1
|
Cao T, Tian D, Wang SY, Pan Y, Xia ZX, Chen WK, Yang SW, Zeng QQ, Zhao YL, Zheng L, Li N, Lai ZM, Luo YX, Shen ZC. Microglial DBP Signaling Mediates Behavioral Abnormality Induced by Chronic Periodontitis in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406269. [PMID: 39429161 DOI: 10.1002/advs.202406269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/10/2024] [Indexed: 10/22/2024]
Abstract
Several lines of evidence implicate that chronic periodontitis (CP) increases the risk of mental illnesses, such as anxiety and depression, yet, the associated molecular mechanism for this remains poorly defined. Here, it is reported that mice subjected to CP exhibited depression-like behaviors and hippocampal memory deficits, accompanied by synapse loss and neurogenesis impairment in the hippocampus. RNA microarray analysis disclosed that albumin D-site-binding protein (DBP) is identified as the most prominently upregulated target gene following CP, and in vivo and in vitro immunofluorescence methods showed that DBP is preferentially expressed in microglia but not neurons or astrocytes in the hippocampus. Interestingly, it is found that the expression of DBP is significantly increased in microglia after CP, and knockdown of microglial DBP ameliorated the behavioral abnormality, as well as reversed the synapse loss and hippocampal neurogenesis damage induced by CP. Furthermore, DBP knockdown improved the CP-induced hippocampal inflammation and microglial polarization. Collectively, these results indicate a critical role of DBP in orchestrating chronic periodontitis-related behavioral abnormality, hippocampal synapse loss and neurogenesis deficits, in which the microglial activation may be indispensably involved.
Collapse
Affiliation(s)
- Ting Cao
- Department of Children's Stomatology, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, 361003, China
| | - Dan Tian
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Si-Ying Wang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yue Pan
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zhi-Xuan Xia
- Department of Pharmacology, School of Basic Medicine and Life Science, Hainan Medical University, Haikou, 571199, China
| | - Wei-Kai Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Shao-Wei Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Qing-Quan Zeng
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yue-Ling Zhao
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Ling Zheng
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Ning Li
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zhong-Meng Lai
- Department of Anesthesiology, Union Hospital, Fujian Medical University, Fuzhou, 350001, China
| | - Yi-Xiao Luo
- Hunan Province People's Hospital, The First-affiliated Hospital of Hunan Normal University, Changsha, 410002, China
| | - Zu-Cheng Shen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| |
Collapse
|
2
|
Cafferata EA, Ramanauskaite A, Cuypers A, Obreja K, Dohle E, Ghanaati S, Schwarz F. Experimental peri-implantitis induces neuroinflammation: An exploratory study in rats. BMC Oral Health 2024; 24:1238. [PMID: 39425138 PMCID: PMC11490110 DOI: 10.1186/s12903-024-04995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
PURPOSE Cumulating evidence supports the close association between periodontal diseases, neuroinflammation and neurodegenerative pathologies, except for peri-implantitis (PI). Thus, this study explored the association between experimental PI and neuropathological changes in the rat brain. MATERIALS AND METHODS After bilateral first molars extraction, experimental PI was induced at titanium implants placed in the maxillae by lipopolysaccharide injections and ligature placement. Following 28-weeks of disease progression, the maxillae and brains were retrieved from 6 rats. Healthy brains from 3 rats were used as control. Brains were analyzed by immunohistochemistry to detect signs of neuroinflammation (interleukin (IL)-6 and tumor necrosis factor (TNF)-α)), microglial activation (IBA-1) and astrogliosis (GFAP). To explore signs of neurodegeneration, hematoxylin/eosin and Nissl stainings were used. Also, four different antibodies against amyloid beta (Aβ 1-42) were tested. RESULTS Chronic PI lesions showed peri-implant bone resorption accompanied by large inflammatory infiltrates. IL-6+ and TNF-α+ cells were found within the CA1 and Dentate Gyrus regions of the hippocampus of the PI-affected group, while almost no immune-positivity was detected in the control (p < 0.05). Detection of activated GFAP+ microglia and IBA-1+ astrocytes surface were significantly higher at the CA areas, and cerebral cortex of the PI-affected group, in comparison with control (p < 0.05). Shrunk neurons with pyknotic nuclei were inconsistently found among the PI-affected group, and these were almost not detected in control. No positive Aβ reactivity was detected in any of the samples. CONCLUSION Chronic experimental PI lesions led to an increased detection of IL-6 and TNF-α, GFAP+ microgliosis and IBA-1+ astrocytosis, and in some cases, neurodegeneration, in the rat brain.
Collapse
Affiliation(s)
- Emilio A Cafferata
- Department of Oral Surgery and Implantology, Goethe University, Carolinum, Frankfurt am Main, Germany.
- Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Perú.
| | - Ausra Ramanauskaite
- Department of Oral Surgery and Implantology, Goethe University, Carolinum, Frankfurt am Main, Germany
| | - Astrid Cuypers
- Department of Oral Surgery and Implantology, Goethe University, Carolinum, Frankfurt am Main, Germany
| | - Karina Obreja
- Department of Oral Surgery and Implantology, Goethe University, Carolinum, Frankfurt am Main, Germany
| | - Eva Dohle
- Frankfurt Oral Regenerative Medicine (FORM-Lab), Clinic for Maxillofacial and Plastic Surgery, Goethe University, Frankfurt am Main, Germany
| | - Shahram Ghanaati
- Frankfurt Oral Regenerative Medicine (FORM-Lab), Clinic for Maxillofacial and Plastic Surgery, Goethe University, Frankfurt am Main, Germany
| | - Frank Schwarz
- Department of Oral Surgery and Implantology, Goethe University, Carolinum, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Yang D, Su J, Chen Y, Chen G. The NF-κB pathway: Key players in neurocognitive functions and related disorders. Eur J Pharmacol 2024; 984:177038. [PMID: 39369877 DOI: 10.1016/j.ejphar.2024.177038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Perioperative neurocognitive disorder (PND) is a common complication of surgical anesthesia, yet its precise etiology remains unclear. Neuroinflammation is a key feature of PND, influenced by both patient -related and surgical variables. The nuclear factor-κB (NF-κB) transcription factor family plays a critical role in regulating the body's immunological proinflammatory response, which is pivotal in the development of PND. Surgery and anesthesia trigger the activation of the NF-κB signaling pathway, leading to the initiation of inflammatory cascades, disruption of the blood-brain barrier, and neuronal injury. Immune cells and glial cells are central to these pathological processes in PND. Furthermore, this study explores the interactions between NF-κB and various signaling molecules, including Tlr4, P2X, α7-nAChR, ROS, HIF-1α, PI3K/Ak, MicroRNA, Circular RNA, and histone deacetylases, within the context of PND. Targeting NF-κB as a therapeutic approach for PND shows promise as a potential treatment strategy.
Collapse
Affiliation(s)
- Danfeng Yang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junwei Su
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
4
|
Zhang Y, Shi H. Ginsenoside Rb3 alleviates the formation of osteoclasts induced by periodontal ligament fibroblasts in the periodontitis microenvironment through the STAT3 pathway. Cell Biol Int 2024; 48:1343-1353. [PMID: 38934258 DOI: 10.1002/cbin.12201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
This study explores the potential role and mechanism of Ginsenoside Rb3 (Rb3) in modulating osteoclastogenesis induced by human periodontal ligament fibroblasts (hPLFs) within the periodontitis microenvironment. We investigated the anti-inflammatory effects of Rb3 on hPLFs stimulated with Porphyromonas gingivalis lipopolysaccharide (P.g-LPS) utilizing quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay techniques. Moreover, the functional role of Rb3 in hPLFs-induced osteoclast formation was assessed by treating human bone marrow-derived macrophages (hBMMs) with conditioned medium from hPLFs, followed by analyses through qPCR, western blot analysis, and staining for tartrate-resistant acid phosphatase (TRAP) and phalloidin. The impact of Rb3 on the activation of the STAT3 signaling pathway was determined via western blot analysis. Results indicated that Rb3 treatment significantly suppressed the upregulation of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, MCP-1, and IL-18) at both gene and protein levels in hPLFs induced by P.g-LPS. Furthermore, conditioned medium from Rb3 plus P.g-LPS treated hPLFs notably decreased the number of TRAP-positive cells, actin ring formations, and the expression of osteoclast marker genes (including CTSK, NFATC1, and ACP5). Rb3 also inhibited the P.g-LPS-induced activation of the STAT3 pathway, with the activation of STAT3 partially reversing the effects of Rb3 on inflammation and osteoclast differentiation. Collectively, Rb3 ameliorates inflammation in P.g-LPS-stimulated hPLFs and reduces hPLFs-induced osteoclastogenesis by inhibiting the STAT3 signaling pathway, suggesting its potential as a therapeutic agent for periodontitis.
Collapse
Affiliation(s)
- Yuhua Zhang
- Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hanping Shi
- Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
5
|
Mohamed Abdelgawad L, Gamal Mahmoud Ibrahim Salem Y, El Tayeb ESAA. Impact of Photobiomodulation and Melatonin on Periodontal Healing of Periodontitis in Immunosuppressed Rats. J Lasers Med Sci 2024; 15:e39. [PMID: 39193106 PMCID: PMC11348441 DOI: 10.34172/jlms.2024.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/09/2024] [Indexed: 08/29/2024]
Abstract
Introduction: Periodontitis is an inflammatory disease due to bacterial origin; it has a chronic course and progresses by immunosuppressive therapy. However, adjuvant therapies such as photobiomodulation (PBM) and melatonin can reduce the severity of the inflammation and inhibit the progression of periodontitis. Therefore, the present study evaluated the effects of PBM (PBM) and melatonin, as adjuvant therapies, on periodontal healing in immunosuppressed rats with periodontitis. Methods: Random allocation was performed on 36 albino Wistar rats, divided into the following groups: control, periodontitis, immunosuppressant only, immunosuppressant+PBM, immunosuppressant+melatonin, and immunosuppressant+melatonin+PBM. Periodontitis caused by ligature in all groups, except for the control group. Subcutaneous administration of dexamethasone was performed in the immunosuppressant groups for immunosuppression. All the groups except the control group received scaling and root planning (SRP). Each group was subdivided into three equal subgroups according to the evaluation period: (A), one week, (B) two weeks (C), 4 weeks. Histological examination was done with haematoxylin & eosin and Masson's Trichrome for inflammation and periodontal healing. Statistical Analysis of the data was done by using the chi-square test. The significance level was set at P≤0.05. Results: Regarding the inflammatory response and periodontal healing, histological examination revealed statistically significant difference in all treated groups in comparison with the control untreated immunosuppressed group (P<0.001). The combined application of melatonin and PBM resulted in a best histological response presented by lower inflammatory response and better periodontal healing, when compared with all other treated groups (P<0.001). Conclusion: After considering the circumstances of this research, the combination of melatonin and PBM by a 650 nm diode laser with output power of 100 mw for one minute for three sessions appeared to be a beneficial adjunct in periodontal healing in immunosuppressed rats with periodontitis.
Collapse
Affiliation(s)
- Latifa Mohamed Abdelgawad
- Medical applications of lasers Department, National Institute of Laser Enhanced Science (NILES), Cairo University, Giza, Egypt
| | | | - El-Sayed Abd Allah El Tayeb
- Medical applications of lasers Department, National Institute of Laser Enhanced Science (NILES), Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Zhang H, Cai W, Dong L, Yang Q, Li Q, Ran Q, Liu L, Wang Y, Li Y, Weng X, Zhu X, Chen Y. Jiaohong pills attenuate neuroinflammation and amyloid-β protein-induced cognitive deficits by modulating the mitogen-activated protein kinase/nuclear factor kappa-B pathway. Animal Model Exp Med 2024; 7:222-233. [PMID: 38177948 PMCID: PMC11228096 DOI: 10.1002/ame2.12369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Jiaohong pills (JHP) consist of Pericarpium Zanthoxyli (PZ) and Radix Rehmanniae, two herbs that have been extensively investigated over many years due to their potential protective effects against cognitive decline and memory impairment. However, the precise mechanisms underlying the beneficial effects remain elusive. Here, research studies were conducted to investigate and validate the therapeutic effects of JHP on Alzheimer's disease. METHODS BV-2 cell inflammation was induced by lipopolysaccharide. AD mice were administered amyloid-β (Aβ). Behavioral experiments were used to evaluate learning and memory ability. The levels of nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-10 (IL-10) were detected using enzyme-linked immunosorbent assay (ELISA). The protein expressions of inducible nitric oxide synthase (iNOS) and the phosphorylation level of mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) were detected using Western blot. Nissl staining was used to detect neuronal degeneration. RESULTS The results demonstrated that an alcoholic extract of PZ significantly decreased the levels of NO, IL-1β, TNF-α, and iNOS; increased the expression level of IL-10; and significantly decreased the phosphorylation levels of MAPK and NF-κB. These inhibitory effects were further confirmed in the AD mouse model. Meanwhile, JHP improved learning and memory function in AD mice, reduced neuronal damage, and enriched the Nissl bodies in the hippocampus. Moreover, IL-1β and TNF-α in the cortex were significantly downregulated after JHP administration, whereas IL-10 showed increased expression. CONCLUSIONS It was found that JHP reduced neuroinflammatory response in AD mice by targeting the MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lijinchuan Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingsen Ran
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaogang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Dai X, Liang R, Dai M, Li X, Zhao W. Smoking Impacts Alzheimer's Disease Progression Through Oral Microbiota Modulation. Mol Neurobiol 2024:10.1007/s12035-024-04241-1. [PMID: 38795302 DOI: 10.1007/s12035-024-04241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/13/2024] [Indexed: 05/27/2024]
Abstract
Alzheimer's disease (AD) is an important public health challenge with a limited understanding of its pathogenesis. Smoking is a significant modifiable risk factor for AD progression, and its specific mechanism is often interpreted from a toxicological perspective. However, microbial infections also contribute to AD, with oral microbiota playing a crucial role in its progression. Notably, smoking alters the ecological structure and pathogenicity of the oral microbiota. Currently, there is no systematic review or summary of the relationship between these three factors; thus, understanding this association can help in the development of new treatments. This review summarizes the connections between smoking, AD, and oral microbiota from existing research. It also explores how smoking affects the occurrence and development of AD through oral microbiota, and examines treatments for oral microbiota that delay the progression of AD. Furthermore, this review emphasizes the potential of the oral microbiota to act as a biomarker for AD. Finally, it considers the feasibility of probiotics and oral antibacterial therapy to expand treatment methods for AD.
Collapse
Affiliation(s)
- Xingzhu Dai
- Department of Stomatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Liang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Manqiong Dai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyu Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanghong Zhao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Xu K, Wang M, Wang H, Zhao S, Tu D, Gong X, Li W, Liu X, Zhong L, Chen J, Xie P. HMGB1/STAT3/p65 axis drives microglial activation and autophagy exert a crucial role in chronic Stress-Induced major depressive disorder. J Adv Res 2024; 59:79-96. [PMID: 37321346 PMCID: PMC11081938 DOI: 10.1016/j.jare.2023.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 05/04/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
INTRODUCTION Neuroinflammation and autophagy are implicated in stress-related major depressive disorder (MDD), but the underlying molecular mechanisms remain largely unknown. OBJECTIVES Here, we identified that MDD regulated by HMGB1/STAT3/p65 axis mediated microglial activation and autophagy for the first time. Further investigations were performed to uncover the effects of this axis on MDD in vivo and in vitro. METHODS Bioinformatics analyses were used to re-analysis the transcriptome data from the dorsolateral prefrontal cortex (dlPFC) of post-mortem male MDD patients. The expression level of HMGB1 and its correlation with depression symptoms were explored in MDD clinical patients and chronic social defeat stress (CSDS)-induced depression model mice. Specific adeno-associated virus and recombinant (r)HMGB1 injection into the medial PFC (mPFC) of mice, and pharmacological inhibitors with rHMGB1 in two microglial cell lines exposed to lipopolysaccharide were used to analyze the effects of HMGB1/STAT3/p65 axis on MDD. RESULTS The differential expression of genes from MDD patients implicated in microglial activation and autophagy regulated by HMGB1/STAT3/p65 axis. Serum HMGB1 level was elevated in MDD patients and positively correlated with symptom severity. CSDS not only induced depression-like states in mice, but also enhanced microglial reactivity, autophagy as well as activation of the HMGB1/STAT3/p65 axis in mPFC. The expression level of HMGB1 was mainly increased in the microglial cells of CSDS-susceptible mice, which also correlated with depressive-like behaviors. Specific HMGB1 knockdown produced a depression-resilient phenotype and suppressed the associated microglial activation and autophagy effects of CSDS-induced. The effects induced by CSDS were mimicked by exogenous administration of rHMGB1 or specific overexpression of HMGB1, while blocked by STAT3 inhibitor or p65 knockdown. In vitro, inhibition of HMGB1/STAT3/p65 axis prevented lipopolysaccharide-induced microglial activation and autophagy, while rHMGB1 reversed these changes. CONCLUSION Our study established the role of microglial HMGB1/STAT3/p65 axis in mPFC in mediating microglial activation and autophagy in MDD.
Collapse
Affiliation(s)
- Ke Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mingyang Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Haiyang Wang
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Shuang Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, China
| | - Dianji Tu
- Department of Clinical Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xue Gong
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wenxia Li
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaolei Liu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Lianmei Zhong
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
9
|
Wu X, Zhang T, Jia J, Chen Y, Zhang Y, Fang Z, Zhang C, Bai Y, Li Z, Li Y. Perspective insights into versatile hydrogels for stroke: From molecular mechanisms to functional applications. Biomed Pharmacother 2024; 173:116309. [PMID: 38479180 DOI: 10.1016/j.biopha.2024.116309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/27/2024] Open
Abstract
As the leading killer of life and health, stroke leads to limb paralysis, speech disorder, dysphagia, cognitive impairment, mental depression and other symptoms, which entail a significant financial burden to society and families. At present, physiology, clinical medicine, engineering, and materials science, advanced biomaterials standing on the foothold of these interdisciplinary disciplines provide new opportunities and possibilities for the cure of stroke. Among them, hydrogels have been endowed with more possibilities. It is well-known that hydrogels can be employed as potential biosensors, medication delivery vectors, and cell transporters or matrices in tissue engineering in tissue engineering, and outperform many traditional therapeutic drugs, surgery, and materials. Therefore, hydrogels become a popular scaffolding treatment option for stroke. Diverse synthetic hydrogels were designed according to different pathophysiological mechanisms from the recently reported literature will be thoroughly explored. The biological uses of several types of hydrogels will be highlighted, including pro-angiogenesis, pro-neurogenesis, anti-oxidation, anti-inflammation and anti-apoptosis. Finally, considerations and challenges of using hydrogels in the treatment of stroke are summarized.
Collapse
Affiliation(s)
- Xinghan Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tiejun Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Jia
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yining Chen
- Key laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenwei Fang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenyu Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Bai
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhengjun Li
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
10
|
Zhou J, Yang X, Liu Y, Guo J, Liu Z, Li Y, Bai Y, Xing Y, Wu J, Hu D. Mefloquine improves pulmonary fibrosis by inhibiting the KCNH2/Jak2/Stat3 signaling pathway in macrophages. Biomed Pharmacother 2024; 171:116138. [PMID: 38237352 DOI: 10.1016/j.biopha.2024.116138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease characterized by severe pulmonary fibrosis, for which there is an urgent need for effective therapeutic agents. Mefloquine (Mef) is a quinoline compound primarily used for the treatment of malaria. However, high doses (>25 mg/kg) may lead to side effects such as cardiotoxicity and psychiatric disorders. Here, we found that low-dose Mef (5 mg/kg) can safely and effectively treat IPF mice. Functionally, Mef can improve the pulmonary function of IPF mice (PIF, PEF, EF50, VT, MV, PENH), alleviating pulmonary inflammation and fibrosis by inhibiting macrophage activity. Mechanically, Mef probably regulates the Jak2/Stat3 signaling pathway by binding to the 492HIS site of Potassium voltage-gated channel subfamily H member 2 (KCNH2) protein in macrophages, inhibiting the secretion of macrophage inflammatory and fibrotic factors. In summary, Mef may inhibit macrophage activity by binding to KCNH2 protein, thereby slowing down the progress of IPF.
Collapse
Affiliation(s)
- Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Xuelian Yang
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Ziqin Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Yunyun Li
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China
| | - Yingru Xing
- Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, China
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China.
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China; Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China.
| |
Collapse
|
11
|
Lai S, Wang P, Gong J, Zhang S. New insights into the role of GSK-3β in the brain: from neurodegenerative disease to tumorigenesis. PeerJ 2023; 11:e16635. [PMID: 38107562 PMCID: PMC10722984 DOI: 10.7717/peerj.16635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/18/2023] [Indexed: 12/19/2023] Open
Abstract
Glycogen synthase kinase 3 (GSK-3) is a serine/threonine kinase widely expressed in various tissues and organs. Unlike other kinases, GSK-3 is active under resting conditions and is inactivated upon stimulation. In mammals, GSK-3 includes GSK-3 α and GSK-3β isoforms encoded by two homologous genes, namely, GSK3A and GSK3B. GSK-3β is essential for the control of glucose metabolism, signal transduction, and tissue homeostasis. As more than 100 known proteins have been identified as GSK-3β substrates, it is sometimes referred to as a moonlighting kinase. Previous studies have elucidated the regulation modes of GSK-3β. GSK-3β is involved in almost all aspects of brain functions, such as neuronal morphology, synapse formation, neuroinflammation, and neurological disorders. Recently, several comparatively specific small molecules have facilitated the chemical manipulation of this enzyme within cellular systems, leading to the discovery of novel inhibitors for GSK-3β. Despite these advancements, the therapeutic significance of GSK-3β as a drug target is still complicated by uncertainties surrounding the potential of inhibitors to stimulate tumorigenesis. This review provides a comprehensive overview of the intricate mechanisms of this enzyme and evaluates the existing evidence regarding the therapeutic potential of GSK-3β in brain diseases, including Alzheimer's disease, Parkinson's disease, mood disorders, and glioblastoma.
Collapse
Affiliation(s)
- Shenjin Lai
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Peng Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jingru Gong
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Shuaishuai Zhang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| |
Collapse
|
12
|
Yilmaz M, Yay E, Balci N, Toygar H, Kılıc BB, Zirh A, Rivas CA, Kantarci A. Parkinson's disease is positively associated with periodontal inflammation. J Periodontol 2023; 94:1425-1435. [PMID: 37433175 DOI: 10.1002/jper.23-0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Parkinson's disease (PA) affects 1% of the global population above 60 years. PA pathogenesis involves severe neuroinflammation that impacts systemic and local inflammatory changes. We tested the hypothesis that PA is associated with periodontal tissue inflammation promoting a greater systemic inflammatory burden. METHODS We recruited 60 patients with Stage III, Grade B periodontitis (P) with and without PA (n = 20 for each). We also included systemically and periodontally healthy individuals as controls (n = 20). Clinical periodontal parameters were recorded. Serum, saliva, and gingival crevicular fluid (GCF) samples were collected to measure the inflammatory and neurodegenerative targets (YKL-40, fractalkine, S100B, alpha-synuclein, tau, vascular cell adhesion protein-1 (VCAM-1), brain-derived neurotrophic factor (BDNF), neurofilament light chain (NfL). RESULTS Parkinson's patients in this study had mild to moderate motor dysfunctions, which did not prevent them from performing optimal oral hygiene control. Periodontal parameters and GCF volume were significantly higher in the P and P+PA groups than in the control group. PA was associated with significantly increased bleeding on probing (BOP) compared to P-alone (p < 0.05), while other clinical parameters were similar between P and P+PA groups. In saliva and serum, YKL-40 levels were higher in the P+PA group than in P and C groups (p < 0.001). GCF NfL levels from shallow sites were significantly higher in the P+PA group compared to the C group (p = 0.0462). GCF S100B levels from deep sites were higher in the P+PA group than in healthy individuals (p = 0.0194). CONCLUSION The data suggested that PA is highly associated with increased periodontal inflammatory burden-bleeding upon probing and inflammatory markers-in parallel with PA-related neuroinflammation.
Collapse
Affiliation(s)
- Melis Yilmaz
- The Forsyth Institute, Cambridge, Massachusetts, USA
- Medipol University, Faculty of Dentistry, Department of Periodontology, Istanbul, Turkey
| | - Ekin Yay
- The Forsyth Institute, Cambridge, Massachusetts, USA
- Medipol University, Faculty of Dentistry, Department of Periodontology, Istanbul, Turkey
| | - Nur Balci
- Medipol University, Faculty of Dentistry, Department of Periodontology, Istanbul, Turkey
| | - Hilal Toygar
- Medipol University, Faculty of Dentistry, Department of Periodontology, Istanbul, Turkey
| | - Basak Bolluk Kılıc
- Medipol University, Faculty of Medicine, Department of Neurology, Istanbul, Turkey
| | - Ali Zirh
- Medipol University, Faculty of Medicine, Department of Neurology, Istanbul, Turkey
| | - Carla Alvarez Rivas
- The Forsyth Institute, Cambridge, Massachusetts, USA
- Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Alpdogan Kantarci
- The Forsyth Institute, Cambridge, Massachusetts, USA
- Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Yamazaki K. Oral-gut axis as a novel biological mechanism linking periodontal disease and systemic diseases: A review. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:273-280. [PMID: 37674899 PMCID: PMC10477752 DOI: 10.1016/j.jdsr.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/20/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023] Open
Abstract
Substantial evidence suggests that periodontal disease increases the risk of developing and progressing extraoral manifestations such as diabetes, atherosclerosis, rheumatoid arthritis, and inflammatory bowel disease. The most probable causative mechanism behind this is the influx of bacteria and/or bacterial products (endotoxin) and inflammatory cytokines into the systemic circulation originating from inflamed periodontal tissues. However, recent studies have revealed that oral bacteria, especially periodontopathic bacteria, play a role in inducing dysbiosis of the gut microbiota resulting induction of gut dysbiosis-related pathology associated with systemic diseases. Conversely, the disruption of gut microbiota has been shown to have a negative impact on the pathogenesis of periodontal disease. Based on our study findings and the available literature, this review presents an overview of the relationship between periodontal disease and systemic health, highlighting the mouth-gut connection.
Collapse
Affiliation(s)
- Kazuhisa Yamazaki
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
14
|
Li S, Gao Z, Zhong M, Bi H, Li J. Identification of the mechanisms underlying per- and polyfluoroalkyl substance-induced hippocampal neurotoxicity as determined by network pharmacology and molecular docking analyses. Toxicol Res (Camb) 2023; 12:1126-1134. [PMID: 38145100 PMCID: PMC10734622 DOI: 10.1093/toxres/tfad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 12/26/2023] Open
Abstract
Background Per- and polyfluoroalkyl substances (PFASs) are a class of environmental contaminants that pose significant health risks to both animals and humans. Although the hippocampal neurotoxic effects of numerous PFASs have been reported, the underlying mechanisms of combined exposure to PFASs-induced hippocampal neurotoxicity remain unclear. Methods In this study, network pharmacology analysis was performed to identify the intersectional targets of PFASs for possible associations with hippocampal neurotoxicity. The evaluation of the influence of PFASs on intersectional targets was assessed using a weighted method. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the screened targets were performed, the intersected hub targets calculated by various algorithms were screened in the network and molecular docking was also used to analyze binding activities. Results Our results indicated that eight PFASs, which acted on key targets (MYC, ESR1, STAT3, RELA, MAPK3) impacted the NF-κB signaling pathway, STAT3 signaling pathway, and MAPK signaling pathways to exert neurotoxicity in the hippocampus. The molecular docking results revealed that PFASs have strong binding potential to the hub targets. Conclusions Our findings provided a basis for future studies to investigate the detailed mechanisms of PFASs-induced hippocampal neurotoxicity and to develop preventative and control strategies.
Collapse
Affiliation(s)
- Shirui Li
- Department of Biostatistics, College of Public Health, Xuzhou Medical University, 209 Tongshan Road, Yun Long District, Xuzhou 221000, China
| | - Zhihui Gao
- Department of Biostatistics, College of Public Health, Xuzhou Medical University, 209 Tongshan Road, Yun Long District, Xuzhou 221000, China
| | - Meihan Zhong
- Department of Biostatistics, College of Public Health, Xuzhou Medical University, 209 Tongshan Road, Yun Long District, Xuzhou 221000, China
| | - Haoran Bi
- Department of Biostatistics, College of Public Health, Xuzhou Medical University, 209 Tongshan Road, Yun Long District, Xuzhou 221000, China
| | - Jianan Li
- Department of Occupational and Environmental Health, College of Public Health, Xuzhou Medical University, 209 Tongshan Road, Yun Long District, Xuzhou 221000, China
| |
Collapse
|
15
|
Sarapultsev A, Gusev E, Komelkova M, Utepova I, Luo S, Hu D. JAK-STAT signaling in inflammation and stress-related diseases: implications for therapeutic interventions. MOLECULAR BIOMEDICINE 2023; 4:40. [PMID: 37938494 PMCID: PMC10632324 DOI: 10.1186/s43556-023-00151-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
The Janus kinase-signal transducer and transcription activator pathway (JAK-STAT) serves as a cornerstone in cellular signaling, regulating physiological and pathological processes such as inflammation and stress. Dysregulation in this pathway can lead to severe immunodeficiencies and malignancies, and its role extends to neurotransduction and pro-inflammatory signaling mechanisms. Although JAK inhibitors (Jakinibs) have successfully treated immunological and inflammatory disorders, their application has generally been limited to diseases with similar pathogenic features. Despite the modest expression of JAK-STAT in the CNS, it is crucial for functions in the cortex, hippocampus, and cerebellum, making it relevant in conditions like Parkinson's disease and other neuroinflammatory disorders. Furthermore, the influence of the pathway on serotonin receptors and phospholipase C has implications for stress and mood disorders. This review expands the understanding of JAK-STAT, moving beyond traditional immunological contexts to explore its role in stress-related disorders and CNS function. Recent findings, such as the effectiveness of Jakinibs in chronic conditions such as rheumatoid arthritis, expand their therapeutic applicability. Advances in isoform-specific inhibitors, including filgotinib and upadacitinib, promise greater specificity with fewer off-target effects. Combination therapies, involving Jakinibs and monoclonal antibodies, aiming to enhance therapeutic specificity and efficacy also give great hope. Overall, this review bridges the gap between basic science and clinical application, elucidating the complex influence of the JAK-STAT pathway on human health and guiding future interventions.
Collapse
Affiliation(s)
- Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia.
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia.
| | - Evgenii Gusev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Maria Komelkova
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Irina Utepova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002, Ekaterinburg, Russian Federation
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
- Clinical Research Center of Cancer Immunotherapy, Hubei Wuhan, 430022, China
| |
Collapse
|
16
|
Arce M, Rodriguez-Peña M, Espinoza-Arrue J, Godoy R, Reyes M, Kajikawa T, Greenwell-Wild T, Hajishengallis G, Abusleme L, Moutsopoulos N, Dutzan N. Increased STAT3 Activation in Periodontitis Drives Inflammatory Bone Loss. J Dent Res 2023; 102:1366-1375. [PMID: 37697911 PMCID: PMC10714379 DOI: 10.1177/00220345231192381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
Periodontitis is one of the most prevalent human inflammatory diseases. It is characterized by periodontal tissue destruction, progressively driven by the host response. In this regard, cytokines associated with tissue destruction, such as interleukin (IL)-6 and IL-23, use a common signaling pathway mediated by STAT3. This transcription factor is also needed for IL-17A production, a key mediator in periodontitis pathogenesis. Although several studies have reported increased activation of STAT3 in experimental periodontitis, a detailed characterization of STAT3 activation in human gingival tissues and its involvement in alveolar bone loss has yet to be explored. Using a cross-sectional study design, we detected increased proportions of pSTAT3-positive cells during periodontitis compared with health, particularly in epithelial cells and T cells. Other cell types of hematopoietic and nonhematopoietic origin also display STAT3 activation in gingival tissues. We detected increased STAT3 phosphorylation and expression of STAT3-related genes during experimental periodontitis. Next, we evaluated the role of STAT3 in alveolar bone destruction using a mouse model of STAT3 loss of function (mut-Stat3 mice). Compared with controls, mut-Stat3 mice had reduced alveolar bone loss following ligature-induced periodontitis. We also evaluated pharmacologic inhibition of STAT3 in ligature-induced periodontitis. Like mut-Stat3 mice, mice treated with STAT3 small-molecule inhibitor had reduced bone loss compared with controls. Our results demonstrate that STAT3 activation is increased in epithelial and T cells during periodontitis and indicate a pathogenic role of STAT3 in inflammatory alveolar bone loss.
Collapse
Affiliation(s)
- M. Arce
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
- Laboratory of Oral Microbiology and Immunology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - M. Rodriguez-Peña
- Laboratory of Oral Microbiology and Immunology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - J. Espinoza-Arrue
- Laboratory of Oral Microbiology and Immunology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - R.A. Godoy
- Laboratory of Oral Microbiology and Immunology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - M. Reyes
- Department of Pathology and Oral Medicine, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - T. Kajikawa
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - T. Greenwell-Wild
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - G. Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - L. Abusleme
- Laboratory of Oral Microbiology and Immunology, Faculty of Dentistry, University of Chile, Santiago, Chile
- Department of Pathology and Oral Medicine, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - N. Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - N. Dutzan
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
- Laboratory of Oral Microbiology and Immunology, Faculty of Dentistry, University of Chile, Santiago, Chile
| |
Collapse
|
17
|
Qiao X, Tang J, Dou L, Yang S, Sun Y, Mao H, Yang D. Dental Pulp Stem Cell-Derived Exosomes Regulate Anti-Inflammatory and Osteogenesis in Periodontal Ligament Stem Cells and Promote the Repair of Experimental Periodontitis in Rats. Int J Nanomedicine 2023; 18:4683-4703. [PMID: 37608819 PMCID: PMC10441659 DOI: 10.2147/ijn.s420967] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023] Open
Abstract
Purpose Dental pulp stem cell-derived exosomes (DPSC-EXO), which have biological characteristics similar to those of metrocytes, have been found to be closely associated with tissue regeneration. Periodontitis is an immune inflammation and tissue destructive disease caused by plaque, resulting in alveolar bone loss and periodontal epithelial destruction. It is not clear whether DPSC-EXO can be used as an effective therapy for periodontal regeneration. The purpose of this study was not only to verify the effect of DPSC-EXO on reducing periodontitis and promoting periodontal tissue regeneration, but also to reveal the possible mechanism. Methods DPSC-EXO was isolated by ultracentrifugation. Then it characterized by transmission electron microscope (TEM), nanoparticle tracking analysis (NTA) and Western Blot. In vitro, periodontal ligament stem cells (PDLSCs) were treated with DPSC-EXO, the abilities of cell proliferation, migration and osteogenic potential were evaluated. Furthermore, we detected the expression of IL-1β, TNF-αand key proteins in the IL-6/JAK2/STAT3 signaling pathway after simulating the inflammatory environment by LPS. In addition, the effect of DPSC-EXO on the polarization phenotype of macrophages was detected. In vivo, the experimental periodontitis in rats was established and treated with DPSC-EXO or PBS. After 4 weeks, the maxillae were collected and detected by micro-CT and histological staining. Results DPSC-EXO promoted the proliferation, migration and osteogenesis of PDLSCs in vitro. DPSC-EXO also regulated inflammation by inhibiting the IL-6/JAK2/STAT3 signaling pathway during acute inflammatory stress. In addition, the results showed that DPSC-EXO could polarize macrophages from the M1 phenotype to the M2 phenotype. In vivo, we found that DPSC-EXO could effectively reduce alveolar bone loss and promote the healing of the periodontal epithelium in rats with experimental periodontitis. Conclusion DPSC-EXO plays an important role in inhibiting periodontitis and promoting tissue regeneration. This study provides a promising acellular therapy for periodontitis.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Jie Tang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Lei Dou
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Shiyao Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
| | - Yuting Sun
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
| | - Hongchen Mao
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Deqin Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| |
Collapse
|
18
|
Qin D, Yu F, Wu D, Han C, Yao X, Yang L, Yang X, Wang Q, He D, Zhao B. The underlying molecular mechanisms and biomarkers between periodontitis and COVID-19. BMC Oral Health 2023; 23:524. [PMID: 37495990 PMCID: PMC10369766 DOI: 10.1186/s12903-023-03150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/20/2023] [Indexed: 07/28/2023] Open
Abstract
OBJECTIVE Emerging evidence shows the clinical consequences of patient with COVID-19 and periodontitis are not promising, and periodontitis is a risk factor. Periodontitis and COVID-19 probably have a relationship. Hence, this study aimed to identify the common molecular mechanism that may help to devise potential therapeutic strategies in the future. MATERIAL AND METHODS We analyzed two RNA-seq datasets for differential expressed genes, enrichment of biological processes, transcription factors (TFs) and deconvolution-based immune cell types in periodontitis, COVID-19 and healthy controls. Relationships between TFs and mRNA were established by Pearson correlation analysis, and the common TFs-mRNA regulatory network and nine co-upregulated TFs of the two diseases was obtained. The RT-PCR detected the TFs. RESULTS A total of 1616 and 10201 differentially expressed gene (DEGs) from periodontitis and COVID-19 are found. Moreover, nine shared TFs and common biological processes associated with lymphocyte activation involved in immune response were identified across periodontitis and COVID-19. The cell type enrichment revealed elevated plasma cells among two diseases. The RT-PCR further confirmed the nine TFs up-regulation in periodontitis. CONCLUSION The pathogenesis of periodontitis and COVID-19 is closely related to the expression of TFs and lymphocyte activation, which can provide potential targets for treatment.
Collapse
Affiliation(s)
- Danlei Qin
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Feiyan Yu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China
| | - Dongchao Wu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China
| | - Chong Han
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China
| | - Xuemin Yao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China
| | - Lulu Yang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China
| | - Xi Yang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China
| | - Qianqian Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China
| | - Dongning He
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China.
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
19
|
Chen H, Liao Y, Zhang X, Shen H, Shang D, He Z, Zhou W, Song Z. Age- and sex-related differences of periodontal bone resorption, cognitive function, and immune state in APP/PS1 murine model of Alzheimer's disease. J Neuroinflammation 2023; 20:153. [PMID: 37370108 PMCID: PMC10294321 DOI: 10.1186/s12974-023-02790-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/24/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The existence of an interconnected mechanism between cognitive disorders and periodontitis has been confirmed by mounting evidence. However, the role of age or sex differences in this mechanism has been less studied. This study aims to investigate sex and age differences in the characterization of periodontal bone tissue, immune state and cognitive function in amyloid precursor protein/presenilin 1(APP/PS1) murine model of Alzheimer's disease (AD). METHODS Three- and twelve-month-old male and female APP/PS1 transgenic mice and wild-type (WT) littermates were used in this study. The Morris water maze (MWM) was used to assess cognitive function. The bone microarchitecture of the posterior maxillary alveolar bone was evaluated by microcomputed tomography (micro-CT). Pathological changes in periodontal bone tissue were observed by histological chemistry. The proportions of helper T cells1 (Th1), Th2, Th17 and regulatory T cells (Tregs) in the peripheral blood mononuclear cells (PBMCs) and brain samples were assessed by flow cytometry. RESULTS The learning ability and spatial memory of 12-month-old APP/PS1 mice was severely damaged. The changes in cognitive function were only correlated with age and genotype, regardless of sex. The 12-month-old APP/PS1 female mice exhibited markedly periodontal bone degeneration, evidenced by the decreased bone volume/total volume (BV/TV), trabecular thickness (Tb.Th), and bone mineral density (BMD), and the increased trabecular separation (Tb.Sp). The altered periodontal bone microarchitecture was associated with genotype, age and females. The flow cytometry data showed the increased Th1 and Th17 cells and the decreased Th2 cells in the brain and PBMC samples of 12-month-old APP/PS1 mice, compared to age- and sex-matched WT mice. However, there was no statistical correlation between age or sex and this immune state. CONCLUSIONS Our data emphasize that age and sex are important variables to consider in evaluating periodontal bone tissue of APP/PS1 mice, and the cognitive impairment is more related to age. In addition, immune dysregulation (Th1, Th2, and Th17 cells) was found in the brain tissue and PBMCs of APP/PS1 mice, but this alteration of immune state was not statistically correlated with sex or age.
Collapse
Affiliation(s)
- Huiwen Chen
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yue Liao
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xu Zhang
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hui Shen
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Dihua Shang
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Zhiyan He
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Wei Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| | - Zhongchen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
20
|
Lee MJ, Ryu HH, Hwang JW, Kim JR, Cho ES, Choi JK, Moon YJ. Sirt6 Activation Ameliorates Inflammatory Bone Loss in Ligature-Induced Periodontitis in Mice. Int J Mol Sci 2023; 24:10714. [PMID: 37445896 PMCID: PMC10341680 DOI: 10.3390/ijms241310714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Periodontitis is an inflammatory disease caused by microorganisms that induce the destruction of periodontal tissue. Inflamed and damaged tissue produces various inflammatory cytokines, which activate osteoclasts and induce alveolar bone loss and, eventually, tooth loss. Sirt6 expression suppresses inflammation and bone resorption; however, its role in periodontitis remains unclear. We hypothesized that Sirt6 has a protective role in periodontitis. To understand the role of Sirt6 in periodontitis, we compared periodontitis with ligature placement around the maxillary left second molar in 8-week-old control (C57BL/6J) male mice to Sirt6-overexpressing Tg (Sirt6Tg) mice, and we observed the resulting phenotypes using micro-CT. MDL801, a Sirt6 activator, was used as a therapy for periodontitis through oral gavage. Pro-inflammatory cytokines and increased osteoclast numbers were observed in alveolar bone tissue under periodontitis surgery. In the same condition, interestingly, protein levels from Sirt6 were the most downregulated among sirtuins in alveolar bone tissue. Based on micro-CT and CEJ-ABC distance, Sirt6Tg was observed to resist bone loss against ligature-induced periodontitis. Furthermore, the number of osteoclasts was significantly reduced in Sirt6Tg-ligated mice compared with control-ligated mice, although systemic inflammatory cytokines did not change. Consistent with this observation, we confirmed that bone loss was significantly reduced when MDL801, a Sirt6 activator, was included in the ligation mouse model. Our findings demonstrate that Sirt6 activation prevents bone loss against ligature-induced periodontitis. Thus, a Sirt6 activator may provide a new therapeutic approach for periodontitis.
Collapse
Affiliation(s)
- Myung Jin Lee
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Hyang Hwa Ryu
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (H.H.R.); (J.W.H.)
| | - Jae Won Hwang
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (H.H.R.); (J.W.H.)
| | - Jung Ryul Kim
- Department of Orthopaedic Surgery, Jeonbuk National University Medical School and Hospital, Jeonju 54896, Republic of Korea;
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju 54896, Republic of Korea;
| | - Jin Kyeong Choi
- Department of Immunology, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
| | - Young Jae Moon
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (H.H.R.); (J.W.H.)
- Department of Orthopaedic Surgery, Jeonbuk National University Medical School and Hospital, Jeonju 54896, Republic of Korea;
| |
Collapse
|
21
|
Li Y, Ying W. Methylene blue reduces the serum levels of interleukin-6 and inhibits STAT3 activation in the brain and the skin of lipopolysaccharide-administered mice. Front Immunol 2023; 14:1181932. [PMID: 37325623 PMCID: PMC10266349 DOI: 10.3389/fimmu.2023.1181932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
It is valuable to search for novel and economical agents for inhibiting STAT3 activation and blocking increases in IL-6 levels, due to the important roles of STAT3 and IL-6 in inflammation. Since Methylene Blue (MB) has shown therapeutical potential for multiple diseases, it has become increasingly important to investigate the mechanisms underlying the effects of MB on inflammation. Using a mouse model of lipopolysaccharide (LPS)-induced inflammation, we investigated the mechanisms underlying the effects of MB on inflammation, obtaining the following findings: First, MB administration attenuated the LPS-induced increases in the serum levels of IL-6; second, MB administration attenuated LPS-induced STAT3 activation of the brain; and third, MB administration attenuated LPS-induced STAT3 activation of the skin. Collectively, our study has suggested that MB administration can decrease the levels of IL-6 and STAT3 activation - two important factors in inflammation. Since MB is a clinically used and relatively economical drug, our findings have suggested therapeutic potential of MB for multiple inflammation-associated diseases due to its effects on STAT3 activation and IL-6 levels.
Collapse
Affiliation(s)
| | - Weihai Ying
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Jin R, Ning X, Liu X, Zhao Y, Ye G. Porphyromonas gingivalis-induced periodontitis could contribute to cognitive impairment in Sprague–Dawley rats via the P38 MAPK signaling pathway. Front Cell Neurosci 2023; 17:1141339. [PMID: 37056710 PMCID: PMC10086325 DOI: 10.3389/fncel.2023.1141339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
BackgroundPeriodontitis is one of the most common oral diseases and has been shown to be a risk factor for systemic diseases. Our aim was to investigate the relationship between periodontitis and cognitive impairment and to explore the role of the P38 MAPK signaling pathway in this process.MethodsWe established a periodontitis model by ligating the first molars of SD rats with silk thread and injecting Porphyromonas gingivalis (P. gingivalis) or P. gingivalis plus the P38 MAPK inhibitor SB203580 at the same time for ten weeks. We assessed alveolar bone resorption and spatial learning and memory using microcomputed tomography and the Morris water maze test, respectively. We used transcriptome sequencing to explore the genetic differences between the groups. The gingival tissue, peripheral blood and hippocampal tissue were assessed for the cytokines TNF-α, IL-1β, IL-6, IL-8 and C reactive protein (CRP) with enzyme-linked immunosorbent assay (ELISA) and reverse transcription polymerase chain reaction (RT–PCR). We observed the presence of P. gingivalis in the hippocampus of rats by paraffin-fluorescence in situ hybridization (FISH). We determined the activation of microglia by immunofluorescence. Finally, Western blot analysis was employed to determine the expression of amyloid precursor protein (APP), β-site APP-cleaving enzyme 1 (BACE1) and P38MAPK pathway activation.ResultsWe demonstrated that silk ligature-induced periodontitis plus injection of P. gingivalis into subgingival tissue could lead to memory and cognitive impairment. Transcriptome sequencing results suggested that there were neurodegenerative diseases in the P. gingivalis group, and the MWM test showed that periodontitis reduced the spatial learning and memory ability of mild cognitive impairment (MCI) model rats. We found high levels of inflammatory factors (TNF-α, IL-1β, IL-6, and IL-8) and CRP in the gingiva, peripheral blood and hippocampus, and the expression of APP and BACE1 was upregulated, as was the P38 MAPK pathway activation. Activated microglia and the presence of P. gingivalis were also found in the hippocampus. P38 MAPK inhibitors mitigated all of these changes.ConclusionOur findings strongly suggest that topical application of P. gingivalis increases the inflammatory burden in the peripheral and central nervous systems (CNS) and that neuroinflammation induced by activation of P38 MAPK leads to impaired learning and memory in SD rats. It can also modulate APP processing. Therefore, P38 MAPK may serve as a linking pathway between periodontitis and cognitive impairment.
Collapse
Affiliation(s)
- Ru Jin
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaoqiao Ning
- The First People’s Hospital of Wanzhou, Chongqing, China
| | - Xiang Liu
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital, Chongqing Medical University, Chongqing, China
| | - Yueyang Zhao
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Guo Ye
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital, Chongqing Medical University, Chongqing, China
- *Correspondence: Guo Ye,
| |
Collapse
|
23
|
Ding X, Hou Y, Liu X, Li X, Liu X, Deng Y, Cao N, Yu W. The role of Sirt3-induced autophagy in renal structural damage caused by periodontitis in rats. J Periodontal Res 2023; 58:97-108. [PMID: 36380567 DOI: 10.1111/jre.13071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE This research aimed to explore the effect of periodontitis on renal tissues injury in rats and the role of Sirtuin3 (Sirt3) and its regulation of autophagy in this progression. MATERIAL AND METHODS Thirty Wistar rats were assigned into three groups: control, periodontitis (P), and periodontitis with gavage administration of Sirt3 activator resveratrol (P + RSV). To induce periodontitis, the wire ligature was placed around the cervical region of the rat maxillary first molar. After 8 weeks, micro-computed tomography (Micro-CT) and hematoxylin and eosin (HE) were used to evaluate the alveolar bone resorption and periodontal inflammation. Serum and urine biochemical indicators were measured to assess renal function. The pathological changes of the kidney were observed via HE and periodic acid Schiff (PAS) staining. Autophagosome was viewed by transmission electron microscopy (TEM). Real-time PCR and western blot were used to test expressions of Sirt3 and autophagy indicators in renal and periodontal tissues, including mammalian target of rapamycin (mTOR), phosphor-mTOR (p-mTOR), BECN1 (Beclin-1), and microtubule-associated protein 1 light chain 3 (LC3). RESULTS Alveolar bone destruction, resorption, and periodontal inflammation were observed in the P group (compared with the control group), and the above indexes were significantly improved after RSV intervention; the obvious changes in renal tissue structure in the P group were partially recovered after RSV intervention, while renal functional status was not affected (among the three groups); in addition, the levels of Sirt3 and autophagy in kidney and periodontal tissues of P group were inhibited, manifested as a decrease in the number of autophagosomes (renal tissue) and expressions of autophagy marker Beclin-1 and LC3 conversion rate and an increase in the expression of p-mTOR. After Sirt3 activation (RSV), the above indicators were significantly improved. CONCLUSION Periodontitis causes renal structural damage in rats, which may be connected to the effect of Sirt3-induced autophagy.
Collapse
Affiliation(s)
- Xu Ding
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yubo Hou
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xinchan Liu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xin Li
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaomeng Liu
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yu Deng
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Niuben Cao
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Weixian Yu
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
24
|
α-Synuclein Induces Neuroinflammation Injury through the IL6ST-AS/STAT3/HIF-1α Axis. Int J Mol Sci 2023; 24:ijms24021436. [PMID: 36674945 PMCID: PMC9861378 DOI: 10.3390/ijms24021436] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
The aggregation of α-synuclein (α-syn) promotes neuroinflammation and neuronal apoptosis, which eventually contribute to the pathogenesis of Parkinson's disease (PD). Our microarray analysis and experimental data indicated a significant expression difference of the long noncoding RNA IL6ST-AS and its anti-sense strand, IL6ST, in α-synuclein-induced microglia, compared with unstimulated microglia. IL6ST is a key component of the IL6R/IL6ST complex in the microglial membrane, which recognizes extracellular inflammatory factors, such as IL6. Studies have shown that the binding of IL6 to the IL6R/IL6ST complex could activate the JAK2-STAT3 pathway and promote an excessive immune response in glia cells. Meanwhile, the phosphorylation and activation of STAT3 could increase the transcription of HIF1A, encoding a hypoxia-inducible factor related to cytotoxic damage. Our results indicated that the overexpression of IL6ST-AS induced by exogenous α-synuclein could inhibit the expression of IL6ST and the activation of JAK2-STAT3 pathway in HMC3 cells. In addition, a reduction in STAT3 resulted in the transcription inhibition of HIF1A and the acceleration of oxidative stress injury in SH-SY5Y cells co-cultured with α-synuclein-induced HMC3 cells. Our findings indicate that IL6ST-AS is an important factor that regulates microglia activation and neuronal necrosis in the progression of PD. In the HMC3 and SH-SY5Y cell co-culture system, the overexpression of IL6ST-AS led to microglial dysfunction and neurotoxicology through the IL6ST-AS/STAT3/HIF-1α axis. Our research revealed the relationships among α-synuclein, IL6ST, STAT3, and HIF-1α in the pathological process of PD and provided a new inflammation hypothesis for the pathogenesis of PD.
Collapse
|
25
|
Salhi L, Al Taep Y, Salmon E, Van Hede D, Lambert F. How Periodontitis or Periodontal Bacteria Can Influence Alzheimer's Disease Features? A Systematic Review of Pre-Clinical Studies. J Alzheimers Dis 2023; 96:979-1010. [PMID: 37927257 PMCID: PMC10741373 DOI: 10.3233/jad-230478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND The negative effects of periodontitis on systemic diseases, including diabetes, cardiovascular diseases, and Alzheimer's disease (AD), have been widely described. OBJECTIVE This systematic review aimed to gather the current understanding of the pathophysiological mechanisms linking periodontitis to AD. METHODS An electronic systematic search of the PubMed/MEDLINE, Scopus, and Embase databases was performed using the following PECO question: How can periodontitis or periodontal bacteria influence Alzheimer's disease features?". Only preclinical studies exploring the biological links between periodontitis and AD pathology were included. This study was registered at the International Prospective Register of Systematic Reviews (PROSPERO), and the Syrcle and Camarades protocols were used to assess the risk of bias. RESULTS After a systematic screening of titles and abstracts (n = 3,307), thirty-six titles were selected for abstract reading, of which 13 were excluded (k = 1), resulting in the inclusion of 23 articles. Oral or systemic exposure to periodontopathogens or their byproducts is responsible for both in situ brain manifestations and systemic effects. Significant elevated rates of cytokines and amyloid peptides (Aβ) and derivate products were found in both serum and brain. Additionally, in infected animals, hyperphosphorylation of tau protein, hippocampal microgliosis, and neuronal death were observed. Exposure to periodontal infection negatively impairs cognitive behavior, leading to memory decline. CONCLUSIONS Systemic inflammation and brain metastatic infections induced by periodontal pathogens contribute to neuroinflammation, amyloidosis, and tau phosphorylation, leading to brain damage and subsequent cognitive impairment.
Collapse
Affiliation(s)
- Leila Salhi
- Department of Periodontology, Oro-Dental and Implant Surgery, University Hospital of Liège, Liège, Belgium
| | - Yaman Al Taep
- Department of Periodontology, Oro-Dental and Implant Surgery, University Hospital of Liège, Liège, Belgium
| | - Eric Salmon
- Department of Neurology - Memory Clinic, University Hospital of Liège, Liège, Belgium
- GIGA Cyclotron Research Center, University of Liege, Liege, Belgium
| | - Dorien Van Hede
- Department of Periodontology, Oro-Dental and Implant Surgery, University Hospital of Liège, Liège, Belgium
| | - France Lambert
- Department of Periodontology, Oro-Dental and Implant Surgery, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
26
|
Kwon OY, Lee SH. Ishige okamurae Attenuates Neuroinflammation and Cognitive Deficits in Mice Intracerebroventricularly Injected with LPS via Regulating TLR-4/MyD88-Dependent Pathways. Antioxidants (Basel) 2022; 12:antiox12010078. [PMID: 36670940 PMCID: PMC9854571 DOI: 10.3390/antiox12010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Neuroinflammation is one of the critical causes of neuronal loss and cognitive impairment. We aimed to evaluate the anti-neuroinflammatory properties of Ishige okamuae using mice intracerebroventricularly injected with lipopolysaccharides (LPS) and LPS-treated C6 glioma cells. We found that the short- and long-term memory deficits of LPS-injected mice were improved by oral administration of Ishige okamurae extracts (IOE). LPS-induced neuronal loss, increase in amyloid-β plaque, and expression of COX-2 and iNOS were restored by IOE. In addition, LPS-induced activation of Toll-like receptor-4 (TLR-4) and its downstream molecules, such as MyD88, NFκB, and mitogen-activated protein kinases (MAPKs), were significantly attenuated in the brains of mice fed with IOE. We found that pretreatment of IOE to C6 glioma cells ameliorated LPS-induced expression of TLR-4 and its inflammatory cascades, such as MyD88 expression, reactive oxygen species production, MAPKs phosphorylation, and NFκB phosphorylation with consequent downregulation of COX-2, iNOS, proinflammatory cytokines, and nitric oxide expression. Furthermore, IOE (0.2 µg/mL) was found to have equivalent efficacy with 10 μM of MyD88 inhibitor in preventing LPS-induced inflammatory responses in C6 glioma cells. Taken together, these results strongly suggest that IOE could be developed as a promising anti-neuroinflammatory agent which is able to control the TLR-4/MyD88-dependent signaling pathways.
Collapse
|
27
|
Circadian Rhythm Disorders Aggravate Periodontitis by Modulating BMAL1. Int J Mol Sci 2022; 24:ijms24010374. [PMID: 36613816 PMCID: PMC9820395 DOI: 10.3390/ijms24010374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Circadian rhythms regulate the body's homeostasis through the temporal control of tissue-specific circadian rhythm control genes. Circadian rhythm disorders (CRD) affect the expression levels of circadian rhythms-associated genes in brain and muscle aryl hydrocarbon receptor nuclear translocator-like-1(BMAL1), which is thought to contribute to metabolic disorders and an altered immune system. However, the relationship between CRD and the development of periodontitis was poorly reported. Therefore, this study aimed to investigate the role played by BMAL1 in periodontitis. We used a modified multi-platform approach (MMPM) to induce circadian rhythm disturbances in rats to investigate the role of BMAL1 in periodontitis. Our results showed significant downregulation of BMAL1 in the CRD with periodontitis group, significant resorption of alveolar bone, increased osteoclast differentiation, and upregulation of the inflammatory signaling molecule NF-κB. In addition, apoptosis and oxidative stress levels were increased in periodontal tissues. Collectively, our study suggests that BMAL1 is a key regulator in periodontitis exacerbated by CRD and that CRD may lead to the downregulation of BMAL1, thereby exacerbating oxidative stress and apoptosis in periodontal tissues. Our study found that BMAL1 may be associated with the progression of periodontitis and provides a new perspective on the treatment of periodontitis.
Collapse
|
28
|
Comparative Testing of Two Ligature-Induced Periodontitis Models in Rats: A Clinical, Histological and Biochemical Study. BIOLOGY 2022; 11:biology11050634. [PMID: 35625362 PMCID: PMC9137742 DOI: 10.3390/biology11050634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022]
Abstract
Simple Summary This study is the first study comparing the same parameters of inflammation in two periodontal disease experimental models proposed by the literature and used in the research. The importance of the method used to induce periodontitis in animals resides in the efficacy of proposed technologies and treatments used in preclinical trials. The inflammatory markers Interleukin-1 alpha(IL-1α), Tumor Necrosis Factor-alpha (TNF-α), and high sensitive C reactive protein (hsCRP), the hematological analyses, and the histological probes showed a similar and reproducible periodontal inflammation for the molar induced periodontitis model. Ligation-induced periodontitis in rats has limitations and will never reproduce all aspects of periodontal disease in humans. The findings of this study with the complex association between clinical, biochemical, and histological aspects of the two experimental models of periodontal pathology induction in rats suggest that a similar periodontal pathology to the one we find in humans is best replicated in rats with the molar induced periodontitis model. Abstract Experimental animal models for studying the mechanisms of periodontitis and its links are a better alternative to in vitro studies. The aim of this study is to compare two ligature induced periodontitis models and validate the best one for further use in research. An experimental study was performed on male Wistar rats that were divided into three groups: Test 1 (n = 10), incisor ligated, Test 2 (n = 10), molar ligated, and Control (n = 10). The animals were clinically evaluated at the beginning and at the end of the experiment by recording body weight, gingival bleeding index, tooth mobility score, changes in color, and consistency of gingival tissue. Two blood samples were obtained for each animal at baseline and at the end of the experiment. The hematological parameters Interleukin-1 alpha (IL-1 α), high sensitive C Reactive Protein (hsCRP), and Tumor Necrosis Factor-alpha (TNF-α) were measured. Seven days after the induction of periodontitis, the animals were sacrificed, and samples were prepared for histological evaluation. The results of this research demonstrated that the association between clinical, histological, and biochemical parameters initiate a periodontal pathology in the molar induced model in rats while the incisor experimental model initiates only a moderate and incomplete periodontal inflammation, mainly due to mechanical irritation.
Collapse
|
29
|
Che YH, Xu ZR, Ni LL, Dong XX, Yang ZZ, Yang ZB. Isolation and identification of the components in Cybister chinensis Motschulsky against inflammation and their mechanisms of action based on network pharmacology and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114851. [PMID: 34808299 DOI: 10.1016/j.jep.2021.114851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cybister chinensis Motschulsky belongs to the family Dytiscidae. As a traditional Chinese medicine, the insect is called Longshi in the folk and is commonly used to treat enuresis in children and frequent urination in the elderly. AIM OF THE STUDY Inflammation is involved in chronic kidney disease. The previous study proved ethanol extract of C. chinensis exhibited anti-inflammation effects in the Doxorubicin-induced kidney disease. However, the material basis and their possible mechanism of the insect were still unclear. Thus, we aimed to separate the active compounds of the ethanol extract from C. chinensis and to investigate their possible mechanism of anti-inflammation by network pharmacology and molecular docking. MATERIALS AND METHODS The insect was extracted with 75% ethanol to produce ethanol extracts and then were extracted by petroleum ether, ethyl acetate and n-butanol respectively. Silica gel column chromatography and preparative HPLC were applied to separate the compounds of the extract. The compounds were characterized and identified by NMR and mass. The compound associated genes were collected by BATMAN-TCM database and the inflammation associated genes were obtained through DigSee database. The protein-protein interaction (PPI) network was carried out via Search Tool for the Retrieval of Interacting Genes/Protein (STRING) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) target pathway analysis was performed in Database for Annotation, Visualization and Integrated Discovery (DAVID). The possible mechanism of compounds against inflammation was investigated by molecular docking. Finally, the anti-inflammatory effect of the representative compound was verified by the LPS-induced Raw 264.7 cell inflammatory model. TNF-α, IL-1β and IL-6 of the cell supernatants were analyzed via using ELISA kits and the key proteins in JAK2/STAT3 signaling pathway were verified via the Western blot assays. RESULTS Among crude extracts from C. chinensis, ethyl acetate extract showed the obvious anti-inflammatory effects. Nine compounds were isolated from ethyl acetate extract of Cybister chinensis for the first time, including benzoic acid (1), hydroxytyrosol (2), protocatechualdehyde (3), N-[2-(4-hydroxyphenyl)ethyl]acetamide (4), (2E)-3-phenylprop-2-enoic acid (5), 3-phenylpropionic acid (6), methyl 3,4-dihydroxybenzoate (7), 1,4-diphenyl butane-2,3-diol (8) and p-N,N-dimethylaminobenzaldehyde (9). After searching in the database, 1079 compound associated genes and 467 inflammation associated genes were found. The 137 common targets covered 77 signaling pathways, in which HIF-1 signaling pathway, TNF signaling pathway, influenza A, PI3K/Akt signaling pathway, NOD-like receptor signaling pathway, MAPK signaling pathway, Toll-like receptor signaling pathway and Jak-STAT signaling pathway were important for inflammation. Molecular docking studies showed compound 1, 4, 5, 6, 7 and 8 were the potential inhibitors of JAK2 protein. In addition, the in vitro test showed compound 5 reduced the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β in lipopolysaccharide (LPS)-stimulated RAW264.7 cells in a dose-dependent manner. Furthermore, it was found that compound 5 inhibited the expression of p-JAK2 and p-STAT3 in LPS-induced RAW264.7 cells in a dose-dependent manner. CONCLUSIONS Based on the network pharmacology and molecular docking, the study suggested that C. chinensis could relieve the inflammation based on the multi-compounds and multi-pathways, which provided the foundation for the medicinal application of C. chinensis.
Collapse
Affiliation(s)
- Yi-Hao Che
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Ren Xu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lian-Li Ni
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xin-Xin Dong
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Zi-Zhong Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Zhi-Bin Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
30
|
Li X, Liu X, Ding X, Liu X, Cao N, Deng Y, Hou Y, Yu W. Resveratrol protects renal damages induced by periodontitis via preventing mitochondrial dysfunction in rats. Oral Dis 2022; 29:1812-1825. [PMID: 35146845 DOI: 10.1111/odi.14148] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 01/18/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Periodontitis is closely associated with kidney disease and reactive oxygen species (ROS) involvement. Mitochondria are the primary source of both endogenous ROS and renal energy. We investigated whether resveratrol (RSV) prevents renal injury and mitochondrial dysfunction in periodontitis rats. METHODS Thirty male Wistar rats were divided into control, experimental periodontitis (Ep), and Ep-RSV groups. To induce periodontitis, a steel ligature was placed on the cervix of the bilateral first maxillary molars. RSV (50 mg/kg/d) to the Ep-RSV group and vehicle to the Ep and control groups were gavaged. After 8 weeks, alveolar bone loss, pocket depth, gingival blood index, and tooth mobility were assessed. Oxidative stress parameters, mitochondrial structure, mitochondrial membrane potential (MMP), mitochondrial ROS, adenosine triphosphate (ATP), sirtuin 1 (SIRT1), and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) were analysed in renal. Renal function and histology were also evaluated. RESULTS Compared with the control group, the Ep group showed renal structural destruction, elevated oxidative stress levels, mitochondrial structure destruction, MMP loss, mitochondrial ROS accumulation, ATP reduction, and decreased SIRT1 and PGC-1α levels. RSV prevented these destruction (p < .05). However, there was no significant impairment in renal function (p > .05). CONCLUSIONS Periodontitis induced mitochondrial dysfunction in renal tissues. Resveratrol exerts a preventive effect on periodontitis-induced kidney injury by preventing mitochondrial dysfunction.
Collapse
Affiliation(s)
- X Li
- Department of Periodontology, Hospital of Stomatology, Jilin University, Jilin University Stomatology Hospital, 1500 Qinghua Road, Chaoyang District, Changchun City, Jilin Province, China, Changchun, 130021, China
| | - X Liu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Jilin University Stomatology Hospital, 1500 Qinghua Road, Chaoyang District, Changchun City, Jilin Province, China, Changchun, 130021, China
| | - X Ding
- Department of Periodontology, Hospital of Stomatology, Jilin University, Jilin University Stomatology Hospital, 1500 Qinghua Road, Chaoyang District, Changchun City, Jilin Province, China, Changchun, 130021, China
| | - X Liu
- Department of Periodontology, Hospital of Stomatology, Jilin University, Jilin University Stomatology Hospital, 1500 Qinghua Road, Chaoyang District, Changchun City, Jilin Province, China, Changchun, 130021, China
| | - N Cao
- Department of Periodontology, Hospital of Stomatology, Jilin University, Jilin University Stomatology Hospital, 1500 Qinghua Road, Chaoyang District, Changchun City, Jilin Province, China, Changchun, 130021, China
| | - Y Deng
- Department of Periodontology, Hospital of Stomatology, Jilin University, Jilin University Stomatology Hospital, 1500 Qinghua Road, Chaoyang District, Changchun City, Jilin Province, China, Changchun, 130021, China
| | - Y Hou
- Department of Periodontology, Hospital of Stomatology, Jilin University, Jilin University Stomatology Hospital, 1500 Qinghua Road, Chaoyang District, Changchun City, Jilin Province, China, Changchun, 130021, China
| | - W Yu
- Department of Periodontology, Hospital of Stomatology, Jilin University, Jilin University Stomatology Hospital, 1500 Qinghua Road, Chaoyang District, Changchun City, Jilin Province, China, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Jilin University Stomatology Hospital, 1500 Qinghua Road, Chaoyang District, Changchun City, Jilin Province, China, Changchun, 130021, China
| |
Collapse
|
31
|
Li N, Wang Z. Integrative Analysis of Deregulated miRNAs Reveals Candidate Molecular Mechanisms Linking H. pylori Infected Peptic Ulcer Disease with Periodontitis. DISEASE MARKERS 2022; 2022:1498525. [PMID: 35132337 PMCID: PMC8817886 DOI: 10.1155/2022/1498525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/17/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Periodontitis is a highly prevalent oral infectious disease and has been increasingly associated with H. pylori infection, gastric inflammation, and gastric cancer but little is known about epigenetic machinery underlying this potentially bidirectional association. The present study is aimed at identifying key deregulated miRNA, their associated genes, signaling pathways, and compounds linking periodontitis with H. pylori-associated peptic ulcer disease. METHODS miRNA expression datasets for periodontitis-affected and H. pylori-associated peptic ulcer disease-affected tissues were sought from the GEO database. Differentially expressed miRNA (DEmiRNAs) were identified and the overlapping, shared-DEmiRNA between both datasets were determined. Shared-DEmiRNA-target networks construction and functional analyses were constructed using miRNet 2.0, including shared-DEmiRNA-gene, shared-DEmiRNA-transcription factor (TF), and shared-DEmiRNA-compound networks. Functional enrichment analysis for shared DEmiRNA-gene and shared DEmiRNA-TF networks was performed using the KEGG, Reactome, and Geno Ontology (GO) pathways. RESULTS 11 shared-DEmiRNAs were identified, among which 9 showed similar expression patterns in both diseases, and 7 were overexpressed. miRNA hsa-hsa-mir-155-5p and hsa-mir-29a-3p were top miRNA nodes in both gene and TF networks. The topmost candidate miRNA-deregulated genes were PTEN, CCND1, MDM2, TNRC6A, and SCD while topmost deregulated TFs included STAT3, HIF1A, EZH2, CEBPA, and RUNX1. Curcumin, 5-fluorouracil, and the gallotanin 1,2,6-Tri-O-galloyl-beta-D-glucopyranose emerged as the most relevant linkage compound targets. Functional analyses revealed multiple cancer-associated pathways, PI3K pathways, kinase binding, and transcription factor binding among as enriched by the network-associated genes and TFs. CONCLUSION Integrative analysis of deregulated miRNAs revealed candidate molecular mechanisms comprising of top miRNA, their gene, and TF targets linking H. pylori-infected peptic ulcer disease with periodontitis and highlighted compounds targeting both diseases. These findings provide basis for directing future experimental research.
Collapse
Affiliation(s)
- Ning Li
- Department of Prosthetic Dentistry, The Affiliated Stomatological Hospital of Wenzhou Medical University, Longyao Avenue No. 1288, Yongzhong Street, Longwan District, Wenzhou 325000, Zhejiang Province, China
| | - Zhen Wang
- Department of Stomatology, The Quzhou Affiliated Hospital of Wenzhou Medical University (Quzhou People's Hospital), Kecheng District, Minjiang Avenue No. 100, Quzhou 332400, Zhejiang Province, China
| |
Collapse
|
32
|
Hyperoside Attenuate Inflammation in HT22 Cells via Upregulating SIRT1 to Activities Wnt/ β-Catenin and Sonic Hedgehog Pathways. Neural Plast 2021; 2021:8706400. [PMID: 34221003 PMCID: PMC8213468 DOI: 10.1155/2021/8706400] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
Neuroinflammation plays important roles in the pathogenesis and progression of altered neurodevelopment, sensorineural hearing loss, and certain neurodegenerative diseases. Hyperoside (quercetin-3-O-β-D-galactoside) is an active compound isolated from Hypericum plants. In this study, we investigate the protective effect of hyperoside on neuroinflammation and its possible molecular mechanism. Lipopolysaccharide (LPS) and hyperoside were used to treat HT22 cells. The cell viability was measured by MTT assay. The cell apoptosis rate was measured by flow cytometry assay. The mRNA expression levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) were determined by quantitative reverse transcription polymerase chain reaction. The levels of oxidative stress indices superoxide dismutase (SOD), reactive oxygen species (ROS), catalase (CAT), glutathione (GSH), and malondialdehyde (MDA) were measured by the kits. The expression of neurotrophic factor and the relationship among hyperoside, silent mating type information regulation 2 homolog-1 (SIRT1) and Wnt/β-catenin, and sonic hedgehog was examined by western blotting. In the LPS-induced HT22 cells, hyperoside promotes cell survival; alleviates the level of IL-1β, IL-6, IL-8, TNF-α, ROS, MDA, Bax, and caspase-3; and increases the expression of CAT, SOD, GSH, Bcl-2, BDNF, TrkB, and NGF. In addition, hyperoside upregulated the expression of SIRT1. Further mechanistic investigation showed that hyperoside alleviated LPS-induced inflammation, oxidative stress, and apoptosis by upregulating SIRT1 to activate Wnt/β-catenin and sonic hedgehog pathways. Taken together, our data suggested that hyperoside acts as a protector in neuroinflammation.
Collapse
|