1
|
Luo W, Xu C, Li L, Ji Y, Wang Y, Li Y, Ye Y. Perfluoropentane-based oxygen-loaded nanodroplets reduce microglial activation through metabolic reprogramming. Neural Regen Res 2025; 20:1178-1191. [PMID: 38989955 PMCID: PMC11438333 DOI: 10.4103/nrr.nrr-d-23-01299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/05/2024] [Indexed: 07/12/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202504000-00032/figure1/v/2024-07-06T104127Z/r/image-tiff Microglia, the primary immune cells within the brain, have gained recognition as a promising therapeutic target for managing neurodegenerative diseases within the central nervous system, including Parkinson's disease. Nanoscale perfluorocarbon droplets have been reported to not only possess a high oxygen-carrying capacity, but also exhibit remarkable anti-inflammatory properties. However, the role of perfluoropentane in microglia-mediated central inflammatory reactions remains poorly understood. In this study, we developed perfluoropentane-based oxygen-loaded nanodroplets (PFP-OLNDs) and found that pretreatment with these droplets suppressed the lipopolysaccharide-induced activation of M1-type microglia in vitro and in vivo, and suppressed microglial activation in a mouse model of Parkinson's disease. Microglial suppression led to a reduction in the inflammatory response, oxidative stress, and cell migration capacity in vitro. Consequently, the neurotoxic effects were mitigated, which alleviated neuronal degeneration. Additionally, ultrahigh-performance liquid chromatography-tandem mass spectrometry showed that the anti-inflammatory effects of PFP-OLNDs mainly resulted from the modulation of microglial metabolic reprogramming. We further showed that PFP-OLNDs regulated microglial metabolic reprogramming through the AKT-mTOR-HIF-1α pathway. Collectively, our findings suggest that the novel PFP-OLNDs constructed in this study alleviate microglia-mediated central inflammatory reactions through metabolic reprogramming.
Collapse
Affiliation(s)
- Wanxian Luo
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chuanhui Xu
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Linxi Li
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yunxiang Ji
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yezhong Wang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yingjia Li
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yongyi Ye
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Wang Y, Gao P, Wu Z, Jiang B, Wang Y, He Z, Zhao B, Tian X, Gao H, Cai L, Li W. Exploring the therapeutic potential of Chinese herbs on comorbid type 2 diabetes mellitus and Parkinson's disease: A mechanistic study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119095. [PMID: 39537117 DOI: 10.1016/j.jep.2024.119095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/12/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Type 2 diabetes mellitus (T2DM) and Parkinson's disease (PD) are chronic conditions that affect the aging population, with increasing prevalence globally. The rising prevalence of comorbidity between these conditions, driven by demographic shifts, severely impacts the quality of life of patients, posing a significant burden on healthcare resources. Chinese herbal medicine has been used to treat T2DM and PD for millennia. Pharmacological studies have demonstrated that medicinal herbs effectively lower blood glucose levels and exert neuroprotective effects, suggesting their potential as adjunctive therapy for concurrent management of T2DM and PD. AIM OF THE STUDY To elucidate the shared mechanisms underlying T2DM and PD, particularly focusing on the potential mechanisms by which medicinal herbs (including herbal formulas, single herbs, and active compounds) may treat these diseases, to provide valuable insights for developing therapeutics targeting comorbid T2DM and PD. MATERIALS AND METHODS Studies exploring the mechanisms underlying T2DM and PD, as well as the treatment of these conditions with medicinal herbs, were extracted from several electronic databases, including PubMed, Web of Science, Google Scholar, and China National Knowledge Infrastructure (CNKI). RESULTS Numerous studies have shown that inflammation, oxidative stress, insulin resistance, impaired autophagy, gut microbiota dysbiosis, and ferroptosis are shared mechanisms underlying T2DM and PD mediated through the NLRP3 inflammasome, NF-κB, MAPK, Keap1/Nrf2/ARE, PI3K/AKT, AMPK/SIRT1, and System XC--GSH-GPX4 signaling pathways. Thirty-four medicinal herbs, including 2 herbal formulas, 4 single herbs, and 28 active compounds, have been reported to potentially exert anti-T2DM and anti-PD effects by targeting these shared mechanisms. CONCLUSIONS Traditional Chinese medicine effectively combats T2DM and PD through shared pathological mechanisms, highlighting their potential for application in treating these comorbid conditions.
Collapse
Affiliation(s)
- Yan Wang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Pengpeng Gao
- Department of Preventive Treatment, Ningxia Integrated Chinese and Western Medicine Hospital, Yinchuan, 750004, China
| | - Zicong Wu
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yanru Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Zhaxicao He
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Bing Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xinyun Tian
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Han Gao
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Li Cai
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Wentao Li
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
3
|
Xie Y, Fang C, Lu L, Wang J, Wu L, Wang S, Guo Q, Yan W, Wei J, Duan F, Huang L. Extract of Tinospora sinensis alleviates LPS-induced neuroinflammation in mice by regulating TLR4/NF-κB/NLRP3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118807. [PMID: 39245241 DOI: 10.1016/j.jep.2024.118807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried rattan stem of Tinospora sinensis (Lour.) Merr. is valued for its efficacy of clearing heat and removing toxicity, calming and soothing the nerves. It is widely used in Tibetan medicine for the treatment of rheumatic and aging diseases. Studies have confirmed its anti-inflammatory and ameliorating effects on Alzheimer's disease; however, the anti-neuroinflammation efficacy and mechanism remain unclear. AIM This study aimed to explore the anti-neuroinflammation efficacy, major effective ingredients, and potential mechanism of extract of Tinosporae sinenisis (TIS). METHODS UPLC-Q-TOF/MS was used to identify the compounds of TIS and the plasma components of rats after gastric administration of TIS. C57BL/6 J mice were continuously intraperitoneally injected with lipopolysaccharide (LPS) (250 μg/kg) for 14 d to establish a neuroinflammation model. The effects of TIS (4.5 g/kg, 9 g/kg) on the learning and memory abilities in mice with neuroinflammation was evaluated using spontaneous activity, novel object recognition, and Morris water maze tests. Pathological changes in the hippocampus were observed using hematoxylin and eosin staining. Gene and protein levels of inflammatory factors in the brain were detected using qRT-PCR and ELISA kits. Iba-1 levels in the brain were detected using immunofluorescence to assess the degree of microglial activation. Network pharmacology, based on the components absorbed into plasma of TIS, was used to predict potential targets and pathways. Proteomics was used to study the differentially expressed proteins and related pathways in the brain tissue of mice with neuroinflammation. Finally, correlation analysis was performed on the results of network pharmacology and proteomics, and proteins related the anti-neuroinflammatory effect of TIS were detected by western blot. RESULTS A total of 39 compounds were identified in TIS: genipingentiobioside, isocorydin, reticuline, (-)-argemonine, tinosineside A, tinosinenside A, and costunolide were absorbed into the plasma. After continuous intraperitoneal injection of LPS into C57BL/6 J mice, microglia in the brain tissue were activated and the gene and protein levels of IL-1β, TNF-α, IL-6, and iNOS were increased in the brain tissue, suggesting that the neuroinflammation model was successfully established. TIS reduced Iba-1 levels and gene expression and protein levels of inflammatory factors in the brain of mice with neuroinflammation. Furthermore, TIS improved the pathological changes in the hippocampus and learning and memory abilities caused by neuroinflammation. Network pharmacology has predicted that TNF, IL-1β, and IκBKB are closely related to neuroinflammation. Proteomics identified key differentially expressed proteins, including TNF, NF-κB2, NF-κBIA, and TLR4. Toll-like receptor (TLR), NF-κB, and NOD-like receptor (NLR) signaling pathways are involved in neuroinflammation-related pathways. Correlation analysis revealed TLR, TNF and NLR signaling pathways were closely related to the anti-neuroinflammatory effects of TIS. We observed that TIS alleviated neuroinflammation by inhibiting the TLR4/NF-κB/NLRP3 pathway. CONCLUSION Thirty-nine compounds were identified from TIS, among which seven were absorbed into the plasma as prototype components. TIS alleviated LPS-induced neuroinflammation in mice, and its mechanism was related to inhibition of TLR4/NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Yongyan Xie
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China; College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Cong Fang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Longhui Lu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jingjing Wang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Li Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China; College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shuaikang Wang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qiujing Guo
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wenyan Yan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jinghua Wei
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Feipeng Duan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China.
| | - Liping Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China; Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Nanchang, China.
| |
Collapse
|
4
|
Denver P, Cunningham C. Microglial activation and neuroinflammation in acute and chronic cognitive deficits in sepsis. Neuropharmacology 2024:110285. [PMID: 39746541 DOI: 10.1016/j.neuropharm.2024.110285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Sepsis is characterised by dysregulated immune responses to infection, leading to multi-organ dysfunction and high rates of mortality. With increasing survival rates in recent years long-term neurological and psychiatric consequences have become more apparent in survivors. Many patients develop sepsis associated encephalopathy (SAE) which encompasses the profound but usually transient neuropsychiatric syndrome delirium but also new brain injury that emerges in the months and years post-sepsis. It now clear that systemic inflammatory signals reach the brain during sepsis and that very significant neuroinflammation ensues. The major brain resident immune cell population, the microglia, has been implicated in acute and chronic cognitive dysfunction in animal models of sepsis based on a growing number of studies using bacterial endotoxin and in polymicrobial sepsis models such as cecal ligation and puncture. The current review explores the effects of sepsis on the brain, focussing on how systemic insults translate to microglial activation and neuroinflammation and how this disrupts neuronal function and integrity. We examine what has been demonstrated specifically with respect to microglial activation, revealing robust evidence for a role for neuroinflammation in sepsis-induced brain sequelae but less clear information on the extent of the specific microglial contribution to this, arising from findings using global knockout mice, non-selective drugs and treatments that equally target peripheral and central compartments. There is, nonetheless, clear evidence that microglia do become activated and do contribute to brain consequences of sepsis thus arguing for improved understanding of these neuroinflammatory processes toward the prevention and treatment of sepsis-induced brain dysfunction.
Collapse
Affiliation(s)
- Paul Denver
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2
| |
Collapse
|
5
|
Huang Z, Xu P, Hess DC, Zhang Q. Cellular senescence as a key contributor to secondary neurodegeneration in traumatic brain injury and stroke. Transl Neurodegener 2024; 13:61. [PMID: 39668354 PMCID: PMC11636056 DOI: 10.1186/s40035-024-00457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
Traumatic brain injury (TBI) and stroke pose major health challenges, impacting millions of individuals globally. Once considered solely acute events, these neurological conditions are now recognized as enduring pathological processes with long-term consequences, including an increased susceptibility to neurodegeneration. However, effective strategies to counteract their devastating consequences are still lacking. Cellular senescence, marked by irreversible cell-cycle arrest, is emerging as a crucial factor in various neurodegenerative diseases. Recent research further reveals that cellular senescence may be a potential driver for secondary neurodegeneration following brain injury. Herein, we synthesize emerging evidence that TBI and stroke drive the accumulation of senescent cells in the brain. The rationale for targeting senescent cells as a therapeutic approach to combat neurodegeneration following TBI/stroke is outlined. From a translational perspective, we emphasize current knowledge and future directions of senolytic therapy for these neurological conditions.
Collapse
Affiliation(s)
- Zhihai Huang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Peisheng Xu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC, 29208, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
6
|
Geloso MC, Zupo L, Corvino V. Crosstalk between peripheral inflammation and brain: Focus on the responses of microglia and astrocytes to peripheral challenge. Neurochem Int 2024; 180:105872. [PMID: 39362496 DOI: 10.1016/j.neuint.2024.105872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
A growing body of evidence supports the link between peripheral inflammation and impairment of neurologic functions, including mood and cognitive abilities. The pathogenic event connecting peripheral inflammation and brain dysfunction is represented by neuroinflammation, a pathogenic phenomenon that provides an important contribution to neurodegeneration and cognitive decline also in Alzheimer's, Parkinson's, Huntington's diseases, as well as in Multiple Sclerosis. It is driven by resident brain immune cells, microglia and astrocytes, that acquire an activated phenotype in response to proinflammatory molecules moving from the periphery to the brain parenchyma. Although a huge progress has been made in clarifying cellular and molecular mechanisms bridging peripheral and central inflammation, a clear picture has not been achieved so far. Therefore, experimental models are of crucial relevance to clarify knowledge gaps in this regard. Many findings demonstrate that systemic inflammation induced by pathogen-associated molecular patterns, such as lipopolysaccharide (LPS), is able to trigger neuroinflammation. Therefore, LPS-administration is widely considered a useful tool to study this phenomenon. On this basis, the present review will focus on in vivo studies based on acute and subacute effects of systemic administration of LPS, with special attention on the state of art of microglia and astrocyte response to peripheral challenge.
Collapse
Affiliation(s)
- Maria Concetta Geloso
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy; Gemelli Science and Technology Park (GSTeP)-Organoids Research Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy.
| | - Luca Zupo
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Valentina Corvino
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| |
Collapse
|
7
|
Şahin S, Şahin E, Esenülkü G, Renda G, Gürgen SG, Alver A, Abidin İ, Cansu A. Oleuropein Has Modulatory Effects on Systemic Lipopolysaccharide-Induced Neuroinflammation in Male Rats. J Nutr 2024; 154:1282-1297. [PMID: 38403251 DOI: 10.1016/j.tjnut.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/20/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Neuroinflammation induced by systemic inflammation is a risk factor for developing chronic neurologic disorders. Oleuropein (OLE) has antioxidant and anti-inflammatory properties; however, its effect on systemic inflammation-related neuroinflammation is unknown. OBJECTIVES This study aimed to determine whether OLE protects against systemic lipopolysaccharide (LPS)-induced neuroinflammation in rats. METHODS Six-wk-old Wistar rats were randomly assigned to 1 of the following 5 groups: 1) control, 2) OLE-only, 3) LPS + vehicle, 4) OLE+LPS (O-LPS), and 5) a single-dose OLE + LPS (SO-LPS group). OLE 200 mg/kg or saline as a vehicle was administered via gavage for 7 d. On the seventh day, 2.5 mg/kg LPS was intraperitoneally administered. The rats were decapitated after 24 h of LPS treatment, and serum collection and tissue dissection were performed. The study assessed astrocyte and microglial activation using glial fibrillary acidic protein (GFAP) and CD11b immunohistochemistry, nod-like receptor protein-3, interleukin (IL)-1β, IL-17A, and IL-4 concentrations in prefrontal and hippocampal tissues via enzyme-linked immunosorbent assay, and total antioxidant/oxidant status (TAS/TOS) in serum and tissues via spectrophotometry. RESULTS In both the O-LPS and SO-LPS groups, LPS-related activation of microglia and astrocytes was suppressed in the cortex and hippocampus (P < 0.001), excluding cortical astrocyte activation, which was suppressed only in the SO-LPS group (P < 0.001). Hippocampal GFAP immunoreactivity and IL-17A concentrations in the dentate gyrus were higher in the OLE group than those in the control group, but LPS-related increases in these concentrations were suppressed in the O-LPS group. The O-LPS group had higher cortical TAS and IL-4 concentrations. CONCLUSIONS OLE suppressed LPS-related astrocyte and microglial activation in the hippocampus and cortex. The OLE-induced increase in cortical IL-4 concentrations indicates the induction of an anti-inflammatory phenotype of microglia. OLE may also modulate astrocyte and IL-17A functions, which could explain its opposing effects on hippocampal GFAP immunoreactivity and IL-17A concentrations when administered with or without LPS.
Collapse
Affiliation(s)
- Sevim Şahin
- Department of Pediatric Neurology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| | - Elif Şahin
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Gülnur Esenülkü
- Department of Pediatric Neurology, Trabzon Kanuni Training, and Research Hospital, Trabzon, Turkey
| | - Gülin Renda
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Seren Gülşen Gürgen
- Department of Histology and Embryology, School of Vocational Health Service, Manisa Celal Bayar University, Manisa, Turkey
| | - Ahmet Alver
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - İsmail Abidin
- Department of Biophysics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ali Cansu
- Department of Pediatric Neurology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
8
|
Liu J, Tan J, Tang B, Guo J. Unveiling the role of iPLA 2β in neurodegeneration: From molecular mechanisms to advanced therapies. Pharmacol Res 2024; 202:107114. [PMID: 38395207 DOI: 10.1016/j.phrs.2024.107114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Calcium-independent phospholipase A2β (iPLA2β), a member of the phospholipase A2 (PLA2s) superfamily, is encoded by the PLA2G6 gene. Mutations in the PLA2G6 gene have been identified as the primary cause of infantile neuroaxonal dystrophy (INAD) and, less commonly, as a contributor to Parkinson's disease (PD). Recent studies have revealed that iPLA2β deficiency leads to neuroinflammation, iron accumulation, mitochondrial dysfunction, lipid dysregulation, and other pathological changes, forming a complex pathogenic network. These discoveries shed light on potential mechanisms underlying PLA2G6-associated neurodegeneration (PLAN) and offer valuable insights for therapeutic development. This review provides a comprehensive analysis of the fundamental characteristics of iPLA2β, its association with neurodegeneration, the pathogenic mechanisms involved in PLAN, and potential targets for therapeutic intervention. It offers an overview of the latest advancements in this field, aiming to contribute to ongoing research endeavors and facilitate the development of effective therapies for PLAN.
Collapse
Affiliation(s)
- Jiabin Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Ngo HKC, Le H, Ayer SJ, Crotty GF, Schwarzschild MA, Bakshi R. Short-term lipopolysaccharide treatment leads to astrocyte activation in LRRK2 G2019S knock-in mice without loss of dopaminergic neurons. RESEARCH SQUARE 2024:rs.3.rs-4076333. [PMID: 38562908 PMCID: PMC10984011 DOI: 10.21203/rs.3.rs-4076333/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background The G2019S mutation of LRRK2, which enhances kinase activity of the protein, confers a substantial risk of developing Parkinson's disease (PD). However, the mutation demonstrates incomplete penetrance, suggesting the involvement of other genetic or environmental modulating factors. Here, we investigated whether LRRK2 G2019S knock-in (KI) mice treated with the inflammogen lipopolysaccharide (LPS) could model LRRK2 PD. Results We found that short-term (2 weeks) treatment with LPS did not result in the loss of dopaminergic neurons in either LRRK2 G2019S KI or wild-type (WT) mice. Compared with WT mice, LRRK2 G2019S-KI mice showed incomplete recovery from LPS-induced weight loss. In LRRK2 G2019S KI mice, LPS treatment led to upregulated phosphorylation of LRRK2 at the autophosphorylation site Serine 1292, which is known as a direct readout of LRRK2 kinase activity. LPS treatment caused a greater increase in the activated astrocyte marker glial fibrillary acidic protein (GFAP) in the striatum and substantia nigra of LRRK2 G2019S mice than in those of WT mice. The administration of caffeine, which was recently identified as a biomarker of resistance to developing PD in individuals with LRRK2 mutations, attenuated LPS-induced astrocyte activation specifically in LRRK2 G2019S KI mice. Conclusions Our findings suggest that 2 weeks of exposure to LPS is not sufficient to cause dopaminergic neuronal loss in LRRK2 G2019S KI mice but rather results in increased astrocyte activation, which can be ameliorated by caffeine.
Collapse
|
10
|
Hosseini M, Bardaghi Z, Askarpour H, Jafari MM, Golkar A, Shirzad S, Rajabian A, Salmani H. Minocycline mitigated enduring neurological consequences in the mice model of sepsis. Behav Brain Res 2024; 461:114856. [PMID: 38199318 DOI: 10.1016/j.bbr.2024.114856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
AIM Sepsis-associated encephalopathy is a frequently observed consequence of sepsis, often resulting in chronic brain inflammation and injury, ultimately leading to a range of behavioral abnormalities. This study explores the potential preventive effects of minocycline on the long-lasting outcome of sepsis in a mice model of sepsis. METHODS Adult male C57 mice were subjected to experimental sepsis through a single intraperitoneal injection of 5 mg/kg lipopolysaccharide (LPS). Minocycline administration via oral gavage (12.5, 25, and 50 mg/kg) commenced three days before sepsis induction and continued on the day of induction. Mice underwent behavioral assessments one month post-sepsis, with subsequent brain tissue analysis to investigate oxidative stress markers and cholinergic function. KEY FINDINGS One month following sepsis induction, mice exhibited significant anxiety- and depressive-like behaviors as determined by assessments in the elevated plus maze (EPM), open field, and tail suspension test (TST). Additionally, they displayed impaired recognition memory in the novel object recognition (NOR) test. Brain tissue analysis revealed a notable increase in oxidative stress markers and acetylcholinesterase (AChE) activity in septic mice. Notably, minocycline treatment effectively mitigated the long-term behavioral abnormalities resulting from sepsis, attenuated oxidative stress markers, and reduced AChE activity. SIGNIFICANCE These findings underscore the potential of minocycline as a therapeutic intervention during sepsis induction to prevent the enduring behavioral and neurological consequences of experimental sepsis.
Collapse
Affiliation(s)
- Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Bardaghi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hedyeh Askarpour
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran
| | | | - Ahmad Golkar
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Shima Shirzad
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Salmani
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran; Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| |
Collapse
|
11
|
Yang Y, Yao Z, Wang H, Jia S, Wang M, Wang S, Yun D. Severe inflammation in C57/BL6 mice leads to prolonged cognitive impairment by initiating the IL-1β/TRPM2 pathway. Int Immunopharmacol 2024; 128:111380. [PMID: 38176340 DOI: 10.1016/j.intimp.2023.111380] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Sepsis could lead to chronic cognitive impairment by unclear molecular mechanisms. Transient receptor potential melastatin-2 (TRPM2) is essential against immunity-related activities and inflammation. Our study attempted to decipher the relationship between cognitive impairment caused by severe inflammation and TRPM2 expression levels. METHODS Severe inflammation was induced by intraperitoneally injecting C57/BL6 mice with a high dosage (5 mg kg-1) of Lipopolysaccharide (LPS). Fear conditioning and a Morris water maze test were performed to examine the cognitive abilities of the mice. Moreover, the signaling and expression of pro-inflammatory cytokines and TRPM2 were measured using Western blotting and Reverse transcription-polymerase chain reaction (RT-PCR). Flow cytometry and immunofluorescence staining helped to determine the astrocyte apoptosis rate. RESULTS Severe inflammation can lead to long-term cognitive impairment in C57/BL6 mice. The interleukin-1 beta (IL-1β) levels intra-hippocampus were significantly elevated until P14 post-LPS introduction. At both P7 and P14, there is an up-regulation of TRPM2 expression within hippocampus. Administration of recombinant IL-1β to astrocytes results in a significant up-regulation of TRPM2 expression. IL-1β or TRPM2 level knockdown helped counter the cognitive impairment caused by significant inflammation. CONCLUSIONS A continuous increase in IL-1β levels within the hippocampus can lead to cognitive impairment by enhancing TRPM2 levels caused by severe inflammation.
Collapse
Affiliation(s)
- Yujiao Yang
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China; Department of Anesthesiology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zhihua Yao
- Department of Anesthesiology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Hushan Wang
- Department of Anesthesiology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shuaiying Jia
- Department of Anesthesiology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Mingfei Wang
- Department of Anesthesiology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shan Wang
- Department of Anesthesiology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Debo Yun
- Department of Neurosurgery, Nanchong Central Hospital, Nanchong, Sichuan, China.
| |
Collapse
|
12
|
Alizadehmoghaddam S, Pourabdolhossein F, Najafzadehvarzi H, Sarbishegi M, Saleki K, Nouri HR. Crocin attenuates the lipopolysaccharide-induced neuroinflammation via expression of AIM2 and NLRP1 inflammasome in an experimental model of Parkinson's disease. Heliyon 2024; 10:e25523. [PMID: 38356604 PMCID: PMC10864986 DOI: 10.1016/j.heliyon.2024.e25523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
The underlying mechanisms of inflammasome activation and the following dopaminergic neuron loss caused by chronic neuroinflammation remain entirely unclear. Therefore, this study aimed to investigate the impact of crocin on the inflammasome complex within an experimental model of Parkinson's disease (PD) using male Wistar rats. PD was induced by the stereotaxic injection of lipopolysaccharide (LPS), and crocin was intraperitoneally administrated one week before the lesion, and then treatment continued for 21 days. Open field (OF) and elevated plus maze tests were applied for behavioral assays. Furthermore, hematoxylin and eosin (H&E) and immunostaining were performed on whole brain tissue, while dissected substantia nigra (SN) was used for immunoblotting and real-time PCR to evaluate compartments involved in PD. The time spent in the center of test was diminished in the LPS group, while treatment with 30 mg/kg of crocin significantly increased it. H&E staining showed a significant increase in cell infiltration at the site of LPS injection, which was ameliorated upon crocin treatment. Notably, crocin-treated animals showed a reduced number of caspase-1 and IL-1β positive cells, whereas the number of positive cells was increased in the LPS group (P < 0.05). A significant decrease in tyrosine hydroxylase (TH) expression was also found in the LPS group, while crocin treatment significantly elevated its expression. IL-1β, IL-18, NLRP1, and AIM2 genes expression significantly increased in the LPS group. On the other hand, treatment with 30 mg/kg of crocin significantly downregulated the expression levels of these genes along with NLRP1 (P < 0.05). In summary, our findings suggest that crocin reduces neuroinflammation in PD by diminishing IL-1β and caspase-1 levels, potentially by inhibiting the expression of AIM2 and NLRP1 genes.
Collapse
Affiliation(s)
- Solmaz Alizadehmoghaddam
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fereshteh Pourabdolhossein
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Najafzadehvarzi
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Sarbishegi
- Cellular and Molecular Research Center and Department of Anatomy, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Reza Nouri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
13
|
Szlufik S, Kopeć K, Szleszkowski S, Koziorowski D. Glymphatic System Pathology and Neuroinflammation as Two Risk Factors of Neurodegeneration. Cells 2024; 13:286. [PMID: 38334678 PMCID: PMC10855155 DOI: 10.3390/cells13030286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024] Open
Abstract
The key to the effective treatment of neurodegenerative disorders is a thorough understanding of their pathomechanism. Neurodegeneration and neuroinflammation are mutually propelling brain processes. An impairment of glymphatic system function in neurodegeneration contributes to the progression of pathological processes. The question arises as to how neuroinflammation and the glymphatic system are related. This review highlights the direct and indirect influence of these two seemingly independent processes. Protein aggregates, a characteristic feature of neurodegeneration, are correlated with glymphatic clearance and neuroinflammation. Glial cells cannot be overlooked when considering the neuroinflammatory processes. Astrocytes are essential for the effective functioning of the glymphatic system and play a crucial role in the inflammatory responses in the central nervous system. It is imperative to acknowledge the significance of AQP4, a protein that exhibits a high degree of polarization in astrocytes and is crucial for the functioning of the glymphatic system. AQP4 influences inflammatory processes that have not yet been clearly delineated. Another interesting issue is the gut-brain axis and microbiome, which potentially impact the discussed processes. A discussion of the correlation between the functioning of the glymphatic system and neuroinflammation may contribute to exploring the pathomechanism of neurodegeneration.
Collapse
Affiliation(s)
- Stanisław Szlufik
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 02-091 Warszawa, Poland; (K.K.)
| | | | | | | |
Collapse
|
14
|
Thi Lai T, Kim YE, Nguyen LTN, Thi Nguyen T, Kwak IH, Richter F, Kim YJ, Ma HI. Microglial inhibition alleviates alpha-synuclein propagation and neurodegeneration in Parkinson's disease mouse model. NPJ Parkinsons Dis 2024; 10:32. [PMID: 38302446 PMCID: PMC10834509 DOI: 10.1038/s41531-024-00640-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024] Open
Abstract
The accumulation of alpha-synuclein (αSyn) is widely recognized as the main pathological process in Parkinson's disease (PD). Additionally, neuroinflammation is considered to be one of the contributing mechanisms in the development of PD. In light of this, it is hypothesized that the reactive microglia exacerbate the propagation of αSyn and neurodegeneration, while the inhibition of microglial activity may mitigate these effects. To test this hypothesis, αSyn preformed fibrils (PFF)-injected PD mouse model was employed. Co-injection of lipopolysaccharide (LPS) and PFF was performed to investigate if microglial reactivity intensified αSyn propagation and neurodegeneration. Additionally, oral administration of PLX5622, a microglial inhibitor that targets the colony-stimulating factor 1 receptor, was given for two weeks before and after PFF injection each to explore if microglial inhibition could prevent or reduce αSyn pathology. Intrastriatal co-injection of LPS and PFF resulted in increased microglial reactivity, αSyn accumulation, and neurodegeneration compared to PFF injection alone. However, treatment with PLX5622 significantly suppressed microglial reactivity, reduced αSyn pathology, and alleviated dopaminergic neuron degeneration in the PD mouse model injected with PFF. Based on these findings, it is evident that microglial reactivity plays a crucial role in the progression of αSyn pathology and neurodegeneration in PD. Furthermore, the results suggest that microglial inhibition may hold promise as a therapeutic strategy to delay the progression of αSyn pathology in PD.
Collapse
Affiliation(s)
- Thuy Thi Lai
- Hallym Neurological Institute, Hallym University, Anyang, Gyeonggi, 14068, South Korea
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, 30559, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Young Eun Kim
- Hallym Neurological Institute, Hallym University, Anyang, Gyeonggi, 14068, South Korea.
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, Gyeonggi, 14068, South Korea.
| | - Linh Thi Nhat Nguyen
- Hallym Neurological Institute, Hallym University, Anyang, Gyeonggi, 14068, South Korea
| | - Tinh Thi Nguyen
- Hallym Neurological Institute, Hallym University, Anyang, Gyeonggi, 14068, South Korea
| | - In Hee Kwak
- Hallym Neurological Institute, Hallym University, Anyang, Gyeonggi, 14068, South Korea
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, Gyeonggi, 14068, South Korea
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, 30559, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Yun Joong Kim
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi, South Korea
| | - Hyeo-Il Ma
- Hallym Neurological Institute, Hallym University, Anyang, Gyeonggi, 14068, South Korea
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, Gyeonggi, 14068, South Korea
| |
Collapse
|
15
|
Volk Robertson K, Schleh MW, Harrison FE, Hasty AH. Microglial-specific knockdown of iron import gene, Slc11a2, blunts LPS-induced neuroinflammatory responses in a sex-specific manner. Brain Behav Immun 2024; 116:370-384. [PMID: 38141840 PMCID: PMC10874246 DOI: 10.1016/j.bbi.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023] Open
Abstract
Neuroinflammation and microglial iron load are significant hallmarks found in several neurodegenerative diseases. In in vitro systems, microglia preferentially upregulate the iron importer, divalent metal transporter 1 (DMT1, gene name Slc11a2) in response to inflammatory stimuli, and it has been shown that iron can augment cellular inflammation, suggesting a feed-forward loop between mechanisms involved in iron import and inflammatory signaling. However, it is not understood how microglial iron import mechanisms contribute to inflammation in vivo, or whether altering a microglial iron-related gene affects the inflammatory response. These studies aimed to determine the effect of knocking down microglial iron import gene Slc11a2 on the inflammatory response in vivo. We generated a novel model of tamoxifen-inducible, microglial-specific Slc11a2 knockdown using Cx3cr1Cre-ERT2 mice. Transgenic male and female mice were administered intraperitoneal saline or lipopolysaccharide (LPS) and assessed for sickness behavior post-injection. Plasma cytokines and microglial bulk RNA sequencing (RNASeq) analyses were performed at 4 h post-LPS, and microglia were collected for gene expression analysis after 24 h. A subset of mice was assessed in a behavioral test battery following LPS-induced sickness recovery. Control male, but not female, mice significantly upregulated microglial Slc11a2 at 4 and 24 h following LPS. In Slc11a2 knockdown mice, we observed an improvement in the acute behavioral sickness response post-LPS in male, but not female, animals. Microglia from male, but not female, knockdown animals exhibited a significant decrease in LPS-provoked pro-inflammatory cytokine expression after 24 h. RNASeq data from male knockdown microglia 4 h post-LPS revealed a robust downregulation in inflammatory genes including Il6, Tnfα, and Il1β, and an increase in anti-inflammatory and homeostatic markers (e.g., Tgfbr1, Cx3cr1, and Trem2). This corresponded with a profound decrease in plasma pro-inflammatory cytokines 4 h post-LPS. At 4 h, male knockdown microglia also upregulated expression of markers of iron export, iron recycling, and iron homeostasis and decreased iron storage and import genes, along with pro-oxidant markers such as Cybb, Nos2, and Hif1α. Overall, this work elucidates how manipulating a specific gene involved in iron import in microglia alters acute inflammatory signaling and overall cell activation state in male mice. These data highlight a sex-specific link between a microglial iron import gene and the pro-inflammatory response to LPS in vivo, providing further insight into the mechanisms driving neuroinflammatory disease.
Collapse
Affiliation(s)
- Katrina Volk Robertson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Michael W Schleh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Fiona E Harrison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; VA Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
16
|
Ravichandran KA, Heneka MT. Inflammasomes in neurological disorders - mechanisms and therapeutic potential. Nat Rev Neurol 2024; 20:67-83. [PMID: 38195712 DOI: 10.1038/s41582-023-00915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
Inflammasomes are molecular scaffolds that are activated by damage-associated and pathogen-associated molecular patterns and form a key element of innate immune responses. Consequently, the involvement of inflammasomes in several diseases that are characterized by inflammatory processes, such as multiple sclerosis, is widely appreciated. However, many other neurological conditions, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, stroke, epilepsy, traumatic brain injury, sepsis-associated encephalopathy and neurological sequelae of COVID-19, all involve persistent inflammation in the brain, and increasing evidence suggests that inflammasome activation contributes to disease progression in these conditions. Understanding the biology and mechanisms of inflammasome activation is, therefore, crucial for the development of inflammasome-targeted therapies for neurological conditions. In this Review, we present the current evidence for and understanding of inflammasome activation in neurological diseases and discuss current and potential interventional strategies that target inflammasome activation to mitigate its pathological consequences.
Collapse
Affiliation(s)
- Kishore Aravind Ravichandran
- Department of Neuroinflammation, Institute of innate immunity, University of Bonn Medical Center Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Esch-sur-Alzette, Luxembourg.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, MA, USA.
| |
Collapse
|
17
|
Kim HJ, Park W. Alleviative Effect of Geniposide on Lipopolysaccharide-Stimulated Macrophages via Calcium Pathway. Int J Mol Sci 2024; 25:1728. [PMID: 38339007 PMCID: PMC10855527 DOI: 10.3390/ijms25031728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, we investigated how geniposide (a bioactive ingredient of gardenia fruit) acts on lipopolysaccharide (LPS)-stimulated macrophages. Griess reagent assay, Fluo-4 calcium assay, dihydrorhodamine 123 assay, multiplex cytokine assay, quantitative RT-PCR, and flow cytometry assay were used for this study. Data showed that geniposide at concentrations of 10, 25, and 50 μM reduced significantly the levels of nitric oxide, intracellular Ca2+, and hydrogen peroxide in LPS-activated RAW 264.7. Multiplex cytokine assay showed that geniposide at concentrations of 10, 25, and 50 μM meaningfully suppressed levels of IL-6, G-CSF, MCP-1, and MIP-1α in RAW 264.7 provoked by LPS; additionally, geniposide at concentrations of 25 and 50 μM meaningfully suppressed the levels of TNF-α, IP-10, GM-CSF, and MIP-1β. Flow cytometry assay showed that geniposide reduces significantly the level of activated P38 MAPK in RAW 264.7 provoked by LPS. Geniposide meaningfully suppressed LPS-induced transcription of inflammatory target genes, such as Chop, Jak2, Fas, c-Jun, c-Fos, Stat3, Nos2, Ptgs2, Gadd34, Asc, Xbp1, Nlrp3, and Par-2. Taken together, geniposide exerts alleviative effects in LPS-stimulated macrophages via the calcium pathway.
Collapse
Affiliation(s)
| | - Wansu Park
- Department of Pathology, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
18
|
Zhang X, Tang B, Guo J. Parkinson's disease and gut microbiota: from clinical to mechanistic and therapeutic studies. Transl Neurodegener 2023; 12:59. [PMID: 38098067 PMCID: PMC10722742 DOI: 10.1186/s40035-023-00392-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases. The typical symptomatology of PD includes motor symptoms; however, a range of nonmotor symptoms, such as intestinal issues, usually occur before the motor symptoms. Various microorganisms inhabiting the gastrointestinal tract can profoundly influence the physiopathology of the central nervous system through neurological, endocrine, and immune system pathways involved in the microbiota-gut-brain axis. In addition, extensive evidence suggests that the gut microbiota is strongly associated with PD. This review summarizes the latest findings on microbial changes in PD and their clinical relevance, describes the underlying mechanisms through which intestinal bacteria may mediate PD, and discusses the correlations between gut microbes and anti-PD drugs. In addition, this review outlines the status of research on microbial therapies for PD and the future directions of PD-gut microbiota research.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
19
|
Dzamko N. Cytokine activity in Parkinson's disease. Neuronal Signal 2023; 7:NS20220063. [PMID: 38059210 PMCID: PMC10695743 DOI: 10.1042/ns20220063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023] Open
Abstract
The contribution of the immune system to the pathophysiology of neurodegenerative Parkinson's disease (PD) is increasingly being recognised, with alterations in the innate and adaptive arms of the immune system underlying central and peripheral inflammation in PD. As chief modulators of the immune response, cytokines have been intensely studied in the field of PD both in terms of trying to understand their contribution to disease pathogenesis, and if they may comprise much needed therapeutic targets for a disease with no current modifying therapy. This review summarises current knowledge on key cytokines implicated in PD (TNFα, IL-6, IL-1β, IL-10, IL-4 and IL-1RA) that can modulate both pro-inflammatory and anti-inflammatory effects. Cytokine activity in PD is clearly a complicated process mediated by substantial cross-talk of signalling pathways and the need to balance pro- and anti-inflammatory effects. However, understanding cytokine activity may hold promise for unlocking new insight into PD and how it may be halted.
Collapse
Affiliation(s)
- Nicolas Dzamko
- School of Medical Sciences, Faculty of Medicine and Health and the Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| |
Collapse
|
20
|
Sieminski M, Szaruta-Raflesz K, Szypenbejl J, Krzyzaniak K. Potential Neuroprotective Role of Melatonin in Sepsis-Associated Encephalopathy Due to Its Scavenging and Anti-Oxidative Properties. Antioxidants (Basel) 2023; 12:1786. [PMID: 37760089 PMCID: PMC10525116 DOI: 10.3390/antiox12091786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. The brain is one of the organs involved in sepsis, and sepsis-induced brain injury manifests as sepsis-associated encephalopathy (SAE). SAE may be present in up to 70% of septic patients. SAE has a very wide spectrum of clinical symptoms, ranging from mild behavioral changes through cognitive disorders to disorders of consciousness and coma. The presence of SAE increases mortality in the population of septic patients and may lead to chronic cognitive dysfunction in sepsis survivors. Therefore, therapeutic interventions with neuroprotective effects in sepsis are needed. Melatonin, a neurohormone responsible for the control of circadian rhythms, exerts many beneficial physiological effects. Its anti-inflammatory and antioxidant properties are well described. It is considered a potential therapeutic factor in sepsis, with positive results from studies on animal models and with encouraging results from the first human clinical trials. With its antioxidant and anti-inflammatory potential, it may also exert a neuroprotective effect in sepsis-associated encephalopathy. The review presents data on melatonin as a potential drug in SAE in the wider context of the pathophysiology of SAE and the specific actions of the pineal neurohormone.
Collapse
Affiliation(s)
- Mariusz Sieminski
- Department of Emergency Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland; (K.S.-R.); (K.K.)
| | | | - Jacek Szypenbejl
- Department of Emergency Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland; (K.S.-R.); (K.K.)
| | | |
Collapse
|
21
|
Millán Solano MV, Salinas Lara C, Sánchez-Garibay C, Soto-Rojas LO, Escobedo-Ávila I, Tena-Suck ML, Ortíz-Butrón R, Choreño-Parra JA, Romero-López JP, Meléndez Camargo ME. Effect of Systemic Inflammation in the CNS: A Silent History of Neuronal Damage. Int J Mol Sci 2023; 24:11902. [PMID: 37569277 PMCID: PMC10419139 DOI: 10.3390/ijms241511902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/13/2023] Open
Abstract
Central nervous system (CNS) infections including meningitis and encephalitis, resulting from the blood-borne spread of specific microorganisms, provoke nervous tissue damage due to the inflammatory process. Moreover, different pathologies such as sepsis can generate systemic inflammation. Bacterial lipopolysaccharide (LPS) induces the release of inflammatory mediators and damage molecules, which are then released into the bloodstream and can interact with structures such as the CNS, thus modifying the blood-brain barrier's (BBB´s) and blood-cerebrospinal fluid barrier´s (BCSFB´s) function and inducing aseptic neuroinflammation. During neuroinflammation, the participation of glial cells (astrocytes, microglia, and oligodendrocytes) plays an important role. They release cytokines, chemokines, reactive oxygen species, nitrogen species, peptides, and even excitatory amino acids that lead to neuronal damage. The neurons undergo morphological and functional changes that could initiate functional alterations to neurodegenerative processes. The present work aims to explain these processes and the pathophysiological interactions involved in CNS damage in the absence of microbes or inflammatory cells.
Collapse
Affiliation(s)
- Mara Verónica Millán Solano
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cos’ıo Villegas, Mexico City 14080, Mexico;
| | - Citlaltepetl Salinas Lara
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Carlos Sánchez-Garibay
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Luis O. Soto-Rojas
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Itzel Escobedo-Ávila
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico
| | - Martha Lilia Tena-Suck
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Rocío Ortíz-Butrón
- Laboratorio de Neurobiología, Departamento de Fisiología de ENCB, Instituto Politécnico Nacional, Mexico City 07738, Mexico;
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cos’ıo Villegas, Mexico City 14080, Mexico;
| | - José Pablo Romero-López
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - María Estela Meléndez Camargo
- Laboratorio de Farmacología, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu Esq. Manuel Luis Stampa S/N, U.P. Adolfo López Mateos, Mexico City 07738, Mexico;
| |
Collapse
|
22
|
Fu K, Hui C, Wang X, Ji T, Li X, Sun R, Xing C, Fan X, Gao Y, Su L. Torpor-like Hypothermia Induced by A1 Adenosine Receptor Agonist: A Novel Approach to Protect against Neuroinflammation. Int J Mol Sci 2023; 24:11036. [PMID: 37446216 DOI: 10.3390/ijms241311036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Hypothermia is a promising clinical therapy for acute injuries, including neural damage, but it also faces practical limitations due to the complexities of the equipment and procedures required. This study investigates the use of the A1 adenosine receptor (A1AR) agonist N6-cyclohexyladenosine (CHA) as a more accessible method to induce steady, torpor-like hypothermic states. Additionally, this study investigates the protective potential of CHA against LPS-induced sepsis and neuroinflammation. Our results reveal that CHA can successfully induce a hypothermic state by activating a neuronal circuit similar to the one that induces physiological torpor. This state is characterized by maintaining a steady core body temperature below 28 °C. We further found that this torpor-like state effectively mitigates neuroinflammation and preserves the integrity of the blood-brain barrier during sepsis, thereby limiting the infiltration of inflammatory factors into the central nervous system. Instead of being a direct effect of CHA, this protective effect is attributed to inhibiting pro-inflammatory responses in macrophages and reducing oxidative stress damage in endothelial cells under systemic hypothermia. These results suggest that A1AR agonists such as CHA could potentially be potent neuroprotective agents against neuroinflammation. They also shed light on possible future directions for the application of hypothermia-based therapies in the treatment of sepsis and other neuroinflammatory conditions.
Collapse
Affiliation(s)
- Kang Fu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chunlei Hui
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Xinyuan Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Tingting Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiuqing Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Rui Sun
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chunlei Xing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Xi Fan
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yuanqing Gao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
23
|
Park JH, Hwang JW, Lee HJ, Jang GM, Jeong YJ, Cho J, Seo J, Hoe HS. Lomerizine inhibits LPS-mediated neuroinflammation and tau hyperphosphorylation by modulating NLRP3, DYRK1A, and GSK3α/β. Front Immunol 2023; 14:1150940. [PMID: 37435081 PMCID: PMC10331167 DOI: 10.3389/fimmu.2023.1150940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Lomerizine is a calcium channel blocker that crosses the blood-brain barrier and is used clinically in the treatment of migraines. However, whether lomerizine is beneficial in modulating neuroinflammatory responses has not been tested yet. Methods To assess the potential of lomerizine for repurposing as a treatment for neuroinflammation, we investigated the effects of lomerizine on LPS-induced proinflammatory responses in BV2 microglial cells, Alzheimer's disease (AD) excitatory neurons differentiated from induced pluripotent stem cells (iPSCs), and in LPS-treated wild type mice. Results In BV2 microglial cells, lomerizine pretreatment significantly reduced LPS-evoked proinflammatory cytokine and NLRP3 mRNA levels. Similarly, lomerizine pretreatment significantly suppressed the increases in Iba-1, GFAP, proinflammatory cytokine and NLRP3 expression induced by LPS in wild-type mice. In addition, lomerizine posttreatment significantly decreased LPS-stimulated proinflammatory cytokine and SOD2 mRNA levels in BV2 microglial cells and/or wild-type mice. In LPS-treated wild-type mice and AD excitatory neurons differentiated from iPSCs, lomerizine pretreatment ameliorated tau hyperphosphorylation. Finally, lomerizine abolished the LPS-mediated activation of GSK3α/β and upregulation of DYRK1A, which is responsible for tau hyperphosphorylation, in wild-type mice. Discussion These data suggest that lomerizine attenuates LPS-mediated neuroinflammatory responses and tau hyperphosphorylation and is a potential drug for neuroinflammation- or tauopathy-associated diseases.
Collapse
Affiliation(s)
- Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| | - Jeong-Woo Hwang
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Hyun-ju Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Geum Mi Jang
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| | - Yoo Joo Jeong
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| | - Joonho Cho
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| | - Jinsoo Seo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| |
Collapse
|
24
|
Bardaghi Z, Rajabian A, Beheshti F, Hashemi-Arabi M, Hosseini M, Salmani H. Memantine, an NMDA receptor antagonist, protected the brain against the long-term consequences of sepsis in mice. Life Sci 2023; 323:121695. [PMID: 37062446 DOI: 10.1016/j.lfs.2023.121695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/01/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
AIMS Long-term neuroinflammation and brain dysfunction have frequently been reported in sepsis survivors. In this study, the protective effect of memantine (an NMDA receptor antagonist) on the long-term consequences of sepsis on the brain was investigated in mice. MATERIALS AND METHODS Eighty-five male C57 mice were included. Memantine was administrated through gavage at 5, 10, and 20 mg/kg three days before sepsis and continued for three days after sepsis induction. Sepsis was induced by intraperitoneal injection of 5 mg/kg LPS. A cohort of mice was sacrificed on the 4th day post sepsis to measure NF-κB, TNF-α, and IL-1β mRNA expression and oxidative stress markers in the brain. The second cohort was used for behavioral tests one month after sepsis induction and then sacrificed for oxidative stress markers and acetylcholinesterase (AChE) activity measurement. KEY FINDINGS MDA levels and mRNA expression of NF-κB, TNF-α, and IL-1β ameliorated by memantine at the early days of sepsis induction, and total thiol content and SOD activity were increased. Post-septic mice showed significant disruption of recognition memory in novel object recognition (NOR) and depressive and anxiety-like behaviors in tail suspension test, elevated plus maze (EPM), and open field tests one month after sepsis. Memantine at 10 and 20 mg/kg dose-dependently ameliorated behavioral abnormalities, reduced AChE activity and MDA levels, and enhanced SOD activity and thiol content one month after sepsis. SIGNIFICANCE These findings suggest that early treatment of septic mice with memantine could ameliorate brain inflammation and oxidative damage and prevent long-term behavioral consequences of sepsis.
Collapse
Affiliation(s)
- Zahra Bardaghi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Masoud Hashemi-Arabi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Salmani
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
25
|
Chiarini A, Gui L, Viviani C, Armato U, Dal Prà I. NLRP3 Inflammasome’s Activation in Acute and Chronic Brain Diseases—An Update on Pathogenetic Mechanisms and Therapeutic Perspectives with Respect to Other Inflammasomes. Biomedicines 2023; 11:biomedicines11040999. [PMID: 37189617 DOI: 10.3390/biomedicines11040999] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Increasingly prevalent acute and chronic human brain diseases are scourges for the elderly. Besides the lack of therapies, these ailments share a neuroinflammation that is triggered/sustained by different innate immunity-related protein oligomers called inflammasomes. Relevant neuroinflammation players such as microglia/monocytes typically exhibit a strong NLRP3 inflammasome activation. Hence the idea that NLRP3 suppression might solve neurodegenerative ailments. Here we review the recent Literature about this topic. First, we update conditions and mechanisms, including RNAs, extracellular vesicles/exosomes, endogenous compounds, and ethnic/pharmacological agents/extracts regulating NLRP3 function. Second, we pinpoint NLRP3-activating mechanisms and known NLRP3 inhibition effects in acute (ischemia, stroke, hemorrhage), chronic (Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, MS, ALS), and virus-induced (Zika, SARS-CoV-2, and others) human brain diseases. The available data show that (i) disease-specific divergent mechanisms activate the (mainly animal) brains NLRP3; (ii) no evidence proves that NLRP3 inhibition modifies human brain diseases (yet ad hoc trials are ongoing); and (iii) no findings exclude that concurrently activated other-than-NLRP3 inflammasomes might functionally replace the inhibited NLRP3. Finally, we highlight that among the causes of the persistent lack of therapies are the species difference problem in disease models and a preference for symptomatic over etiologic therapeutic approaches. Therefore, we posit that human neural cell-based disease models could drive etiological, pathogenetic, and therapeutic advances, including NLRP3’s and other inflammasomes’ regulation, while minimizing failure risks in candidate drug trials.
Collapse
|
26
|
Qiu T, Li X, Chen W, He J, Shi L, Zhou C, Zheng A, Lei Z, Tang C, Yu Q, Du L, Guo J. Prospective study on Maresin-1 and cytokine levels in medication-naïve adolescents with first-episode major depressive disorder. Front Psychiatry 2023; 14:1132791. [PMID: 37009097 PMCID: PMC10050445 DOI: 10.3389/fpsyt.2023.1132791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundInflammation and immune activation may play a role in the pathological mechanism of Major Depressive Disorder (MDD). Evidence from cross-sectional and longitudinal studies of adolescents and adults has shown that MDD is associated with increased plasma pro-inflammatory cytokines (e.g., IL-1β, IL-6). It has been reported that Specialized Pro-resolving Mediators (SPMs) mediate inflammation resolution, and Maresin-1 can activate the process of inflammation and promote inflammation resolution by promoting macrophage phagocytosis. However, no clinical studies have been conducted to evaluate the relationship between the levels of Maresin-1 and cytokine and the severity of MDD symptomatology in adolescents.Methods40 untreated adolescent patients with primary and moderate to severe MDD and 30 healthy participants as the healthy control (HC) group aged between 13 and 18 years old were enrolled. They received clinical and Hamilton Depression Rating Scale (HDRS-17) evaluation and then, blood samples were collected. Patients in the MDD group were re-evaluated for HDRS-17, and blood samples were taken after a six to eight-week fluoxetine treatment.ResultsThe adolescent patients with MDD had lower serum levels of Maresin-1 and higher serum levels of interleukin 6 (IL-6) compared with the HC group. Fluoxetine treatment alleviated depressive symptoms in MDD adolescent patients, which was reflected by higher serum levels of Maresin-1 and IL-4 and lower HDRS-17 scores, serum levels of IL-6, and IL-1β. Moreover, the serum level of Maresin-1 was negatively correlated with the depression severity scores on the HDRS-17.ConclusionAdolescent patients with primary MDD had lower levels of Maresin-1 and higher levels of IL-6 compared with the HC group, implying that the peripheral level of pro-inflammatory cytokines may be elevated in MDD, resulting in the insufficiency of inflammation resolution. The Maresin-1 and IL-4 levels increased after anti-depressant treatment, whereas IL-6 and IL-1β levels decreased significantly. Moreover, Maresin-1 level negatively correlated with depression severity, suggesting that reduced levels of Maresin-1 promoted the progression of MDD.
Collapse
|
27
|
Zhang Z, Zhao L, Zhou X, Meng X, Zhou X. Role of inflammation, immunity, and oxidative stress in hypertension: New insights and potential therapeutic targets. Front Immunol 2023; 13:1098725. [PMID: 36703963 PMCID: PMC9871625 DOI: 10.3389/fimmu.2022.1098725] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Hypertension is regarded as the most prominent risk factor for cardiovascular diseases, which have become a primary cause of death, and recent research has demonstrated that chronic inflammation is involved in the pathogenesis of hypertension. Both innate and adaptive immunity are now known to promote the elevation of blood pressure by triggering vascular inflammation and microvascular remodeling. For example, as an important part of innate immune system, classically activated macrophages (M1), neutrophils, and dendritic cells contribute to hypertension by secreting inflammatory cy3tokines. In particular, interferon-gamma (IFN-γ) and interleukin-17 (IL-17) produced by activated T lymphocytes contribute to hypertension by inducing oxidative stress injury and endothelial dysfunction. However, the regulatory T cells and alternatively activated macrophages (M2) may have a protective role in hypertension. Although inflammation is related to hypertension, the exact mechanisms are complex and unclear. The present review aims to reveal the roles of inflammation, immunity, and oxidative stress in the initiation and evolution of hypertension. We envisage that the review will strengthen public understanding of the pathophysiological mechanisms of hypertension and may provide new insights and potential therapeutic strategies for hypertension.
Collapse
Affiliation(s)
| | | | | | - Xu Meng
- *Correspondence: Xianliang Zhou, ; Xu Meng,
| | | |
Collapse
|
28
|
Ren Y, Meng K, Sun Y, Wu M, Li S, Zhao W, Sun Y, Zhu X, Yin C. Effects of white matter lesion grading on the cognitive function of patients with chronic alcohol dependence. Am J Transl Res 2023; 15:1129-1139. [PMID: 36915744 PMCID: PMC10006824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/08/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Alcohol dependence has become a major problem that poses a serious threat to public health. Long-term heavy alcohol consumption can lead to brain functional disorders. This study aimed to investigate the relationship of the severity of cerebral white matter lesions (WMLs), serum neurofilament light (NfL) and inflammatory factors, tumour necrosis factor alpha (TNF-α) and Interleukin-1β (IL-1β), with the cognitive function of patients with alcohol dependence. METHODS A total of 118 patients were enrolled in this prospective study, and divided into alcohol-dependent and non-alcohol-dependent groups. The severity of WMLs was assessed using the Fazekas scale based on magnetic resonance imaging analysis. The expression levels of NfL, TNF-α and IL-1β in the serum of the subjects were measured by enzyme-linked immunosorbent assay. The cognitive function and psychological status of the patients were assessed using the Minimum Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Hamilton Depression Rating Scale (HAMD) and Hamilton Anxiety Rating Scale (HAMA). The severity of WMLs and the expression levels of serum NfL, TNF-α and IL-1β in alcohol-dependent patients were analysed for their influence on cognitive function. This clinical trial was approved by China Clinical Trials Registry, and the trial number is ChiCTR2200066057 (http://www.chictr.org.cn/searchproj.aspx). RESULTS The score of Fazekas scale was higher, and the MMSE score and MoCA score were lower in the alcohol-dependent group than those in the non-alcohol-dependent group. Moreover, the Fazekas score of the alcohol-dependent group was negatively correlated with the MMSE and MoCA scores. The serum NfL, TNF-α and IL-1β levels were higher in the alcohol-dependent group than in the non-alcohol-dependent group, and the serum NfL, TNF-α and IL-1β levels in the alcohol-dependent group were negatively correlated with the MMSE and MoCA scores. CONCLUSION Alcohol-dependent patients have more severe cerebral WMLs and significant cognitive impairment, particularly in visuospatial and executive functions, attention, calculation, abstraction, delayed recall and orientation. Serum NfL, TNF-α and IL-1β may be used as biomarkers to assess alcohol related cognitive decline.
Collapse
Affiliation(s)
- Yuhang Ren
- Department of Neurology, Hongqi Hospital Affiliated to Mudanjiang Medical University Mudanjiang 157000, Heilongjiang, China.,Heilongjiang Key Laboratory of Ischemic Stroke Prevention and Treatment Mudanjiang 157000, Heilongjiang, China
| | - Keyan Meng
- Department of Neurology, Hongqi Hospital Affiliated to Mudanjiang Medical University Mudanjiang 157000, Heilongjiang, China.,Heilongjiang Key Laboratory of Ischemic Stroke Prevention and Treatment Mudanjiang 157000, Heilongjiang, China.,Department of Neurology, Shandong Caoxian People's Hospita of Heze City Heze, Shandong, China
| | - Yuting Sun
- Department of Neurology, Hongqi Hospital Affiliated to Mudanjiang Medical University Mudanjiang 157000, Heilongjiang, China.,Heilongjiang Key Laboratory of Ischemic Stroke Prevention and Treatment Mudanjiang 157000, Heilongjiang, China
| | - Meini Wu
- Department of Neurology, Hongqi Hospital Affiliated to Mudanjiang Medical University Mudanjiang 157000, Heilongjiang, China.,Heilongjiang Key Laboratory of Ischemic Stroke Prevention and Treatment Mudanjiang 157000, Heilongjiang, China
| | - Siou Li
- Heilongjiang Key Laboratory of Ischemic Stroke Prevention and Treatment Mudanjiang 157000, Heilongjiang, China.,Department of Endocrinology, Hongqi Hospital Affiliated to Mudanjiang Medical University Mudanjiang 157000, Heilongjiang, China
| | - Weina Zhao
- Department of Neurology, Hongqi Hospital Affiliated to Mudanjiang Medical University Mudanjiang 157000, Heilongjiang, China.,Heilongjiang Key Laboratory of Ischemic Stroke Prevention and Treatment Mudanjiang 157000, Heilongjiang, China
| | - Yanli Sun
- Department of Neurology, Hongqi Hospital Affiliated to Mudanjiang Medical University Mudanjiang 157000, Heilongjiang, China.,Heilongjiang Key Laboratory of Ischemic Stroke Prevention and Treatment Mudanjiang 157000, Heilongjiang, China
| | - Xiaofeng Zhu
- Heilongjiang Key Laboratory of Ischemic Stroke Prevention and Treatment Mudanjiang 157000, Heilongjiang, China
| | - Changhao Yin
- Department of Neurology, Hongqi Hospital Affiliated to Mudanjiang Medical University Mudanjiang 157000, Heilongjiang, China.,Heilongjiang Key Laboratory of Ischemic Stroke Prevention and Treatment Mudanjiang 157000, Heilongjiang, China
| |
Collapse
|
29
|
Fatty Acid-Derived N-acylethanolamines Dietary Supplementation Attenuates Neuroinflammation and Cognitive Impairment in LPS Murine Model. Nutrients 2022; 14:nu14183879. [PMID: 36145255 PMCID: PMC9504857 DOI: 10.3390/nu14183879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Neuroinflammation plays a critical role in the pathogenesis of most neurological and neurodegenerative diseases and therefore represents a potential therapeutic target. In this regard, accelerating the resolution process in chronic neuroinflammation may be an effective strategy to deal with the cognitive consequences of neuropathology and generalized inflammatory processes. N-acylethanolamine (NAE) derivatives of fatty acids, being highly active lipid mediators, possess pro-resolving activity in inflammatory processes and are promising agents for the suppression of neuroinflammation and its consequences. This paper is devoted to a study of the effects played by dietary supplement (DS), containing a composition of fatty acid-derived NAEs, obtained from squid Berryteuthis magister, on the hippocampal neuroinflammatory and memory processes. By detecting the production of pro-inflammatory cytokines and glial markers, a pronounced anti-inflammatory activity of DS was demonstrated both in vitro and in vivo. DS administration reversed the LPS-induced reduction in hippocampal neurogenesis and memory deterioration. LC-MS analysis revealed an increase in the production of a range of NAEs with well-documented anti-inflammatory activity in response to the administered lipid composition. To conclude, we found that tested DS suppresses the neuroinflammatory response by reducing glial activation, positively regulates neural progenitor proliferation, and attenuates hippocampal-dependent memory impairment.
Collapse
|
30
|
Paloschi MV, Boeno CN, Lopes JA, Rego CMA, Silva MDS, Santana HM, Serrath SN, Ikenohuchi YJ, Farias BJC, Felipin KP, Nery NM, Dos Reis VP, de Lima Lemos CT, Evangelista JR, da Silva Setúbal S, Soares AM, Zuliani JP. Reactive oxygen species-dependent-NLRP3 inflammasome activation in human neutrophils induced by l-amino acid oxidase derived from Calloselasma rhodostoma venom. Life Sci 2022; 308:120962. [PMID: 36113732 DOI: 10.1016/j.lfs.2022.120962] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/31/2022] [Accepted: 09/10/2022] [Indexed: 11/20/2022]
Abstract
l-Amino acid oxidase isolated from Calloselasma rhodostoma (Cr-LAAO) snake venom is a potent stimulus for neutrophil activation and production of inflammatory mediators, contributing to local inflammatory effects in victims of envenoming. Cr-LAAO triggered the activation of nicotinamide adenine dinucleotide phosphatase (NADPH) oxidase complex and protein kinase C (PKC)-α signaling protein for reactive oxygen species (ROS) production. This study aims to evaluate the ROS participation in the NLRP3 inflammasome complex activation in human neutrophil. Human neutrophils were isolated and stimulated for 1 or 2 h with RPMI (negative control), LPS (1 μg/mL, positive control) or Cr-LAAO (50 μg/mL). The neutrophil transcriptome was examined using the microarray technique, and RT-qPCR for confirmation of gene expression. Immunofluorescence assays for NLRP3, caspase-1, IL-1β and GSDMD proteins was performed by Western blot in the presence and/or absence of Apocynin, an inhibitor of NADPH oxidase. IL-1β release was also detected in the presence and/or absence of NLRP3, caspase-1 and NADPH oxidase inhibitors. Results showed that Cr-LAAO upregulated the expression of genes that participate in the NADPH oxidase complex formation and inflammasome assembly. NLRP3 was activated and accumulated in the cytosol forming punctas, indicating its activation. Gasdermin D was not cleaved but lactate dehydrogenase was released. Furthermore, ROS inhibition decreased the expression of NLRP3 inflammasome complex proteins, as observed by protein expression in the presence and/or absence of apocynin, an NADPH oxidase inhibitor. IL-1β was also released, and pharmacological inhibition of NLRP3, caspase-1, and ROS reduced the amount of released cytokine. This is the first report demonstrating the activation of the NLRP3 inflammasome complex via ROS generation by Cr-LAAO, which may lead to the development of local inflammatory effects observed in snakebite victims.
Collapse
Affiliation(s)
- Mauro Valentino Paloschi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Charles Nunes Boeno
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Jéssica Amaral Lopes
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Cristina Matiele Alves Rego
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Milena Daniela Souza Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Hallison Mota Santana
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Suzanne Nery Serrath
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Yoda Janaina Ikenohuchi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Braz Junior Campos Farias
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Kátia Paula Felipin
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Neriane Monteiro Nery
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Valdison Pereira Dos Reis
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Caleb Torres de Lima Lemos
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Jaina Rodrigues Evangelista
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Sulamita da Silva Setúbal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Andreimar Martins Soares
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Juliana Pavan Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil.
| |
Collapse
|
31
|
Su XL, Wang SH, Komal S, Cui LG, Ni RC, Zhang LR, Han SN. The caspase-1 inhibitor VX765 upregulates connexin 43 expression and improves cell-cell communication after myocardial infarction via suppressing the IL-1β/p38 MAPK pathway. Acta Pharmacol Sin 2022; 43:2289-2301. [PMID: 35132192 PMCID: PMC9433445 DOI: 10.1038/s41401-021-00845-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/15/2021] [Indexed: 02/04/2023] Open
Abstract
Connexin 43 (Cx43) is the most important protein in the gap junction channel between cardiomyocytes. Abnormalities of Cx43 change the conduction velocity and direction of cardiomyocytes, leading to reentry and conduction block of the myocardium, thereby causing arrhythmia. It has been shown that IL-1β reduces the expression of Cx43 in astrocytes and cardiomyocytes in vitro. However, whether caspase-1 and IL-1β affect connexin 43 after myocardial infarction (MI) is uncertain. In this study we investigated the effects of VX765, a caspase-1 inhibitor, on the expression of Cx43 and cell-to-cell communication after MI. Rats were treated with VX765 (16 mg/kg, i.v.) 1 h before the left anterior descending artery (LAD) ligation, and then once daily for 7 days. The ischemic heart was collected for histochemical analysis and Western blot analysis. We showed that VX765 treatment significantly decreased the infarct area, and alleviated cardiac dysfunction and remodeling by suppressing the NLRP3 inflammasome/caspase-1/IL-1β expression in the heart after MI. In addition, VX765 treatment markedly raised Cx43 levels in the heart after MI. In vitro experiments were conducted in rat cardiac myocytes (RCMs) stimulated with the supernatant from LPS/ATP-treated rat cardiac fibroblasts (RCFs). Pretreatment of the RCFs with VX765 (25 μM) reversed the downregulation of Cx43 expression in RCMs and significantly improved intercellular communication detected using a scrape-loading/dye transfer assay. We revealed that VX765 suppressed the activation of p38 MAPK signaling in the heart tissue after MI as well as in RCMs stimulated with the supernatant from LPS/ATP-treated RCFs. Taken together, these data show that the caspase-1 inhibitor VX765 upregulates Cx43 expression and improves cell-to-cell communication in rat heart after MI via suppressing the IL-1β/p38 MAPK pathway.
Collapse
Affiliation(s)
- Xue-Ling Su
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shu-Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Sumra Komal
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Liu-Gen Cui
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Rui-Cong Ni
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
32
|
Liu H, Ma C, Xu H, Zhang H, Xu R, Zhang K, Sun R, Li K, Wu Q, Wen L, Zhang L, Guo Y. In vivo Detection of Macromolecule Free Radicals in Mouse Sepsis-Associated Encephalopathy Using a New MRI and Immunospin Trapping Strategy. Int J Nanomedicine 2022; 17:3809-3820. [PMID: 36072961 PMCID: PMC9444031 DOI: 10.2147/ijn.s378726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/25/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction Free radicals in oxidative stress are known to play a pathogenic role in sepsis. A major clinical challenge associated with sepsis is sepsis-associated encephalopathy (SAE). The rapid increase of free radicals in the brain promotes SAE progression. Here, macromolecule free radicals in the mouse brain were uniquely detected by immunospin trapping (IST) and magnetic resonance imaging (MRI). Methods The new strategy uses spin trapping agent DEPMPO-biotin to capture macromolecule free radicals in lesions and form biotin-DEPMPO-radical adducts. Then, a targeting MRI probe, avidin-BSA@Gd-ESIO, was used to detect the radical adducts through the highly specific binding of avidin and biotin. The avidin-BSA@Gd-ESIO probe was synthesized and systematically characterized. The detection capability of the new strategy was evaluated in vitro and in vivo using a confocal microscope and a 7T MRI, respectively. Results In reactive oxygen species (ROS)–induced microglial cells, the accumulation of the avidin-BSA@Gd-ESIO probe in the DEPMPO-biotin-treated group was significantly higher than that of control groups. In vivo MRI T1 signal intensities were significantly higher within the hippocampus, striatum, and medial cortex of the brain in mice with a mild or severe degree of sepsis compared with the sham control group. Histological analysis validated that the distribution of the avidin-BSA@Gd-ESIO probe in brain tissue slices was consistent with the MRI images. The fluorescence signals of ROS and avidin-BSA@Gd-ESIO probe were overlapped and visualized using immunofluorescent staining. By evaluating the T1 signal changes over time in different areas of the brain, we estimated the optimal MRI detection time to be 30 minutes after the probe administration. Discussion This method can be applied specifically to assess the level of macromolecular free radicals in vivo in a simple and stable manner, providing a pathway for a more comprehensive understanding of the role of free radicals in SAE.
Collapse
Affiliation(s)
- Hanrui Liu
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Chengyong Ma
- West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Huayan Xu
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Huan Zhang
- College of Chemistry and Materials Science, Northwest University, Xi’an, People’s Republic of China
| | - Rong Xu
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Kun Zhang
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Ran Sun
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Kuan Li
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Qihong Wu
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Lingyi Wen
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Lizhi Zhang
- West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Lizhi Zhang, Department of Radiology, West China Hospital of Sichuan University, No. 37, Guoxue Road, Chengdu, Sichuan, 610041, People’s Republic of China, Email
| | - Yingkun Guo
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Correspondence: Yingkun Guo, Development and Related Diseases of Women and Children Key Laboratory, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan, 610041, People’s Republic of China, Tel +86+18180609256, Email
| |
Collapse
|
33
|
Yan YQ, Pu JL, Zheng R, Fang Y, Gu LY, Tao-Guo, Si XL, Cheng-Zhou, Ying-Chen, Yi-Liu, Guan XJ, Xu XJ, Yan YP, Yin XZ, Zhang MM, Tao ZH, Zhang BR. Different patterns of exosomal α-Synuclein between Parkinson's disease and probable rapid eye movement sleep behavior disorder. Eur J Neurol 2022; 29:3590-3599. [PMID: 36047985 DOI: 10.1111/ene.15537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/18/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The insidious onset of Parkinson's disease (PD) makes early diagnosis difficult. Notably, idiopathic rapid eye movement sleep behavior disorder (iRBD) was reported as a prodrome of PD, which may represent a breakthrough for the early diagnosis of PD. However, currently there is no reliable biomarker for PD diagnosis. OBJECTIVES Considering that α-synuclein (α-Syn) and neuroinflammation are known to develop prior to the onset of clinical symptoms in PD, we hypothesized that plasma total exosomal α-Syn (t-exo α-Syn), neural-derived exosomal α-Syn (n-exo α-Syn), and exosomal apoptosis-associated speck-like protein containing a CARD (ASC) may be potential biomarkers of PD. METHODS In this study, we recruited 78 PD patients, 153 probable iRBD patients (pRBD), and 63 healthy controls (HCs). α-Syn concentrations were measured using a one-step paramagnetic particle-based chemiluminescence immunoassay (MPs-CILA), and ASC levels were measured using the Ella system. RESULTS We found that t-exo α-Syn was significantly increased in the PD group compared to the pRBD and HC groups (p<0.0001), while n-exo α-Syn levels were significantly increased in both the PD and pRBD groups compared to HC (p<0.0001). Furthermore, although no difference was found in ASC levels between the PD and pRBD groups, there was a positive correlation between ASC and α-Syn in exosomes. CONCLUSIONS Our results suggest that both t-exo α-Syn and n-exo α-Syn were elevated in the PD group, while only n-exo α-Syn was elevated in the pRBD group. Additionally, the adaptor protein of inflammasome ASC is correlated with α-Syn and may facilitate synucleinopathy.
Collapse
Affiliation(s)
- Yi-Qun Yan
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia-Li Pu
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ran Zheng
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Fang
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lu-Yan Gu
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao-Guo
- Department of Radiology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-Li Si
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cheng-Zhou
- Department of Radiology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying-Chen
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi-Liu
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-Jun Guan
- Department of Radiology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-Jun Xu
- Department of Radiology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ya-Ping Yan
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin-Zhen Yin
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min-Ming Zhang
- Department of Radiology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhi-Hua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bao-Rong Zhang
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
34
|
Satta S, Hugo C, Sharma M, Rezek V, Kossyvakis A, Roy SS, Kitchen S, Kelesidis T. Mitoquinone mesylate attenuates brain inflammation in humanized mouse model of chronic HIV infection. AIDS 2022; 36:1609-1611. [PMID: 35979834 PMCID: PMC10924803 DOI: 10.1097/qad.0000000000003291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Sandro Satta
- Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA, USA
| | - Cristelle Hugo
- Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA, USA
| | - Madhav Sharma
- Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA, USA
| | - Valerie Rezek
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Athanassios Kossyvakis
- Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA, USA
| | - Shubhendu Sen Roy
- Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA, USA
| | - Scott Kitchen
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Theodoros Kelesidis
- Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
35
|
Brandi E, Torres-Garcia L, Svanbergsson A, Haikal C, Liu D, Li W, Li JY. Brain region-specific microglial and astrocytic activation in response to systemic lipopolysaccharides exposure. Front Aging Neurosci 2022; 14:910988. [PMID: 36092814 PMCID: PMC9459169 DOI: 10.3389/fnagi.2022.910988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
Microglia cells are the macrophage population within the central nervous system, which acts as the first line of the immune defense. These cells present a high level of heterogeneity among different brain regions regarding morphology, cell density, transcriptomes, and expression of different inflammatory mediators. This region-specific heterogeneity may lead to different neuroinflammatory responses, influencing the regional involvement in several neurodegenerative diseases. In this study, we aimed to evaluate microglial response in 16 brain regions. We compared different aspects of the microglial response, such as the extension of their morphological changes, sensitivity, and ability to convert an acute inflammatory response to a chronic one. Then, we investigated the synaptic alterations followed by acute and chronic inflammation in substantia nigra. Moreover, we estimated the effect of partial ablation of fractalkine CX3C receptor 1 (CX3CR1) on microglial response. In the end, we briefly investigated astrocytic heterogeneity and activation. To evaluate microglial response in different brain regions and under the same stimulus, we induced a systemic inflammatory reaction through a single intraperitoneal (i.p.) injection of lipopolysaccharides (LPS). We performed our study using C57BL6 and CX3CR1+/GFP mice to investigate microglial response in different regions and the impact of CX3CR1 partial ablation. We conducted a topographic study quantifying microglia alterations in 16 brain regions through immunohistochemical examination and computational image analysis. Assessing Iba1-immunopositive profiles and the density of the microglia cells, we have observed significant differences in region-specific responses of microglia populations in all parameters considered. Our results underline the peculiar microglial inflammation in the substantia nigra pars reticulata (SNpr). Here and in concomitance with the acute inflammatory response, we observed a transient decrease of dopaminergic dendrites and an alteration of the striato-nigral projections. Additionally, we found a significant decrease in microglia response and the absence of chronic inflammation in CX3CR1+/GFP mice compared to the wild-type ones, suggesting the CX3C axis as a possible pharmacological target against neuroinflammation induced by an increase of systemic tumor necrosis factor-alpha (TNFα) or/and LPS. Finally, we investigated astrocytic heterogeneity in this model. We observed different distribution and morphology of GFAP-positive astrocytes, a heterogeneous response under inflammatory conditions, and a decrease in their activation in CX3CR1 partially ablated mice compared with C57BL6 mice. Altogether, our data confirm that microglia and astrocytes heterogeneity lead to a region-specific inflammatory response in presence of a systemic TNFα or/and LPS treatment.
Collapse
Affiliation(s)
- Edoardo Brandi
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Laura Torres-Garcia
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Alexander Svanbergsson
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Caroline Haikal
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Di Liu
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Wen Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Jia-Yi Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Health Sciences Institute, China Medical University, Shenyang, China
- *Correspondence: Jia-Yi Li, ,
| |
Collapse
|
36
|
Lipopolysaccharide-Induced Model of Neuroinflammation: Mechanisms of Action, Research Application and Future Directions for Its Use. Molecules 2022; 27:molecules27175481. [PMID: 36080253 PMCID: PMC9457753 DOI: 10.3390/molecules27175481] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
Despite advances in antimicrobial and anti-inflammatory therapies, inflammation and its consequences still remain a significant problem in medicine. Acute inflammatory responses are responsible for directly life-threating conditions such as septic shock; on the other hand, chronic inflammation can cause degeneration of body tissues leading to severe impairment of their function. Neuroinflammation is defined as an inflammatory response in the central nervous system involving microglia, astrocytes, and cytokines including chemokines. It is considered an important cause of neurodegerative diseases, such as Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Lipopolysaccharide (LPS) is a strong immunogenic particle present in the outer membrane of Gram-negative bacteria. It is a major triggering factor for the inflammatory cascade in response to a Gram-negative bacteria infection. The use of LPS as a strong pro-inflammatory agent is a well-known model of inflammation applied in both in vivo and in vitro studies. This review offers a summary of the pathogenesis associated with LPS exposure, especially in the field of neuroinflammation. Moreover, we analyzed different in vivo LPS models utilized in the area of neuroscience. This paper presents recent knowledge and is focused on new insights in the LPS experimental model.
Collapse
|
37
|
Yang TX, Zhu YF, Wang CC, Yang JY, Xue CH, Huang QR, Wang YM, Zhang TT. EPA-enriched plasmalogen attenuates the cytotoxic effects of LPS-stimulated microglia on the SH-SY5Y neuronal cell line. Brain Res Bull 2022; 186:143-152. [PMID: 35728742 DOI: 10.1016/j.brainresbull.2022.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/29/2022] [Accepted: 06/05/2022] [Indexed: 11/25/2022]
Abstract
Microglia plays an important role in the production of inflammation in the central nervous system. Excessive nerve inflammation can cause neuronal damage and neurodegenerative disease. It has been shown that EPA-enriched ethanolamine plasmalogen (EPA-PlsEtn) significantly inhibited the expressions of inflammatory factors and suppressed neuronal loss in a rat model of Alzheimer's disease. However, whether EPA-PlsEtn protects against neuronal loss by inhibiting the activation of microglia is still not clear. Therefore, we examined the effect of PlsEtn on SH-SY5Y cells incubated by conditioned medium from LPS-induced BV2 cells as a neuroinflammation model. Results showed that pre-incubation of LPS-induced BV2 cells with PlsEtn significantly improved the viability of SH-SY5Y cells by reducing the early apoptosis. The increasing production of NO and TNF-α in BV2 cells was reversed by PlsEtn treatment, while the decreasing level of IL-10 was raised. Polarization toward M1 phenotype and activation of NLRP3 inflammasome pathways are attenuated significantly by pre-treatment of PlsEtn in LPS-induced BV2 cells. The study provides evidence for a positive effect of PlsEtn on neuroprotection and the inhibition of neuroinflammation, and PlsEtn may be explored as a potential functional ingredient with neuroprotection effects.
Collapse
Affiliation(s)
- Tian-Xin Yang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao 266003, PR China
| | - Yun-Fang Zhu
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao 266003, PR China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao 266003, PR China
| | - Jin-Yue Yang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao 266003, PR China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong Province, PR China
| | - Qing-Rong Huang
- Rutgers State Univ, Dept Food Sci, 65 Dudley Rd, New Brunswick, NJ 08901, USA
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong Province, PR China.
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao 266003, PR China.
| |
Collapse
|
38
|
Wen R, Liu YP, Tong XX, Zhang TN, Yang N. Molecular mechanisms and functions of pyroptosis in sepsis and sepsis-associated organ dysfunction. Front Cell Infect Microbiol 2022; 12:962139. [PMID: 35967871 PMCID: PMC9372372 DOI: 10.3389/fcimb.2022.962139] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/06/2022] [Indexed: 12/17/2022] Open
Abstract
Sepsis, a life-threatening organ dysfunction caused by a dysregulated host response to infection, is a leading cause of death in intensive care units. The development of sepsis-associated organ dysfunction (SAOD) poses a threat to the survival of patients with sepsis. Unfortunately, the pathogenesis of sepsis and SAOD is complicated, multifactorial, and has not been completely clarified. Recently, numerous studies have demonstrated that pyroptosis, which is characterized by inflammasome and caspase activation and cell membrane pore formation, is involved in sepsis. Unlike apoptosis, pyroptosis is a pro-inflammatory form of programmed cell death that participates in the regulation of immunity and inflammation. Related studies have shown that in sepsis, moderate pyroptosis promotes the clearance of pathogens, whereas the excessive activation of pyroptosis leads to host immune response disorders and SAOD. Additionally, transcription factors, non-coding RNAs, epigenetic modifications and post-translational modifications can directly or indirectly regulate pyroptosis-related molecules. Pyroptosis also interacts with autophagy, apoptosis, NETosis, and necroptosis. This review summarizes the roles and regulatory mechanisms of pyroptosis in sepsis and SAOD. As our understanding of the functions of pyroptosis improves, the development of new diagnostic biomarkers and targeted therapies associated with pyroptosis to improve clinical outcomes appears promising in the future.
Collapse
Affiliation(s)
| | | | | | | | - Ni Yang
- *Correspondence: Tie-Ning Zhang, ; Ni Yang,
| |
Collapse
|
39
|
Kim J, Lee HJ, Park JH, Cha BY, Hoe HS. Nilotinib modulates LPS-induced cognitive impairment and neuroinflammatory responses by regulating P38/STAT3 signaling. J Neuroinflammation 2022; 19:187. [PMID: 35841100 PMCID: PMC9288088 DOI: 10.1186/s12974-022-02549-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/05/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In chronic myelogenous leukemia, reciprocal translocation between chromosome 9 and chromosome 22 generates a chimeric protein, Bcr-Abl, that leads to hyperactivity of tyrosine kinase-linked signaling transduction. The therapeutic agent nilotinib inhibits Bcr-Abl/DDR1 and can cross the blood-brain barrier, but its potential impact on neuroinflammatory responses and cognitive function has not been studied in detail. METHODS The effects of nilotinib in vitro and in vivo were assessed by a combination of RT-PCR, real-time PCR, western blotting, ELISA, immunostaining, and/or subcellular fractionation. In the in vitro experiments, the effects of 200 ng/mL LPS or PBS on BV2 microglial cells, primary microglia or primary astrocytes pre- or post-treated with 5 µM nilotinib or vehicle were evaluated. The in vivo experiments involved wild-type mice administered a 7-day course of daily injections with 20 mg/kg nilotinib (i.p.) or vehicle before injection with 10 mg/kg LPS (i.p.) or PBS. RESULTS In BV2 microglial cells, pre- and post-treatment with nilotinib altered LPS-induced proinflammatory/anti-inflammatory cytokine mRNA levels by suppressing AKT/P38/SOD2 signaling. Nilotinib treatment also significantly downregulated LPS-stimulated proinflammatory cytokine levels in primary microglia and primary astrocytes by altering P38/STAT3 signaling. Experiments in wild-type mice showed that nilotinib administration affected LPS-mediated microglial/astroglial activation in a brain region-specific manner in vivo. In addition, nilotinib significantly reduced proinflammatory cytokine IL-1β, IL-6 and COX-2 levels and P38/STAT3 signaling in the brain in LPS-treated wild-type mice. Importantly, nilotinib treatment rescued LPS-mediated spatial working memory impairment and cortical dendritic spine number in wild-type mice. CONCLUSIONS Our results indicate that nilotinib can modulate neuroinflammatory responses and cognitive function in LPS-stimulated wild-type mice.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Korea
| | - Hyun-Ju Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Korea
| | - Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Korea
| | - Byung-Yoon Cha
- PharmacoRex Co., Ltd., 20 Techno 1-ro, Yuseong-gu, Daejeon, 34016, Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Korea. .,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Korea.
| |
Collapse
|
40
|
Avolio E, Olivito I, Rosina E, Romano L, Angelone T, Bartolo Anna D, Scimeca M, Bellizzi D, D'Aquila P, Passarino G, Alò R, Maria Facciolo R, Bagni C, De Lorenzo A, Canonaco M. Modifications of behavior and inflammation in mice following transplant with fecal microbiota from children with autism. Neuroscience 2022; 498:174-189. [DOI: 10.1016/j.neuroscience.2022.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
|
41
|
Abstract
Systemic inflammation elicited by sepsis can induce an acute cerebral dysfunction known as sepsis-associated encephalopathy (SAE). Recent evidence suggests that SAE is common but shows a dynamic trajectory over time. Half of all patients with sepsis develop SAE in the intensive care unit, and some survivors present with sustained cognitive impairments for several years after initial sepsis onset. It is not clear why some, but not all, patients develop SAE and also the factors that determine the persistence of SAE. Here, we first summarize the chronic pathology and the dynamic changes in cognitive functions seen after the onset of sepsis. We then outline the cerebral effects of sepsis, such as neuroinflammation, alterations in neuronal synapses and neurovascular changes. We discuss the key factors that might contribute to the development and persistence of SAE in older patients, including premorbid neurodegenerative pathology, side effects of sedatives, renal dysfunction and latent virus reactivation. Finally, we postulate that some of the mechanisms that underpin neuropathology in SAE may also be relevant to delirium and persisting cognitive impairments that are seen in patients with severe COVID-19.
Collapse
Affiliation(s)
- Tatsuya Manabe
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
42
|
Kogel A, Fikenzer S, Uhlmann L, Opitz L, Kneuer JM, Haeusler KG, Endres M, Kratzsch J, Schwarz V, Werner C, Kalwa H, Gaul S, Laufs U. Extracellular Inflammasome Particles Are Released After Marathon Running and Induce Proinflammatory Effects in Endothelial Cells. Front Physiol 2022; 13:866938. [PMID: 35669577 PMCID: PMC9163349 DOI: 10.3389/fphys.2022.866938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: The intracellular NLRP3 inflammasome is an important regulator of sterile inflammation. Recent data suggest that inflammasome particles can be released into circulation. The effects of exercise on circulating extracellular apoptosis-associated speck-like protein (ASC) particles and their effects on endothelial cells are not known. Methods: We established a flow cytometric method to quantitate extracellular ASC specks in human serum. ASC specks were quantitated in 52 marathon runners 24–72 h before, immediately after, and again 24–58 h after the run. For mechanistic characterization, NLRP3 inflammasome particles were isolated from a stable mutant NLRP3 (p.D303N)-YFP HEK cell line and used to treat primary human coronary artery endothelial cells. Results: Athletes showed a significant increase in serum concentration of circulating ASC specks immediately after the marathon (+52% compared with the baseline, p < 0.05) and a decrease during the follow-up after 24–58 h (12% reduction compared with immediately after the run, p < 0.01). Confocal microscopy revealed that human endothelial cells can internalize extracellular NLRP3 inflammasome particles. After internalization, endothelial cells showed an inflammatory response with a higher expression of the cell adhesion molecule ICAM1 (6.9-fold, p < 0.05) and increased adhesion of monocytes (1.5-fold, p < 0.05). Conclusion: These findings identify extracellular inflammasome particles as novel systemic mediators of cell–cell communication that are transiently increased after acute extensive exercise with a high mechanical muscular load.
Collapse
Affiliation(s)
- Alexander Kogel
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Sven Fikenzer
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Luisa Uhlmann
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Lena Opitz
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Jasmin M Kneuer
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | | | - Matthias Endres
- Department of Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) and German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Jürgen Kratzsch
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Viktoria Schwarz
- Department for Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University, Saarbrücken, Germany
| | - Christian Werner
- Department for Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University, Saarbrücken, Germany
| | - Hermann Kalwa
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Universität Leipzig, Leipzig, Germany
| | - Susanne Gaul
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| |
Collapse
|
43
|
Salmani H, Hosseini M, Nabi MM, Samadi-Noshahr Z, Baghcheghi Y, Sadeghi M. Exacerbated immune response of the brain to peripheral immune challenge in post-septic mice. Brain Res Bull 2022; 185:74-85. [PMID: 35523357 DOI: 10.1016/j.brainresbull.2022.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Mounting evidence indicates that sepsis can induce long-lasting brain dysfunction. Recently, it has been proposed that the brain may become more sensitive to systemic inflammation if microglial cells are already primed. Microglial priming has been demonstrated in aging, traumatic brain injury, and neurodegenerative diseases. There is evidence suggesting that systemic inflammation may also prime microglia. This study aimed to investigate the brain's response to a second immune challenge in sepsis survivors and the possible role of microglial priming. METHODS Adult BALB/c mice were intraperitoneally (ip) injected with 5 mg/kg lipopolysaccharide (LPS) for sepsis induction. One month later, mice received a second immune challenge (LPS, 0.33 mg/kg). A cohort of mice was sacrificed 2 h post-LPS injection to measure inflammatory mediators mRNA expression. The second cohort of mice was tested on a battery of behavioral tests and then sacrificed, and brain tissues were removed for biochemical analyses. RESULTS Results showed that in septic mice, secondary LPS challenge induced heightened neuroinflammation compared to the control mice, as evident by a significant increase of IL-1β, TNF-α, and iNOS mRNA expression. In the immunochallenged septic mice, the anti-inflammatory cytokine IL-10 expression was also significantly increased compared to the control mice. Sepsis induction significantly disrupted the recognition ability in the novel object recognition, but the second immune challenge had no significant effect. However, immunochallenged septic mice exhibited more anxiety-like behavior in the marble burying task and intensive depressive-like behavior in the forced swim test. Additionally, the second immune challenge reduced arginase-1 levels in septic but not control mice. On the other hand, CIITA levels were increased more significantly in the LPS injected control mice compared to septic mice. Neither sepsis nor the second immune challenge significantly affected inhibitory avoidance behavior and Aβ1-42 levels in brain tissue. CONCLUSION Our finding suggests that low-grade immune challenge can induce exacerbated behavioral change and exaggerated inflammatory response in the brain of post-septic mice.
Collapse
Affiliation(s)
- Hossein Salmani
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran.
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Mahdi Nabi
- Mashhad Branch, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Mashhad, Iran; Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | | | - Yousef Baghcheghi
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran.
| | - Mostafa Sadeghi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
44
|
Tian Y, Chen X, Wang Y, He Y, Chen C, Yu H, Chen Z, Ren Y, Cheng K, Xie P. Neuroinflammatory transcriptional signatures in the entorhinal cortex based on lipopolysaccharide-induced depression model in mice. Biochem Biophys Res Commun 2022; 590:109-116. [PMID: 34974298 DOI: 10.1016/j.bbrc.2021.12.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 11/02/2022]
Abstract
The inflammation and immune hypothesis of major depressive disorder (MDD) explains the mechanism of neuroinflammatory response to promote depression-like behaviors and provides targets for immunotherapy. Previous studies revealed that the neuronal function of the entorhinal cortex (EC) was relative to the depression symptoms in MDD. However, it remains largely unknown what role of neuroinflammation plays in the EC. Hence, we used immunofluorescence to determine c-Fos expression in the EC of lipopolysaccharide (LPS)-treated mice. Mice model was constructed of 10-day LPS treatment, and depression-related behaviors were assessed. We used gene expression microarray to determine differentially expressed genes (DEGs) in the EC of LPS group comparing to control group, and molecular verification was performed by quantitative real-time PCR and Western blot. We found that c-Fos expression was significant reduced in the two layers (Lateral 3.25 mm and 3.00 mm) of the EC in LPS-treated mice compared to saline-treated mice. Mice in LPS group exhibited depression- and anxiety-like behaviors in chronic model. Gene expression analyses identified 339 DEGs in the EC between LPS and control group. The molecular verification showed activation of IL-1R1/NF-κB/CCL5 signaling and upregulation of markers of astrocyte (GFAP) and microglia (AIF1 and CD86) in the EC. Our results suggested that LPS-induced neuroinflammation inhibited neuronal activity in the EC of mice, and that activation of IL-1R1/NF-κB/CCL5 signaling could be involved in the neuroinflammation in the EC of LPS-treated depression model.
Collapse
Affiliation(s)
- Yu Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China
| | - Xiangyu Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China
| | - Yue Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China
| | - Yong He
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China
| | - Chong Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China
| | - Heming Yu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China
| | - Zhi Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China
| | - Yi Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China
| | - Ke Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
45
|
Fan H, Chen Z, Tang H, Shan L, Chen Z, Wang X, Huang D, Liu S, Chen X, Yang H, Hao D. Exosomes derived from olfactory ensheathing cells provided neuroprotection for spinal cord injury by switching the phenotype of macrophages/microglia. Bioeng Transl Med 2021; 7:e10287. [PMID: 35600663 PMCID: PMC9115713 DOI: 10.1002/btm2.10287] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022] Open
Abstract
Transplantation of olfactory ensheathing cells (OECs) has been demonstrated to be beneficial for spinal cord injury (SCI) by modulating neuroinflammation, supporting neuronal survival and promoting angiogenesis. Besides OECs, the conditioned medium (CM) from OECs has also been proved to have therapeutic effects for SCI, indicating that the bioactive substances secreted by OECs are essential for its protective effects. Nevertheless, there is still little information regarding the underlying mechanisms. Considering that exosomes are crucial for intercellular communication and could be secreted by different types of cells, we speculated that the therapeutic potential of OECs for SCI might be partially based on their exosomes. To examine whether OECs could secret exosomes, we isolated exosomes by polyethylene glycol‐based method, and identified them by electron microscopy study, nanoparticle tracking analysis (NTA) and western blotting. In view of phagocytic ability of microglia and its distinct roles in microenvironment regulation after SCI, we then focused the effects of OECs‐derived exosomes (OECs‐Exo) on microglial phenotypic regulation. We found that the extracted OECs‐Exo could be engulfed by microglia and partially reverse the LPS‐induced pro‐inflammatory polarization through inhibiting NF‐κB and c‐Jun signaling pathways in vitro. Furthermore, OECs‐Exo were found to inhibit the polarization of pro‐inflammatory macrophages/microglia while increased the numbers of anti‐inflammatory cells after SCI. Considering that the neuronal injury is closely related to the activation state of macrophages/microglia, co‐culture of microglia and neurons were performed. Neuronal death induced by LPS‐treated microglia could be significantly alleviated when microglia treated by LPS plus OECs‐Exo in vitro. After SCI, NeuN‐immunostaining and axonal tract‐tracing were performed to assess neuronal survival and axon preservation. Our data showed that the OECs‐Exo promoted the neuronal survival and axon preservation, and facilitated functional recovery after SCI. Our findings provide a promising therapeutic strategy for SCI based on exosome‐immunomodulation.
Collapse
Affiliation(s)
- Hong Fan
- Department of Spine Surgery, Shaanxi Spine Medicine Research Center, Translational Medicine Center, Hong Hui Hospital Xi'an Jiaotong University Xi'an China
- Department of Neurology The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Zhe Chen
- Department of Spine Surgery, Shaanxi Spine Medicine Research Center, Translational Medicine Center, Hong Hui Hospital Xi'an Jiaotong University Xi'an China
| | - Hai‐Bin Tang
- Department of Laboratory Medicine, Xi'an Central Hospital Xi'an Jiaotong University Xi'an China
| | - Le‐Qun Shan
- Department of Spine Surgery, Shaanxi Spine Medicine Research Center, Translational Medicine Center, Hong Hui Hospital Xi'an Jiaotong University Xi'an China
| | - Zi‐Yi Chen
- Department of Endocrinology The First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Xiao‐Hui Wang
- Department of Spine Surgery, Shaanxi Spine Medicine Research Center, Translational Medicine Center, Hong Hui Hospital Xi'an Jiaotong University Xi'an China
| | - Da‐Geng Huang
- Department of Spine Surgery, Shaanxi Spine Medicine Research Center, Translational Medicine Center, Hong Hui Hospital Xi'an Jiaotong University Xi'an China
| | - Shi‐Chang Liu
- Department of Spine Surgery, Shaanxi Spine Medicine Research Center, Translational Medicine Center, Hong Hui Hospital Xi'an Jiaotong University Xi'an China
| | - Xun Chen
- Department of Bone Microsurgery, Hong Hui Hospital Xi'an Jiaotong University Xi'an China
| | - Hao Yang
- Department of Spine Surgery, Shaanxi Spine Medicine Research Center, Translational Medicine Center, Hong Hui Hospital Xi'an Jiaotong University Xi'an China
| | - Dingjun Hao
- Department of Spine Surgery, Shaanxi Spine Medicine Research Center, Translational Medicine Center, Hong Hui Hospital Xi'an Jiaotong University Xi'an China
| |
Collapse
|
46
|
Tastan B, Arioz BI, Tufekci KU, Tarakcioglu E, Gonul CP, Genc K, Genc S. Dimethyl Fumarate Alleviates NLRP3 Inflammasome Activation in Microglia and Sickness Behavior in LPS-Challenged Mice. Front Immunol 2021; 12:737065. [PMID: 34858398 PMCID: PMC8631454 DOI: 10.3389/fimmu.2021.737065] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/25/2021] [Indexed: 12/30/2022] Open
Abstract
NLRP3 inflammasome activation contributes to several pathogenic conditions, including lipopolysaccharide (LPS)-induced sickness behavior characterized by reduced mobility and depressive behaviors. Dimethyl fumarate (DMF) is an immunomodulatory and anti-oxidative molecule commonly used for the symptomatic treatment of multiple sclerosis and psoriasis. In this study, we investigated the potential use of DMF against microglial NLRP3 inflammasome activation both in vitro and in vivo. For in vitro studies, LPS- and ATP-stimulated N9 microglial cells were used to induce NLRP3 inflammasome activation. DMF’s effects on inflammasome markers, pyroptotic cell death, ROS formation, and Nrf2/NF-κB pathways were assessed. For in vivo studies, 12–14 weeks-old male BALB/c mice were treated with LPS, DMF + LPS and ML385 + DMF + LPS. Behavioral tests including open field, forced swim test, and tail suspension test were carried out to see changes in lipopolysaccharide-induced sickness behavior. Furthermore, NLRP3 and Caspase-1 expression in isolated microglia were determined by immunostaining. Here we demonstrated that DMF ameliorated LPS and ATP-induced NLRP3 inflammasome activation by reducing IL-1β, IL-18, caspase-1, and NLRP3 levels, reactive oxygen species formation and damage, and inhibiting pyroptotic cell death in N9 murine microglia via Nrf2/NF-κB pathways. DMF also improved LPS-induced sickness behavior in male mice and decreased caspase-1/NLRP3 levels via Nrf2 activation. Additionally, we showed that DMF pretreatment decreased miR-146a and miR-155 both in vivo and in vitro. Our results proved the effectiveness of DMF on the amelioration of microglial NLRP3 inflammasome activation. We anticipate that this study will provide the foundation consideration for further studies aiming to suppress NLRP3 inflammasome activation associated with in many diseases and a better understanding of its underlying mechanisms.
Collapse
Affiliation(s)
- Bora Tastan
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Burak I Arioz
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Kemal Ugur Tufekci
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey.,Department of Healthcare Services, Vocational School of Health Services, Izmir Democracy University, Izmir, Turkey
| | - Emre Tarakcioglu
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ceren Perihan Gonul
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Kursad Genc
- Department of Neuroscience, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Sermin Genc
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey.,Department of Neuroscience, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
47
|
Nakashima Y, Gotoh K, Mizuguchi S, Setoyama D, Takata Y, Kanno T, Kang D. Attenuating Effect of Chlorella Extract on NLRP3 Inflammasome Activation by Mitochondrial Reactive Oxygen Species. Front Nutr 2021; 8:763492. [PMID: 34692754 PMCID: PMC8531207 DOI: 10.3389/fnut.2021.763492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
The NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome has been linked to the pathogenesis of a wide variety of human diseases. Although many drugs and inhibitors have been developed to treat NLRP3-associated diseases, only limited clinical data support their efficacy and safety. Chlorella, a unicellular green alga that is widely and safely used as a food supplement, contains various antioxidants. In this study, we obtained a fat-soluble extract from Chlorella (CE) and demonstrated that it reduced NLRP3 inflammasome activation by inhibiting mitochondrial reactive oxygen species and caspase-1 activation. In addition, CE supplementation attenuated lipopolysaccharide-induced interleukin 1β transcription through activation of hypoxia-inducible factor 1α in vitro and in vivo. As Chlorella is a safe and useful food supplement, it may be a practical pharmacological approach for treating NLRP3-driven diseases.
Collapse
Affiliation(s)
- Yuya Nakashima
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Research and Development, Chlorella Industry Co., Ltd., Fukuoka, Japan
| | - Kazuhito Gotoh
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Soichi Mizuguchi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yurie Takata
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshihiro Kanno
- Department of Research and Development, Chlorella Industry Co., Ltd., Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
48
|
Hayley S, Sun H. Neuroimmune multi-hit perspective of coronaviral infection. J Neuroinflammation 2021; 18:231. [PMID: 34645457 PMCID: PMC8512650 DOI: 10.1186/s12974-021-02282-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/26/2021] [Indexed: 12/27/2022] Open
Abstract
It is well accepted that environmental stressors experienced over a one’s life, from microbial infections to chemical toxicants to even psychological stressors, ultimately shape central nervous system (CNS) functioning but can also contribute to its eventual breakdown. The severity, timing and type of such environmental “hits”, woven together with genetic factors, likely determine what CNS outcomes become apparent. This focused review assesses the current COVID-19 pandemic through the lens of a multi-hit framework and disuses how the SARS-COV-2 virus (causative agent) might impact the brain and potentially interact with other environmental insults. What the long-term consequences of SAR2 COV-2 upon neuronal processes is yet unclear, but emerging evidence is suggesting the possibility of microglial or other inflammatory factors as potentially contributing to neurodegenerative illnesses. Finally, it is critical to consider the impact of the virus in the context of the substantial psychosocial stress that has been associated with the global pandemic. Indeed, the loneliness, fear to the future and loss of social support alone has exerted a massive impact upon individuals, especially the vulnerable very young and the elderly. The substantial upswing in depression, anxiety and eating disorders is evidence of this and in the years to come, this might be matched by a similar spike in dementia, as well as motor and cognitive neurodegenerative diseases.
Collapse
Affiliation(s)
- Shawn Hayley
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| | - Hongyu Sun
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|
49
|
Li J, Shui X, Sun R, Wan L, Zhang B, Xiao B, Luo Z. Microglial Phenotypic Transition: Signaling Pathways and Influencing Modulators Involved in Regulation in Central Nervous System Diseases. Front Cell Neurosci 2021; 15:736310. [PMID: 34594188 PMCID: PMC8476879 DOI: 10.3389/fncel.2021.736310] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are macrophages that reside in the central nervous system (CNS) and belong to the innate immune system. Moreover, they are crucially involved in CNS development, maturation, and aging; further, they are closely associated with neurons. In normal conditions, microglia remain in a static state. Upon trauma or lesion occurrence, microglia can be activated and subsequently polarized into the pro-inflammatory or anti-inflammatory phenotype. The phenotypic transition is regulated by numerous modulators. This review focus on the literature regarding the modulators and signaling pathways involved in regulating the microglial phenotypic transition, which are rarely mentioned in other reviews. Hence, this review provides molecular insights into the microglial phenotypic transition, which could be a potential therapeutic target for neuroinflammation.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Xinyu Shui
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruizheng Sun
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Boxin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
50
|
Maystrenko V, Ivleva I, Krytskaya D, Zubov A, Ivlev A, Karpenko M. Changes in activity of µ- and m-calpains and signs of neuroinflammation in the hippocampus and striatum of rats after single intraperitoneal injection of subseptic dose of endotoxin. Metab Brain Dis 2021; 36:1917-1928. [PMID: 34014442 DOI: 10.1007/s11011-021-00755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Some mechanisms of neuronal degeneration in endotoxinemia are already well described, but need to be detailed. In this study, we tested the effect of a single intraperitoneal injection of a LPS sub-septic dose (1 mg/kg of animal weight) on calpain activity in the striatum and hippocampus. We showed, that in the hippocampus the day after LPS administration an increase in production of IL-1β and TNF-α mRNA, followed by elevated mRNA expression and activity of µ- and m-calpains without signs of microglia activation is observed. In striatal cells, the day after LPS injection an increase in expression of IL-1β, TNF-α, IBA-1, m-calpain and calpastatin mRNA is revealed, which only intensifies over time. The elicited changes are accompanied by a decrease in motor behavior, which can be considered as a sign of sickness behavior. In the hippocampus, 180 days after LPS administration expression of TNF-α, content and activity of µ-calpain are increased. In the striatum, elevation in expression of TNF-α, IBA-1, µ- and m-calpain mRNA, with hyperactivation of only m-calpain, is observed. Significantly reduced motor activity can be a consequence of LPS-induced neuronal death. A long-lasting endotoxin activates microglia that damage neurons via proinflammation cytokines and calpain hyperactivation. The endotoxin hypothesis of neurodegeneration is unproven, but if correct, then neurodegeneration may be reduced by decreasing endotoxin-induced neuroinflammation and m-calpain hyperactivation. Therefore, the drugs, that decrease endotoxin-induced neuroinflammation and differently inhibit µ- or m-calpain, can be used to prevent or reduce the severity of neurodegeneration.
Collapse
Affiliation(s)
- Viktoriya Maystrenko
- Department of Physiology (Pavlov's), Institute of Experimental Medicine, St. Petersburg, Russia.
| | - Irina Ivleva
- Department of Physiology (Pavlov's), Institute of Experimental Medicine, St. Petersburg, Russia
| | - Darya Krytskaya
- Department of Physiology (Pavlov's), Institute of Experimental Medicine, St. Petersburg, Russia
| | - Alexander Zubov
- Department of Physiology (Pavlov's), Institute of Experimental Medicine, St. Petersburg, Russia
| | - Andrey Ivlev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Marina Karpenko
- Department of Physiology (Pavlov's), Institute of Experimental Medicine, St. Petersburg, Russia
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| |
Collapse
|