1
|
Ruppert Z, Neuperger P, Rákóczi B, Gémes N, Dukay B, Hajdu P, Péter M, Balogh G, Tiszlavicz L, Vígh L, Török Z, Puskás LG, Szebeni GJ, Tóth ME. Characterization of obesity-related diseases and inflammation using single cell immunophenotyping in two different diet-induced obesity models. Int J Obes (Lond) 2024; 48:1568-1576. [PMID: 39004641 PMCID: PMC11502477 DOI: 10.1038/s41366-024-01584-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Obesity is a growing problem worldwide and a major risk factor for many chronic diseases. The accumulation of adipose tissue leads to the release of significant amounts of pro-inflammatory cytokines and adipokines, resulting in a low-grade systemic inflammation. However, the mechanisms behind the development of obesity-related diseases are not fully understood. Therefore, our study aimed to investigate the pathological changes and inflammatory processes at systemic level and in individual organs in two different diet-induced mouse obesity models. METHODS Male C57BL6/J mice were fed by high-fat diet (HFD), high-fat/high-fructose diet (HFD + FR) or normal chow for 21 weeks starting at 3 months of age (n = 15 animals/group). Insulin resistance was tested by oral glucose tolerance test. Pathological changes were investigated on hematoxylin-eosin-stained liver and brown adipose tissue sections. The gene expression levels of adipokines and cytokines were analyzed by qPCR in adipose tissues, whereas serum protein concentrations were determined by multiplex immunoassays. Immunophenotyping of isolated blood, bone marrow and spleen cells was performed by single-cell mass cytometry. RESULTS Weight gain, glucose intolerance and hepatic steatosis were more severe in the HFD + FR group than in the control and HFD groups. This was accompanied by a higher level of systemic inflammation, as indicated by increased expression of pro-inflammatory genes in visceral white adipose tissue and by a higher serum TNFα level. In addition, immunophenotyping revealed the increase of the surface expressions of CD44 and CD69 on various cell types, such as CD8+ and CD4 + T-cells, B-cells and macrophages, in animals with obesity. CONCLUSIONS The combination of HFD with fructose supplementation promotes more properly the symptoms of metabolic syndrome. Therefore, the combined high-fat/high-fructose nutrition can be a more suitable model of the Western diet. However, despite these differences, both models showed immunophenotypic changes that may be associated with increased risk of obesity-related cancer.
Collapse
Affiliation(s)
- Zsófia Ruppert
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- PhD School in Biology, University of Szeged, Szeged, Hungary
| | - Patrícia Neuperger
- PhD School in Biology, University of Szeged, Szeged, Hungary
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Bettina Rákóczi
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- PhD School in Biology, University of Szeged, Szeged, Hungary
| | - Nikolett Gémes
- PhD School in Biology, University of Szeged, Szeged, Hungary
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Brigitta Dukay
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Petra Hajdu
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Mária Péter
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Gábor Balogh
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - László Tiszlavicz
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - László Vígh
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Zsolt Török
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - László G Puskás
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Gábor J Szebeni
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, Szeged, Hungary.
- Department of Internal Medicine, Hematology Centre, Faculty of Medicine, University of Szeged, H6725, Szeged, Hungary.
| | - Melinda E Tóth
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
2
|
Kang S, Lee J, Ali DN, Choi S, Nesbitt J, Min PH, Trushina E, Choi DS. Low to moderate ethanol exposure reduces astrocyte-induced neuroinflammatory signaling and cognitive decline in presymptomatic APP/PS1 mice. Sci Rep 2024; 14:23989. [PMID: 39402264 PMCID: PMC11473946 DOI: 10.1038/s41598-024-75202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Alcohol use disorder has been associated with the development of neurodegenerative diseases, including Alzheimer's disease (AD). However, recent studies demonstrate that moderate alcohol consumption may be protective against dementia and cognitive decline. We examined astrocyte function, low-density lipoprotein (LDL) receptor-related protein 1 (LRP1), and the NF-κB p65 and IKK-α/β signaling pathways in modulating neuroinflammation and amyloid beta (Aβ) deposition. We assessed apolipoprotein E (ApoE) in the brain of APP/PS1 mice using IHC and ELISA in response to low to moderate ethanol exposure (MEE). First, to confirm the intracerebral distribution of ApoE, we co-stained with GFAP, a marker for astrocytes that biosynthesize ApoE. We sought to investigate whether the ethanol-induced upregulation of LRP1 could potentially inhibit the activity of IL-1β and TNF-α induced IKK-α/β towards NF-κB p65, resulting in a reduction of pro-inflammatory cytokines. To evaluate the actual Aβ load in the brains of APP/PS1 mice, we performed with a specific antibody Aβ (Thioflavin S) on both air- and ethanol-exposed groups, subsequently analyzing Aβ levels. We also measured glucose uptake using 18F- fluorodeoxyglucose (FDG)-positron emission tomography (PET). Finally, we investigated whether MEE induced cognitive and memory changes using the Y maze, noble object recognition test, and Morris water maze. Our findings demonstrate that MEE reduced astrocytic glial fibrillary acidic protein (GFAP) and ApoE levels in the cortex and hippocampus in presymptomatic APP/PS1 mice. Interestingly, increased LRP1 protein expression was accompanied by dampening the IKK-α/β-NF-κB p65 pathway, resulting in decreased IL-1β and TNF-α levels in male mice. Notably, female mice show reduced levels of anti-inflammatory cytokines IL-4, and IL-10 without altering IL-1β and TNF-α concentrations. In both males and females, Aβ plaques, a hallmark of AD, were reduced in the cortex and hippocampus of APP/PS1 mice exposed to ethanol starting at pre-symptomatic stage. Consistently, MEE increased FDG-PET-based brain activities and normalized cognitive and memory deficits in the APP/PS1 mice. Our findings suggest that MEE may benefit AD pathology via modulating LRP1 expression, potentially reducing neuroinflammation and attenuating Aβ deposition. Our study implies that reduced astrocyte-derived ApoE and LDL cholesterol levels are critical for attenuating AD pathology.
Collapse
Affiliation(s)
- Shinwoo Kang
- Department of Molecular Pharmacology and Experimental Therapeutics, Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Pharmacology College of Medicine, Soonchunhyang University, 22 Soonchunhyango-ro, Ansan, Chungcheongnam-do, 31508, South Korea
| | - Jeyeon Lee
- Department of Radiology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA
| | - Dina N Ali
- Department of Molecular Pharmacology and Experimental Therapeutics, Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Sun Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jarred Nesbitt
- Department of Neurology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA
| | - Paul H Min
- Department of Radiology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA
| | - Eugenia Trushina
- Department of Molecular Pharmacology and Experimental Therapeutics, Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Neurology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
- Neuroscience Program, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
3
|
Whitsitt Q, Saxena A, Patel B, Evans BM, Hunt B, Purcell EK. Spatial transcriptomics at the brain-electrode interface in rat motor cortex and the relationship to recording quality. J Neural Eng 2024; 21:046033. [PMID: 38885679 PMCID: PMC11289622 DOI: 10.1088/1741-2552/ad5936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Study of the foreign body reaction to implanted electrodes in the brain is an important area of research for the future development of neuroprostheses and experimental electrophysiology. After electrode implantation in the brain, microglial activation, reactive astrogliosis, and neuronal cell death create an environment immediately surrounding the electrode that is significantly altered from its homeostatic state.Objective.To uncover physiological changes potentially affecting device function and longevity, spatial transcriptomics (ST) was implemented to identify changes in gene expression driven by electrode implantation and compare this differential gene expression to traditional metrics of glial reactivity, neuronal loss, and electrophysiological recording quality.Approach.For these experiments, rats were chronically implanted with functional Michigan-style microelectrode arrays, from which electrophysiological recordings (multi-unit activity, local field potential) were taken over a six-week time course. Brain tissue cryosections surrounding each electrode were then mounted for ST processing. The tissue was immunolabeled for neurons and astrocytes, which provided both a spatial reference for ST and a quantitative measure of glial fibrillary acidic protein and neuronal nuclei immunolabeling surrounding each implant.Main results. Results from rat motor cortex within 300µm of the implanted electrodes at 24 h, 1 week, and 6 weeks post-implantation showed up to 553 significantly differentially expressed (DE) genes between implanted and non-implanted tissue sections. Regression on the significant DE genes identified the 6-7 genes that had the strongest relationship to histological and electrophysiological metrics, revealing potential candidate biomarkers of recording quality and the tissue response to implanted electrodes.Significance. Our analysis has shed new light onto the potential mechanisms involved in the tissue response to implanted electrodes while generating hypotheses regarding potential biomarkers related to recorded signal quality. A new approach has been developed to understand the tissue response to electrodes implanted in the brain using genes identified through transcriptomics, and to screen those results for potential relationships with functional outcomes.
Collapse
Affiliation(s)
- Quentin Whitsitt
- Department of Biomedical Engineering and Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, United States of America
| | - Akash Saxena
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, United States of America
| | - Bella Patel
- Department of Biomedical Engineering and Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, United States of America
| | - Blake M Evans
- Department of Biomedical Engineering and Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, United States of America
| | - Bradley Hunt
- Department of Biomedical Engineering and Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, United States of America
| | - Erin K Purcell
- Department of Biomedical Engineering and Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, United States of America
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, United States of America
| |
Collapse
|
4
|
Ávila G, Ceciliani F, Viala D, Dejean S, Sala G, Lecchi C, Bonnet M. Conjugated linoleic acid (CLA) modulates bovine peripheral blood mononuclear cells (PBMC) proteome in vitro. J Proteomics 2024; 304:105232. [PMID: 38909954 DOI: 10.1016/j.jprot.2024.105232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Conjugated linoleic acid (CLA) is a group of natural isomers of the n-6 polyunsaturated fatty acid (PUFA) linoleic acid, exerting biological effects on cow physiology. This study assessed the impact of the mixture 50:50 (vol:vol) of CLA isomers (cis-9, trans-11 and trans-10, cis-12) on bovine peripheral blood mononuclear cells (PBMC) proteome, identifying 1608 quantifiable proteins. A supervised multivariate statistical analysis, sparse variant partial least squares - discriminant analysis (sPLS-DA) for paired data identified 407 discriminant proteins (DP), allowing the clustering between the CLA and controls. The ProteINSIDE workflow found that DP with higher abundance in the CLA group included proteins related to innate immune defenses (PLIN2, CD36, C3, C4, and AGP), with antiapoptotic (SERPINF2 and ITIH4) and antioxidant effects (HMOX1). These results demonstrated that CLA modulates the bovine PBMC proteome, supports the antiapoptotic and immunomodulatory effects observed in previous in vitro studies on bovine PBMC, and suggests a cytoprotective role against oxidative stress. SIGNIFICANCE: In this study, we report for the first time that the mixture 50:50 (vol:vol) of cis-9, trans-11, and trans-10, cis-12-CLA isomers modulates the bovine PBMC proteome. Our results support the immunomodulatory and antiapoptotic effects observed in bovine PBMC in vitro. In addition, the present study proposes a cytoprotective role of CLA mixture against oxidative stress. We suggest a molecular signature of CLA treatment based on combining a multivariate sparse discriminant analysis and a clustering method. This demonstrates the great value of sPLS-DA as an alternative option to identify discriminant proteins with relevant biological significance.
Collapse
Affiliation(s)
- G Ávila
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - F Ceciliani
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy.
| | - D Viala
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122 Saint-Genès-Champanelle, France; INRAE, Metabolomic and Proteomic Exploration Facility (PFEM), F-63122 Saint-Genès-Champanelle, France
| | - S Dejean
- Institut de Mathématiques de Toulouse, Université de Toulouse, CNRS, UPS, UMR 5219, 31062 Toulouse, France
| | - G Sala
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - C Lecchi
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - M Bonnet
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122 Saint-Genès-Champanelle, France
| |
Collapse
|
5
|
Demos-Davies K, Lawrence J, Coffey J, Morgan A, Ferreira C, Hoeppner LH, Seelig D. Longitudinal Neuropathological Consequences of Extracranial Radiation Therapy in Mice. Int J Mol Sci 2024; 25:5731. [PMID: 38891920 PMCID: PMC11171684 DOI: 10.3390/ijms25115731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer-related cognitive impairment (CRCI) is a consequence of chemotherapy and extracranial radiation therapy (ECRT). Our prior work demonstrated gliosis in the brain following ECRT in SKH1 mice. The signals that induce gliosis were unclear. Right hindlimb skin from SKH1 mice was treated with 20 Gy or 30 Gy to induce subclinical or clinical dermatitis, respectively. Mice were euthanized at 6 h, 24 h, 5 days, 12 days, and 25 days post irradiation, and the brain, thoracic spinal cord, and skin were collected. The brains were harvested for spatial proteomics, immunohistochemistry, Nanostring nCounter® glial profiling, and neuroinflammation gene panels. The thoracic spinal cords were evaluated by immunohistochemistry. Radiation injury to the skin was evaluated by histology. The genes associated with neurotransmission, glial cell activation, innate immune signaling, cell signal transduction, and cancer were differentially expressed in the brains from mice treated with ECRT compared to the controls. Dose-dependent increases in neuroinflammatory-associated and neurodegenerative-disease-associated proteins were measured in the brains from ECRT-treated mice. Histologic changes in the ECRT-treated mice included acute dermatitis within the irradiated skin of the hindlimb and astrocyte activation within the thoracic spinal cord. Collectively, these findings highlight indirect neuronal transmission and glial cell activation in the pathogenesis of ECRT-related CRCI, providing possible signaling pathways for mitigation strategies.
Collapse
Affiliation(s)
- Kimberly Demos-Davies
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (J.C.); (A.M.); (D.S.)
| | - Jessica Lawrence
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (J.C.); (A.M.); (D.S.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Jessica Coffey
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (J.C.); (A.M.); (D.S.)
| | - Amy Morgan
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (J.C.); (A.M.); (D.S.)
| | - Clara Ferreira
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Luke H. Hoeppner
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912, USA
| | - Davis Seelig
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (J.C.); (A.M.); (D.S.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
6
|
Pesti I, Légrádi Á, Farkas E. Primary microglia cell cultures in translational research: Strengths and limitations. J Biotechnol 2024; 386:10-18. [PMID: 38519034 DOI: 10.1016/j.jbiotec.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Microglia are the resident macrophages in the central nervous system, accounting for 10-15% of the cell mass in the brain. Next to their physiological role in development, monitoring neuronal function and the maintenance of homeostasis, microglia are crucial in the brain's immune defense. Brain injury and chronic neurological disorders are associated with neuroinflammation, in which microglia activation is a central element. Microglia acquire a wide spectrum of activation states in the diseased or injured brain, some of which are neurotoxic. The investigation of microglia (patho)physiology and therapeutic interventions targeting neuroinflammation is a substantial challenge. In addition to in vivo approaches, the application of in vitro model systems has gained significant ground and is essential to complement in vivo work. Primary microglia cultures have proved to be a useful tool. Microglia cultures have offered the opportunity to explore the mechanistic, molecular elements of microglia activation, the microglia secretome, and the efficacy of therapeutic treatments against neuroinflammation. As all model systems, primary microglia cultures have distinct strengths and limitations to be weighed when experiments are designed and when data are interpreted. Here, we set out to provide a succinct overview of the advantages and pitfalls of the use of microglia cultures, which instructs the refinement and further development of this technique to remain useful in the toolbox of microglia researchers. Since there is no conclusive therapy to combat neurotoxicity linked to neuroinflammation in acute brain injury or neurodegenerative disorders, these research tools remain essential to explore therapeutic opportunities.
Collapse
Affiliation(s)
- István Pesti
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Cerebral Blood Flow and Metabolism Research Group, Somogyi u 4, Szeged 6720, Hungary; Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Somogyi u 4, Szeged 6720, Hungary
| | - Ádám Légrádi
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Somogyi u 4, Szeged 6720, Hungary
| | - Eszter Farkas
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Cerebral Blood Flow and Metabolism Research Group, Somogyi u 4, Szeged 6720, Hungary; Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Somogyi u 4, Szeged 6720, Hungary.
| |
Collapse
|
7
|
Marcellus KA, Bugiel S, Nunnikhoven A, Curran I, Gill SS. Polystyrene Nano- and Microplastic Particles Induce an Inflammatory Gene Expression Profile in Rat Neural Stem Cell-Derived Astrocytes In Vitro. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:429. [PMID: 38470760 DOI: 10.3390/nano14050429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Microplastics are considered an emerging environmental pollutant due to their ubiquitous presence in the environment. However, the potential impact of microplastics on human health warrants further research. Recent studies have reported neurobehavioral and neurotoxic effects in marine and rodent models; however, their impact on the underlying cellular physiology in mammals remains unclear. Herein, we exposed neural stem cells and neural stem cell-derived astrocytes, oligodendrocytes, and neurons to various sizes and concentrations of polystyrene nano- and microplastics. We investigated their cellular uptake, impact on cytotoxicity, and alteration of gene expression through transcriptome profiling. The cell type most affected by decreased viability were astrocytes after 7 days of repeated exposure. Transcriptional analysis showed that 1274 genes were differentially expressed in astrocytes exposed to 500 nm microplastics, but only 531 genes were altered in astrocytes exposed to 50 nm nanoplastics. Both canonical pathway and Kyoto Encyclopedia of Genes and Genomes analysis showed that upregulated pathways were involved in neuroinflammation, innate and adaptive immunity, cell migration, proliferation, extracellular matrix remodeling, and cytoskeleton structures. The downregulated pathways were involved in lipid metabolism, specifically fatty acid oxidation and cholesterol metabolism. Our results show that neural stem cell-derived astrocytes repeatedly exposed to nano- and microplastics for 7 days undergo changes that are hallmarks of astrogliosis.
Collapse
Affiliation(s)
- Kristen A Marcellus
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Steven Bugiel
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Andrée Nunnikhoven
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Ivan Curran
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Santokh S Gill
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| |
Collapse
|
8
|
Deng X, Hu Z, Zhou S, Wu Y, Fu M, Zhou C, Sun J, Gao X, Huang Y. Perspective from single-cell sequencing: Is inflammation in acute ischemic stroke beneficial or detrimental? CNS Neurosci Ther 2024; 30:e14510. [PMID: 37905592 PMCID: PMC10805403 DOI: 10.1111/cns.14510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Acute ischemic stroke (AIS) is a common cerebrovascular event associated with high incidence, disability, and poor prognosis. Studies have shown that various cell types, including microglia, astrocytes, oligodendrocytes, neurons, and neutrophils, play complex roles in the early stages of AIS and significantly affect its prognosis. Thus, a comprehensive understanding of the mechanisms of action of these cells will be beneficial for improving stroke prognosis. With the rapid development of single-cell sequencing technology, researchers have explored the pathophysiological mechanisms underlying AIS at the single-cell level. METHOD We systematically summarize the latest research on single-cell sequencing in AIS. RESULT In this review, we summarize the phenotypes and functions of microglia, astrocytes, oligodendrocytes, neurons, neutrophils, monocytes, and lymphocytes, as well as their respective subtypes, at different time points following AIS. In particular, we focused on the crosstalk between microglia and astrocytes, oligodendrocytes, and neurons. Our findings reveal diverse and sometimes opposing roles within the same cell type, with the possibility of interconversion between different subclusters. CONCLUSION This review offers a pioneering exploration of the functions of various glial cells and cell subclusters after AIS, shedding light on their regulatory mechanisms that facilitate the transformation of detrimental cell subclusters towards those that are beneficial for improving the prognosis of AIS. This approach has the potential to advance the discovery of new specific targets and the development of drugs, thus representing a significant breakthrough in addressing the challenges in AIS treatment.
Collapse
Affiliation(s)
- Xinpeng Deng
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Ziliang Hu
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Shengjun Zhou
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Yiwen Wu
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Menglin Fu
- School of Economics and ManagementChina University of GeosciencesWuhanChina
| | - Chenhui Zhou
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Jie Sun
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Xiang Gao
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Yi Huang
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| |
Collapse
|
9
|
Kang S, Lee J, Choi S, Nesbitt J, Min PH, Trushina E, Choi DS. Moderate ethanol exposure reduces astrocyte-induced neuroinflammatorysignaling and cognitive decline in presymptomatic APP/PS1 mice. RESEARCH SQUARE 2023:rs.3.rs-3627637. [PMID: 38077051 PMCID: PMC10705690 DOI: 10.21203/rs.3.rs-3627637/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Background Alcohol use disorder (AUD) has been associated with the development of neurodegenerative diseases, including Alzheimer's disease (AD). However, recent studies demonstrate that moderate alcohol consumption may be protective against dementia and cognitive decline. Methods We examined astrocyte function, low-density lipoprotein (LDL) receptor-related protein 1 (LRP1), and the NF-κB p65 and IKK-α/β signaling pathways in modulating neuroinflammation and amyloid beta (Aβ) deposition. We assessed apolipoprotein E (ApoE) in the mouse brain using IHC and ELISA in response to moderate ethanol exposure (MEE). First, to confirm the intracerebral distribution of ApoE, we co-stained with GFAP, a marker for astrocytes that biosynthesize ApoE. We sought to investigate whether the ethanol-induced upregulation of LRP1 could potentially inhibit the activity of IL-1β and TNF-α induced IKK-α/β towards NF-κB p65, resulting in a reduction of pro-inflammatory cytokines. To evaluate the actual Aβ load in the brains of APP/PS1 mice, we performed with a specific antibody Aβ (Thioflavin S) on both air- and ethanol-exposed groups, subsequently analyzing Aβ levels. We also measured glucose uptake activity using 18F-FDG in APP/PS1 mice. Finally, we investigated whether MEE induced cognitive and memory changes using the Y maze, noble objective recognition (NOR) test, and Morris water maze (MWM). Results Our findings demonstrate that MEE reduced astrocytic glial fibrillary acidic protein (GFAP) and ApoE levels in the cortex and hippocampus in presymptomatic APP/PS1 mice. Interestingly, increased LRP1 protein expression is accompanied by dampening the IKK-α/β-NF-κB p65 pathway, resulting in decreased IL-1β and TNF-α levels in male mice. Notably, female mice show reduced anti-inflammatory cytokines, IL-4, and IL-10 levels without altering IL-1β and TNF-α concentrations. In both males and females, Aβ plaques, a hallmark of AD, were reduced in the cortex and hippocampus of ethanol-exposed presymptomatic APP/PS1 mice. Consistently, MEE increased fluorodeoxyglucose (FDG)-positron emission tomography (PET)-based brain activities and normalized cognitive and memory deficits in the APP/PS1 mice. Conclusions Our findings suggest that MEE may benefit AD pathology via modulating LRP1 expression, potentially reducing neuroinflammation and attenuating Aβ deposition. Our study implies that reduced astrocyte derived ApoE and LDL cholesterol levels are critical for attenuating AD pathology.
Collapse
Affiliation(s)
| | - Jeyeon Lee
- Mayo Clinic College of Medicine, and Science
| | - Sun Choi
- Mayo Clinic College of Medicine, and Science
| | | | - Paul H Min
- Mayo Clinic College of Medicine, and Science
| | | | | |
Collapse
|
10
|
Ecroyd H, Bartelt-Kirbach B, Ben-Zvi A, Bonavita R, Bushman Y, Casarotto E, Cecconi C, Lau WCY, Hibshman JD, Joosten J, Kimonis V, Klevit R, Liberek K, McMenimen KA, Miwa T, Mogk A, Montepietra D, Peters C, Rocchetti MT, Saman D, Sisto A, Secco V, Strauch A, Taguchi H, Tanguay M, Tedesco B, Toth ME, Wang Z, Benesch JLP, Carra S. The beauty and complexity of the small heat shock proteins: a report on the proceedings of the fourth workshop on small heat shock proteins. Cell Stress Chaperones 2023; 28:621-629. [PMID: 37462824 PMCID: PMC10746627 DOI: 10.1007/s12192-023-01360-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 12/23/2023] Open
Abstract
The Fourth Cell Stress Society International workshop on small heat shock proteins (sHSPs), a follow-up to successful workshops held in 2014, 2016 and 2018, took place as a virtual meeting on the 17-18 November 2022. The meeting was designed to provide an opportunity for those working on sHSPs to reconnect and discuss their latest work. The diversity of research in the sHSP field is reflected in the breadth of topics covered in the talks presented at this meeting. Here we summarise the presentations at this meeting and provide some perspectives on exciting future topics to be addressed in the field.
Collapse
Affiliation(s)
- Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| | | | - Anat Ben-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Raffaella Bonavita
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131, Naples, Italy
| | - Yevheniia Bushman
- Center for Protein Assemblies and Department Chemie, Technische Universität München, München, Germany
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti" (DiSFeB), Dipartimento di Eccellenza, Università degli Studi di Milano, Milan, Italy
| | - Ciro Cecconi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena, Italy
- Istituto Nanoscienze-CNR-NANO, Center S3, Modena, Italy
| | - Wilson Chun Yu Lau
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jonathan D Hibshman
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joep Joosten
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Virginia Kimonis
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California - Irvine, Orange, CA, 92868, USA
- Department of Neurology and Department of Pathology, University of California, Irvine, CA, 92697, USA
| | - Rachel Klevit
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Krzysztof Liberek
- Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | - Kathryn A McMenimen
- Program in Biochemistry and Department of Chemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Tsukumi Miwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8503, Japan
| | - Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld, 282, Heidelberg, Germany
| | - Daniele Montepietra
- Istituto Nanoscienze-CNR-NANO, Center S3, Modena, Italy
- Department of Department of Chemical, Life and Environmental sustainability sciences, University of Parma, Parma, Italy
| | - Carsten Peters
- Center for Protein Assemblies and Department Chemie, Technische Universität München, München, Germany
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggio, Italy
| | - Dominik Saman
- Department of Chemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Angela Sisto
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences and Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Valentina Secco
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Annika Strauch
- Center for Protein Assemblies and Department Chemie, Technische Universität München, München, Germany
| | - Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8503, Japan
| | - Morgan Tanguay
- Program in Biochemistry and Department of Chemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti" (DiSFeB), Dipartimento di Eccellenza, Università degli Studi di Milano, Milan, Italy
| | - Melinda E Toth
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, H-6726, Hungary
| | - Zihao Wang
- Department of Chemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Justin L P Benesch
- Department of Chemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| | - Serena Carra
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
11
|
Wei J, Lambert TY, Valada A, Patel N, Walker K, Lenders J, Schmidt CJ, Iskhakova M, Alazizi A, Mair-Meijers H, Mash DC, Luca F, Pique-Regi R, Bannon MJ, Akbarian S. Single nucleus transcriptomics of ventral midbrain identifies glial activation associated with chronic opioid use disorder. Nat Commun 2023; 14:5610. [PMID: 37699936 PMCID: PMC10497570 DOI: 10.1038/s41467-023-41455-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Dynamic interactions of neurons and glia in the ventral midbrain mediate reward and addiction behavior. We studied gene expression in 212,713 ventral midbrain single nuclei from 95 individuals with history of opioid misuse, and individuals without drug exposure. Chronic exposure to opioids was not associated with change in proportions of glial and neuronal subtypes, however glial transcriptomes were broadly altered, involving 9.5 - 6.2% of expressed genes within microglia, oligodendrocytes, and astrocytes. Genes associated with activation of the immune response including interferon, NFkB signaling, and cell motility pathways were upregulated, contrasting with down-regulated expression of synaptic signaling and plasticity genes in ventral midbrain non-dopaminergic neurons. Ventral midbrain transcriptomic reprogramming in the context of chronic opioid exposure included 325 genes that previous genome-wide studies had linked to risk of substance use traits in the broader population, thereby pointing to heritable risk architectures in the genomic organization of the brain's reward circuitry.
Collapse
Affiliation(s)
- Julong Wei
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Tova Y Lambert
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Aditi Valada
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nikhil Patel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Kellie Walker
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jayna Lenders
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Carl J Schmidt
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Marina Iskhakova
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Adnan Alazizi
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Henriette Mair-Meijers
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Deborah C Mash
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, 48201, USA
- Department of Biology, University of Tor Vergata, Rome, 00133, Italy
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, 48201, USA
| | - Michael J Bannon
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Schahram Akbarian
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
12
|
Carvalho D, Diaz-Amarilla P, Dapueto R, Santi MD, Duarte P, Savio E, Engler H, Abin-Carriquiry JA, Arredondo F. Transcriptomic Analyses of Neurotoxic Astrocytes Derived from Adult Triple Transgenic Alzheimer's Disease Mice. J Mol Neurosci 2023; 73:487-515. [PMID: 37318736 DOI: 10.1007/s12031-023-02105-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/03/2023] [Indexed: 06/16/2023]
Abstract
Neurodegenerative diseases such as Alzheimer's disease have been classically studied from a purely neuronocentric point of view. More recent evidences support the notion that other cell populations are involved in disease progression. In this sense, the possible pathogenic role of glial cells like astrocytes is increasingly being recognized. Once faced with tissue damage signals and other stimuli present in disease environments, astrocytes suffer many morphological and functional changes, a process referred as reactive astrogliosis. Studies from murine models and humans suggest that these complex and heterogeneous responses could manifest as disease-specific astrocyte phenotypes. Clear understanding of disease-associated astrocytes is a necessary step to fully disclose neurodegenerative processes, aiding in the design of new therapeutic and diagnostic strategies. In this work, we present the transcriptomics characterization of neurotoxic astrocytic cultures isolated from adult symptomatic animals of the triple transgenic mouse model of Alzheimer's disease (3xTg-AD). According to the observed profile, 3xTg-AD neurotoxic astrocytes show various reactivity features including alteration of the extracellular matrix and release of pro-inflammatory and proliferative factors that could result in harmful effects to neurons. Moreover, these alterations could be a consequence of stress responses at the endoplasmic reticulum and mitochondria as well as of concomitant metabolic adaptations. Present results support the hypothesis that adaptive changes of astrocytic function induced by a stressed microenvironment could later promote harmful astrocyte phenotypes and further accelerate or induce neurodegenerative processes.
Collapse
Affiliation(s)
- Diego Carvalho
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay
| | - Pablo Diaz-Amarilla
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Rosina Dapueto
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - María Daniela Santi
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
- College of Dentistry, Bluestone Center for Clinical Research, New York University, New York, 10010, USA
| | - Pablo Duarte
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Eduardo Savio
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Henry Engler
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
- Facultad de Medicina, Universidad de la República, 1800, Montevideo, Uruguay
| | - Juan A Abin-Carriquiry
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
- Laboratorio de Biofármacos, Institut Pasteur de Montevideo, 11600, Montevideo, Uruguay.
| | - Florencia Arredondo
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay.
| |
Collapse
|
13
|
Wei H, Yu C, Zhang C, Ren Y, Guo L, Wang T, Chen F, Li Y, Zhang X, Wang H, Liu J. Butyrate ameliorates chronic alcoholic central nervous damage by suppressing microglia-mediated neuroinflammation and modulating the microbiome-gut-brain axis. Biomed Pharmacother 2023; 160:114308. [PMID: 36709599 DOI: 10.1016/j.biopha.2023.114308] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Alcohol abuse triggers neuroinflammation, leading to neuronal damage and further memory and cognitive impairment. Few satisfactory advances have been made in the management of alcoholic central nervous impairment. Therefore, novel and more practical treatment options are urgently needed. Butyrate, a crucial metabolite of short-chain fatty acids (SCFAs), has been increasingly demonstrated to protect against numerous metabolic diseases. However, the impact of butyrate on chronic alcohol consumption-induced central nervous system (CNS) lesions remains unknown. METHODS In this study, we assessed the possible effects and underlying mechanisms of butyrate on the attenuation of alcohol-induced CNS injury in mice. Firstly, sixty female C57BL/6 J mice were randomly divided into 4 groups: pair-fed (PF) group (PF/CON), alcohol-fed (AF) group (AF/CON), PF with sodium butyrate (NaB) group (PF/NaB) and AF with NaB group (AF/NaB). Each group was fed a modified Lieber-DeCarli liquid diet with or without alcohol. After six weeks of feeding, the mice were euthanized and the associated indicators were investigated. RESULTS As indicated by the behavioral tests and brain morphology, dietary NaB administration significantly ameliorated aberrant behaviors, including locomotor hypoactivity, anxiety disorder, depressive behavior, impaired learning, spatial recognition memory, and effectively reduced chronic alcoholic central nervous system damage. To further understand the underlying mechanisms, microglia-mediated inflammation and the associated M1/M2 polarization were measured separately. Firstly, pro-inflammatory TNF-α, IL-1β, and IL-6 in brain and peripheral blood circulation were decreased, but IL-10 were increased in the AF/NaB group compared with the AF/CON group. Consistently, the abnormal proportions of activated and resting microglial cells in the hippocampus and cortex regions after excessive alcohol consumption were significantly reduced with NaB treatment. Moreover, the rectification of microglia polarization (M1/M2) imbalance was found after NaB administration via binding GPR109A, up-regulating the expression of PPAR-γ and down-regulating TLR4/NF-κB activation. In addition to the direct suppression of neuroinflammation, intriguingly, dietary NaB intervention remarkably increased the levels of intestinal tight junction protein occludin and gut morphological barrier, attenuated the levels of serum lipopolysaccharide (LPS) and dysbiosis of gut microbiota, suggesting that NaB supplementation effectively improved the integrity and permeability of gut microecology. Finally, the neurotransmitters including differential Tryptophan (Trp) and Kynurenine (Kyn) were found with dietary NaB administration, which showed significantly altered and closely correlated with the gut microbiota composition, demonstrating the complex interactions in the microbiome-gut-brain axis involved in the efficacy of dietary NaB therapy for alcoholic CNS lesions. CONCLUSION Dietary microbial metabolite butyrate supplementation ameliorates chronic alcoholic central nervous damage and improves related memory and cognitive functions through suppressing microglia-mediated neuroinflammation by GPR109A/PPAR-γ/TLR4-NF-κB signaling pathway and modulating microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Huiling Wei
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Chunyang Yu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Chun Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Yi Ren
- Clinical Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Li Guo
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Ting Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Feifei Chen
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Yiwei Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Hao Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Juan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
14
|
Lee S, Williams HC, Gorman AA, Devanney NA, Harrison DA, Walsh AE, Goulding DS, Tuck T, Schwartz JL, Zajac DJ, Macauley SL, Estus S, Julia TCW, Johnson LA, Morganti JM. APOE4 drives transcriptional heterogeneity and maladaptive immunometabolic responses of astrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527204. [PMID: 36798317 PMCID: PMC9934552 DOI: 10.1101/2023.02.06.527204] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Apolipoprotein E4 (APOE4) is the strongest risk allele associated with the development of late onset Alzheimer's disease (AD). Across the CNS, astrocytes are the predominant expressor of APOE while also being critical mediators of neuroinflammation and cerebral metabolism. APOE4 has been consistently linked with dysfunctional inflammation and metabolic processes, yet insights into the molecular constituents driving these responses remain unclear. Utilizing complementary approaches across humanized APOE mice and isogenic human iPSC astrocytes, we demonstrate that ApoE4 alters the astrocyte immunometabolic response to pro-inflammatory stimuli. Our findings show that ApoE4-expressing astrocytes acquire distinct transcriptional repertoires at single-cell and spatially-resolved domains, which are driven in-part by preferential utilization of the cRel transcription factor. Further, inhibiting cRel translocation in ApoE4 astrocytes abrogates inflammatory-induced glycolytic shifts and in tandem mitigates production of multiple pro-inflammatory cytokines. Altogether, our findings elucidate novel cellular underpinnings by which ApoE4 drives maladaptive immunometabolic responses of astrocytes.
Collapse
Affiliation(s)
- Sangderk Lee
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY
| | - Holden C. Williams
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY
| | - Amy A. Gorman
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY
| | - Nicholas A. Devanney
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY
- Department of Biology, University of Kentucky College of Arts and Sciences, Lexington, KY
| | | | - Adeline E. Walsh
- Department of Biology, University of Kentucky College of Arts and Sciences, Lexington, KY
| | - Danielle S. Goulding
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY
| | - Tony Tuck
- Boston University, Chobanian & Avedisian School of Medicine, Boston, MA
| | - James L. Schwartz
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY
| | - Diana J. Zajac
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY
- Department of Biology, University of Kentucky College of Arts and Sciences, Lexington, KY
| | - Shannon L. Macauley
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Steven Estus
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY
- Department of Biology, University of Kentucky College of Arts and Sciences, Lexington, KY
| | - TCW Julia
- Boston University, Chobanian & Avedisian School of Medicine, Boston, MA
| | - Lance A. Johnson
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY
- Department of Biology, University of Kentucky College of Arts and Sciences, Lexington, KY
| | - Josh M. Morganti
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY
| |
Collapse
|
15
|
Csoboz B, Gombos I, Kóta Z, Dukic B, Klement É, Varga-Zsíros V, Lipinszki Z, Páli T, Vígh L, Török Z. The Small Heat Shock Protein, HSPB1, Interacts with and Modulates the Physical Structure of Membranes. Int J Mol Sci 2022; 23:ijms23137317. [PMID: 35806322 PMCID: PMC9266964 DOI: 10.3390/ijms23137317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Small heat shock proteins (sHSPs) have been demonstrated to interact with lipids and modulate the physical state of membranes across species. Through these interactions, sHSPs contribute to the maintenance of membrane integrity. HSPB1 is a major sHSP in mammals, but its lipid interaction profile has so far been unexplored. In this study, we characterized the interaction between HSPB1 and phospholipids. HSPB1 not only associated with membranes via membrane-forming lipids, but also showed a strong affinity towards highly fluid membranes. It participated in the modulation of the physical properties of the interacting membranes by altering rotational and lateral lipid mobility. In addition, the in vivo expression of HSPB1 greatly affected the phase behavior of the plasma membrane under membrane fluidizing stress conditions. In light of our current findings, we propose a new function for HSPB1 as a membrane chaperone.
Collapse
Affiliation(s)
- Balint Csoboz
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
- Institute of Medical Biology, University of Tromsø, 9008 Tromsø, Norway
| | - Imre Gombos
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
| | - Zoltán Kóta
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Z.K.); (T.P.)
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, 6726 Szeged, Hungary
| | - Barbara Dukic
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
| | - Éva Klement
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, 6726 Szeged, Hungary
| | - Vanda Varga-Zsíros
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
| | - Zoltán Lipinszki
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
| | - Tibor Páli
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Z.K.); (T.P.)
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
- Correspondence:
| |
Collapse
|
16
|
Rajeswaren V, Wong JO, Yabroudi D, Nahomi RB, Rankenberg J, Nam MH, Nagaraj RH. Small Heat Shock Proteins in Retinal Diseases. Front Mol Biosci 2022; 9:860375. [PMID: 35480891 PMCID: PMC9035800 DOI: 10.3389/fmolb.2022.860375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/11/2022] [Indexed: 11/29/2022] Open
Abstract
This review summarizes the latest findings on small heat shock proteins (sHsps) in three major retinal diseases: glaucoma, diabetic retinopathy, and age-related macular degeneration. A general description of the structure and major cellular functions of sHsps is provided in the introductory remarks. Their role in specific retinal diseases, highlighting their regulation, role in pathogenesis, and possible use as therapeutics, is discussed.
Collapse
Affiliation(s)
- Vivian Rajeswaren
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Jeffrey O. Wong
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Dana Yabroudi
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Rooban B. Nahomi
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Johanna Rankenberg
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Mi-Hyun Nam
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
- *Correspondence: Mi-Hyun Nam, ; Ram H. Nagaraj,
| | - Ram H. Nagaraj
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States
- *Correspondence: Mi-Hyun Nam, ; Ram H. Nagaraj,
| |
Collapse
|
17
|
Schrader JM, Xu F, Van Nostrand WE. Distinct brain regional proteome changes in the rTg-DI rat model of cerebral amyloid angiopathy. J Neurochem 2021; 159:273-291. [PMID: 34218440 DOI: 10.1111/jnc.15463] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/02/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022]
Abstract
Cerebral amyloid angiopathy (CAA), a prevalent cerebral small vessel disease in the elderly and a common comorbidity of Alzheimer's disease, is characterized by cerebral vascular amyloid accumulation, cerebral infarction, microbleeds, and intracerebral hemorrhages and is a prominent contributor to vascular cognitive impairment and dementia. Here, we investigate proteome changes associated with specific pathological features in several brain regions of rTg-DI rats, a preclinical model of CAA. Whereas varying degrees of microvascular amyloid and associated neuroinflammation are found in several brain regions, the presence of microbleeds and occluded small vessels is largely restricted to the thalamic region of rTg-DI rats, indicating different levels of CAA and associated pathologies occur in distinct brain regions in this model. Here, using SWATHLC-MS/MS, we report specific proteomic analysis of isolated brain regions and employ pathway analysis to correlate regionally specific proteomic changes with uniquely implicated molecular pathways. Pathway analysis suggested common activation of tumor necrosis factor α (TNFα), abnormal nervous system morphology, and neutrophil degranulation in all three regions. Activation of transforming growth factor-β1 (TGF-β1) was common to the hippocampus and thalamus, which share high CAA loads, while the thalamus, which uniquely exhibits thrombotic events, additionally displayed activation of thrombin and aggregation of blood cells. Thus, we present significant and new insight into the cerebral proteome changes found in distinct brain regions with differential CAA-related pathologies of rTg-DI rats and provide new information on potential pathogenic mechanisms associated with these regional disease processes.
Collapse
Affiliation(s)
- Joseph M Schrader
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Feng Xu
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - William E Van Nostrand
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|