1
|
Cargnin Faccin F, Perez DR. Pandemic preparedness through vaccine development for avian influenza viruses. Hum Vaccin Immunother 2024; 20:2347019. [PMID: 38807261 PMCID: PMC11141480 DOI: 10.1080/21645515.2024.2347019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Influenza A viruses pose a significant threat to global health, impacting both humans and animals. Zoonotic transmission, particularly from swine and avian species, is the primary source of human influenza outbreaks. Notably, avian influenza viruses of the H5N1, H7N9, and H9N2 subtypes are of pandemic concern through their global spread and sporadic human infections. Preventing and controlling these viruses is critical due to their high threat level. Vaccination remains the most effective strategy for influenza prevention and control in humans, despite varying vaccine efficacy across strains. This review focuses specifically on pandemic preparedness for avian influenza viruses. We delve into vaccines tested in animal models and summarize clinical trials conducted on H5N1, H7N9, and H9N2 vaccines in humans.
Collapse
Affiliation(s)
- Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
Lee CY. Exploring Potential Intermediates in the Cross-Species Transmission of Influenza A Virus to Humans. Viruses 2024; 16:1129. [PMID: 39066291 PMCID: PMC11281536 DOI: 10.3390/v16071129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The influenza A virus (IAV) has been a major cause of several pandemics, underscoring the importance of elucidating its transmission dynamics. This review investigates potential intermediate hosts in the cross-species transmission of IAV to humans, focusing on the factors that facilitate zoonotic events. We evaluate the roles of various animal hosts, including pigs, galliformes, companion animals, minks, marine mammals, and other animals, in the spread of IAV to humans.
Collapse
Affiliation(s)
- Chung-Young Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
3
|
Halwe NJ, Hamberger L, Sehl-Ewert J, Mache C, Schön J, Ulrich L, Calvelage S, Tönnies M, Fuchs J, Bandawane P, Loganathan M, Abbad A, Carreño JM, Bermúdez-González MC, Simon V, Kandeil A, El-Shesheny R, Ali MA, Kayali G, Budt M, Hippenstiel S, Hocke AC, Krammer F, Wolff T, Schwemmle M, Ciminski K, Hoffmann D, Beer M. Bat-borne H9N2 influenza virus evades MxA restriction and exhibits efficient replication and transmission in ferrets. Nat Commun 2024; 15:3450. [PMID: 38664395 PMCID: PMC11045726 DOI: 10.1038/s41467-024-47455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Influenza A viruses (IAVs) of subtype H9N2 have reached an endemic stage in poultry farms in the Middle East and Asia. As a result, human infections with avian H9N2 viruses have been increasingly reported. In 2017, an H9N2 virus was isolated for the first time from Egyptian fruit bats (Rousettus aegyptiacus). Phylogenetic analyses revealed that bat H9N2 is descended from a common ancestor dating back centuries ago. However, the H9 and N2 sequences appear to be genetically similar to current avian IAVs, suggesting recent reassortment events. These observations raise the question of the zoonotic potential of the mammal-adapted bat H9N2. Here, we investigate the infection and transmission potential of bat H9N2 in vitro and in vivo, the ability to overcome the antiviral activity of the human MxA protein, and the presence of N2-specific cross-reactive antibodies in human sera. We show that bat H9N2 has high replication and transmission potential in ferrets, efficiently infects human lung explant cultures, and is able to evade antiviral inhibition by MxA in transgenic B6 mice. Together with its low antigenic similarity to the N2 of seasonal human strains, bat H9N2 fulfils key criteria for pre-pandemic IAVs.
Collapse
Affiliation(s)
- Nico Joel Halwe
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493, Greifswald, Insel Riems, Germany
| | - Lea Hamberger
- Institute of Virology, Medical Center-University of Freiburg, 79104, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, 17493, Greifswald, Insel Riems, Germany
| | - Christin Mache
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestraße 10, 13353, Berlin, Germany
| | - Jacob Schön
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493, Greifswald, Insel Riems, Germany
| | - Lorenz Ulrich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493, Greifswald, Insel Riems, Germany
| | - Sten Calvelage
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493, Greifswald, Insel Riems, Germany
| | - Mario Tönnies
- HELIOS Clinic Emil von Behring, Department of Pneumology and Department of Thoracic Surgery, Chest Hospital Heckeshorn, Berlin, Germany
| | - Jonas Fuchs
- Institute of Virology, Medical Center-University of Freiburg, 79104, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Pooja Bandawane
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madhumathi Loganathan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anass Abbad
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria C Bermúdez-González
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Virus, Institute of Environmental Research and Climate Changes, National Research Centre, Giza, Egypt
- Human Link DMCC, Dubai, United Arab Emirates
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Virus, Institute of Environmental Research and Climate Changes, National Research Centre, Giza, Egypt
- Human Link DMCC, Dubai, United Arab Emirates
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Virus, Institute of Environmental Research and Climate Changes, National Research Centre, Giza, Egypt
| | - Ghazi Kayali
- Center of Scientific Excellence for Influenza Virus, Institute of Environmental Research and Climate Changes, National Research Centre, Giza, Egypt
- Human Link DMCC, Dubai, United Arab Emirates
| | - Matthias Budt
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestraße 10, 13353, Berlin, Germany
| | - Stefan Hippenstiel
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Andreas C Hocke
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thorsten Wolff
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestraße 10, 13353, Berlin, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center-University of Freiburg, 79104, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Kevin Ciminski
- Institute of Virology, Medical Center-University of Freiburg, 79104, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493, Greifswald, Insel Riems, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493, Greifswald, Insel Riems, Germany.
| |
Collapse
|
4
|
Zhu S, Nie Z, Che Y, Shu J, Wu S, He Y, Wu Y, Qian H, Feng H, Zhang Q. The Chinese Hamster Ovary Cell-Based H9 HA Subunit Avian Influenza Vaccine Provides Complete Protection against the H9N2 Virus Challenge in Chickens. Viruses 2024; 16:163. [PMID: 38275973 PMCID: PMC10821000 DOI: 10.3390/v16010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
(1) Background: Avian influenza has attracted widespread attention because of its severe effect on the poultry industry and potential threat to human health. The H9N2 subtype of avian influenza viruses was the most prevalent in chickens, and there are several commercial vaccines available for the prevention of the H9N2 subtype of avian influenza viruses. However, due to the prompt antigenic drift and antigenic shift of influenza viruses, outbreaks of H9N2 viruses still continuously occur, so surveillance and vaccine updates for H9N2 subtype avian influenza viruses are particularly important. (2) Methods: In this study, we constructed a stable Chinese hamster ovary cell line (CHO) to express the H9 hemagglutinin (HA) protein of the major prevalent H9N2 strain A/chicken/Daye/DY0602/2017 with genetic engineering technology, and then a subunit H9 avian influenza vaccine was prepared using the purified HA protein with a water-in-oil adjuvant. (3) Results: The results showed that the HI antibodies significantly increased after vaccination with the H9 subunit vaccine in specific-pathogen-free (SPF) chickens with a dose-dependent potency of the immunized HA protein, and the 50 μg or more per dose HA protein could provide complete protection against the H9N2 virus challenge. (4) Conclusions: These results indicate that the CHO expression system could be a platform used to develop the subunit vaccine against H9 influenza viruses in chickens.
Collapse
Affiliation(s)
- Shunfan Zhu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.Z.); (Z.N.); (J.S.); (Y.H.)
| | - Zhenyu Nie
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.Z.); (Z.N.); (J.S.); (Y.H.)
| | - Ying Che
- Zhejiang Novo Biotech Co., Ltd., Shaoxing 312366, China; (Y.C.); (S.W.); (Y.W.); (H.Q.)
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.Z.); (Z.N.); (J.S.); (Y.H.)
| | - Sufang Wu
- Zhejiang Novo Biotech Co., Ltd., Shaoxing 312366, China; (Y.C.); (S.W.); (Y.W.); (H.Q.)
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.Z.); (Z.N.); (J.S.); (Y.H.)
| | - Youqiang Wu
- Zhejiang Novo Biotech Co., Ltd., Shaoxing 312366, China; (Y.C.); (S.W.); (Y.W.); (H.Q.)
| | - Hong Qian
- Zhejiang Novo Biotech Co., Ltd., Shaoxing 312366, China; (Y.C.); (S.W.); (Y.W.); (H.Q.)
| | - Huapeng Feng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.Z.); (Z.N.); (J.S.); (Y.H.)
| | - Qiang Zhang
- Zhejiang Novo Biotech Co., Ltd., Shaoxing 312366, China; (Y.C.); (S.W.); (Y.W.); (H.Q.)
| |
Collapse
|
5
|
Abdelwhab EM, Mettenleiter TC. Zoonotic Animal Influenza Virus and Potential Mixing Vessel Hosts. Viruses 2023; 15:980. [PMID: 37112960 PMCID: PMC10145017 DOI: 10.3390/v15040980] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Influenza viruses belong to the family Orthomyxoviridae with a negative-sense, single-stranded segmented RNA genome. They infect a wide range of animals, including humans. From 1918 to 2009, there were four influenza pandemics, which caused millions of casualties. Frequent spillover of animal influenza viruses to humans with or without intermediate hosts poses a serious zoonotic and pandemic threat. The current SARS-CoV-2 pandemic overshadowed the high risk raised by animal influenza viruses, but highlighted the role of wildlife as a reservoir for pandemic viruses. In this review, we summarize the occurrence of animal influenza virus in humans and describe potential mixing vessel or intermediate hosts for zoonotic influenza viruses. While several animal influenza viruses possess a high zoonotic risk (e.g., avian and swine influenza viruses), others are of low to negligible zoonotic potential (e.g., equine, canine, bat and bovine influenza viruses). Transmission can occur directly from animals, particularly poultry and swine, to humans or through reassortant viruses in "mixing vessel" hosts. To date, there are less than 3000 confirmed human infections with avian-origin viruses and less than 7000 subclinical infections documented. Likewise, only a few hundreds of confirmed human cases caused by swine influenza viruses have been reported. Pigs are the historic mixing vessel host for the generation of zoonotic influenza viruses due to the expression of both avian-type and human-type receptors. Nevertheless, there are a number of hosts which carry both types of receptors and can act as a potential mixing vessel host. High vigilance is warranted to prevent the next pandemic caused by animal influenza viruses.
Collapse
Affiliation(s)
- Elsayed M. Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
6
|
Mok CKP, Qin K. Mink infection with influenza A viruses: an ignored intermediate host? ONE HEALTH ADVANCES 2023; 1:5. [PMID: 37521532 PMCID: PMC10060132 DOI: 10.1186/s44280-023-00004-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 08/01/2023]
Abstract
Continuously emergence of human infection with avian influenza A virus poses persistent threat to public health, as illustrated in zoonotic H5N1/6 and H7N9 infections. The recent surge of infection to farmed mink by multiple subtypes of avian influenza A viruses in China highlights the role of mink in the ecology of influenza in this region. Serologic studies suggested that farmed mink in China are frequently infected with prevailing human (H3N2 and H1N1/pdm) and avian (H7N9, H5N6, and H9N2) influenza A viruses. Moreover, genetic analysis from the sequences of influenza viruses from mink showed that several strains acquired mammalian adaptive mutations compared to their avian counterparts. The transmission of SARS-CoV-2 from mink to human alerts us that mink may serve as an intermediate host or reservoir of some emerging pathogens. Considering the high susceptibility to different influenza A viruses, it is possible that mink in endemic regions may play a role as an "mixing vessel" for generating novel pandemic strain. Thus, enhanced surveillance of influenza viruses in mink should be urgently implemented for early warning of potential pandemic.
Collapse
Affiliation(s)
- Chris Ka Pun Mok
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, SAR Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, SAR Hong Kong, China
| | - Kun Qin
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), 100 Yingxin Street, Western District, 100052 Beijing, China
| |
Collapse
|
7
|
Detection and Characterization of an H9N2 Influenza A Virus in the Egyptian Rousette Bat in Limpopo, South Africa. Viruses 2023; 15:v15020498. [PMID: 36851712 PMCID: PMC9958621 DOI: 10.3390/v15020498] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
In recent years, bats have been shown to host various novel bat-specific influenza viruses, including H17N10 and H18N11 in the Americas and the H9N2 subtype from Africa. Rousettus aegyptiacus (Egyptian Rousette bat) is recognized as a host species for diverse viral agents. This study focused on the molecular surveillance of a maternal colony in Limpopo, South Africa, between 2017-2018. A pan-influenza hemi-nested RT-PCR assay targeting the PB1 gene was established, and influenza A virus RNA was identified from one fecal sample out of 860 samples. Genome segments were recovered using segment-specific amplification combined with standard Sanger sequencing and Illumina unbiased sequencing. The identified influenza A virus was closely related to the H9N2 bat-influenza virus, confirming the circulation of this subtype among Egyptian fruit bat populations in Southern Africa. This bat H9N2 subtype contained amino acid residues associated with transmission and virulence in either mammalian or avian hosts, though it will likely require additional adaptations before spillover.
Collapse
|
8
|
Niu X, Wang H, Zhao L, Lian P, Bai Y, Li J, Qiao J. All-trans retinoic acid increases the pathogenicity of the H9N2 influenza virus in mice. Virol J 2022; 19:113. [PMID: 35764970 PMCID: PMC9238145 DOI: 10.1186/s12985-022-01809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The H9N2 virus can infect not only birds but also humans. The pathogenicity of H9N2 virus infection is determined by an excessive immune response in the lung. All-trans retinoic acid (ATRA), the active metabolite of vitamin A, plays an important regulatory role and has been widely used in the clinical practice. This study was aimed to investigate whether ATRA could regulate the immune response to H9N2 virus infection in the lungs of mice, thereby reducing the pathogenicity of the H9N2 virus in mice. METHODS Mice were infected intranasally with H9N2 virus, and injected intraperitoneally with 0.2 mL of ATRA at low (1 mg/kg), medium (5 or 10 mg/kg), or high therapeutic dose (20 mg/kg), and toxic dose (40, 60, or 80 mg/kg), once per day for 10 days. Clinical signs, survival rates, and lung gross pathology were compared between the ATRA-treated H9N2-infected group, the ATRA group, and the H9N2-infected group, to investigate the effect of different doses of ATRA on the pathogenicity of H9N2 virus. Additionally, the viral load and cytokine concentration of lungs were measured at 3, 5, 7, and 9 days after infection, to investigate the potential mechanism of ATRA in affecting the pathogenicity of the H9N2 virus. Expression levels of cellular retinoic acid-binding protein 1 (CRABP1), cellular retinoic acid-binding protein 2 (CRABP2), and Retinoic acid-inducible gene-I (RIG-I) were detected using Western blotting. RESULTS The ATRA-treated H9N2-infected mice showed more severe clinical signs compared with the H9N2-infected group. The medium and high therapeutic doses of ATRA reduced the survival rates, aggravated lung tissue damage, decreased the expression of interferon beta (IFN-β), and increased the concentrations of interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and C-C motif chemokine ligand 2 (CCL2) in the lungs of the H9N2-infected mice. At the same time, the expression patterns of CRABP1, CRABP2, and RIG-I were changed in mice infected by H9N2 and treated with different concentrations of ATRA. CONCLUSIONS Our findings suggest that the therapeutic dose of ATRA can increase the pathogenicity of the H9N2 virus. Therefore, the consequences of those infected by influenza virus would be more severe after ATRA treatment.
Collapse
Affiliation(s)
- Xiaofei Niu
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.,Department of Veterinary Medicine, College of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Economic and Technological Development Zone, Handan, 056038, People's Republic of China
| | - Hongyan Wang
- Department of Veterinary Medicine, College of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Economic and Technological Development Zone, Handan, 056038, People's Republic of China
| | - Lihong Zhao
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Pengjing Lian
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yu Bai
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Jingyun Li
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Jian Qiao
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
9
|
Kessler S, Harder TC, Schwemmle M, Ciminski K. Influenza A Viruses and Zoonotic Events-Are We Creating Our Own Reservoirs? Viruses 2021; 13:v13112250. [PMID: 34835056 PMCID: PMC8624301 DOI: 10.3390/v13112250] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/16/2023] Open
Abstract
Zoonotic infections of humans with influenza A viruses (IAVs) from animal reservoirs can result in severe disease in individuals and, in rare cases, lead to pandemic outbreaks; this is exemplified by numerous cases of human infection with avian IAVs (AIVs) and the 2009 swine influenza pandemic. In fact, zoonotic transmissions are strongly facilitated by manmade reservoirs that were created through the intensification and industrialization of livestock farming. This can be witnessed by the repeated introduction of IAVs from natural reservoirs of aquatic wild bird metapopulations into swine and poultry, and the accompanied emergence of partially- or fully-adapted human pathogenic viruses. On the other side, human adapted IAV have been (and still are) introduced into livestock by reverse zoonotic transmission. This link to manmade reservoirs was also observed before the 20th century, when horses seemed to have been an important reservoir for IAVs but lost relevance when the populations declined due to increasing industrialization. Therefore, to reduce zoonotic events, it is important to control the spread of IAV within these animal reservoirs, for example with efficient vaccination strategies, but also to critically surveil the different manmade reservoirs to evaluate the emergence of new IAV strains with pandemic potential.
Collapse
Affiliation(s)
- Susanne Kessler
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany; (S.K.); (M.S.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Timm C. Harder
- Friedrich-Loeffler-Institut (FLI), Institute of Diagnostic Virology, 17493 Greifswald-Insel Riems, Germany;
| | - Martin Schwemmle
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany; (S.K.); (M.S.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Kevin Ciminski
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany; (S.K.); (M.S.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Correspondence:
| |
Collapse
|
10
|
Zalewski A, Virtanen JME, Brzeziński M, Kołodziej‐Sobocińska M, Jankow W, Sironen T. Aleutian mink disease: Spatio-temporal variation of prevalence and influence on the feral American mink. Transbound Emerg Dis 2021; 68:2556-2570. [PMID: 33197283 PMCID: PMC8359164 DOI: 10.1111/tbed.13928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/20/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022]
Abstract
Pathogens are one of the factors driving wildlife population dynamics. The spread of pathogens in wildlife is currently highly related to the transmission of pathogens from farmed animals, which has increased with the constant development of farming. Here, we analysed the spatio-temporal variation in the prevalence of Aleutian mink disease virus (AMDV) antibodies in feral American mink (Neovison vison) populations in Poland (1,153 individuals from nine sites) in relation to mink farming intensity. AMDV was detected in feral mink at all study sites and the prevalence ranged from 0.461 in the northern region to 0.826 in the western region. Mink males and adults were infected more often than females and subadults; the infection was also more frequent during the mink breeding season than during non-breeding. The prevalence of AMDV changed non-linearly in consecutive years and the peak of prevalence was every 3-4 years. The predicted AMDV prevalence was low at sites where the number of farmed mink was also low and increased linearly with the increase in the number of mink kept on farms. The predicted AMDV prevalence at sites with low mink farming intensity strongly varied between years, whereas at sites with high mink farming intensity, the predicted prevalence did not change significantly. AMDV infection affected the mink's body condition and caused an increase in the size of the spleen, liver and kidneys. This study shows that Aleutian mink disease strongly affects feral mink but the spatio-temporal variation of its prevalence is complex and partly related to the transmission of the virus from farmed mink to feral populations. The study highlights the complexity of AMDV circulation in feral mink populations and implicates a potential spillover of the virus to native species.
Collapse
Affiliation(s)
- Andrzej Zalewski
- Mammal Research InstitutePolish Academy of SciencesBiałowieżaPoland
| | - Jenni M. E. Virtanen
- Department of Veterinary BiosciencesFaculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
- Department of VirologyFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | | | | | - Władysław Jankow
- Mammal Research InstitutePolish Academy of SciencesBiałowieżaPoland
| | - Tarja Sironen
- Department of Veterinary BiosciencesFaculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
- Department of VirologyFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
11
|
Increased Pulmonary Pneumococcal Clearance after Resolution of H9N2 Avian Influenza Virus Infection in Mice. Infect Immun 2021; 89:IAI.00062-21. [PMID: 33722928 PMCID: PMC8316151 DOI: 10.1128/iai.00062-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/20/2022] Open
Abstract
H9N2 avian influenza virus has been continuously circulating among poultry and can infect mammals, indicating that this virus is a potential pandemic strain. During influenza pandemics, secondary bacterial (particularly pneumococcal) pneumonia usually contributes to excessive mortality. In the present study, we observed the dynamic effect of H9N2 virus infection on host defense against secondary pneumococcal infection in mice. BALB/c mice were intranasally inoculated with 1.2 × 105 PFU of H9N2 virus followed by 1 × 106 CFU of Streptococcus pneumoniae at 7, 14, or 28 days post-H9N2 infection (dpi). The bacterial load, histopathology, body weight, and survival were assessed after pneumococcal infection. Our results showed that H9N2 virus infection had no significant impact on host resistance to secondary pneumococcal infection at 7 dpi. However, H9N2 virus infection increased pulmonary pneumococcal clearance and reduced pneumococcal pneumonia-induced morbidity after secondary pneumococcal infection at 14 or 28 dpi, as reflected by significantly decreased bacterial loads, markedly alleviated pulmonary histopathological changes, and significantly reduced weight loss in mice infected with H9N2 virus followed by S. pneumoniae compared with mice infected only with S. pneumoniae. Further, the significantly decreased bacterial loads were observed when mice were previously infected with a high dose (1.2 × 106 PFU) of H9N2 virus. Also, similar to the results obtained in BALB/c mice, improvement in pulmonary pneumococcal clearance was observed in C57BL/6 mice. Overall, our results showed that pulmonary pneumococcal clearance is improved after resolution of H9N2 virus infection in mice.
Collapse
|
12
|
Wasik BR, Voorhees IE, Parrish CR. Canine and Feline Influenza. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038562. [PMID: 31871238 PMCID: PMC7778219 DOI: 10.1101/cshperspect.a038562] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Influenza virus infections of carnivores-primarily in dogs and in large and small cats-have been repeatedly observed to be caused by a number of direct spillovers of avian viruses or in infections by human or swine viruses. In addition, there have also been prolonged epizootics of an H3N8 equine influenza virus in dogs starting around 1999, of an H3N2 avian influenza virus in domestic dog populations in Asia and in the United States that started around 2004, and an outbreak of an avian H7N2 influenza virus among cats in an animal shelter in the United States in 2016. The impact of influenza viruses in domesticated companion animals and their zoonotic or panzootic potential poses significant questions for veterinary and human health.
Collapse
|
13
|
Root JJ, Shriner SA. Avian Influenza A Virus Associations in Wild, Terrestrial Mammals: A Review of Potential Synanthropic Vectors to Poultry Facilities. Viruses 2020; 12:E1352. [PMID: 33256041 PMCID: PMC7761170 DOI: 10.3390/v12121352] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
The potential role of wild mammals in the epidemiology of influenza A viruses (IAVs) at the farm-side level has gained increasing consideration over the past two decades. In some instances, select mammals may be more likely to visit riparian areas (both close and distant to farms) as well as poultry farms, as compared to traditional reservoir hosts, such as waterfowl. Of significance, many mammalian species can successfully replicate and shed multiple avian IAVs to high titers without prior virus adaptation and often can shed virus in greater quantities than synanthropic avian species. Within this review, we summarize and discuss the potential risks that synanthropic mammals could pose by trafficking IAVs to poultry operations based on current and historic literature.
Collapse
Affiliation(s)
- J. Jeffrey Root
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO 80521, USA;
| | | |
Collapse
|
14
|
Genetically and Antigenically Divergent Influenza A(H9N2) Viruses Exhibit Differential Replication and Transmission Phenotypes in Mammalian Models. J Virol 2020; 94:JVI.00451-20. [PMID: 32611751 DOI: 10.1128/jvi.00451-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/20/2020] [Indexed: 12/15/2022] Open
Abstract
Low-pathogenicity avian influenza A(H9N2) viruses, enzootic in poultry populations in Asia, are associated with fewer confirmed human infections but higher rates of seropositivity compared to A(H5) or A(H7) subtype viruses. Cocirculation of A(H5) and A(H7) viruses leads to the generation of reassortant viruses bearing A(H9N2) internal genes with markers of mammalian adaptation, warranting continued surveillance in both avian and human populations. Here, we describe active surveillance efforts in live poultry markets in Vietnam in 2018 and compare representative viruses to G1 and Y280 lineage viruses that have infected humans. Receptor binding properties, pH thresholds for HA activation, in vitro replication in human respiratory tract cells, and in vivo mammalian pathogenicity and transmissibility were investigated. While A(H9N2) viruses from both poultry and humans exhibited features associated with mammalian adaptation, one human isolate from 2018, A/Anhui-Lujiang/39/2018, exhibited increased capacity for replication and transmission, demonstrating the pandemic potential of A(H9N2) viruses.IMPORTANCE A(H9N2) influenza viruses are widespread in poultry in many parts of the world and for over 20 years have sporadically jumped species barriers to cause human infection. As these viruses continue to diversify genetically and antigenically, it is critical to closely monitor viruses responsible for human infections, to ascertain if A(H9N2) viruses are acquiring properties that make them better suited to infect and spread among humans. In this study, we describe an active poultry surveillance system established in Vietnam to identify the scope of influenza viruses present in live bird markets and the threat they pose to human health. Assessment of a recent A(H9N2) virus isolated from an individual in China in 2018 is also reported, and it was found to exhibit properties of adaptation to humans and, importantly, it shows similarities to strains isolated from the live bird markets of Vietnam.
Collapse
|
15
|
Mobasheri A. COVID-19, Companion Animals, Comparative Medicine, and One Health. Front Vet Sci 2020; 7:522. [PMID: 32923472 PMCID: PMC7456910 DOI: 10.3389/fvets.2020.00522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
The COVID-19 pandemic in 2020 has stimulated open collaboration between different scientific and clinical disciplines like never before. Public and private partnerships continue to form in order to tackle this unprecedented global challenge. This paper highlights the importance of open collaboration and cooperation between the disciplines of medicine, veterinary medicine, and animal health sciences in the fight against COVID-19. Since the pandemic took the whole world by surprise, many existing drugs were rapidly repurposed and tested in COVID-19 clinical trials and some of the trials are revealing promising results, it is clear that the long-term solution will come in the form of vaccines. While vaccines are being developed, the antiviral agent Remdesivir (RDV, GS-5734) is being repurposed for use in human clinical trials but this is being done without acknowledging the significant efforts that went into development for treating cats with feline infectious peritonitis (FIP), a highly fatal immune-mediated vasculitis in cats which is caused by a feline coronavirus. There are many other antiviral drugs and immune modulating treatments that are currently being trialed that have animal health origins in terms of discovery and clinical development. Closer collaboration between the animal health and human health sectors is likely to accelerate progress in the fight against COVID-19. There is much that we do not yet know about COVID-19 and its causative agent SARS-CoV-2 but we will learn and progress much faster if we increase interdisciplinary collaboration and communication between human and animal health researchers and taking a genuine "One Health" approach to this and other emerging viral pathogens. Enhanced knowledge of zoonotic coronaviruses can significantly enhance our ability to fight current and future emerging coronaviruses. This article highlights the acute need for One Health and comparative medicine and the crucial importance of building on and recognizing veterinary research for addressing future human pandemics.
Collapse
Affiliation(s)
- Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Department of Regenerative Medicine, State Research Institute, Centre for Innovative Medicine, Vilnius, Lithuania.,University Medical Center Utrecht, Departments of Orthopedics, Rheumatology and Clinical Immunology, Utrecht, Netherlands.,Centre for Sport, Exercise and Osteoarthritis Versus Arthritis, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
16
|
Serological evidence of the infection of H7 virus and the co-infection of H7 and H9 viruses in farmed fur-bearing animals in eastern China. Braz J Microbiol 2020; 51:2163-2167. [PMID: 32691394 DOI: 10.1007/s42770-020-00338-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/11/2020] [Indexed: 10/23/2022] Open
Abstract
Avian influenza virus (AIV) usually infects wild birds and domestic poultry; however, this virus could be transmitted to mammals and humans. The previous studies reported that the farmed mink could be infected with the H5 AIV and H9 AIV, indicating that the farmed fur-bearing animals may be susceptible to AIV. Here, we report the serological evidence of infection of H7 AIV and co-infection of H7 and H9 AIV in healthy framed fur-bearing animals. We collected serum specimens from healthy farmed fur-bearing animals (farmed mink and farmed fox) and make an investigation of serological surveillance of clade 2.3.2 H5 AIV, clade 7.2 H5 AIV, clade 2.3.4.4 H5 AIV, H7 AIV, and H9 AIV. We did not find the hemagglutination inhibition (HI) antibodies against clade 2.3.2 H5 AIV, clade 7.2 H5 AIV, or clade 2.3.4.4 H5 AIV in the serum specimens of farmed fur-bearing animals. However, we found that both farmed mink and farmed fox possess HI antibodies against H7 AIV or H9 AIV; furthermore, we found that some serum specimens possess both anti-H7 AIV antibodies and anti-H9 AIV HI antibodies, suggesting that one farmed fur-bearing animal can be infected with two different subtype AIVs and may play an important role in the reassortment course of the novel avian influenza viruses. Taken together, our data suggested that the enhanced surveillance of AIV in farmed fur-bearing animals and humans or animals in close contact with them is needed.
Collapse
|
17
|
Adaptation of H9N2 Influenza Viruses to Mammalian Hosts: A Review of Molecular Markers. Viruses 2020; 12:v12050541. [PMID: 32423002 PMCID: PMC7290818 DOI: 10.3390/v12050541] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 11/18/2022] Open
Abstract
As the number of human infections with avian and swine influenza viruses continues to rise, the pandemic risk posed by zoonotic influenza viruses cannot be underestimated. Implementation of global pandemic preparedness efforts has largely focused on H5 and H7 avian influenza viruses; however, the pandemic threat posed by other subtypes of avian influenza viruses, especially the H9 subtype, should not be overlooked. In this review, we summarize the literature pertaining to the emergence, prevalence and risk assessment of H9N2 viruses, and add new molecular analyses of key mammalian adaptation markers in the hemagglutinin and polymerase proteins. Available evidence has demonstrated that H9N2 viruses within the Eurasian lineage continue to evolve, leading to the emergence of viruses with an enhanced receptor binding preference for human-like receptors and heightened polymerase activity in mammalian cells. Furthermore, the increased prevalence of certain mammalian adaptation markers and the enhanced transmissibility of selected viruses in mammalian animal models add to the pandemic risk posed by this virus subtype. Continued surveillance of zoonotic H9N2 influenza viruses, inclusive of close genetic monitoring and phenotypic characterization in animal models, should be included in our pandemic preparedness efforts.
Collapse
|
18
|
Liu J, Li Z, Cui Y, Yang H, Shan H, Zhang C. Emergence of an Eurasian avian-like swine influenza A (H1N1) virus from mink in China. Vet Microbiol 2019; 240:108509. [PMID: 31902506 DOI: 10.1016/j.vetmic.2019.108509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 01/22/2023]
Abstract
We evaluated the phenotype and genotype of a fatal influenza/canine distemper virus coinfection found in farmed mink in China. We identified a novel subtype H1N1 influenza virus strain from the lungs of infected mink designated A/Mink/Shandong/1121/2017 (H1N1). The results of phylogenetic analysis of 8 gene fragments of the H1N1 strain showed the virus was a swine origin triple-reassortant H1N1 influenza virus: with the 2009 pandemic H1N1 segments (PB2, PB1, PA, NP and M), Eurasian avian-like H1N1 swine segments (HA and NA) and classical swine (NS) lineages. The EID50/0.2 mL of this strain was 10-6.2 and pathogenicity tests were 100 % lethal in a mouse model of infection. We found that while not lethal and lacking any overt signs of infection in mink, the virus could proliferate in the upper respiratory tracts and the animals were converted to seropositive for the HA protein.
Collapse
Affiliation(s)
- Jiahui Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zihe Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yanlei Cui
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Haiyan Yang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Chuanmei Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
19
|
A Global Perspective on H9N2 Avian Influenza Virus. Viruses 2019; 11:v11070620. [PMID: 31284485 PMCID: PMC6669617 DOI: 10.3390/v11070620] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 11/26/2022] Open
Abstract
H9N2 avian influenza viruses have become globally widespread in poultry over the last two decades and represent a genuine threat both to the global poultry industry but also humans through their high rates of zoonotic infection and pandemic potential. H9N2 viruses are generally hyperendemic in affected countries and have been found in poultry in many new regions in recent years. In this review, we examine the current global spread of H9N2 avian influenza viruses as well as their host range, tropism, transmission routes and the risk posed by these viruses to human health.
Collapse
|
20
|
Pusch EA, Suarez DL. The Multifaceted Zoonotic Risk of H9N2 Avian Influenza. Vet Sci 2018; 5:E82. [PMID: 30248906 PMCID: PMC6313933 DOI: 10.3390/vetsci5040082] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 12/30/2022] Open
Abstract
Poultry-adapted H9N2 avian influenza viruses (AIVs) are commonly found in many countries in Asia, the Middle East, Africa, and Europe, and although classified as low pathogenic viruses, they are an economically important disease. Besides the importance of the disease in the poultry industry, some H9N2 AIVs are also known to be zoonotic. The disease in humans appears to cause primarily a mild upper respiratory disease, and doesn't cause or only rarely causes the severe pneumonia often seen with other zoonotic AIVs like H5N1 or H7N9. Serologic studies in humans, particularly in occupationally exposed workers, show a large number of people with antibodies to H9N2, suggesting infection is commonly occurring. Of the four defined H9N2 poultry lineages, only two lineages, the G1 and the Y280 lineages, are associated with human infections. Almost all of the viruses from humans have a leucine at position 226 (H3 numbering) of the hemagglutinin associated with a higher affinity of binding with α2,6 sialic acid, the host cell receptor most commonly found on glycoproteins in the human upper respiratory tract. For unknown reasons there has also been a shift in recent years of poultry viruses in the G1 and Y280 lineages to also having leucine instead of glutamine, the amino acid found in most avian viruses, at position 226. The G1 and Y280 poultry lineages because of their known ability to infect humans, the high prevalence of the virus in poultry in endemic countries, the lack of antibody in most humans, and the shift of poultry viruses to more human-like receptor binding makes these viruses a human pandemic threat. Increased efforts for control of the virus, including through effective vaccine use in poultry, is warranted for both poultry and public health goals.
Collapse
Affiliation(s)
- Elizabeth A Pusch
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| | - David L Suarez
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| |
Collapse
|
21
|
PB2 and HA mutations increase the virulence of highly pathogenic H5N5 clade 2.3.4.4 avian influenza virus in mice. Arch Virol 2017; 163:401-410. [PMID: 29090366 DOI: 10.1007/s00705-017-3631-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
Abstract
H5 clade 2.3.4.4 influenza A viruses pose a potential threat to public health and are a cause of public concern. Here, we generated mouse-adapted viruses of a waterfowl-origin H5N5 virus (H5 clade 2.3.4.4) to identify adaptive changes that confer increased virulence in mammals. After two passages, we obtained a mouse-adapted H5N5 virus that contained single amino acid substitutions in the PB2 (E627K) and hemagglutinin (HA) (F430L) proteins. We then analyzed the impact of these individual amino acid substitutions on viral pathogenicity to mammals. The 50% mouse lethal dose (MLD50) of the H5N5 virus containing the PB2-E627K substitution or the HA-F430L substitution was reduced 1000-fold or 3.16-fold, respectively. Furthermore, we found that PB2-E627K enhanced viral replication kinetics in vitro and in vivo. These results suggest that the PB2-E627K and HA-F430L substitutions are important for adaptation of H5N5 AIVs to mammals. These findings emphasize the importance of continued surveillance of poultry for H5N5 AIVs with these amino acid substitutions.
Collapse
|
22
|
Intraspecies and interspecies transmission of mink H9N2 influenza virus. Sci Rep 2017; 7:7429. [PMID: 28785024 PMCID: PMC5547065 DOI: 10.1038/s41598-017-07879-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/05/2017] [Indexed: 12/29/2022] Open
Abstract
H9N2 influenza A virus (IAV) causes low pathogenic respiratory disease and infects a wide range of hosts. In this study, six IAVs were isolated from mink and identified as H9N2 IAV. Sequence analysis revealed that the six isolates continued to evolve, and their PB2 genes shared high nucleotide sequence identity with H7N9 IAV. The six isolates contained an amino acid motif PSRSSR↓GL at the hemagglutinin cleavage site, which is a characteristic of low pathogenic influenza viruses. A serosurvey demonstrated that H9N2 IAV had spread widely in mink and was prevalent in foxes and raccoon dogs. Transmission experiments showed that close contact between H9N2-infected mink and naive mink, foxes and raccoon dogs resulted in spread of the virus to the contact animals. Furthermore, H9N2 challenge experiments in foxes and raccoon dogs showed that H9N2 IAV could infect these hosts. Virological and epidemiological surveillance of H9N2 IAV should be strengthened for the fur animal industry.
Collapse
|