1
|
Deshpande N, Suryawanshi PV, Tripathy S. Unveiling the Quest: Crafting an Enzyme-Linked Immunosorbent Assay (ELISA) Technique to Uncover COVID-19 Antibodies. Cureus 2024; 16:e66659. [PMID: 39262508 PMCID: PMC11390149 DOI: 10.7759/cureus.66659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/11/2024] [Indexed: 09/13/2024] Open
Abstract
The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has had a profound impact on global health. Rapid and accurate diagnostic tools are crucial for effective disease control and management. The enzyme-linked immunosorbent assay (ELISA) has emerged as a reliable and widely used method for detecting COVID-19 antibodies in patients, which develop in response to SARS-CoV-2 infection. While the ELISA technique is effective in identifying the presence of antibodies and thus confirming exposure to the virus, its role in predicting the clinical course and severity of the disease is limited. ELISA primarily confirms prior exposure to the virus or vaccination status, but it does not directly correlate antibody levels with the severity or progression of the disease. The variability in clinical outcomes is influenced by factors such as viral load, patient co-morbidities, genetic predispositions, and the timing of the immune response. ELISA has diverse applications in epidemiology, vaccination assessment, and therapeutic development. It determines antibody prevalence, aids in surveillance, and evaluates vaccine effectiveness and antibody protection duration. ELISA quantitatively measures antibody levels, providing insights into the immune response and treatment efficacy. Challenges include specialized facilities and personnel, cross-reactivity, and false results. Multiplex assays and integration with other diagnostics are future directions. In summary, ELISA is an essential tool in COVID-19 diagnostics, enabling precise assessment of the immune response and contributing to effective strategies. The development of point-of-care devices that integrate ELISA technology could enable rapid and accessible testing in various settings. Additionally, integrating ELISA with other diagnostic platforms could enhance the overall diagnostic capabilities for COVID-19. Despite challenges, ongoing advancements in ELISA technology, and its integration with other diagnostic approaches, hold promise for further improving COVID-19 diagnostics and management strategies.
Collapse
Affiliation(s)
- Nitin Deshpande
- Department of Health Sciences, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
- Department of Health Sciences, Premium Chick Feeds Pvt Ltd, Pune, IND
| | - Poonam V Suryawanshi
- Department of Immunology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Srikanth Tripathy
- Department of Infectious Diseases, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| |
Collapse
|
2
|
Wang R, Lu S, Deng F, Wu L, Yang G, Chong S, Liu Y. Enhancing the understanding of SARS-CoV-2 protein with structure and detection methods: An integrative review. Int J Biol Macromol 2024; 270:132237. [PMID: 38734351 DOI: 10.1016/j.ijbiomac.2024.132237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
As the rapid and accurate screening of infectious diseases can provide meaningful information for outbreak prevention and control, as well as owing to the existing limitations of the polymerase chain reaction (PCR), it is imperative to have new and validated detection techniques for SARS-CoV-2. Therefore, the rationale for outlining the techniques used to detect SARS-CoV-2 proteins and performing a comprehensive comparison to serve as a practical benchmark for future identification of similar viral proteins is clear. This review highlights the urgent need to strengthen pandemic preparedness by emphasizing the importance of integrated measures. These include improved tools for pathogen characterization, optimized societal precautions, the establishment of early warning systems, and the deployment of highly sensitive diagnostics for effective surveillance, triage, and resource management. Additionally, with an improved understanding of the virus' protein structure, considerable advances in targeted detection, treatment, and prevention strategies are expected to greatly improve our ability to respond to future outbreaks.
Collapse
Affiliation(s)
- Ruiqi Wang
- Shenyang University of Chemical Technology, Shenyang 110142, China; National Institute of Metrology, Beijing 100029, China
| | - Song Lu
- National Institute of Metrology, Beijing 100029, China
| | - Fanyu Deng
- National Institute of Metrology, Beijing 100029, China; North University of China, Taiyuan 030051, China
| | - Liqing Wu
- National Institute of Metrology, Beijing 100029, China
| | - Guowu Yang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518055, China
| | - Siying Chong
- Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yahui Liu
- National Institute of Metrology, Beijing 100029, China.
| |
Collapse
|
3
|
Liu Y, Li Y, Hang Y, Wang L, Wang J, Bao N, Kim Y, Jang HW. Rapid assays of SARS-CoV-2 virus and noble biosensors by nanomaterials. NANO CONVERGENCE 2024; 11:2. [PMID: 38190075 PMCID: PMC10774473 DOI: 10.1186/s40580-023-00408-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024]
Abstract
The COVID-19 outbreak caused by SARS-CoV-2 in late 2019 has spread rapidly across the world to form a global epidemic of respiratory infectious diseases. Increased investigations on diagnostic tools are currently implemented to assist rapid identification of the virus because mass and rapid diagnosis might be the best way to prevent the outbreak of the virus. This critical review discusses the detection principles, fabrication techniques, and applications on the rapid detection of SARS-CoV-2 with three categories: rapid nuclear acid augmentation test, rapid immunoassay test and biosensors. Special efforts were put on enhancement of nanomaterials on biosensors for rapid, sensitive, and low-cost diagnostics of SARS-CoV-2 virus. Future developments are suggested regarding potential candidates in hospitals, clinics and laboratories for control and prevention of large-scale epidemic.
Collapse
Affiliation(s)
- Yang Liu
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- NantongEgens Biotechnology Co., LTD, Nantong, 226019, Jiangsu, People's Republic of China
| | - Yilong Li
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Yuteng Hang
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Lei Wang
- NantongEgens Biotechnology Co., LTD, Nantong, 226019, Jiangsu, People's Republic of China
| | - Jinghan Wang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ning Bao
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Youngeun Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Lao T, Farnos O, Bueno A, Alvarez A, Rodríguez E, Palacios J, de la Luz KR, Kamen A, Carpio Y, Estrada MP. Transient Expression in HEK-293 Cells in Suspension Culture as a Rapid and Powerful Tool: SARS-CoV-2 N and Chimeric SARS-CoV-2N-CD154 Proteins as a Case Study. Biomedicines 2023; 11:3050. [PMID: 38002050 PMCID: PMC10669214 DOI: 10.3390/biomedicines11113050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
In a previous work, we proposed a vaccine chimeric antigen based on the fusion of the SARS-CoV-2 N protein to the extracellular domain of the human CD40 ligand (CD154). This vaccine antigen was named N-CD protein and its expression was carried out in HEK-293 stably transfected cells, grown in adherent conditions and serum-supplemented medium. The chimeric protein obtained in these conditions presented a consistent pattern of degradation. The immunization of mice and monkeys with this chimeric protein was able to induce a high N-specific IgG response with only two doses in pre-clinical experiments. In order to explore ways to diminish protein degradation, in the present work, the N and N-CD proteins were produced in suspension cultures and serum-free media following transient transfection of the HEK-293 clone 3F6, at different scales, including stirred-tank controlled bioreactors. The results showed negligible or no degradation of the target proteins. Further, clones stably expressing N-CD were obtained and adapted to suspension culture, obtaining similar results to those observed in the transient expression experiments in HEK-293-3F6. The evidence supports transient protein expression in suspension cultures and serum-free media as a powerful tool to produce in a short period of time high levels of complex proteins susceptible to degradation, such as the SARS-CoV-2 N protein.
Collapse
Affiliation(s)
- Thailin Lao
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana 10600, Cuba; (T.L.)
| | - Omar Farnos
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; (O.F.); (A.K.)
| | - Alexi Bueno
- Process Development Department, Center of Molecular Immunology, Havana 11600, Cuba (J.P.); (K.R.d.l.L.)
| | - Anays Alvarez
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana 10600, Cuba; (T.L.)
| | - Elsa Rodríguez
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana 10600, Cuba; (T.L.)
| | - Julio Palacios
- Process Development Department, Center of Molecular Immunology, Havana 11600, Cuba (J.P.); (K.R.d.l.L.)
| | - Kathya Rashida de la Luz
- Process Development Department, Center of Molecular Immunology, Havana 11600, Cuba (J.P.); (K.R.d.l.L.)
| | - Amine Kamen
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; (O.F.); (A.K.)
| | - Yamila Carpio
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana 10600, Cuba; (T.L.)
| | - Mario Pablo Estrada
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana 10600, Cuba; (T.L.)
| |
Collapse
|
5
|
Rottmayer K, Loeffler-Wirth H, Gruenewald T, Doxiadis I, Lehmann C. Individual Immune Response to SARS-CoV-2 Infection-The Role of Seasonal Coronaviruses and Human Leukocyte Antigen. BIOLOGY 2023; 12:1293. [PMID: 37887003 PMCID: PMC10603889 DOI: 10.3390/biology12101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
During the coronavirus pandemic, evidence is growing that the severity, susceptibility and host immune response to SARS-CoV-2 infection can be highly variable. Several influencing factors have been discussed. Here, we investigated the humoral immune response against SARS-CoV-2 spike, S1, S2, the RBD, nucleocapsid moieties and S1 of seasonal coronaviruses: hCoV-229E, hCoV-HKU1, hCoV-NL63 and hCoV-OC43, as well as MERS-CoV and SARS-CoV, in a cohort of 512 individuals. A bead-based multiplex assay allowed simultaneous testing for all the above antigens and the identification of different antibody patterns. Then, we correlated these patterns with 11 HLA loci. Regarding the seasonal coronaviruses, we found a moderate negative correlation between antibody levels against hCoV-229E, hCoV-HKU1 and hCoV-NL63 and the SARS-CoV-2 antigens. This could be an indication of the original immunological imprinting. High and low antibody response patterns were distinguishable, demonstrating the individuality of the humoral response towards the virus. An immunogenetical factor associated with a high antibody response (formation of ≥4 different antibodies) was the presence of HLA A*26:01, C*02:02 and DPB1*04:01 alleles, whereas the HLA alleles DRB3*01:01, DPB1*03:01 and DB1*10:01 were enriched in low responders. A better understanding of this variable immune response could enable more individualized protective measures.
Collapse
Affiliation(s)
- Karla Rottmayer
- Laboratory for Transplantation Immunology, University Hospital Leipzig, Johannisallee 32, 04103 Leipzig, Germany
| | - Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics, IZBI, Leipzig University, Haertelstr. 16–18, 04107 Leipzig, Germany
| | - Thomas Gruenewald
- Clinic for Infectious Diseases and Tropical Medicine, Klinikum Chemnitz, Flemmingstraße 2, 09116 Chemnitz, Germany
| | - Ilias Doxiadis
- Laboratory for Transplantation Immunology, University Hospital Leipzig, Johannisallee 32, 04103 Leipzig, Germany
| | - Claudia Lehmann
- Laboratory for Transplantation Immunology, University Hospital Leipzig, Johannisallee 32, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Nurisyah S, Iyori M, Hasyim AA, Sakamoto A, Hashimoto H, Yamagata K, Yamauchi S, Amru K, Zainal KH, Idris I, Yoshida S, Djaharuddin I, Syafruddin D, Bukhari A, Asih PBS, Yusuf Y. Comparison between Neutralization Capacity of Antibodies Elicited by COVID-19 Natural Infection and Vaccination in Indonesia: A Prospective Cohort. Antibodies (Basel) 2023; 12:60. [PMID: 37753974 PMCID: PMC10526084 DOI: 10.3390/antib12030060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND To fight the COVID-19 pandemic, immunity against SARS-CoV-2 should be achieved not only through natural infection but also by vaccination. The effect of COVID-19 vaccination on previously infected persons is debatable. METHODS A prospective cohort was undergone to collect sera from unvaccinated survivors and vaccinated persons-with and without COVID-19 pre-infection. The sera were analyzed for the anti-receptor binding domain (RBD) titers by ELISA and for the capacity to neutralize the pseudovirus of the Wuhan-Hu-1 strain by luciferase assays. RESULTS Neither the antibody titers nor the neutralization capacity was significantly different between the three groups. However, the correlation between the antibody titers and the percentage of viral neutralization derived from sera of unvaccinated survivors was higher than that from vaccinated persons with pre-infection and vaccinated naïve individuals (Spearman correlation coefficient (r) = -0.8558; 95% CI, -0.9259 to -0.7288), p < 0.0001 vs. -0.7855; 95% CI, -0.8877 to -0.6096, p < 0.0001 and -0.581; 95% CI, -0.7679 to -0.3028, p = 0.0002, respectively), indicating the capacity to neutralize the virus is most superior by infection alone. CONCLUSIONS Vaccines induce anti-RBD titers as high as the natural infection with lower neutralization capacity, and it does not boost immunity in pre-infected persons.
Collapse
Affiliation(s)
- Sitti Nurisyah
- Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia; (S.N.); (K.A.); (I.I.); (I.D.); (D.S.); (A.B.)
- Dr. Tadjuddin Chalid Hospital, Makassar 90241, Indonesia
| | - Mitsuhiro Iyori
- Research Institute of Pharmaceutical Sciences, Musashino University, Nishitokyo, Tokyo 202-8585, Japan;
| | - Ammar Abdurrahman Hasyim
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Kanazawa 920-1192, Japan; (A.A.H.); (A.S.); (H.H.); (K.Y.); (S.Y.); (K.H.Z.); (S.Y.)
| | - Akihiko Sakamoto
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Kanazawa 920-1192, Japan; (A.A.H.); (A.S.); (H.H.); (K.Y.); (S.Y.); (K.H.Z.); (S.Y.)
| | - Hinata Hashimoto
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Kanazawa 920-1192, Japan; (A.A.H.); (A.S.); (H.H.); (K.Y.); (S.Y.); (K.H.Z.); (S.Y.)
| | - Kyouhei Yamagata
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Kanazawa 920-1192, Japan; (A.A.H.); (A.S.); (H.H.); (K.Y.); (S.Y.); (K.H.Z.); (S.Y.)
| | - Saya Yamauchi
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Kanazawa 920-1192, Japan; (A.A.H.); (A.S.); (H.H.); (K.Y.); (S.Y.); (K.H.Z.); (S.Y.)
| | - Khaeriah Amru
- Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia; (S.N.); (K.A.); (I.I.); (I.D.); (D.S.); (A.B.)
- Dr. Tadjuddin Chalid Hospital, Makassar 90241, Indonesia
| | - Kartika Hardianti Zainal
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Kanazawa 920-1192, Japan; (A.A.H.); (A.S.); (H.H.); (K.Y.); (S.Y.); (K.H.Z.); (S.Y.)
| | - Irfan Idris
- Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia; (S.N.); (K.A.); (I.I.); (I.D.); (D.S.); (A.B.)
- Hasanuddin University Medical Research Centre, Makassar 90245, Indonesia
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Kanazawa 920-1192, Japan; (A.A.H.); (A.S.); (H.H.); (K.Y.); (S.Y.); (K.H.Z.); (S.Y.)
| | - Irawaty Djaharuddin
- Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia; (S.N.); (K.A.); (I.I.); (I.D.); (D.S.); (A.B.)
- Dr. Wahidin Soedirohusodo Hospital, Makassar 90425, Indonesia
| | - Din Syafruddin
- Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia; (S.N.); (K.A.); (I.I.); (I.D.); (D.S.); (A.B.)
- Hasanuddin University Medical Research Centre, Makassar 90245, Indonesia
| | - Agussalim Bukhari
- Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia; (S.N.); (K.A.); (I.I.); (I.D.); (D.S.); (A.B.)
| | - Puji Budi Setia Asih
- Badan Riset dan Inovasi Nasional (National Research and Innovation Agency), Jakarta 10340, Indonesia;
| | - Yenni Yusuf
- Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia; (S.N.); (K.A.); (I.I.); (I.D.); (D.S.); (A.B.)
- Hasanuddin University Medical Research Centre, Makassar 90245, Indonesia
| |
Collapse
|
7
|
Tapela K, Opurum PC, Nuokpem FY, Tetteh B, Siaw GK, Humbert MV, Tawiah-Eshun S, Barakisu AI, Asiedu K, Arhin SK, Manu AA, Appiedu-Addo SNA, Obbeng L, Quansah D, Languon S, Anyigba C, Dosoo D, Edu NKO, Oduro-Mensah D, Ampofo W, Tagoe E, Quaye O, Donkor IO, Akorli J, Aniweh Y, Christodoulides M, Mutungi J, Bediako Y, Rayner JC, Awandare GA, McCormick CJ, Quashie PK. Development of an Affordable ELISA Targeting the SARS-CoV-2 Nucleocapsid and Its Application to Samples from the Ongoing COVID-19 Epidemic in Ghana. Mol Diagn Ther 2023; 27:583-592. [PMID: 37462793 PMCID: PMC10435612 DOI: 10.1007/s40291-023-00655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION The true nature of the population spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in populations is often not fully known as most cases, particularly in Africa, are asymptomatic. Finding the true magnitude of SARS-CoV-2 spread is crucial to provide actionable data about the epidemiological progress of the disease for researchers and policymakers. This study developed and optimized an antibody enzyme-linked immunosorbent assay (ELISA) using recombinant nucleocapsid antigen expressed in-house using a simple bacterial expression system. METHODS Nucleocapsid protein from SARS-CoV-2 was expressed and purified from Escherichia coli. Plasma samples used for the assay development were obtained from Ghanaian SARS-CoV-2 seropositive individuals during the pandemic, while seronegative controls were plasma samples collected from blood donors before the coronavirus disease 2019 (COVID-19) pandemic. Another set of seronegative controls was collected during the COVID-19 pandemic. Antibody detection and levels within the samples were validated using commercial kits and Luminex. Analyses were performed using GraphPad Prism, and the sensitivity, specificity and background cut-off were calculated. RESULTS AND DISCUSSION This low-cost ELISA (£0.96/test) assay has a high prediction of 98.9%, and sensitivity and specificity of 97% and 99%, respectively. The assay was subsequently used to screen plasma from SARS-CoV-2 RT-PCR-positive Ghanaians. The assay showed no significant difference in nucleocapsid antibody levels between symptomatic and asymptomatic, with an increase of the levels over time. This is in line with our previous publication. CONCLUSION This study developed a low-cost and transferable assay that enables highly sensitive and specific detection of human anti-SARS-CoV-2 IgG antibodies. This assay can be modified to include additional antigens and used for continuous monitoring of sero-exposure to SARS-CoV-2 in West Africa.
Collapse
Affiliation(s)
- Kesego Tapela
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Precious C Opurum
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Franklin Y Nuokpem
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Becky Tetteh
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Godfred K Siaw
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Maria V Humbert
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Sylvia Tawiah-Eshun
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Anna Ibrahim Barakisu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Kwame Asiedu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Samuel Kojo Arhin
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Aaron A Manu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Sekyibea N A Appiedu-Addo
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Louisa Obbeng
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Darius Quansah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Sylvester Languon
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Claudia Anyigba
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Daniel Dosoo
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Nelson K O Edu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Daniel Oduro-Mensah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - William Ampofo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Emmanuel Tagoe
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Irene Owusu Donkor
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Jewelna Akorli
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Myron Christodoulides
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Joe Mutungi
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Yaw Bediako
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Yemaachi Biotech Inc., 222 Swaniker St, Accra, Ghana
| | - Julian C Rayner
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Christopher J McCormick
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Peter Kojo Quashie
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana.
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK.
| |
Collapse
|
8
|
Yu Q, Trinh HD, Lee Y, Kang T, Chen L, Yoon S, Choo J. SERS-ELISA using silica-encapsulated Au core-satellite nanotags for sensitive detection of SARS-CoV-2. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 382:133521. [PMID: 36818494 PMCID: PMC9927800 DOI: 10.1016/j.snb.2023.133521] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 06/12/2023]
Abstract
The sensitive detection of viruses is key to preventing the spread of infectious diseases. In this study, we develop a silica-encapsulated Au core-satellite (CS@SiO2) nanotag, which produces a strong and reproducible surface-enhanced Raman scattering (SERS) signal. The combination of SERS from the CS@SiO2 nanotags with enzyme-linked immunosorbent assay (ELISA) achieves a highly sensitive detection of SARS-CoV-2. The CS@SiO2 nanotag is constructed by assembling 32 nm Au nanoparticles (AuNPs) on a 75 nm AuNP. Then the core-satellite particles are encapsulated with SiO2 for facile surface modification and stability. The SERS-ELISA technique using the CS@SiO2 nanotags provides a great sensitivity, yielding a detection limit of 8.81 PFU mL-1, which is 10 times better than conventional ELISA and 100 times better than lateral flow assay strip method. SERS-ELISA is applied to 30 SARS-CoV-2 clinical samples and achieved 100% and 55% sensitivities for 15 and 9 positive samples with cycle thresholds < 30 and > 30, respectively. This new CS@SiO2-SERS-ELISA method is an innovative technique that can significantly reduce the false-negative diagnostic rate for SARS-CoV-2 and thereby contribute to overcoming the current pandemic crisis.
Collapse
Affiliation(s)
- Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Hoa Duc Trinh
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Yeonji Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Sangwoon Yoon
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|
9
|
A urine-based ELISA with recombinant non-glycosylated SARS-CoV-2 spike protein for detecting anti-SARS-CoV-2 spike antibodies. Sci Rep 2023; 13:4345. [PMID: 36927952 PMCID: PMC10018619 DOI: 10.1038/s41598-023-31382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Serological assays have been widely used to detect anti-SARS-CoV-2 antibodies, which are generated from previous exposure to the virus or after vaccination. The presence of anti-SARS-CoV-2 Nucleocapsid antibodies was recently reported in patients´ urine using an in-house urine-based ELISA-platform, allowing a non-invasive way to collect clinical samples and assess immune conversion. In the current study, we evaluated and validated another in-house urine-based ELISA for the detection of anti-SARS-CoV-2 Spike antibodies. Three partial recombinant SARS-CoV-2 Spike proteins comprising the Receptor Binding Domain, expressed in eukaryotic or prokaryotic systems, were tested in an ELISA platform against a panel of over 140 urine and paired serum samples collected from 106 patients confirmed positive for SARS-CoV-2 by qRT-PCR. The key findings from our study were that anti-SARS-CoV-2 Spike antibodies could be detected in urine samples and that the prokaryotic expression of the rSARS-CoV-2 Spike protein was not a barrier to obtain relatively high serology efficiency for the urine-based assay. Thus, use of a urine-based ELISA assay with partial rSARS-CoV-2 Spike proteins, expressed in a prokaryotic system, could be considered as a convenient tool for screening for the presence of anti-SARS-CoV-2 Spike antibodies, and overcome the difficulties arising from sample collection and the need for recombinant proteins produced with eukaryotic expression systems.
Collapse
|
10
|
Damiani V, Pizzinato E, Cicalini I, Demattia G, Zucchelli M, Natale L, Palmarini C, Di Marzio C, Federici L, De Laurenzi V, Pieragostino D. Development of a Method for Detection of SARS-CoV-2 Nucleocapsid Antibodies on Dried Blood Spot by DELFIA Immunoassay. Diagnostics (Basel) 2023; 13:897. [PMID: 36900041 PMCID: PMC10000641 DOI: 10.3390/diagnostics13050897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023] Open
Abstract
Antibodies against the SARS-CoV-2 nucleocapsid protein are produced by the immune system in response to SARS-CoV-2 infection, but most available vaccines developed to fight the pandemic spread target the SARS-CoV-2 spike protein. The aim of this study was to improve the detection of antibodies against the SARS-CoV-2 nucleocapsid by providing a simple and robust method applicable to a large population. For this purpose, we developed a DELFIA immunoassay on dried blood spots (DBSs) by converting a commercially available IVD ELISA assay. A total of forty-seven paired plasma and dried blood spots were collected from vaccinated and/or previously SARS-CoV-2-infected subjects. The DBS-DELFIA resulted in a wider dynamic range and higher sensitivity for detecting antibodies against the SARS-CoV-2 nucleocapsid. Moreover, the DBS-DELFIA showed a good total intra-assay coefficient of variability of 14.6%. Finally, a strong correlation was found between SARS-CoV-2 nucleocapsid antibodies detected by the DBS-DELFIA and ELISA immunoassays (r = 0.9). Therefore, the association of dried blood sampling with DELFIA technology may provide an easier, minimally invasive, and accurate measurement of SARS-CoV-2 nucleocapsid antibodies in previously SARS-CoV-2-infected subjects. In conclusion, these results justify further research to develop a certified IVD DBS-DELFIA assay for detecting SARS-CoV-2 nucleocapsid antibodies useful for diagnostics as well as for serosurveillance studies.
Collapse
Affiliation(s)
- Verena Damiani
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Erika Pizzinato
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ilaria Cicalini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Gianmaria Demattia
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mirco Zucchelli
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Luca Natale
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Claudia Palmarini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Claudia Di Marzio
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Luca Federici
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Vincenzo De Laurenzi
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Damiana Pieragostino
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
11
|
Abebe EC, Dejenie TA. Protective roles and protective mechanisms of neutralizing antibodies against SARS-CoV-2 infection and their potential clinical implications. Front Immunol 2023; 14:1055457. [PMID: 36742320 PMCID: PMC9892939 DOI: 10.3389/fimmu.2023.1055457] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Neutralizing antibodies (NAbs) are central players in the humoral immunity that defends the body from SARS-CoV-2 infection by blocking viral entry into host cells and neutralizing their biological effects. Even though NAbs primarily work by neutralizing viral antigens, on some occasions, they may also combat the SARS-CoV-2 virus escaping neutralization by employing several effector mechanisms in collaboration with immune cells like natural killer (NK) cells and phagocytes. Besides their prophylactic and therapeutic roles, antibodies can be used for COVID-19 diagnosis, severity evaluation, and prognosis assessment in clinical practice. Furthermore, the measurement of NAbs could have key implications in determining individual or herd immunity against SARS-CoV-2, vaccine effectiveness, and duration of the humoral protective response, as well as aiding in the selection of suitable individuals who can donate convalescent plasma to treat infected people. Despite all these clinical applications of NAbs, using them in clinical settings can present some challenges. This review discusses the protective functions, possible protective mechanisms against SARS-CoV-2, and potential clinical applications of NAbs in COVID-19. This article also highlights the possible challenges and solutions associated with COVID-19 antibody-based prophylaxis, therapy, and vaccination.
Collapse
Affiliation(s)
- Endeshaw Chekol Abebe
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tadesse Asmamaw Dejenie
- Department of Medical Biochemistry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
12
|
Dofuor AK, Quartey NKA, Osabutey AF, Boateng BO, Lutuf H, Osei JHN, Ayivi-Tosuh SM, Aiduenu AF, Ekloh W, Loh SK, Opoku MJ, Aidoo OF. The Global Impact of COVID-19: Historical Development, Molecular Characterization, Drug Discovery and Future Directions. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2023; 16:2632010X231218075. [PMID: 38144436 PMCID: PMC10748929 DOI: 10.1177/2632010x231218075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/26/2023]
Abstract
In December 2019, an outbreak of a respiratory disease called the coronavirus disease 2019 (COVID-19) caused by a new coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began in Wuhan, China. The SARS-CoV-2, an encapsulated positive-stranded RNA virus, spread worldwide with disastrous consequences for people's health, economies, and quality of life. The disease has had far-reaching impacts on society, including economic disruption, school closures, and increased stress and anxiety. It has also highlighted disparities in healthcare access and outcomes, with marginalized communities disproportionately affected by the SARS-CoV-2. The symptoms of COVID-19 range from mild to severe. There is presently no effective cure. Nevertheless, significant progress has been made in developing COVID-19 vaccine for different therapeutic targets. For instance, scientists developed multifold vaccine candidates shortly after the COVID-19 outbreak after Pfizer and AstraZeneca discovered the initial COVID-19 vaccines. These vaccines reduce disease spread, severity, and mortality. The addition of rapid diagnostics to microscopy for COVID-19 diagnosis has proven crucial. Our review provides a thorough overview of the historical development of COVID-19 and molecular and biochemical characterization of the SARS-CoV-2. We highlight the potential contributions from insect and plant sources as anti-SARS-CoV-2 and present directions for future research.
Collapse
Affiliation(s)
- Aboagye Kwarteng Dofuor
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Naa Kwarley-Aba Quartey
- Department of Food Science and Technology, Faculty of Biosciences, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Belinda Obenewa Boateng
- Coconut Research Program, Oil Palm Research Institute, Council for Scientific and Industrial Research, Sekondi-Takoradi, Ghana
| | - Hanif Lutuf
- Crop Protection Division, Oil Palm Research Institute, Council for Scientific and Industrial Research, Kade, Ghana
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Selina Mawunyo Ayivi-Tosuh
- Department of Biochemistry, School of Life Sciences, Northeast Normal University, Changchun, Jilin Province, China
| | - Albert Fynn Aiduenu
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - William Ekloh
- Department of Biochemistry, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Seyram Kofi Loh
- Department of Built Environment, School of Sustainable Development, University of Environment and Sustainable Development, Somanya, Ghana
| | - Maxwell Jnr Opoku
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Owusu Fordjour Aidoo
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| |
Collapse
|
13
|
Schwarze M, Luo J, Brakel A, Krizsan A, Lakowa N, Grünewald T, Lehmann C, Wolf J, Borte S, Milkovska-Stamenova S, Gabert J, Scholz M, Hoffmann R. Evaluation of S- and M-Proteins Expressed in Escherichia coli and HEK Cells for Serological Detection of Antibodies in Response to SARS-CoV-2 Infections and mRNA-Based Vaccinations. Pathogens 2022; 11:pathogens11121515. [PMID: 36558849 PMCID: PMC9782079 DOI: 10.3390/pathogens11121515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
This study investigated the IgG and IgA antibody response against recombinant S1 and receptor binding domains (RBD) of the spike (S-) protein and the membrane (M-) protein using a set of 115 serum samples collected from patients infected with SARS-CoV-2 in Germany before April 2021 using protein and peptide ELISA. As S1- and RBD-proteins expressed in Escherichia coli provided poor sensitivities in ELISA, they were replaced by proteins expressed in HEK cells. The RBD-ELISA provided a sensitivity of 90.6% (N = 85) for samples collected from patients with confirmed SARS-CoV-2 infections more than 14 days after symptom onset or a positive PCR test. In population-based controls, the specificity was 97.9% (N = 94). In contrast, the sensitivities were only 41.2% and 72.6% for M- and N-proteins, respectively, while the specificities were 88.5% and 100%, respectively. Considering also 20 samples collected during the first two weeks of symptom onset or PCR confirmation, the sensitivity of RBD- and N-protein ELISA decreased to 82.6% and 72.6%, respectively. The combination of two data sets, i.e., N- and RBD-, N- and M-, or RBD- and M-proteins increased the sensitivity to 85.8%, 77.9%, and 87.8%, respectively. Peptide mapping mostly confirmed epitopes previously reported for S1- and M-proteins, but they were only recognized by a few samples already tested positive in the corresponding protein ELISA indicating that peptide-based assays will not improve the diagnostic sensitivity.
Collapse
Affiliation(s)
- Mandy Schwarze
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, 04103 Leipzig, Germany
| | - Ji Luo
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, 04103 Leipzig, Germany
- Adversis Pharma GmbH, 04103 Leipzig, Germany
| | - Alexandra Brakel
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, 04103 Leipzig, Germany
| | - Andor Krizsan
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, 04103 Leipzig, Germany
| | - Nicole Lakowa
- Klinik für Infektions- und Tropenmedizin, Klinikum Chemnitz gGmbH, 09113 Chemnitz, Germany
| | - Thomas Grünewald
- Klinik für Infektions- und Tropenmedizin, Klinikum Chemnitz gGmbH, 09113 Chemnitz, Germany
| | - Claudia Lehmann
- Laboratory for Transplantation Immunology, Institute for Transfusion Medicine, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Johannes Wolf
- Department of Laboratory Medicine, Hospital St. Georg gGmbH, 04129 Leipzig, Germany
- Immuno Deficiency Center Leipzig, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Hospital St. Georg gGmbH, 04129 Leipzig, Germany
| | - Stephan Borte
- Department of Laboratory Medicine, Hospital St. Georg gGmbH, 04129 Leipzig, Germany
- Immuno Deficiency Center Leipzig, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Hospital St. Georg gGmbH, 04129 Leipzig, Germany
| | - Sanja Milkovska-Stamenova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, 04103 Leipzig, Germany
- Adversis Pharma GmbH, 04103 Leipzig, Germany
| | - Jörg Gabert
- Adversis Pharma GmbH, 04103 Leipzig, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, Universität Leipzig, 04107 Leipzig, Germany
- LIFE Research Center of Civilization Diseases, Universität Leipzig, 04103 Leipzig, Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, 04103 Leipzig, Germany
- Correspondence:
| |
Collapse
|
14
|
Garg K, Villavicencio-Aguilar F, Solano-Rivera F, Gilbert L. Analytical Validation of a Direct Competitive ELISA for Multiple Mycotoxin Detection in Human Serum. Toxins (Basel) 2022; 14:toxins14110727. [PMID: 36355977 PMCID: PMC9694295 DOI: 10.3390/toxins14110727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 01/26/2023] Open
Abstract
Mycotoxin exposure in humans is primarily assessed through its occurrence in external sources, such as food commodities. Herein, we have developed a direct competitive ELISA to facilitate the detection of aflatoxin B1 (AFB1), deoxynivalenol (DON), fumonisin (FUM B1/B2), ochratoxin A (OTA), and zearalenone (ZEA) in human serum. The analytical validation of the assay followed practices endorsed by the international research community and the EU directive 96/23/EC in order to examine detection capability, recovery, and cross-reactivity. The assay demonstrated a lower limit of quantitation (LLOQ) for AFB1 [0.61 ng/mL (hereon ng/mL = ppb)], DON (19.53 ppb), FUM (4.88 ppb), OTA (19.53 ppb), and ZEA (0.15 ppb). Recovery from human serum for all mycotoxins spanned from 73% to 106%. Likewise, the specificity for monoclonal antibodies against cross-reactant mycotoxins ranged from 2% to 11%. This study compares the LLOQ and recovery values with commercial and emerging immuno-based methods for detecting mycotoxins in foodstuffs. The LLOQ values from the present study were among the lowest in commercial or emerging methods. Despite the differences in the extraction protocols and matrices, the recovery range in this study, commercial tests, and other procedures were similar for all mycotoxins. Overall, the assay detected AFB1, DON, FUM, OTA, and ZEA in human serum with excellent accuracy, precision, and specificity.
Collapse
Affiliation(s)
- Kunal Garg
- Tezted Ltd., Mattilaniemi 6-8, 40100 Jyväskylä, Finland
- Correspondence: (K.G.); (L.G.)
| | - Fausto Villavicencio-Aguilar
- Sanoviv Medical Institute, KM 39 Carretera Libre Tijuana-Ensenada s/n Interior 6, Playas de Rosarito, Baja 11 California, Rosarito 22710, Mexico
| | - Flora Solano-Rivera
- Sanoviv Medical Institute, KM 39 Carretera Libre Tijuana-Ensenada s/n Interior 6, Playas de Rosarito, Baja 11 California, Rosarito 22710, Mexico
| | - Leona Gilbert
- Tezted Ltd., Mattilaniemi 6-8, 40100 Jyväskylä, Finland
- Correspondence: (K.G.); (L.G.)
| |
Collapse
|
15
|
A Quantitative ELISA to Detect Anti-SARS-CoV-2 Spike IgG Antibodies in Infected Patients and Vaccinated Individuals. Microorganisms 2022; 10:microorganisms10091812. [PMID: 36144414 PMCID: PMC9502828 DOI: 10.3390/microorganisms10091812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/03/2022] Open
Abstract
There is an ongoing need for high-precision serological assays for the quantitation of anti-SARS-CoV-2 antibodies. Here, a trimeric SARS-CoV-2 spike (S) protein was used to develop an ELISA to quantify specific IgG antibodies present in serum, plasma, and dried blood spots (DBS) collected from infected patients or vaccine recipients. The quantitative S-ELISA was calibrated with international anti-SARS-CoV-2 immunoglobulin standards to provide test results in binding antibody units per mL (BAU/mL). The assay showed excellent linearity, precision, and accuracy. A sensitivity of 100% was shown for samples collected from 54 patients with confirmed SARS-CoV-2 infection more than 14 days after symptom onset or disease confirmation by RT-PCR and 58 vaccine recipients more than 14 days after vaccination. The assay specificity was 98.3%. Furthermore, antibody responses were measured in follow-up samples from vaccine recipients and infected patients. Most mRNA vaccine recipients had a similar response, with antibody generation starting 2-3 weeks after the first vaccination and maintaining positive for at least six months after a second vaccination. For most infected patients, the antibody titers increased during the second week after PCR confirmation. This S-ELISA can be used to quantify the seroprevalence of SARS-CoV-2 in the population exposed to the virus or vaccinated.
Collapse
|
16
|
Diagnostic Performance of Three ELISAs for Detection of Antibodies against SARS-CoV-2 in Human Samples. ScientificWorldJournal 2022; 2022:7754329. [PMID: 36017468 PMCID: PMC9398874 DOI: 10.1155/2022/7754329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/15/2022] [Accepted: 05/30/2022] [Indexed: 11/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that causes coronavirus disease 2019 (COVID-19) is a disease with a high rate of transmission. Serological tests are important to perform surveys and to determine the immunological status of the population. Based on this, we evaluated three enzyme-linked immunoassays (ELISAs) using different antigens from SARS-CoV-2 in a cohort of 161 patients. The performance of the ELISA developed for immunoglobulin G (IgG) measurement against SARS-CoV-2 was evaluated based on sensitivity, specificity, and accuracy. We found specificities of 0.98, 0.98, and 0.99 and sensitivities of 0.99, 0.91, and 0.87 for the nucleocapsid (N) protein, spike protein, and receptor binding domain (RBD) fraction, respectively. The accuracy assessment indicated the N protein (accuracy = 0.98) as the antigen most likely to give a correct diagnosis. Overall, the antibody responses were present for all three proteins in subjects with confirmed SARS-CoV-2 infections, showing a similar pattern of antibody production for different antigens. In summary, these highly sensitive and specific ELISAs, with a more competitive price, appear to be a valid approach for the serodiagnosis of COVID-19.
Collapse
|
17
|
Xie Y, Butler M. Serum N-glycomic profiling may provide potential signatures for surveillance of COVID-19. Glycobiology 2022; 32:871-885. [PMID: 35925863 PMCID: PMC9487901 DOI: 10.1093/glycob/cwac051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/08/2023] Open
Abstract
Disease development and progression are often associated with aberrant glycosylation, indicating that changes in biological fluid glycome may potentially serve as disease signatures. The corona virus disease-2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a significant threat to global human health. However, the effect of SARS-CoV-2 infection on the overall serum N-glycomic profile has been largely unexplored. Here, we extended our 96-well-plate-based high-throughput, high-sensitivity N-glycan profiling platform further with the aim of elucidating potential COVID-19-associated serum N-glycomic alterations. Use of this platform revealed both similarities and differences between the serum N-glycomic fingerprints of COVID-19 positive and control cohorts. Although there were no specific glycan peaks exclusively present or absent in COVID-19 positive cohort, this cohort showed significantly higher levels of glycans and variability. On the contrary, the overall N-glycomic profiles for healthy controls were well-contained within a narrow range. From the serum glycomic analysis, we were able to deduce changes in different glycan subclasses sharing certain structural features. Of significance was the hyperbranched and hypersialylated glycans and their derived glycan subclass traits. T-distributed stochastic neighbour embedding (tSNE) and hierarchical heatmap clustering analysis were performed to identify 13 serum glycomic variables that potentially distinguished the COVID-19 positive from healthy controls. Such serum N-glycomic changes described herein may indicate or correlate to the changes in serum glycoproteins upon COVID-19 infection. Furthermore, mapping the serum N-glycome following SARS-CoV-2 infection may help us better understand the disease and enable "Long-COVID" surveillance to capture the full spectrum of persistent symptoms.
Collapse
Affiliation(s)
- Yongjing Xie
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - Michael Butler
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| |
Collapse
|