland PET Centre, Greater Glasgow and Clyde NHS Trust, Glasgow G12 0YN, UK
| | | | - Adriana A S Tavares
- British Heart Foundation-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
6
|
Malpetti M, Franzmeier N, Brendel M. PET Imaging to Measure Neuroinflammation In Vivo. Methods Mol Biol 2024; 2785:177-193. [PMID: 38427195 DOI: 10.1007/978-1-0716-3774-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
This paper provides an overview of the role of neuroinflammation in Alzheimer's disease and other neurodegenerative diseases, highlighting the potential of anti-inflammatory treatments to slow or prevent decline. This research focuses on the use of positron emission tomography (PET) imaging to visualize and quantify molecular brain changes in patients, specifically microglial activation and reactive astrogliosis. We discuss the development and application of several PET radioligands, including first-generation ligands like PK11195 and Ro5-4864, as well as second- and third-generation ligands such as [11C]PBR28, [18F]DPA-714, [18F]GE-180, and [11C]ER176. These ligands target the 18-kDa translocator protein (TSPO), which is overexpressed in activated microglia and upregulated in astrocytes. We also address the limitations of these ligands, such as low brain uptake, poor penetration of the blood-brain barrier, short half-life, and variable kinetic behavior. Furthermore, we demonstrate the impact of genetic polymorphisms on ligand binding.
Collapse
Affiliation(s)
- Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal and Gothenburg, Sweden
| | - Matthias Brendel
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| |
Collapse
|
7
|
Cai J, Xie D, Kong F, Zhai Z, Zhu Z, Zhao Y, Xu Y, Sun T. Effect and Mechanism of Rapamycin on Cognitive Deficits in Animal Models of Alzheimer's Disease: A Systematic Review and Meta-analysis of Preclinical Studies. J Alzheimers Dis 2024; 99:53-84. [PMID: 38640155 DOI: 10.3233/jad-231249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Background Alzheimer's disease (AD), the most common form of dementia, remains long-term and challenging to diagnose. Furthermore, there is currently no medication to completely cure AD patients. Rapamycin has been clinically demonstrated to postpone the aging process in mice and improve learning and memory abilities in animal models of AD. Therefore, rapamycin has the potential to be significant in the discovery and development of drugs for AD patients. Objective The main objective of this systematic review and meta-analysis was to investigate the effects and mechanisms of rapamycin on animal models of AD by examining behavioral indicators and pathological features. Methods Six databases were searched and 4,277 articles were retrieved. In conclusion, 13 studies were included according to predefined criteria. Three authors independently judged the selected literature and methodological quality. Use of subgroup analyses to explore potential mechanistic effects of rapamycin interventions: animal models of AD, specific types of transgenic animal models, dosage, and periodicity of administration. Results The results of Morris Water Maze (MWM) behavioral test showed that escape latency was shortened by 15.60 seconds with rapamycin therapy, indicating that learning ability was enhanced in AD mice; and the number of traversed platforms was increased by 1.53 times, indicating that the improved memory ability significantly corrected the memory deficits. CONCLUSIONS Rapamycin therapy reduced age-related plaque deposition by decreasing AβPP production and down-regulating β-secretase and γ-secretase activities, furthermore increased amyloid-β clearance by promoting autophagy, as well as reduced tau hyperphosphorylation by up-regulating insulin-degrading enzyme levels.
Collapse
Affiliation(s)
- Jie Cai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fanjing Kong
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhenwei Zhai
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhishan Zhu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yanru Zhao
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Tao Sun
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Reed EG, Keller-Norrell PR. Minding the Gap: Exploring Neuroinflammatory and Microglial Sex Differences in Alzheimer's Disease. Int J Mol Sci 2023; 24:17377. [PMID: 38139206 PMCID: PMC10743742 DOI: 10.3390/ijms242417377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Research into Alzheimer's Disease (AD) describes a link between AD and the resident immune cells of the brain, the microglia. Further, this suspected link is thought to have underlying sex effects, although the mechanisms of these effects are only just beginning to be understood. Many of these insights are the result of policies put in place by funding agencies such as the National Institutes of Health (NIH) to consider sex as a biological variable (SABV) and the move towards precision medicine due to continued lackluster therapeutic options. The purpose of this review is to provide an updated assessment of the current research that summarizes sex differences and the research pertaining to microglia and their varied responses in AD.
Collapse
Affiliation(s)
- Erin G. Reed
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44242, USA
| | | |
Collapse
|
9
|
Ni X, Inoue R, Wu Y, Yoshida T, Yaku K, Nakagawa T, Saito T, Saido TC, Takao K, Mori H. Regional contributions of D-serine to Alzheimer's disease pathology in male AppNL-G-F/NL-G-F mice. Front Aging Neurosci 2023; 15:1211067. [PMID: 37455930 PMCID: PMC10339350 DOI: 10.3389/fnagi.2023.1211067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Background Neurodegenerative processes in Alzheimer's disease (AD) are associated with excitotoxicity mediated by the N-methyl-D-aspartate receptor (NMDAR). D-Serine is an endogenous co-agonist necessary for NMDAR-mediated excitotoxicity. In the mammalian brain, it is produced by serine racemase (SRR) from L-serine, suggesting that dysregulation of L-serine, D-serine, or SRR may contribute to AD pathogenesis. Objective and methods We examined the contributions of D-serine to AD pathology in the AppNL-G-F/NL-G-F gene knock-in (APPKI) mouse model of AD. We first examined brain SRR expression levels and neuropathology in APPKI mice and then assessed the effects of long-term D-serine supplementation in drinking water on neurodegeneration. To further confirm the involvement of endogenous D-serine in AD progression, we generated Srr gene-deleted APPKI (APPKI-SRRKO) mice. Finally, to examine the levels of brain amino acids, we conducted liquid chromatography-tandem mass spectrometry. Results Expression of SRR was markedly reduced in the retrosplenial cortex (RSC) of APPKI mice at 12 months of age compared with age-matched wild-type mice. Neuronal density was decreased in the hippocampal CA1 region but not altered significantly in the RSC. D-Serine supplementation exacerbated neuronal loss in the hippocampal CA1 of APPKI mice, while APPKI-SRRKO mice exhibited attenuated astrogliosis and reduced neuronal death in the hippocampal CA1 compared with APPKI mice. Furthermore, APPKI mice demonstrated marked abnormalities in the cortical amino acid levels that were partially reversed in APPKI-SRRKO mice. Conclusion These findings suggest that D-serine participates in the regional neurodegenerative process in the hippocampal CA1 during the amyloid pathology of AD and that reducing brain D-serine can partially attenuate neuronal loss and reactive astrogliosis. Therefore, regulating SRR could be an effective strategy to mitigate NMDAR-dependent neurodegeneration during AD progression.
Collapse
Affiliation(s)
- Xiance Ni
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan
| | - Ran Inoue
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yi Wu
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Keisuke Yaku
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Keizo Takao
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan
| |
Collapse
|
10
|
Bianco A, Antonacci Y, Liguori M. Sex and Gender Differences in Neurodegenerative Diseases: Challenges for Therapeutic Opportunities. Int J Mol Sci 2023; 24:6354. [PMID: 37047320 PMCID: PMC10093984 DOI: 10.3390/ijms24076354] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
The term "neurodegenerative diseases" (NDs) identifies a group of heterogeneous diseases characterized by progressive loss of selectively vulnerable populations of neurons, which progressively deteriorates over time, leading to neuronal dysfunction. Protein aggregation and neuronal loss have been considered the most characteristic hallmarks of NDs, but growing evidence confirms that significant dysregulation of innate immune pathways plays a crucial role as well. NDs vary from multiple sclerosis, in which the autoimmune inflammatory component is predominant, to more "classical" NDs, such as Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and spinal muscular atrophy. Of interest, many of the clinical differences reported in NDs seem to be closely linked to sex, which may be justified by the significant changes in immune mechanisms between affected females and males. In this review, we examined some of the most studied NDs by looking at their pathogenic and phenotypical features to highlight sex-related discrepancies, if any, with particular interest in the individuals' responses to treatment. We believe that pointing out these differences in clinical practice may help achieve more successful precision and personalized care.
Collapse
Affiliation(s)
| | | | - Maria Liguori
- National Research Council (CNR), Institute of Biomedical Technologies, Bari Unit, 70125 Bari, Italy
| |
Collapse
|
11
|
Ballweg A, Klaus C, Vogler L, Katzdobler S, Wind K, Zatcepin A, Ziegler SI, Secgin B, Eckenweber F, Bohr B, Bernhardt A, Fietzek U, Rauchmann BS, Stoecklein S, Quach S, Beyer L, Scheifele M, Simmet M, Joseph E, Lindner S, Berg I, Koglin N, Mueller A, Stephens AW, Bartenstein P, Tonn JC, Albert NL, Kümpfel T, Kerschensteiner M, Perneczky R, Levin J, Paeger L, Herms J, Brendel M. [ 18F]F-DED PET imaging of reactive astrogliosis in neurodegenerative diseases: preclinical proof of concept and first-in-human data. J Neuroinflammation 2023; 20:68. [PMID: 36906584 PMCID: PMC10007845 DOI: 10.1186/s12974-023-02749-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/23/2023] [Indexed: 03/13/2023] Open
Abstract
OBJECTIVES Reactive gliosis is a common pathological hallmark of CNS pathology resulting from neurodegeneration and neuroinflammation. In this study we investigate the capability of a novel monoamine oxidase B (MAO-B) PET ligand to monitor reactive astrogliosis in a transgenic mouse model of Alzheimer`s disease (AD). Furthermore, we performed a pilot study in patients with a range of neurodegenerative and neuroinflammatory conditions. METHODS A cross-sectional cohort of 24 transgenic (PS2APP) and 25 wild-type mice (age range: 4.3-21.0 months) underwent 60 min dynamic [18F]fluorodeprenyl-D2 ([18F]F-DED), static 18 kDa translocator protein (TSPO, [18F]GE-180) and β-amyloid ([18F]florbetaben) PET imaging. Quantification was performed via image derived input function (IDIF, cardiac input), simplified non-invasive reference tissue modelling (SRTM2, DVR) and late-phase standardized uptake value ratios (SUVr). Immunohistochemical (IHC) analyses of glial fibrillary acidic protein (GFAP) and MAO-B were performed to validate PET imaging by gold standard assessments. Patients belonging to the Alzheimer's disease continuum (AD, n = 2), Parkinson's disease (PD, n = 2), multiple system atrophy (MSA, n = 2), autoimmune encephalitis (n = 1), oligodendroglioma (n = 1) and one healthy control underwent 60 min dynamic [18F]F-DED PET and the data were analyzed using equivalent quantification strategies. RESULTS We selected the cerebellum as a pseudo-reference region based on the immunohistochemical comparison of age-matched PS2APP and WT mice. Subsequent PET imaging revealed that PS2APP mice showed elevated hippocampal and thalamic [18F]F-DED DVR when compared to age-matched WT mice at 5 months (thalamus: + 4.3%; p = 0.048), 13 months (hippocampus: + 7.6%, p = 0.022) and 19 months (hippocampus: + 12.3%, p < 0.0001; thalamus: + 15.2%, p < 0.0001). Specific [18F]F-DED DVR increases of PS2APP mice occurred earlier when compared to signal alterations in TSPO and β-amyloid PET and [18F]F-DED DVR correlated with quantitative immunohistochemistry (hippocampus: R = 0.720, p < 0.001; thalamus: R = 0.727, p = 0.002). Preliminary experience in patients showed [18F]F-DED VT and SUVr patterns, matching the expected topology of reactive astrogliosis in neurodegenerative (MSA) and neuroinflammatory conditions, whereas the patient with oligodendroglioma and the healthy control indicated [18F]F-DED binding following the known physiological MAO-B expression in brain. CONCLUSIONS [18F]F-DED PET imaging is a promising approach to assess reactive astrogliosis in AD mouse models and patients with neurological diseases.
Collapse
Affiliation(s)
- Anna Ballweg
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Carolin Klaus
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Letizia Vogler
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Karin Wind
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Artem Zatcepin
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Birkan Secgin
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Florian Eckenweber
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Bernd Bohr
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Alexander Bernhardt
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Urban Fietzek
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Radiology, University Hospital of Munich, LMU Munich, Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Sophia Stoecklein
- Department of Radiology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Maximilian Scheifele
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Marcel Simmet
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Emanuel Joseph
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Isabella Berg
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | | | | | | | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Joerg C Tonn
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
| | - Martin Kerschensteiner
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.,Biomedical Center, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital of Munich, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College, London, UK.,Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Lars Paeger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
12
|
Cui SS, Jiang QW, Chen SD. Sex difference in biological change and mechanism of Alzheimer’s disease: from macro- to micro-landscape. Ageing Res Rev 2023; 87:101918. [PMID: 36967089 DOI: 10.1016/j.arr.2023.101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/16/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and numerous studies reported a higher prevalence and incidence of AD among women. Although women have longer lifetime, longevity does not wholly explain the higher frequency and lifetime risk in women. It is important to understand sex differences in AD pathophysiology and pathogenesis, which could provide foundation for future clinical AD research. Here, we reviewed the most recent and relevant literature on sex differences in biological change of AD from macroscopical neuroimaging to microscopical pathologic change (neuronal degeneration, synaptic dysfunction, amyloid-beta and tau accumulation). We also discussed sex differences in cellular mechanisms related to AD (neuroinflammation, mitochondria dysfunction, oxygen stress, apoptosis, autophagy, blood-brain-barrier dysfunction, gut microbiome alteration, bulk and single cell/nucleus omics) and possible causes underlying these differences including sex-chromosome, sex hormone and hypothalamic-pituitary- adrenal (HPA) axis effects.
Collapse
Affiliation(s)
- Shi-Shuang Cui
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Geriatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian-Wen Jiang
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Geriatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng-Di Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
13
|
Gnörich J, Reifschneider A, Wind K, Zatcepin A, Kunte ST, Beumers P, Bartos LM, Wiedemann T, Grosch M, Xiang X, Fard MK, Ruch F, Werner G, Koehler M, Slemann L, Hummel S, Briel N, Blume T, Shi Y, Biechele G, Beyer L, Eckenweber F, Scheifele M, Bartenstein P, Albert NL, Herms J, Tahirovic S, Haass C, Capell A, Ziegler S, Brendel M. Depletion and activation of microglia impact metabolic connectivity of the mouse brain. J Neuroinflammation 2023; 20:47. [PMID: 36829182 PMCID: PMC9951492 DOI: 10.1186/s12974-023-02735-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
AIM We aimed to investigate the impact of microglial activity and microglial FDG uptake on metabolic connectivity, since microglial activation states determine FDG-PET alterations. Metabolic connectivity refers to a concept of interacting metabolic brain regions and receives growing interest in approaching complex cerebral metabolic networks in neurodegenerative diseases. However, underlying sources of metabolic connectivity remain to be elucidated. MATERIALS AND METHODS We analyzed metabolic networks measured by interregional correlation coefficients (ICCs) of FDG-PET scans in WT mice and in mice with mutations in progranulin (Grn) or triggering receptor expressed on myeloid cells 2 (Trem2) knockouts (-/-) as well as in double mutant Grn-/-/Trem2-/- mice. We selected those rodent models as they represent opposite microglial signatures with disease associated microglia in Grn-/- mice and microglia locked in a homeostatic state in Trem2-/- mice; however, both resulting in lower glucose uptake of the brain. The direct influence of microglia on metabolic networks was further determined by microglia depletion using a CSF1R inhibitor in WT mice at two different ages. Within maps of global mean scaled regional FDG uptake, 24 pre-established volumes of interest were applied and assigned to either cortical or subcortical networks. ICCs of all region pairs were calculated and z-transformed prior to group comparisons. FDG uptake of neurons, microglia, and astrocytes was determined in Grn-/- and WT mice via assessment of single cell tracer uptake (scRadiotracing). RESULTS Microglia depletion by CSF1R inhibition resulted in a strong decrease of metabolic connectivity defined by decrease of mean cortical ICCs in WT mice at both ages studied (6-7 m; p = 0.0148, 9-10 m; p = 0.0191), when compared to vehicle-treated age-matched WT mice. Grn-/-, Trem2-/- and Grn-/-/Trem2-/- mice all displayed reduced FDG-PET signals when compared to WT mice. However, when analyzing metabolic networks, a distinct increase of ICCs was observed in Grn-/- mice when compared to WT mice in cortical (p < 0.0001) and hippocampal (p < 0.0001) networks. In contrast, Trem2-/- mice did not show significant alterations in metabolic connectivity when compared to WT. Furthermore, the increased metabolic connectivity in Grn-/- mice was completely suppressed in Grn-/-/Trem2-/- mice. Grn-/- mice exhibited a severe loss of neuronal FDG uptake (- 61%, p < 0.0001) which shifted allocation of cellular brain FDG uptake to microglia (42% in Grn-/- vs. 22% in WT). CONCLUSIONS Presence, absence, and activation of microglia have a strong impact on metabolic connectivity of the mouse brain. Enhanced metabolic connectivity is associated with increased microglial FDG allocation.
Collapse
Affiliation(s)
- Johannes Gnörich
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Anika Reifschneider
- grid.5252.00000 0004 1936 973XMetabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Karin Wind
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Artem Zatcepin
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Sebastian T. Kunte
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Philipp Beumers
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Laura M. Bartos
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Thomas Wiedemann
- grid.5252.00000 0004 1936 973XMetabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maximilian Grosch
- grid.5252.00000 0004 1936 973XGerman Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Xianyuan Xiang
- grid.5252.00000 0004 1936 973XMetabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany ,grid.9227.e0000000119573309CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055 China
| | - Maryam K. Fard
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Francois Ruch
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Georg Werner
- grid.5252.00000 0004 1936 973XMetabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mara Koehler
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Luna Slemann
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Selina Hummel
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Nils Briel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XCenter for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tanja Blume
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XCenter for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Yuan Shi
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XCenter for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gloria Biechele
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Leonie Beyer
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Florian Eckenweber
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Maximilian Scheifele
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Peter Bartenstein
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nathalie L. Albert
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Jochen Herms
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XCenter for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sabina Tahirovic
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Christian Haass
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XMetabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Anja Capell
- grid.5252.00000 0004 1936 973XMetabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sibylle Ziegler
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
14
|
Shirokova O, Zaborskaya O, Pchelin P, Kozliaeva E, Pershin V, Mukhina I. Genetic and Epigenetic Sexual Dimorphism of Brain Cells during Aging. Brain Sci 2023; 13:brainsci13020195. [PMID: 36831738 PMCID: PMC9954625 DOI: 10.3390/brainsci13020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
In recent years, much of the attention paid to theoretical and applied biomedicine, as well as neurobiology, has been drawn to various aspects of sexual dimorphism due to the differences that male and female brain cells demonstrate during aging: (a) a dimorphic pattern of response to therapy for neurodegenerative disorders, (b) different age of onset and different degrees of the prevalence of such disorders, and (c) differences in their symptomatic manifestations in men and women. The purpose of this review is to outline the genetic and epigenetic differences in brain cells during aging in males and females. As a result, we hereby show that the presence of brain aging patterns in males and females is due to a complex of factors associated with the effects of sex chromosomes, which subsequently entails a change in signal cascades in somatic cells.
Collapse
Affiliation(s)
- Olesya Shirokova
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Correspondence:
| | - Olga Zaborskaya
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
| | - Pavel Pchelin
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Avenue, Nizhny Novgorod 603002, Russia
| | - Elizaveta Kozliaeva
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
| | - Vladimir Pershin
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Avenue, Nizhny Novgorod 603002, Russia
| | - Irina Mukhina
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Avenue, Nizhny Novgorod 603002, Russia
| |
Collapse
|
15
|
Alvarez-Sanchez N, Dunn SE. Potential biological contributers to the sex difference in multiple sclerosis progression. Front Immunol 2023; 14:1175874. [PMID: 37122747 PMCID: PMC10140530 DOI: 10.3389/fimmu.2023.1175874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease that targets the myelin sheath of central nervous system (CNS) neurons leading to axon injury, neuronal death, and neurological progression. Though women are more highly susceptible to developing MS, men that develop this disease exhibit greater cognitive impairment and accumulate disability more rapidly than women. Magnetic resonance imaging and pathology studies have revealed that the greater neurological progression seen in males correlates with chronic immune activation and increased iron accumulation at the rims of chronic white matter lesions as well as more intensive whole brain and grey matter atrophy and axon loss. Studies in humans and in animal models of MS suggest that male aged microglia do not have a higher propensity for inflammation, but may become more re-active at the rim of white matter lesions as a result of the presence of pro-inflammatory T cells, greater astrocyte activation or iron release from oligodendrocytes in the males. There is also evidence that remyelination is more efficient in aged female than aged male rodents and that male neurons are more susceptible to oxidative and nitrosative stress. Both sex chromosome complement and sex hormones contribute to these sex differences in biology.
Collapse
Affiliation(s)
- Nuria Alvarez-Sanchez
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Immunology, 1 King’s College Circle, Toronto, ON, Canada
| | - Shannon E. Dunn
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Immunology, 1 King’s College Circle, Toronto, ON, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
- *Correspondence: Shannon E. Dunn,
| |
Collapse
|
16
|
Boyle AJ, Murrell E, Tong J, Schifani C, Narvaez A, Wuest M, West F, Wuest F, Vasdev N. PET Imaging of Fructose Metabolism in a Rodent Model of Neuroinflammation with 6-[ 18F]fluoro-6-deoxy-D-fructose. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238529. [PMID: 36500626 PMCID: PMC9736258 DOI: 10.3390/molecules27238529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Fluorine-18 labeled 6-fluoro-6-deoxy-D-fructose (6-[18F]FDF) targets the fructose-preferred facilitative hexose transporter GLUT5, which is expressed predominantly in brain microglia and activated in response to inflammatory stimuli. We hypothesize that 6-[18F]FDF will specifically image microglia following neuroinflammatory insult. 6-[18F]FDF and, for comparison, [18F]FDG were evaluated in unilateral intra-striatal lipopolysaccharide (LPS)-injected male and female rats (50 µg/animal) by longitudinal dynamic PET imaging in vivo. In LPS-injected rats, increased accumulation of 6-[18F]FDF was observed at 48 h post-LPS injection, with plateaued uptake (60-120 min) that was significantly higher in the ipsilateral vs. contralateral striatum (0.985 ± 0.047 and 0.819 ± 0.033 SUV, respectively; p = 0.002, n = 4M/3F). The ipsilateral-contralateral difference in striatal 6-[18F]FDF uptake expressed as binding potential (BPSRTM) peaked at 48 h (0.19 ± 0.11) and was significantly decreased at one and two weeks. In contrast, increased [18F]FDG uptake in the ipsilateral striatum was highest at one week post-LPS injection (BPSRTM = 0.25 ± 0.06, n = 4M). Iba-1 and GFAP immunohistochemistry confirmed LPS-induced activation of microglia and astrocytes, respectively, in ipsilateral striatum. This proof-of-concept study revealed an early response of 6-[18F]FDF to neuroinflammatory stimuli in rat brain. 6-[18F]FDF represents a potential PET radiotracer for imaging microglial GLUT5 density in brain with applications in neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Amanda J. Boyle
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, 250 College St., Toronto, ON M5T 1R8, Canada
- Correspondence: (A.J.B.); (N.V.); Tel.: +1-416-535-8501 (ext. 30884) (A.J.B.); +1-416-535-8501 (ext. 30988) (N.V.)
| | - Emily Murrell
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON M5T 1R8, Canada
| | - Junchao Tong
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON M5T 1R8, Canada
| | - Christin Schifani
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON M5T 1R8, Canada
| | - Andrea Narvaez
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON M5T 1R8, Canada
| | - Melinda Wuest
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2N4, Canada
| | - Frederick West
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2N4, Canada
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Frank Wuest
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2N4, Canada
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, 250 College St., Toronto, ON M5T 1R8, Canada
- Correspondence: (A.J.B.); (N.V.); Tel.: +1-416-535-8501 (ext. 30884) (A.J.B.); +1-416-535-8501 (ext. 30988) (N.V.)
| |
Collapse
|
17
|
Rangan P, Lobo F, Parrella E, Rochette N, Morselli M, Stephen TL, Cremonini AL, Tagliafico L, Persia A, Caffa I, Monacelli F, Odetti P, Bonfiglio T, Nencioni A, Pigliautile M, Boccardi V, Mecocci P, Pike CJ, Cohen P, LaDu MJ, Pellegrini M, Xia K, Tran K, Ann B, Chowdhury D, Longo VD. Fasting-mimicking diet cycles reduce neuroinflammation to attenuate cognitive decline in Alzheimer's models. Cell Rep 2022; 40:111417. [PMID: 36170815 PMCID: PMC9648488 DOI: 10.1016/j.celrep.2022.111417] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/30/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
The effects of fasting-mimicking diet (FMD) cycles in reducing many aging and disease risk factors indicate it could affect Alzheimer's disease (AD). Here, we show that FMD cycles reduce cognitive decline and AD pathology in E4FAD and 3xTg AD mouse models, with effects superior to those caused by protein restriction cycles. In 3xTg mice, long-term FMD cycles reduce hippocampal Aβ load and hyperphosphorylated tau, enhance genesis of neural stem cells, decrease microglia number, and reduce expression of neuroinflammatory genes, including superoxide-generating NADPH oxidase (Nox2). 3xTg mice lacking Nox2 or mice treated with the NADPH oxidase inhibitor apocynin also display improved cognition and reduced microglia activation compared with controls. Clinical data indicate that FMD cycles are feasible and generally safe in a small group of AD patients. These results indicate that FMD cycles delay cognitive decline in AD models in part by reducing neuroinflammation and/or superoxide production in the brain.
Collapse
Affiliation(s)
- Priya Rangan
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Fleur Lobo
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Edoardo Parrella
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, BS 25123, Italy
| | - Nicolas Rochette
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr. E., Los Angeles, CA 90095, USA; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 612 Charles E. Young Dr. E., Los Angeles, CA 90095, USA
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Dr. S., Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr. E., Los Angeles, CA 90095, USA
| | - Terri-Leigh Stephen
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Anna Laura Cremonini
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Luca Tagliafico
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Angelica Persia
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Patrizio Odetti
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Tommaso Bonfiglio
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Martina Pigliautile
- Santa Maria della Misericordia Hospital, Section of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Virginia Boccardi
- Santa Maria della Misericordia Hospital, Section of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Patrizia Mecocci
- Santa Maria della Misericordia Hospital, Section of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Christian J Pike
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Pinchas Cohen
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; USC Dornsife College of Letters, Arts & Sciences, Department of Biological Sciences, University of Southern California, 3551 Trousdale Pkwy., Los Angeles, CA 90089-0191, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Dr. S., Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr. E., Los Angeles, CA 90095, USA
| | - Kyle Xia
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Katelynn Tran
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Brandon Ann
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Dolly Chowdhury
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Valter D Longo
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, 1425 San Pablo St., Los Angeles, CA 90033, USA; IFOM FIRC Institute of Molecular Oncology, Via Adamello 16, Milano, MI 20139, Italy.
| |
Collapse
|
18
|
Milner TA, Chen RX, Welington D, Rubin BR, Contoreggi NH, Johnson MA, Mazid S, Marques-Lopes J, Marongiu R, Glass MJ. Angiotensin II differentially affects hippocampal glial inflammatory markers in young adult male and female mice. Learn Mem 2022; 29:265-273. [PMID: 36206386 PMCID: PMC9488028 DOI: 10.1101/lm.053507.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/03/2022] [Indexed: 12/16/2022]
Abstract
Hypertension is a risk factor for neurodegenerative disorders involving inflammation and inflammatory cytokine-producing brain cells (microglia and astrocytes) in the hippocampus and medial prefrontal cortex (mPFC). Here we investigated the effect of slow-pressor angiotensin II (AngII) on gliosis in the hippocampus and mPFC of young adult (2-mo-old) male and female mice. In males, AngII induced hypertension, and this resulted in an increase in the density of the astrocyte marker glial fibrillary acidic protein (GFAP) in the subgranular hilus and a decrease in the density of the microglial marker ionized calcium binding adapter molecule (Iba-1) in the CA1 region. Females infused with AngII did not show hypertension but, significantly, showed alterations in hippocampal glial activation. Compared with vehicle, AngII-infused female mice had an increased density of Iba-1 in the dentate gyrus and CA2/3a region. Like males, females infused with AngII exhibited decreased Iba-1 in the CA1 region. Neither male nor female mice showed differences in GFAP or Iba-1 in the mPFC following AngII infusion. These results demonstrate that the hippocampus is particularly vulnerable to AngII in young adulthood. Differences in gonadal hormones or the sensitivity to AngII hypertension may account for divergences in GFAP and Iba-1 in males and females.
Collapse
Affiliation(s)
- Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10065, USA
| | - Ryan X Chen
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| | - Diedreanna Welington
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| | - Batsheva R Rubin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| | - Megan A Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| | - Sanoara Mazid
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| | - Jose Marques-Lopes
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| | - Roberta Marongiu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Neurological Surgery Department, Weill Cornell Medicine, New York, New York 10065, USA
| | - Michael J Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| |
Collapse
|
19
|
Boitet M, Eun H, Lee T, Kim J, Grailhe R. Non-invasive In Vivo Brain Astrogenesis and Astrogliosis Quantification Using a Far-red E2-Crimson Transgenic Reporter Mouse. Mol Neurobiol 2022; 59:6740-6753. [PMID: 36001234 DOI: 10.1007/s12035-022-02997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
Abstract
Despite the adaptation of major clinical imaging modalities for small animals, optical bioluminescence imaging technology is the main approach readily reporting gene activity. Yet, in vivo bioluminescence monitoring requires the administration and diffusion of a substrate to the tissues of interest, resulting in experimental variability, high reagent cost, long acquisition time, and stress to the animal. In our study, we avoid such issues upon generating a new transgenic mouse (GFAP-E2crimson) expressing the far-red fluorescent protein E2-crimson under the control of the glial fibrillary acidic protein (GFAP) promoter. Using microscopy, we validated the selective expression of the reporter in the astrocyte cell population and by non-invasive in vivo fluorescence imaging its detection through the scalps and skulls of live animals. In addition, we performed a longitudinal study validating by in vivo imaging that the E2-crimson fluorescence signal is up-regulated, in pups during astrogenesis and in adult mice during astrogliosis upon kainic acid administration. Furthermore, upon crossing GFAP-E2crimson transgenic with 5XFAD Alzheimer's disease mice model, we were able to quantify the chronic inflammation triggered by amyloid deposit and aging over 18 months. As many diseases and conditions can trigger neuroinflammation, we believe that the GFAP-E2crimson reporter mice model delivers tremendous value for the non-invasive quantification of astrogliosis responses in living animals.
Collapse
Affiliation(s)
- Maylis Boitet
- Technology Development Platform, Institut Pasteur Korea, Seongnam, 13488, Republic of Korea
- Department of Biological Chemistry, IPK Campus, Korea University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Hyeju Eun
- Technology Development Platform, Institut Pasteur Korea, Seongnam, 13488, Republic of Korea
| | - Taekwan Lee
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jiho Kim
- Screening Discovery Platform, Institut Pasteur Korea, Seongnam, 13488, Republic of Korea
| | - Regis Grailhe
- Technology Development Platform, Institut Pasteur Korea, Seongnam, 13488, Republic of Korea.
- Department of Biological Chemistry, IPK Campus, Korea University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
20
|
Immune Cell Contributors to the Female Sex Bias in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Curr Top Behav Neurosci 2022; 62:333-373. [PMID: 35467295 DOI: 10.1007/7854_2022_324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune, demyelinating disease of the central nervous system (CNS) that leads to axonal damage and accumulation of disability. Relapsing-remitting MS (RR-MS) is the most frequent presentation of MS and this form of MS is three times more prevalent in females than in males. This female bias in MS is apparent only after puberty, suggesting a role for sex hormones in this regulation; however, very little is known of the biological mechanisms that underpin the sex difference in MS onset. Experimental autoimmune encephalomyelitis (EAE) is an animal model of RR-MS that presents more severely in females in certain mouse strains and thus has been useful to study sex differences in CNS autoimmunity. Here, we overview the immunopathogenesis of MS and EAE and how immune mechanisms in these diseases differ between a male and female. We further describe how females exhibit more robust myelin-specific T helper (Th) 1 immunity in MS and EAE and how this sex bias in Th cells is conveyed by sex hormone effects on the T cells, antigen presenting cells, regulatory T cells, and innate lymphoid cell populations.
Collapse
|
21
|
Ren W, Ji B, Guan Y, Cao L, Ni R. Recent Technical Advances in Accelerating the Clinical Translation of Small Animal Brain Imaging: Hybrid Imaging, Deep Learning, and Transcriptomics. Front Med (Lausanne) 2022; 9:771982. [PMID: 35402436 PMCID: PMC8987112 DOI: 10.3389/fmed.2022.771982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/16/2022] [Indexed: 12/26/2022] Open
Abstract
Small animal models play a fundamental role in brain research by deepening the understanding of the physiological functions and mechanisms underlying brain disorders and are thus essential in the development of therapeutic and diagnostic imaging tracers targeting the central nervous system. Advances in structural, functional, and molecular imaging using MRI, PET, fluorescence imaging, and optoacoustic imaging have enabled the interrogation of the rodent brain across a large temporal and spatial resolution scale in a non-invasively manner. However, there are still several major gaps in translating from preclinical brain imaging to the clinical setting. The hindering factors include the following: (1) intrinsic differences between biological species regarding brain size, cell type, protein expression level, and metabolism level and (2) imaging technical barriers regarding the interpretation of image contrast and limited spatiotemporal resolution. To mitigate these factors, single-cell transcriptomics and measures to identify the cellular source of PET tracers have been developed. Meanwhile, hybrid imaging techniques that provide highly complementary anatomical and molecular information are emerging. Furthermore, deep learning-based image analysis has been developed to enhance the quantification and optimization of the imaging protocol. In this mini-review, we summarize the recent developments in small animal neuroimaging toward improved translational power, with a focus on technical improvement including hybrid imaging, data processing, transcriptomics, awake animal imaging, and on-chip pharmacokinetics. We also discuss outstanding challenges in standardization and considerations toward increasing translational power and propose future outlooks.
Collapse
Affiliation(s)
- Wuwei Ren
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Cao
- Shanghai Changes Tech, Ltd., Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zürich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Wen J, Patel C, Diglio F, Baker K, Marshall G, Li S, Cole PD. Cognitive impairment persists at least 1 year after juvenile rats are treated with methotrexate. Neuropharmacology 2022; 206:108939. [PMID: 34986414 PMCID: PMC8792316 DOI: 10.1016/j.neuropharm.2021.108939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/21/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022]
Abstract
Methotrexate (MTX) is widely employed for children with cancer, but is also associated with persistent cognitive deficits among survivors. The present study investigated the mechanisms behind long-term cognitive dysfunction after juvenile animals are treated with MTX. Male and female Long-Evans rats were treated with a combination of 6 systemic doses (0.5 mg/kg/dose intraperitoneally) and 4 intrathecal doses (1 mg/kg) beginning at post-natal age 3 weeks, a schedule designed to mimic repeated exposure given to children with leukemia. Behavioral testing was conducted at 60-61 weeks of age, followed by analysis of brain histolopathology. This MTX regimen had no acute toxicity and no effect on growth. The spatial memory and visual memory deficits observed at 13 and 17 weeks of age persisted 1 year after MTX exposure in both females and males. Significantly decreased cell proliferation and increased hippocampal microglial activation were observed in MTX-treated females when compared to the controls, with a similar trend in the male groups. In addition, MTX treatment significantly increased the number of TUNEL positive cells in the periventricular area. Our study demonstrates that a clinically relevant regimen of systemic and intrathecal MTX induces persistent deficits in cognition, lasting approximately 1 year after the last injection. The mechanisms behind MTX-induced deficits are likely multifactorial, including suppression of neurogenesis, microglial activation, and increased brain cell apoptosis. Our study suggests female and male animals differ in susceptibility to MTX-induced neurotoxicity and provides insights for developing therapeutic approaches to prevent treatment related cognitive impairment among children with ALL.
Collapse
Affiliation(s)
- Jing Wen
- Department of Pediatrics, Goryeb Children's Hospital-Atlantic Health, Morristown, NJ, 07960, USA; Division of Pediatric Hematology/Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Chadni Patel
- Rutgers Graduate Program in Cellular and Molecular Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Frank Diglio
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Kayla Baker
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Gregory Marshall
- Rutgers Graduate Program in Cellular and Molecular Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Shengguo Li
- Division of Pediatric Hematology/Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Peter D Cole
- Division of Pediatric Hematology/Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
23
|
Bouter C, Irwin C, Franke TN, Beindorff N, Bouter Y. Quantitative Brain Positron Emission Tomography in Female 5XFAD Alzheimer Mice: Pathological Features and Sex-Specific Alterations. Front Med (Lausanne) 2021; 8:745064. [PMID: 34901060 PMCID: PMC8661108 DOI: 10.3389/fmed.2021.745064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Successful back-translating clinical biomarkers and molecular imaging methods of Alzheimer's disease (AD), including positron emission tomography (PET), are very valuable for the evaluation of new therapeutic strategies and increase the quality of preclinical studies. 18F-Fluorodeoxyglucose (FDG)–PET and 18F-Florbetaben–PET are clinically established biomarkers capturing two key pathological features of AD. However, the suitability of 18F-FDG– and amyloid–PET in the widely used 5XFAD mouse model of AD is still unclear. Furthermore, only data on male 5XFAD mice have been published so far, whereas studies in female mice and possible sex differences in 18F-FDG and 18F-Florbetaben uptake are missing. The aim of this study was to evaluate the suitability of 18F-FDG– and 18F-Florbetaben–PET in 7-month-old female 5XFAD and to assess possible sex differences between male and female 5XFAD mice. We could demonstrate that female 5XFAD mice showed a significant reduction in brain glucose metabolism and increased cerebral amyloid deposition compared with wild type animals, in accordance with the pathology seen in AD patients. Furthermore, we showed for the first time that the hypometabolism in 5XFAD mice is gender-dependent and more pronounced in female mice. Therefore, these results support the feasibility of small animal PET imaging with 18F-FDG- and 18F-Florbetaben in 5XFAD mice in both, male and female animals. Moreover, our findings highlight the need to account for sex differences in studies working with 5XFAD mice.
Collapse
Affiliation(s)
- Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Caroline Irwin
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Timon N Franke
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yvonne Bouter
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| |
Collapse
|
24
|
Ni R. Positron Emission Tomography in Animal Models of Alzheimer's Disease Amyloidosis: Translational Implications. Pharmaceuticals (Basel) 2021; 14:1179. [PMID: 34832961 PMCID: PMC8623863 DOI: 10.3390/ph14111179] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022] Open
Abstract
Animal models of Alzheimer's disease amyloidosis that recapitulate cerebral amyloid-beta pathology have been widely used in preclinical research and have greatly enabled the mechanistic understanding of Alzheimer's disease and the development of therapeutics. Comprehensive deep phenotyping of the pathophysiological and biochemical features in these animal models is essential. Recent advances in positron emission tomography have allowed the non-invasive visualization of the alterations in the brain of animal models and in patients with Alzheimer's disease. These tools have facilitated our understanding of disease mechanisms and provided longitudinal monitoring of treatment effects in animal models of Alzheimer's disease amyloidosis. In this review, we focus on recent positron emission tomography studies of cerebral amyloid-beta accumulation, hypoglucose metabolism, synaptic and neurotransmitter receptor deficits (cholinergic and glutamatergic system), blood-brain barrier impairment, and neuroinflammation (microgliosis and astrocytosis) in animal models of Alzheimer's disease amyloidosis. We further propose the emerging targets and tracers for reflecting the pathophysiological changes and discuss outstanding challenges in disease animal models and future outlook in the on-chip characterization of imaging biomarkers towards clinical translation.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Biomedical Engineering, ETH & University of Zurich, 8093 Zurich, Switzerland;
- Institute for Regenerative Medicine, University of Zurich, 8952 Zurich, Switzerland
| |
Collapse
|
25
|
McCunn P, Xu X, Moszczynski A, Li A, Brown A, Bartha R. Neurite orientation dispersion and density imaging in a rodent model of acute mild traumatic brain injury. J Neuroimaging 2021; 31:879-892. [PMID: 34473386 DOI: 10.1111/jon.12917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Identification of changesin brain microstructure following mild traumatic brain injury (mTBI) could be instrumental in understanding the underlying pathophysiology. The purpose of this study was to apply neurite orientation dispersion and density imaging (NODDI) to a rodent model of mTBI to determine whether microstructural changes could be detected immediately following injury. METHODS Fifteen adult male Wistar rats were scanned on a Bruker 9.4 Tesla small animal MRI using a multi-shell acquisition (30 b = 1000 s/mm2 and 60 b = 2000 s/mm2 ). Nine animals experienced a single closed head controlled cortical impact followed by NODDI from 1 to 4 h post injury. Region of interest analysis focused on the corpus callosum and hippocampus. A mixed analysis of variance (ANOVA) was used to determine statistically significant interactions in neurite density index (NDI), orientation dispersion index (ODI), fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity. Follow up repeated-measures ANOVAs were used to determine individual changes over time. RESULTS NDI showed a significant increase in the hippocampus and corpus callosum following injury, while ODI showed increases in the corpus callosum. No significant changes were observed in the sham control animals. No changes were found in FA, MD, AD, or RD. Histological analysis revealed increased glial fibrillary acidic protein staining relative to controls in both the hippocampus and corpus callosum, with evidence of activated astrocytes in these regions. CONCLUSIONS Changes in NODDI metrics were detected as early as 1 h following mTBI. No changes were detected with conventional diffusion tensor imaging (DTI) metrics, suggesting that NODDI provides greater sensitivity to microstructural changes than conventional DTI.
Collapse
Affiliation(s)
- Patrick McCunn
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Xiaoyun Xu
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | - Alex Li
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.,Departments of Psychiatry and Medical Imaging, University of Western Ontario, London, Ontario, Canada
| | - Arthur Brown
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Robert Bartha
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
26
|
Biechele G, Blume T, Deussing M, Zott B, Shi Y, Xiang X, Franzmeier N, Kleinberger G, Peters F, Ochs K, Focke C, Sacher C, Wind K, Schmidt C, Lindner S, Gildehaus FJ, Eckenweber F, Beyer L, von Ungern-Sternberg B, Bartenstein P, Baumann K, Dorostkar MM, Rominger A, Cumming P, Willem M, Adelsberger H, Herms J, Brendel M. Pre-therapeutic microglia activation and sex determine therapy effects of chronic immunomodulation. Theranostics 2021; 11:8964-8976. [PMID: 34522221 PMCID: PMC8419052 DOI: 10.7150/thno.64022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/06/2021] [Indexed: 12/21/2022] Open
Abstract
Modulation of the innate immune system is emerging as a promising therapeutic strategy against Alzheimer's disease (AD). However, determinants of a beneficial therapeutic effect are ill-understood. Thus, we investigated the potential of 18 kDa translocator protein positron-emission-tomography (TSPO-PET) for assessment of microglial activation in mouse brain before and during chronic immunomodulation. Methods: Serial TSPO-PET was performed during five months of chronic microglia modulation by stimulation of the peroxisome proliferator-activated receptor (PPAR)-γ with pioglitazone in two different mouse models of AD (PS2APP, AppNL-G-F ). Using mixed statistical models on longitudinal TSPO-PET data, we tested for effects of therapy and sex on treatment response. We tested correlations of baseline with longitudinal measures of TSPO-PET, and correlations between PET results with spatial learning performance and β-amyloid accumulation of individual mice. Immunohistochemistry was used to determine the molecular source of the TSPO-PET signal. Results: Pioglitazone-treated female PS2APP and AppNL-G-F mice showed attenuation of the longitudinal increases in TSPO-PET signal when compared to vehicle controls, whereas treated male AppNL-G-F mice showed the opposite effect. Baseline TSPO-PET strongly predicted changes in microglial activation in treated mice (R = -0.874, p < 0.0001) but not in vehicle controls (R = -0.356, p = 0.081). Reduced TSPO-PET signal upon pharmacological treatment was associated with better spatial learning despite higher fibrillar β-amyloid accumulation. Immunohistochemistry confirmed activated microglia to be the source of the TSPO-PET signal (R = 0.952, p < 0.0001). Conclusion: TSPO-PET represents a sensitive biomarker for monitoring of immunomodulation and closely reflects activated microglia. Sex and pre-therapeutic assessment of baseline microglial activation predict individual immunomodulation effects and may serve for responder stratification.
Collapse
Affiliation(s)
- Gloria Biechele
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Tanja Blume
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
| | - Maximilian Deussing
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Benedikt Zott
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Yuan Shi
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
| | - Xianyuan Xiang
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | | | - Finn Peters
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
| | - Katharina Ochs
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
| | - Carola Focke
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Christian Sacher
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Karin Wind
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Claudio Schmidt
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Simon Lindner
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Franz-Josef Gildehaus
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Florian Eckenweber
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Leonie Beyer
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | | | - Peter Bartenstein
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- SyNergy, University of Munich, Munich, Germany
| | - Karlheinz Baumann
- Roche Pharma Research and Early Development, Neuroscience Discovery, Roche, Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Mario M. Dorostkar
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Axel Rominger
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- SyNergy, University of Munich, Munich, Germany
- Dept. of Nuclear Medicine, Inselspital Bern, Bern, Switzerland
| | - Paul Cumming
- Dept. of Nuclear Medicine, Inselspital Bern, Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Michael Willem
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Jochen Herms
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
- SyNergy, University of Munich, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Matthias Brendel
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- SyNergy, University of Munich, Munich, Germany
| |
Collapse
|
27
|
Doust YV, King AE, Ziebell JM. Implications for microglial sex differences in tau-related neurodegenerative diseases. Neurobiol Aging 2021; 105:340-348. [PMID: 34174592 DOI: 10.1016/j.neurobiolaging.2021.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/26/2022]
Abstract
Tauopathies are a group of neurodegenerative diseases that involve pathological changes to the tau protein. Neuroinflammation is a commonly reported feature of tauopathies that has been demonstrated to exacerbate tau pathology and, hence, neurodegeneration. Microglia can mediate the inflammatory response in order to maintain brain homeostasis. In the aged brain, microglia are reported to undergo morphological and functional changes, adopting a pro-inflammatory profile and loss of homeostatic functions. Dystrophic and dysfunctional microglia are associated with tau pathology in the healthy and diseased brain which is proposed to contribute to disease development and progression. Microglia have also been recently demonstrated to possess sexually dimorphic roles in the developing, adult and aged brain. The sex differences in microglial functionality suggest that microglia may contribute to tauopathies which may differ between sexes. This review highlights the detrimental loop between age-related microglial changes and tau pathology with implications for microglial sexual dichotomy.
Collapse
Affiliation(s)
- Yasmine V Doust
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Jenna M Ziebell
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|