1
|
Zhang S, Peng S. Copper-Based biomaterials for anti-tumor therapy: Recent advances and perspectives. Acta Biomater 2025; 193:107-127. [PMID: 39800096 DOI: 10.1016/j.actbio.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Copper, an essential trace element, is integral to numerous metabolic pathways across biological systems. In recent years, copper-based biomaterials have garnered significant interest due to their superior biocompatibility and multifaceted functionalities, particularly in the treatment of malignancies such as sarcomas and cancers. On the one hand, these copper-based materials serve as efficient carriers for a range of therapeutic agents, including chemotherapeutic drugs, small molecule inhibitors, and antibodies, allowing them for precise delivery and controlled release triggered by specific modifications and stimuli. On the other hand, they can induce cell death through mechanisms such as ferroptosis, cuproptosis, apoptosis, and pyroptosis, or inhibit the proliferation and invasion of cancer cells via their outstanding properties. Furthermore, advanced design approaches enable these materials to support tumor imaging and immune activation. Despite this progress, the full scope of their functional capabilities remains to be fully elucidated. This review provides an overview of the anti-tumor functions, underlying mechanisms, and design strategies of copper-based biomaterials, along with their advantages and limitations. The aim is to provide insights into the design, study, and development of novel multifunctional biomaterials, with the ultimate goal of accelerating the clinical application of copper-based nanomaterials in cancer therapy. STATEMENT OF SIGNIFICANCE: This study explores the groundbreaking potential of copper-based biomaterials in cancer therapy, uniquely combining biocompatibility with diverse therapeutic mechanisms such as targeted drug delivery and inhibition of cancer cells through specific cell death pathways. By enhancing tumor imaging and immune activation, copper-based nanomaterials have opened new avenues for cancer treatment. This review examines these multifunctional biomaterials, highlighting their advantages and current limitations while addressing gaps in existing research. The findings aim to accelerate clinical applications of these materials in the field of oncology, providing valuable insights for the design of next-generation copper-based therapies. Therefore, this work is highly relevant to researchers and practitioners focused on innovative cancer treatments.
Collapse
Affiliation(s)
- Shufang Zhang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education of Xiangya Hospital and School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education of Xiangya Hospital and School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
2
|
Chen Z, Li Y, Yin Y, Song M, Wang F, Jiang G. Cu Nanowires Trigger Efficient Cuproptosis via Special Intracellular Distribution and Excessive Cu Ion Release. NANO LETTERS 2024; 24:11446-11453. [PMID: 39225511 DOI: 10.1021/acs.nanolett.4c02503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cuproptosis, dependent on Cu overload, presents novel opportunities for cancer therapy. Cu-based nanomaterials have shown excellent advantages for the intracellular delivery of Cu. However, the biological process of Cu nanomaterials transporting Cu ions into cancer cells remains unclear. In this study, we tracked the Cu ion release process of copper nanowires (CuNWs) and copper nanoparticles (CuNPs) at the single-cell level. CuNWs with 5-μm length and CuNPs were found to be completely internalized by cancer cells. Interestingly, CuNWs escaped from the endolysosomal system, whereas CuNPs were mainly trapped in the lysosomes. This specific intracellular distribution of CuNWs led to cytoplasmic Cu ion overload, directly damaging mitochondria and inducing dihydrolipoamide S-acetyltransferase (DLAT) protein aggregation. Through these excessive Cu ions, CuNWs triggered more efficient cuproptosis than CuNPs to further increase cell death. Thus, CuNWs are more effective in delivering Cu ions than CuNPs, providing a novel perspective for designing cuproptosis-based functional nanomaterials for cancer therapy.
Collapse
Affiliation(s)
- Zihan Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Alcolea-Rodriguez V, Portela R, Calvino-Casilda V, Bañares MA. In chemico methodology for engineered nanomaterial categorization according to number, nature and oxidative potential of reactive surface sites. ENVIRONMENTAL SCIENCE. NANO 2024; 11:3744-3760. [PMID: 39280766 PMCID: PMC11392058 DOI: 10.1039/d3en00810j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/05/2024] [Indexed: 09/18/2024]
Abstract
Methanol probe chemisorption quantifies the number of reactive sites at the surface of engineered nanomaterials, enabling normalization per reactive site in reactivity and toxicity tests, rather than per mass or physical surface area. Subsequent temperature-programmed surface reaction (TPSR) of chemisorbed methanol identifies the reactive nature of surface sites (acidic, basic, redox or combination thereof) and their reactivity. Complementary to the methanol assay, a dithiothreitol (DTT) probe oxidation reaction is used to evaluate the oxidation capacity. These acellular approaches to quantify the number, nature, and reactivity of surface sites constitute a new approach methodology (NAM) for site-specific classification of nanomaterials. As a proof of concept, CuO, CeO2, ZnO, Fe3O4, CuFe2O4, Co3O4 and two TiO2 nanomaterials were probed. A harmonized reactive descriptor for ENMs was obtained: the DTT oxidation rate per reactive surface site, or oxidative turnover frequency (OxTOF). CuO and CuFe2O4 ENMs exhibit the largest reactive site surface density and possess the highest oxidizing ability in the series, as estimated by the DTT probe reaction, followed by CeO2 NM-211 and then titania nanomaterials (DT-51 and NM-101) and Fe3O4. DTT depletion for ZnO NM-110 was associated with dissolved zinc ions rather than the ZnO particles; however, the basic characteristics of the ZnO NM-110 particles were evidenced by methanol TPSR. These acellular assays allow ranking the eight nanomaterials into three categories with statistically different oxidative potentials: CuO, CuFe2O4 and Co3O4 are the most reactive; ceria exhibits a moderate reactivity; and iron oxide and the titanias possess a low oxidative potential.
Collapse
Affiliation(s)
- V Alcolea-Rodriguez
- Instituto de Catálisis y Petroleoquímica, ICP-CSIC Marie Curie 2 28049-Madrid Spain
| | - R Portela
- Instituto de Catálisis y Petroleoquímica, ICP-CSIC Marie Curie 2 28049-Madrid Spain
| | - V Calvino-Casilda
- Departamento de Ingeniería Eléctrica, Electrónica, Control, Telemática y Química Aplicada a la Ingeniería, E.T.S. de Ingenieros Industriales, UNED Juan del Rosal 12 28040-Madrid Spain
| | - M A Bañares
- Instituto de Catálisis y Petroleoquímica, ICP-CSIC Marie Curie 2 28049-Madrid Spain
| |
Collapse
|
4
|
Zeidler-Erdely PC, Kodali V, Falcone LM, Mercer R, Leonard SS, Stefaniak AB, Grose L, Salmen R, Trainor-DeArmitt T, Battelli LA, McKinney W, Stone S, Meighan TG, Betler E, Friend S, Hobbie KR, Service S, Kashon M, Antonini JM, Erdely A. Absence of lung tumor promotion with reduced tumor size in mice after inhalation of copper welding fumes. Carcinogenesis 2024; 45:630-641. [PMID: 39046922 DOI: 10.1093/carcin/bgae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
Welding fumes are a Group 1 (carcinogenic to humans) carcinogen as classified by the International Agency for Research on Cancer. The process of welding creates inhalable fumes rich in iron (Fe) that may also contain known carcinogenic metals such as chromium (Cr) and nickel (Ni). Epidemiological evidence has shown that both mild steel (Fe-rich) and stainless steel (Fe-rich + Cr + Ni) welding fume exposure increases lung cancer risk, and experimental animal data support these findings. Copper-nickel (CuNi) welding processes have not been investigated in the context of lung cancer. Cu is intriguing, however, given the role of Cu in carcinogenesis and cancer therapeutics. This study examines the potential for a CuNi fume to induce mechanistic key characteristics of carcinogenesis in vitro and to promote lung tumorigenesis, using a two-stage mouse bioassay, in vivo. Male A/J mice, initiated with 3-methylcholanthrene (MCA; 10 µg/g), were exposed to CuNi fumes or air by whole-body inhalation for 9 weeks (low deposition-LD and high deposition-HD) and then sacrificed at 30 weeks. In BEAS-2B cells, the CuNi fume-induced micronuclei and caused DNA damage as measured by γ-H2AX. The fume exhibited high reactivity and a dose-response in cytotoxicity and oxidative stress. In vivo, MCA/CuNi HD and LD significantly decreased lung tumor size and adenomas. MCA/CuNi HD exposure significantly decreased gross-evaluated tumor number. In summary, the CuNi fume in vitro exhibited characteristics of a carcinogen, but in vivo, the exposure resulted in smaller tumors, fewer adenomas, less hyperplasia severity, and with HD exposure, less overall lung lesions/tumors.
Collapse
Affiliation(s)
- Patti C Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Vamsi Kodali
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Lauryn M Falcone
- Department of Dermatology, University of Pittsburgh Medical Center, 3708 Fifth Avenue Suite 500.68, Pittsburgh, PA 15213, United States
| | - Robert Mercer
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Stephen S Leonard
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Aleksandr B Stefaniak
- Respiratory Health Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Lindsay Grose
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Rebecca Salmen
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Taylor Trainor-DeArmitt
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Lori A Battelli
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Samuel Stone
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Terence G Meighan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Ella Betler
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Sherri Friend
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Kristen R Hobbie
- Pathology Department, Inotiv, P.O. Box 13501, Research Triangle Park, NC 27709, United States
| | - Samantha Service
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Michael Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - James M Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| |
Collapse
|
5
|
Shahalaei M, Azad AK, Sulaiman WMAW, Derakhshani A, Mofakham EB, Mallandrich M, Kumarasamy V, Subramaniyan V. A review of metallic nanoparticles: present issues and prospects focused on the preparation methods, characterization techniques, and their theranostic applications. Front Chem 2024; 12:1398979. [PMID: 39206442 PMCID: PMC11351095 DOI: 10.3389/fchem.2024.1398979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
Metallic nanoparticles (MNPs) have garnered significant attention due to their ability to improve the therapeutic index of medications by reducing multidrug resistance and effectively delivering therapeutic agents through active targeting. In addition to drug delivery, MNPs have several medical applications, including in vitro and in vivo diagnostics, and they improve the biocompatibility of materials and nutraceuticals. MNPs have several advantages in drug delivery systems and genetic manipulation, such as improved stability and half-life in circulation, passive or active targeting into the desired target selective tissue, and gene manipulation by delivering genetic materials. The main goal of this review is to provide current information on the present issues and prospects of MNPs in drug and gene delivery systems. The current study focused on MNP preparation methods and their characterization by different techniques, their applications to targeted delivery, non-viral vectors in genetic manipulation, and challenges in clinical trial translation.
Collapse
Affiliation(s)
- Mona Shahalaei
- Biomaterial Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | - Abul Kalam Azad
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College of MAIWP International (UCMI), Kuala Lumpur, Malaysia
| | - Wan Mohd Azizi Wan Sulaiman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College of MAIWP International (UCMI), Kuala Lumpur, Malaysia
| | - Atefeh Derakhshani
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Banaee Mofakham
- Biomaterial Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | - Mireia Mallandrich
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| |
Collapse
|
6
|
Wang G, Liu W, Cao Y, Chen W, Chen N. Co-existing ambient fine particulate matter exacerbated electronic cigarette toxicity on human respiratory cells. Inhal Toxicol 2024; 36:461-473. [PMID: 39431444 DOI: 10.1080/08958378.2024.2416428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Respiratory co-exposure to ambient PM2.5 and electronic cigarettes (e-cigarettes) frequently occurs in public. However, the combined effects on human respiratory health have not been well documented. To discuss potential co-effects and possible biological mechanisms, A549/THP-1 co-cultures and BEAS-2B cells were exposed to unvapedtobacco or mint-flavored e-liquids (0-7.2% v/v), e-cigarette aerosol extract (ECE, 0-50% v/v), PM2.5 (60 μg/mL), or PM2.5 + ECE for 24 h. Cell viability assessments on e-liquids, ECE, PM2.5 + ECE showed that the mint flavor exhibited higher cytotoxicity compared to the tobacco flavor in both A549/THP-1 and BEAS-2B. However, the influence of flavors on ROS levels and mRNA expression of inflammatory markers (IL-6, TNF-α, IL-8, IL-1β) after ECE exposure demonstrated inconsistency in the two cell models. PM2.5 + ECE treatment notably elevated ROS production and inflammation responses compared to ECE alone exposure. Only co-exposure induced a significant increase in nuclear transcription factor-κB p65 (NF-κB p65) and NOD-like receptor 3 (NLRP3) protein expression regardless of flavors. Our results indicate that PM2.5-treated cells exacerbate the adverse effects induced by ECE in both A549/THP-1 and BEAS-2B cells. Flavors in unvaped e-liquids affect cytotoxicity, oxidative stress and inflammation response, but these effects vary depending on the vaping process and the specific cell line.
Collapse
Affiliation(s)
- Guanghe Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjing Liu
- Science and Technology Museum of Inner Mongolia, Hohhot, Inner Mongolia, China
| | - Yujie Cao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanqi Chen
- Jiading District Center for Disease Control and Prevention, Shanghai, China
| | - Nuo Chen
- Department of Community Health and Behavioral Medicine, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Zhang Y, Zhang Z, Mo Y, Zhang Y, Yuan J, Zhang Q. MMP-3 mediates copper oxide nanoparticle-induced pulmonary inflammation and fibrosis. J Nanobiotechnology 2024; 22:428. [PMID: 39030581 PMCID: PMC11264740 DOI: 10.1186/s12951-024-02707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/05/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND The increasing production and usage of copper oxide nanoparticles (Nano-CuO) raise human health concerns. Previous studies have demonstrated that exposure to Nano-CuO could induce lung inflammation, injury, and fibrosis. However, the potential underlying mechanisms are still unclear. Here, we proposed that matrix metalloproteinase-3 (MMP-3) might play an important role in Nano-CuO-induced lung inflammation, injury, and fibrosis. RESULTS Exposure of mice to Nano-CuO caused acute lung inflammation and injury in a dose-dependent manner, which was reflected by increased total cell number, neutrophil count, macrophage count, lactate dehydrogenase (LDH) activity, and CXCL1/KC level in bronchoalveolar lavage fluid (BALF) obtained on day 3 post-exposure. The time-response study showed that Nano-CuO-induced acute lung inflammation and injury appeared as early as day 1 after exposure, peaked on day 3, and ameliorated over time. However, even on day 42 post-exposure, the LDH activity and macrophage count were still higher than those in the control group, suggesting that Nano-CuO caused chronic lung inflammation. The Nano-CuO-induced pulmonary inflammation was further confirmed by H&E staining of lung sections. Trichrome staining showed that Nano-CuO exposure caused pulmonary fibrosis from day 14 to day 42 post-exposure with an increasing tendency over time. Increased hydroxyproline content and expression levels of fibrosis-associated proteins in mouse lungs were also observed. In addition, Nano-CuO exposure induced MMP-3 overexpression and increased MMP-3 secretion in mouse lungs. Knocking down MMP-3 in mouse lungs significantly attenuated Nano-CuO-induced acute and chronic lung inflammation and fibrosis. Moreover, Nano-CuO exposure caused sustained production of cleaved osteopontin (OPN) in mouse lungs, which was also significantly decreased by knocking down MMP-3. CONCLUSIONS Our results demonstrated that short-term Nano-CuO exposure caused acute lung inflammation and injury, while long-term exposure induced chronic pulmonary inflammation and fibrosis. Knocking down MMP-3 significantly ameliorated Nano-CuO-induced pulmonary inflammation, injury, and fibrosis, and also attenuated Nano-CuO-induced cleaved OPN level. Our study suggests that MMP-3 may play important roles in Nano-CuO-induced pulmonary inflammation and fibrosis via cleavage of OPN and may provide a further understanding of the mechanisms underlying Nano-CuO-induced pulmonary toxicity.
Collapse
Affiliation(s)
- Yuanbao Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, China
| | - Zhenyu Zhang
- Department of Emergency, Xiang'An Hospital of Xiamen University, Xiamen, 361104, Fujian, China
| | - Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
| | - Yue Zhang
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jiali Yuan
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA.
| |
Collapse
|
8
|
Nosrati-Siahmazgi V, Abbaszadeh S, Musaie K, Eskandari MR, Rezaei S, Xiao B, Ghorbani-Bidkorpeh F, Shahbazi MA. NIR-Responsive injectable hydrogel cross-linked by homobifunctional PEG for photo-hyperthermia of melanoma, antibacterial wound healing, and preventing post-operative adhesion. Mater Today Bio 2024; 26:101062. [PMID: 38706729 PMCID: PMC11066557 DOI: 10.1016/j.mtbio.2024.101062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/29/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024] Open
Abstract
Current therapeutic approaches for skin cancer face significant challenges, including wound infection, delayed skin regeneration, and tumor recurrence. To overcome these challenges, an injectable adhesive near-infrared (NIR)-responsive hydrogel with time-dependent enhancement in viscosity is developed for combined melanoma therapy and antibacterial wound healing acceleration. The multifunctional hydrogel is prepared through the chemical crosslinking between poly(methyl vinyl ether-alt-maleic acid) and gelatin, followed by the incorporation of CuO nanosheets and allantoin. The synergistic inherent antibacterial potential of CuO nanosheets, the regenerative and smoothing effect of allantoin, the extracellular matrix-mimicking effect of gelatin, and the desirable swelling behavior of the hydrogel results in fast wound recovery after photothermal ablation of the tumor. Additionally, the hydrogel can serve as an alternative to sutures owing to its tissue adhesiveness ability, which can further render it the merits for accelerated repair of abdominal lesions while acting as a biocompatible barrier to prevent peritoneal adhesion.
Collapse
Affiliation(s)
- Vahideh Nosrati-Siahmazgi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184, Zanjan, Iran
| | - Samin Abbaszadeh
- Department of Pharmacology, School of Medicine, Zanjan University of Medical Sciences, 45139-56111, Zanjan, Iran
| | - Kiyan Musaie
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713, AV Groningen, the Netherlands
| | - Mohammad Reza Eskandari
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Science, 45139-56184, Zanjan, Iran
| | - Saman Rezaei
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713, AV Groningen, the Netherlands
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Ali Shahbazi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184, Zanjan, Iran
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713, AV Groningen, the Netherlands
| |
Collapse
|
9
|
Zhang M, Wang W, Zhang D, Zhang Y, Yang Z, Li Y, Fang F, Xue Y, Zhang Y. Copper oxide nanoparticles impairs oocyte meiosis maturation by inducing mitochondrial dysfunction and oxidative stress. Food Chem Toxicol 2024; 185:114441. [PMID: 38218586 DOI: 10.1016/j.fct.2024.114441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Copper oxides nanoparticles (CuO NPs) are widely used for a variety of industrial and life science applications. In addition to cause neurotoxicity, hepatotoxicity, immunotoxicity, CuO NPs have also been reported to adversely affect the reproductive system in animals; However, little is known about the effects and potential mechanism of CuO NPs exposure on oocyte quality, especially oocyte maturation. In the present study, we reported that CuO NPs exposure impairs the oocyte maturation by disrupting meiotic spindle assembly and chromosome alignment, as well as kinetochore-microtubule attachment. In addition, CuO NPs exposure also affects the acetylation level of α-tubulin in mice oocyte, which hence impairs microtubule dynamics and organization. Besides, CuO NPs exposure would result in the mis-localization of Juno and Ovastacin, which might be one of the critical factors leading to the failure of oocyte maturation. Finally, CuO NPs exposure impairs the mitochondrial distribution and induced high levels of ROS, which led to the accumulation of DNA damage and occurrence of apoptosis. In summary, our results indicated that CuO NPs exposure had potential toxic effects on female fertility and led to the poor oocyte quality in female mice.
Collapse
Affiliation(s)
- Mianqun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Wei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Dandan Zhang
- Department of Reproductive Medicine, General Hospital of WanBei Coal Group, Suzhou, 234000, China
| | - Yiwen Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Zaishan Yang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Yunsheng Li
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Fugui Fang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China.
| | - Yunhai Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China.
| |
Collapse
|
10
|
Chen Q, Liu Y, Bi L, Jin L, Peng R. Understanding the mechanistic roles of microplastics combined with heavy metals in regulating ferroptosis: Adding new paradigms regarding the links with diseases. ENVIRONMENTAL RESEARCH 2024; 242:117732. [PMID: 37996004 DOI: 10.1016/j.envres.2023.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
As a new type of pollutant, microplastics (MPs) commonly exist in today's ecosystems, causing damage to the ecological environment and the health of biological organisms, including human beings. MPs can function as carriers of heavy metals (HMs) to aggravate the enrichment of HMs in important organs of organisms, posing a great threat to health. Ferroptosis, a novel process for the regulation of nonapoptotic cell death, has been shown to be closely related to the occurrence and processes of MPs and HMs in diseases. In recent years, some HMs, such as cadmium (Cd), iron (Fe), arsenic (As) and copper (Cu), have been proven to induce ferroptosis. MPs can function as carriers of HMs to aggravate damage to the body. This damage involves oxidative stress, mitochondrial dysfunction, lipid peroxidation (LPO), inflammation, endoplasmic reticulum stress (ERS) and so on. Therefore, ferroptosis has great potential as a therapeutic target for diseases induced by MPs combined with HMs. This paper systematically reviews the potential effects and regulatory mechanisms of MPs and HMs in the process of ferroptosis, focusing on the mitochondrial damage, Fe accumulation, LPO, ERS and inflammation caused by MPs and HMs that affect the regulatory mechanism of ferroptosis, providing new insights for research on regulating drugs and for the development of ferroptosis-targeting therapy for Alzheimer's disease, Parkinson's disease, cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
11
|
Dong T, Yu C, Yang Z, He G, Wen Y, Roseng LE, Wei X, Jing W, Lin Q, Zhao L, Jiang Z. Nanotoxicity of tungsten trioxide nanosheets containing oxygen vacancy to human umbilical vein endothelial cells. Colloids Surf B Biointerfaces 2024; 234:113742. [PMID: 38271855 DOI: 10.1016/j.colsurfb.2023.113742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/09/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024]
Abstract
Because of the excellent performance in photochemistry, WO3 is increasingly applied in the field of biology and medicine. However, little is known about the mechanism of WO3 cytotoxicity. In this work, WO3 nanosheets with oxygen vacancy are synthesized by solvothermal method, then characterized and added to culture medium of human umbilical vein endothelial cells (HUVECs) with different concentrations. We characterized and analyzed the morphology of nano-WO3 by transmission electron microscopy and calculated the specific data of oxygen vacancy by XPS. It is the first time the effect of WO3-x on cells that WO3-x can cause oxidative stress in HUVEC cells, resulting in DNA damage and thus promoting apoptosis. Transcriptome sequencing is performed on cells treated with low and high concentrations of WO3-x, and a series of key signals affecting cell proliferation and apoptosis are detected in differentially expressed genes, which indicates the research direction of nanotoxicity. The expression levels of key genes are also verified by quantitative PCR after cell treatment with different concentrations of WO3-x. This work fills the gap between the biocompatibility of nano WO3-x materials and molecular cytology and paves the way for investigating the mechanism and risks of oxygen vacancy in cancer therapy.
Collapse
Affiliation(s)
- Tao Dong
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-NanoSystems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China; Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603 Kongsberg, Norway.
| | - Chenghui Yu
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-NanoSystems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-NanoSystems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.
| | - Guozhen He
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-NanoSystems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China; Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603 Kongsberg, Norway
| | - Yumei Wen
- Department of Instrumentation Science and Engineering, Shanghai Jiao Tong University, Minhang District, Shanghai 200240, China
| | - Lars Eric Roseng
- Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603 Kongsberg, Norway
| | - Xueyong Wei
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Weixuan Jing
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qijing Lin
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
12
|
Cao Y, Tian S, Geng Y, Zhang L, Zhao Q, Chen J, Li Y, Hu X, Huang J, Ning P. Interactions between CuO NPs and PS: The release of copper ions and oxidative damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166285. [PMID: 37586511 DOI: 10.1016/j.scitotenv.2023.166285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) can adversely affect lung health possibly by inducing oxidative damage through the release of copper ions. However, the migration and transformation processes of CuO NPs in lung lining fluid is still unclear, and there are still conflicting reports of redox reactions involving copper ions. To address this, we examined the release of copper ions from CuO NPs in simulated lung fluid supplemented with pulmonary surfactant (PS), and further analyzed the mechanisms of PS-CuO NPs interactions and the health hazards. The results showed that the phospholipid of PS was adsorbed on the particle surface, which not only induced aggregation of the particles but also provided a reaction environment for the interaction of PS with CuO NPs. PS was able to promote the release of ions from CuO NPs, of which the protein was a key component. Lipid peroxidation, protein destabilization, and disruption of the interfacial chemistry also occurred in the PS-CuO NPs interactions, during which copper ions were present only as divalent cations. Meanwhile, the contribution of the particle surface cannot be neglected in the oxidative damage to the lung caused by CuO NPs. Through reacting with biomolecules, CuO NPs accomplished ion release and induced oxidative damage associated with PS. This research was the first to reveal the mechanism of CuO NPs releasing copper ions and inducing lipid oxidative damage in the presence of PS, which provides a new idea of transition metal-induced health risk in human body.
Collapse
Affiliation(s)
- Yan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yingxue Geng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Linfeng Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Jie Chen
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xuewei Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jianhong Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
13
|
Wang J, Gong Y, Yan X, Han R, Chen H. CdTe-QDs Affect Reproductive Development of Plants through Oxidative Stress. TOXICS 2023; 11:585. [PMID: 37505551 PMCID: PMC10386043 DOI: 10.3390/toxics11070585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
With the continuous development of industry, an increasing number of nanomaterials are widely used. CdTe-QDs is a nanomaterial with good optical properties, but its release into the natural environment may pose a potential threat. The toxicity of nanoparticles in plants is beginning to be questioned, and the effect on phytotoxicity is unclear. In this study, we simulated air pollution and soil pollution (CdTe-QDs concentrations of 0, 0.2, 0.4, 0.8 mmol/L) by spraying and watering the seedlings, respectively. We determined the transport pathways of CdTe-QDs in Arabidopsis thaliana and their effects on plant reproductive growth. Spraying CdTe-QDs concentration >0.4 mmol/L significantly inhibited the formation of fruit and decreased the number of seeds. Observation with a laser confocal scanning microscope revealed that CdTe-QDs were mainly transported in plants through the vascular bundle, and spraying increased their accumulation in the anthers and ovaries. The expression level of genes associated with Cd stress was analyzed through RT-qPCR. CdTe-QDs significantly increased the expression levels of 10 oxidative stress-related genes and significantly decreased the expression levels of four cell-proliferation-related genes. Our results reveal for the first time the transport of CdTe-QDs in Arabidopsis flowers and demonstrate that QDs can cause abnormal pollen morphology, form defects of pollen vitality, and inhibit pollen tube growth in Arabidopsis through oxidative damage. These phenomena ultimately lead to the inability of Arabidopsis to complete the normal fertilization process and affect the reproductive growth of the plant.
Collapse
Affiliation(s)
- Jianhua Wang
- Upgrading Office of Modern College of Humanities and Sciences of Shanxi Normal University, Linfen 041000, China
- Shanxi Key Laboratory of Plant Macromolecules Stress Response, Taiyuan 030000, China
| | - Yan Gong
- College of Life Science, Shanxi Normal University, Taiyuan 030000, China
| | - Xiaoyan Yan
- Shanxi Key Laboratory of Plant Macromolecules Stress Response, Taiyuan 030000, China
- College of Life Science, Shanxi Normal University, Taiyuan 030000, China
| | - Rong Han
- Shanxi Key Laboratory of Plant Macromolecules Stress Response, Taiyuan 030000, China
- College of Life Science, Shanxi Normal University, Taiyuan 030000, China
| | - Huize Chen
- Shanxi Key Laboratory of Plant Macromolecules Stress Response, Taiyuan 030000, China
- College of Life Science, Shanxi Normal University, Taiyuan 030000, China
| |
Collapse
|
14
|
Sajjad H, Sajjad A, Haya RT, Khan MM, Zia M. Copper oxide nanoparticles: In vitro and in vivo toxicity, mechanisms of action and factors influencing their toxicology. Comp Biochem Physiol C Toxicol Pharmacol 2023; 271:109682. [PMID: 37328134 DOI: 10.1016/j.cbpc.2023.109682] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/21/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) have received increasing interest due to their distinctive properties, including small particle size, high surface area, and reactivity. Due to these properties, their applications have been expanded rapidly in various areas such as biomedical properties, industrial catalysts, gas sensors, electronic materials, and environmental remediation. However, because of these widespread uses, there is now an increased risk of human exposure, which could lead to short- and long-term toxicity. This review addresses the underlying toxicity mechanisms of CuO NPs in cells which include reactive oxygen species generation, leaching of Cu ion, coordination effects, non-homeostasis effect, autophagy, and inflammation. In addition, different key factors responsible for toxicity, characterization, surface modification, dissolution, NPs dose, exposure pathways and environment are discussed to understand the toxicological impact of CuO NPs. In vitro and in vivo studies have shown that CuO NPs cause oxidative stress, cytotoxicity, genotoxicity, immunotoxicity, neurotoxicity, and inflammation in bacterial, algal, fish, rodents, and human cell lines. Therefore, to make CuO NPs a more suitable candidate for various applications, it is essential to address their potential toxic effects, and hence, more studies should be done on the long-term and chronic impacts of CuO NPs at different concentrations to assure the safe usage of CuO NPs.
Collapse
Affiliation(s)
- Humna Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Anila Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Rida Tul Haya
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
15
|
S C, G G, LA S, W N, P M, L A, A W, V F, P W, D G, T BT. Transcriptomic profiling reveals differential cellular response to copper oxide nanoparticles and polystyrene nanoplastics in perfused human placenta. ENVIRONMENT INTERNATIONAL 2023; 177:108015. [PMID: 37315489 DOI: 10.1016/j.envint.2023.108015] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Abstract
The growing nanoparticulate pollution (e.g. engineered nanoparticles (NPs) or nanoplastics) has been shown to pose potential threats to human health. In particular, sensitive populations such as pregnant women and their unborn children need to be protected from harmful environmental exposures. However, developmental toxicity from prenatal exposure to pollution particles is not yet well studied despite evidence of particle accumulation in human placenta. Our study aimed to investigate how copper oxide NPs (CuO NPs; 10-20 nm) and polystyrene nanoplastics (PS NPs; 70 nm) impact on gene expression in ex vivo perfused human placental tissue. Whole genome microarray analysis revealed changes in global gene expression profile after 6 h of perfusion with sub-cytotoxic concentrations of CuO (10 µg/mL) and PS NPs (25 µg/mL). Pathway and gene ontology enrichment analysis of the differentially expressed genes suggested that CuO and PS NPs trigger distinct cellular response in placental tissue. While CuO NPs induced pathways related to angiogenesis, protein misfolding and heat shock responses, PS NPs affected the expression of genes related to inflammation and iron homeostasis. The observed effects on protein misfolding, cytokine signaling, and hormones were corroborated by western blot (accumulation of polyubiquitinated proteins) or qPCR analysis. Overall, the results of the present study revealed extensive and material-specific interference of CuO and PS NPs with placental gene expression from a single short-term exposure which deserves increasing attention. In addition, the placenta, which is often neglected in developmental toxicity studies, should be a key focus in the future safety assessment of NPs in pregnancy.
Collapse
Affiliation(s)
- Chortarea S
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland
| | - Gupta G
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland
| | - Saarimäki LA
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Netkueakul W
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland
| | - Manser P
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland
| | - Aengenheister L
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland; Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health (LIH), 1 A-B, Rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Wichser A
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials, Science and Technology, Dübendorf, Switzerland
| | - Fortino V
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Wick P
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland
| | - Greco D
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Buerki-Thurnherr T
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland.
| |
Collapse
|
16
|
Zhang Y, Mo Y, Zhang Y, Yuan J, Zhang Q. MMP-3-mediated cleavage of OPN is involved in copper oxide nanoparticle-induced activation of fibroblasts. Part Fibre Toxicol 2023; 20:22. [PMID: 37217992 PMCID: PMC10201731 DOI: 10.1186/s12989-023-00532-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Copper oxide nanoparticles (Nano-CuO) are one of the most produced and used nanomaterials. Previous studies have shown that exposure to Nano-CuO caused acute lung injury, inflammation, and fibrosis. However, the mechanisms underlying Nano-CuO-induced lung fibrosis are still unclear. Here, we hypothesized that exposure of human lung epithelial cells and macrophages to Nano-CuO would upregulate MMP-3, which cleaved osteopontin (OPN), resulting in fibroblast activation and lung fibrosis. METHODS A triple co-culture model was established to explore the mechanisms underlying Nano-CuO-induced fibroblast activation. Cytotoxicity of Nano-CuO on BEAS-2B, U937* macrophages, and MRC-5 fibroblasts were determined by alamarBlue and MTS assays. The expression or activity of MMP-3, OPN, and fibrosis-associated proteins was determined by Western blot or zymography assay. Migration of MRC-5 fibroblasts was evaluated by wound healing assay. MMP-3 siRNA and an RGD-containing peptide, GRGDSP, were used to explore the role of MMP-3 and cleaved OPN in fibroblast activation. RESULTS Exposure to non-cytotoxic doses of Nano-CuO (0.5 and 1 µg/mL) caused increased expression and activity of MMP-3 in the conditioned media of BEAS-2B and U937* cells, but not MRC-5 fibroblasts. Nano-CuO exposure also caused increased production of cleaved OPN fragments, which was abolished by MMP-3 siRNA transfection. Conditioned media from Nano-CuO-exposed BEAS-2B, U937*, or the co-culture of BEAS-2B and U937* caused activation of unexposed MRC-5 fibroblasts. However, direct exposure of MRC-5 fibroblasts to Nano-CuO did not induce their activation. In a triple co-culture system, exposure of BEAS-2B and U937* cells to Nano-CuO caused activation of unexposed MRC-5 fibroblasts, while transfection of MMP-3 siRNA in BEAS-2B and U937* cells significantly inhibited the activation and migration of MRC-5 fibroblasts. In addition, pretreatment with GRGDSP peptide inhibited Nano-CuO-induced activation and migration of MRC-5 fibroblasts in the triple co-culture system. CONCLUSIONS Our results demonstrated that Nano-CuO exposure caused increased production of MMP-3 from lung epithelial BEAS-2B cells and U937* macrophages, which cleaved OPN, resulting in the activation of lung fibroblasts MRC-5. These results suggest that MMP-3-cleaved OPN may play a key role in Nano-CuO-induced activation of lung fibroblasts. More investigations are needed to confirm whether these effects are due to the nanoparticles themselves and/or Cu ions.
Collapse
Affiliation(s)
- Yuanbao Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Yue Zhang
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Jiali Yuan
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| |
Collapse
|
17
|
Landsiedel R, Honarvar N, Seiffert SB, Oesch B, Oesch F. Genotoxicity testing of nanomaterials. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1833. [DOI: 10.1002/wnan.1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Robert Landsiedel
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
- Pharmacy, Pharmacology and Toxicology Free University of Berlin Berlin Germany
| | - Naveed Honarvar
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
| | | | - Barbara Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
| | - Franz Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
- Institute of Toxicology Johannes Gutenberg University Mainz Germany
| |
Collapse
|
18
|
Kwon JT, Kim Y, Choi S, Yoon BL, Kim HS, Shim I, Sul D. Pulmonary Toxicity and Proteomic Analysis in Bronchoalveolar Lavage Fluids and Lungs of Rats Exposed to Copper Oxide Nanoparticles. Int J Mol Sci 2022; 23:13265. [PMID: 36362054 PMCID: PMC9655042 DOI: 10.3390/ijms232113265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 07/21/2023] Open
Abstract
Copper oxide nanoparticles (CuO NPs) were intratracheally instilled into lungs at concentrations of 0, 0.15, and 1.5 mg/kg bodyweight to 7-week-old Sprague-Dawley rats. The cytotoxicity, immunotoxicity, and oxidative stress were evaluated, followed by proteomic analysis of bronchoalveolar lavage fluid (BALF) and lungs of rats. The CuO NPs-exposed groups revealed dose-dependent increases in total cells, polymorphonuclear leukocytes, lactate dyhydrogenase, and total protein levels in BALF. Inflammatory cytokines, including macrophage inflammatory protein-2 and tumor necrosis factor-α, were increased in the CuO NPs-treated groups. The expression levels of catalase, glutathione peroxidase-1, and peroxiredoxin-2 were downregulated, whereas that of superoxide dismutase-2 was upregulated in the CuO NPs-exposed groups. Five heat shock proteins were downregulated in rats exposed to high concentrations of CuO NPs. In proteomic analysis, 17 proteins were upregulated or downregulated, and 6 proteins were validated via Western blot analysis. Significant upregulation of 3-hydroxy-3-methylglutaryl-CoA synthase and fidgetin-like 1 and downregulation of annexin II, HSP 47 and proteasome α1 occurred in the CuO NPs exposed groups. Taken together, this study provides additional insight into pulmonary cytotoxicity and immunotoxicity as well as oxidative stress in rats exposed to CuO NPs. Proteomic analysis revealed potential toxicological biomarkers of CuO NPs, which also reveals the toxicity mechanisms of CuO NPs.
Collapse
Affiliation(s)
- Jung-Taek Kwon
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Korea
| | - Yoonjin Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Korea
| | - Seonyoung Choi
- Graduate School of Medicine, Korea University, 73 Inchon-ro, Sungbuk-ku, Seoul 136-705, Korea
| | - Byung-ll Yoon
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Hyun-Sook Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju 28503, Korea
| | - Ilseob Shim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Korea
| | - Donggeun Sul
- Graduate School of Medicine, Korea University, 73 Inchon-ro, Sungbuk-ku, Seoul 136-705, Korea
| |
Collapse
|
19
|
Chen Z, Zhu J, Zhou H, Jia Y, Ruan H, Diao Q, Li M, Zheng L, Yao S, Guo Y, Zhou Y, Jiang Y. The involvement of copper, circular RNAs, and inflammatory cytokines in chronic respiratory disease. CHEMOSPHERE 2022; 303:135005. [PMID: 35605724 DOI: 10.1016/j.chemosphere.2022.135005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/23/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Exposure to high concentrations of copper is associated with pulmonary inflammation and chronic respiratory disease (CRD). Epigenetic modulation of noncoding RNAs contributes to the development of several CRDs. It is unknown whether epigenetic modulation is involved in copper mediated pulmonary inflammation and CRD. We conducted a case-control study of 101 CRD cases and 161 control subjects in Shijiazhuang, China, and evaluated circRNAs and cytokine levels (IL-6 and IL-8) by qPCR and ELISA. Urinary copper concentration was determined by inductively coupled plasma mass spectrometry. Linear mixed models and generalized linear mixed models were used to assess the associations of circRNAs with CRD, urinary copper, and cytokines. We exposed the human bronchial epithelial cell line, 16HBE, to copper and assessed the functional role of a circRNA, circ_0008882, by RNA overexpression. Cellular location of circ_0008882 was assessed by separation of nuclear and cytoplasmic RNAs. Nine circRNAs were associated with an increased risk for CRDs, while the relative expression of circ_0008882 was decreased after copper exposure in vitro and in vivo. Copper exposure stimulated 16HBE cells to release proinflammatory IL-6 and IL-8. The release of the cytokines was inhibited by overexpression of circ_0008882. These results suggest a role for circ_0008882 in the regulation of CRD associated inflammation following copper exposure.
Collapse
Affiliation(s)
- Zehao Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jialu Zhu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hanyu Zhou
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yangyang Jia
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Honglian Ruan
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qinqin Diao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Meizhen Li
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Liting Zheng
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuwei Yao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yaozheng Guo
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yun Zhou
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
20
|
Khlifi N, Mnif S, Ben Nasr F, Fourati N, Zerrouki C, Chehimi MM, Guermazi H, Aifa S, Guermazi S. Non-doped and transition metal-doped CuO nano-powders: structure-physical properties and anti-adhesion activity relationship. RSC Adv 2022; 12:23527-23543. [PMID: 36090396 PMCID: PMC9386445 DOI: 10.1039/d2ra02433k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/31/2022] [Indexed: 11/27/2022] Open
Abstract
Bacterial contamination and biofilm formation generate severe problems in many fields. Among these biofilm-forming bacteria, Staphylococcus epidermidis (S. epidermidis) has emerged as a major cause of nosocomial infection (NI). However, with the dramatic rise in resistance toward conventional antibiotics, there is a pressing need for developing effective anti-biofilms. So, fabrication of copper oxide nanoparticles (NPs) is one of the new strategies to combat biofilms. Notably, doped CuO NPs in anti-biofilm therapy have become a hot spot of attention in recent years due to their physicochemical properties. In this context, the present work deals with the investigation of undoped and transition metal (TM)-doped CuO NPs (TM = Zn, Ni, Mn, Fe and Co), synthesized via the co-precipitation method. The synthesized CuO NPs are characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). Results consistently revealed the successful formation of CuO NPs using the co-precipitation method and confirmed that TM ions are successfully inserted into CuO crystal lattice. We found that doping changes the morphology of the CuO NPs and increases their crystallite size. The XPS results show a non-uniform distribution of the doping concentration, with a depletion or an enrichment of the NP surface depending on the element considered. Furthermore, the anti-adhesive potential of CuO NPs against S. epidermidis S61 biofilm formation is evaluated in this study by crystal violet and fluorescence microscopy assays. All synthesized NPs exhibit considerable anti-adhesive activity against S. epidermidis S61 biofilm. Interestingly, compared to undoped CuO, Fe and Ni-doped oxides show an improved activity when used at high concentrations, whereas Mn-doped CuO is the most efficient at low concentrations. This makes TM-doped CuO a promising candidate to be used in biomedical applications.
Collapse
Affiliation(s)
- N Khlifi
- Laboratory of Materials for Energy and Environment, and Modeling (LMEEM), Faculty of Sciences, University of Sfax B.P: 1171 3038 Tunisia
- Laboratory of Information and Energy Technology Systems and Applications (SATIE), UMR 8029, CNRS, ENS Paris-Saclay, CNAM 292 Rue Saint-Martin 7503 Paris France
| | - S Mnif
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax P.O. Box 1177 3018 Sfax Tunisia
| | - F Ben Nasr
- Laboratory of Materials for Energy and Environment, and Modeling (LMEEM), Faculty of Sciences, University of Sfax B.P: 1171 3038 Tunisia
| | - N Fourati
- Laboratory of Information and Energy Technology Systems and Applications (SATIE), UMR 8029, CNRS, ENS Paris-Saclay, CNAM 292 Rue Saint-Martin 7503 Paris France
| | - C Zerrouki
- Laboratory of Information and Energy Technology Systems and Applications (SATIE), UMR 8029, CNRS, ENS Paris-Saclay, CNAM 292 Rue Saint-Martin 7503 Paris France
| | - M M Chehimi
- Université Paris Cité, CNRS, ITODYS (UMR 7086) 75013 Paris France
| | - H Guermazi
- Laboratory of Materials for Energy and Environment, and Modeling (LMEEM), Faculty of Sciences, University of Sfax B.P: 1171 3038 Tunisia
| | - S Aifa
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax P.O. Box 1177 3018 Sfax Tunisia
| | - S Guermazi
- Laboratory of Materials for Energy and Environment, and Modeling (LMEEM), Faculty of Sciences, University of Sfax B.P: 1171 3038 Tunisia
| |
Collapse
|
21
|
CuO-NPs-triggered heterophil extracellular traps exacerbate liver injury in chicks by promoting oxidative stress and inflammatory responses. Arch Toxicol 2022; 96:2913-2926. [PMID: 35962800 DOI: 10.1007/s00204-022-03357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
With the widespread use of copper oxide nanoparticles (CuO-NPs), their potential toxicity to the environment and biological health has attracted close attention. Heterophil extracellular traps (HETs) are an innate immune mechanism of chicken heterophils against adverse stimuli, but excessive HETs cause damage. Here, we explored the effect and mechanism of CuO-NPs on HETs formation in vitro and further evaluated the potential role of HETs in chicken liver and kidney injury. Heterophils were exposed to 5, 10, and 20 µg/mL of CuO-NPs for 2 h. The results showed that CuO-NPs induced typical HETs formation, which was dependent on NADPH oxidase, P38 and extracellular regulated protein kinases (ERK1/2) pathways, and glycolysis. In in vivo experiments, fluorescence microplate and morphological analysis showed that CuO-NPs elevated the level of HETs in chicken serum and caused liver and kidney damage. Meanwhile, CuO-NPs caused hepatic oxidative stress (MDA, SOD, CAT, and GSH-PX imbalance), and also induced an increase in mRNA expression of their inflammatory and apoptosis-related factors (IL-1β, IL-6, TNF-α, COX-2, iNOS, NLRP3, and Caspase-1, 3, 11). However, these results were significantly altered by DNase I (HETs degradation reagent). In conclusion, the present study demonstrates for the first time that CuO-NPs induce the formation of HETs and that HETs exacerbate pathological damage in chicken liver and kidney by promoting oxidative stress and inflammation, providing insights into immunotoxicity and potential prevention and treatment targets caused by CuO-NPs overexposure.
Collapse
|
22
|
Gene Expression Profiling of Mono- and Co-Culture Models of the Respiratory Tract Exposed to Crystalline Quartz under Submerged and Air-Liquid Interface Conditions. Int J Mol Sci 2022; 23:ijms23147773. [PMID: 35887123 PMCID: PMC9324045 DOI: 10.3390/ijms23147773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
In vitro lung cell models like air-liquid interface (ALI) and 3D cell cultures have advanced greatly in recent years, being especially valuable for testing advanced materials (e.g., nanomaterials, fibrous substances) when considering inhalative exposure. Within this study, we established submerged and ALI cell culture models utilizing A549 cells as mono-cultures and co-cultures with differentiated THP-1 (dTHP-1), as well as mono-cultures of dTHP-1. After ALI and submerged exposures towards α-quartz particles (Min-U-Sil5), with depositions ranging from 15 to 60 µg/cm2, comparison was made with respect to their transcriptional cellular responses employing high-throughput RT-qPCR. A significant dose- and time-dependent induction of genes coding for inflammatory proteins, e.g., IL-1A, IL-1B, IL-6, IL-8, and CCL22, as well as genes associated with oxidative stress response such as SOD2, was observed, even more pronounced in co-cultures. Changes in the expression of similar genes were more pronounced under submerged conditions when compared to ALI exposure in the case of A549 mono-cultures. Hereby, the activation of the NF-κB signaling pathway and the NLRP3 inflammasome seem to play an important role. Regarding genotoxicity, neither DNA strand breaks in ALI cultivated cells nor a transcriptional response to DNA damage were observed. Altogether, the toxicological responses depended considerably on the cell culture model and exposure scenario, relevant to be considered to improve toxicological risk assessment.
Collapse
|
23
|
Li N, Du H, Mao L, Xu G, Zhang M, Fan Y, Dong X, Zheng L, Wang B, Qin X, Jiang X, Chen C, Zou Z, Zhang J. Reciprocal regulation of NRF2 by autophagy and ubiquitin-proteasome modulates vascular endothelial injury induced by copper oxide nanoparticles. J Nanobiotechnology 2022; 20:270. [PMID: 35690781 PMCID: PMC9188091 DOI: 10.1186/s12951-022-01486-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/01/2022] [Indexed: 12/30/2022] Open
Abstract
NRF2 is the key antioxidant molecule to maintain redox homeostasis, however the intrinsic mechanisms of NRF2 activation in the context of nanoparticles (NPs) exposure remain unclear. In this study, we revealed that copper oxide NPs (CuONPs) exposure activated NRF2 pathway in vascular endothelial cells. NRF2 knockout remarkably aggravated oxidative stress, which were remarkably mitigated by ROS scavenger. We also demonstrated that KEAP1 (the negative regulator of NRF2) was not primarily involved in NRF2 activation in that KEAP1 knockdown did not significantly affect CuONPs-induced NRF2 activation. Notably, we demonstrated that autophagy promoted NRF2 activation as evidenced by that ATG5 knockout or autophagy inhibitors significantly blocked NRF2 pathway. Mechanically, CuONPs disturbed ubiquitin–proteasome pathway and consequently inhibited the proteasome-dependent degradation of NRF2. However, autophagy deficiency reciprocally promoted proteasome activity, leading to the acceleration of degradation of NRF2 via ubiquitin–proteasome pathway. In addition, the notion that the reciprocal regulation of NRF2 by autophagy and ubiquitin–proteasome was further proven in a CuONPs pulmonary exposure mice model. Together, this study uncovers a novel regulatory mechanism of NRF2 activation by protein degradation machineries in response to CuONPs exposure, which opens a novel intriguing scenario to uncover therapeutic strategies against NPs-induced vascular injury and disease. CuONPs exposure activates NRF2 signaling in vascular endothelial cells and mouse thoracic aorta. KEAP1 is dispensable for NRF2 activation in CuONPs-treated vascular endothelial cells. CuONPs-induced autophagy facilitates NRF2 activation in vascular endothelial cells and mouse thoracic aorta. Autophagy and ubiquitin–proteasome reciprocally regulate NRF2 activation in CuONPs-treated vascular endothelial cells and mouse thoracic aorta.
Collapse
Affiliation(s)
- Na Li
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hang Du
- Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing, 400060, People's Republic of China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ge Xu
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Mengling Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yinzhen Fan
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaomei Dong
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lijun Zheng
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Bin Wang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China. .,Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China. .,Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
24
|
Inhalation Toxicity of Copper Compounds: Results of 14-day range finding study for copper sulphate pentahydrate and dicopper oxide and 28-day subacute inhalation exposure of dicopper oxide in rats. Toxicology 2022; 474:153221. [PMID: 35659515 DOI: 10.1016/j.tox.2022.153221] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/20/2022]
Abstract
Inhalation exposure to copper may occur during a range of occupational activities and the purpose of this study was to characterise the toxicological response to repeated inhalation of two copper compounds, representative of copper substances in large-scale production/use. Crl:CD(SD) rats were repeatedly exposed to aerosols of dicopper oxide (Cu2O) or copper sulphate pentahydrate (CuSO4.5H2O) for 14-days as part of a range finding study at a normalised copper doses of 0.18, 0.71, 1.78 and 9mg/m3 Cu. Within the 28-days main study (Cu2O only), animals were repeatedly exposed to 0.2, 0.4, 0.8 and 2.0mg/m3 Cu2O following OECD TG 412. The main study also consisted of satellite groups exposed for 1-, 2- or 3- weeks as well as a 13-week post-exposure recovery period group. Repeated exposure for 14-days to both copper compounds, normalised for copper content, led to an acute influx of polymorphonuclear leukocytes (neutrophils) and macrophages whilst only CuSO4.5H2O exposure resulted in epithelial hyperplasia. This differential response may reflect the highly dissolvable nature of CuSO4.5H2O in lung lining fluid leading to a release of copper ions at the epithelial surface whilst Cu2O is relatively indissolvable at neutral pH. In the 28-day study with Cu2O, an increase in cellularity was also evident in both histological and BALF samples and was dose-related with minimal to mild (neutrophilic) inflammation observed > 0.4mg/m3 in the lung tissue sections and significant increases from 0.2mg/m3 in BALF. There were no clinical and minimal haematological findings and systemic organs were unaffected by inhalation exposure to dicopper oxide. The lung cellular response was limited to alveolar histiocytosis and neutrophil influx with no evidence of epithelial hyperplasia or fibrosis and all lung biomarkers returned to control levels within the post-exposure recovery period. Interestingly, the satellite groups showed that this acute cellular response followed a biphasic rather than monotonic pattern with a peak in lung biomarkers between weeks 1-3 and reduction thereafter. This reduction in lung biomarkers occurred during continued exposure and may indicate an adaptive response to copper exposure. Overall, these results show that repeated exposure to copper compounds results in an acute cellular response with no associated pathology and which fully resolved after the cessation of exposure. Therefore, the cellular response is evidence of a controlled and adaptive response associated with the removal of Cu2O from the alveolar surface.
Collapse
|
25
|
The High-Throughput In Vitro CometChip Assay for the Analysis of Metal Oxide Nanomaterial Induced DNA Damage. NANOMATERIALS 2022; 12:nano12111844. [PMID: 35683698 PMCID: PMC9181865 DOI: 10.3390/nano12111844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
Metal oxide nanomaterials (MONMs) are among the most highly utilized classes of nanomaterials worldwide, though their potential to induce DNA damage in living organisms is known. High-throughput in vitro assays have the potential to greatly expedite analysis and understanding of MONM induced toxicity while minimizing the overall use of animals. In this study, the high-throughput CometChip assay was used to assess the in vitro genotoxic potential of pristine copper oxide (CuO), zinc oxide (ZnO), and titanium dioxide (TiO2) MONMs and microparticles (MPs), as well as five coated/surface-modified TiO2 NPs and zinc (II) chloride (ZnCl2) and copper (II) chloride (CuCl2) after 2–4 h of exposure. The CuO NPs, ZnO NPs and MPs, and ZnCl2 exposures induced dose- and time-dependent increases in DNA damage at both timepoints. TiO2 NPs surface coated with silica or silica–alumina and one pristine TiO2 NP of rutile crystal structure also induced subtle dose-dependent DNA damage. Concentration modelling at both post-exposure timepoints highlighted the contribution of the dissolved species to the response of ZnO, and the role of the nanoparticle fraction for CuO mediated genotoxicity, showing the differential impact that particle and dissolved fractions can have on genotoxicity induced by MONMs. The results imply that solubility alone may be insufficient to explain the biological behaviour of MONMs.
Collapse
|
26
|
McNeilly RJ, Schwanekamp JA, Hyder LS, Hatch JP, Edwards BT, Kirsh JA, Jackson JM, Jaworek T, Methner MM, Duran CM. Exposure to lead-free frangible firing emissions containing copper and ultrafine particulates leads to increased oxidative stress in firing range instructors. Part Fibre Toxicol 2022; 19:36. [PMID: 35570273 PMCID: PMC9107651 DOI: 10.1186/s12989-022-00471-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Since the introduction of copper based, lead-free frangible (LFF) ammunition to Air Force small arms firing ranges, instructors have reported symptoms including chest tightness, respiratory irritation, and metallic taste. These symptoms have been reported despite measurements determining that instructor exposure does not exceed established occupational exposure limits (OELs). The disconnect between reported symptoms and exposure limits may be due to a limited understanding of LFF firing byproducts and subsequent health effects. A comprehensive characterization of exposure to instructors was completed, including ventilation system evaluation, personal monitoring, symptom tracking, and biomarker analysis, at both a partially enclosed and fully enclosed range. Results Instructors reported symptoms more frequently after M4 rifle classes compared to classes firing only the M9 pistol. Ventilation measurements demonstrated that airflow velocities at the firing line were highly variable and often outside established standards at both ranges. Personal breathing zone air monitoring showed exposure to carbon monoxide, ultrafine particulate, and metals. In general, exposure to instructors was higher at the partially enclosed range compared to the fully enclosed range. Copper measured in the breathing zone of instructors, on rare occasions, approached OELs for copper fume (0.1 mg/m3). Peak carbon monoxide concentrations were 4–5 times higher at the partially enclosed range compared to the enclosed range and occasionally exceeded the ceiling limit (125 ppm). Biological monitoring showed that lung function was maintained in instructors despite respiratory symptoms. However, urinary oxidative stress biomarkers and urinary copper measurements were increased in instructors compared to control groups. Conclusions Consistent with prior work, this study demonstrates that symptoms still occurred despite exposures below OELs. Routine monitoring of symptoms, urinary metals, and oxidative stress biomarkers can help identify instructors who are particularly affected by exposures. These results can assist in guiding protective measures to reduce exposure and protect instructor health. Further, a longitudinal study is needed to determine the long-term health consequences of LFF firing emissions exposure. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00471-0.
Collapse
|
27
|
Application of Nanomaterials in the Prevention, Detection, and Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA). Pharmaceutics 2022; 14:pharmaceutics14040805. [PMID: 35456638 PMCID: PMC9030647 DOI: 10.3390/pharmaceutics14040805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 01/27/2023] Open
Abstract
Due to differences in geographic surveillance systems, chemical sanitization practices, and antibiotic stewardship (AS) implementation employed during the COVID-19 pandemic, many experts have expressed concerns regarding a future surge in global antimicrobial resistance (AMR). A potential beneficiary of these differences is the Gram-positive bacteria MRSA. MRSA is a bacterial pathogen with a high potential for mutational resistance, allowing it to engage various AMR mechanisms circumventing conventional antibiotic therapies and the host’s immune response. Coupled with a lack of novel FDA-approved antibiotics reaching the clinic, the onus is on researchers to develop alternative treatment tools to mitigate against an increase in pathogenic resistance. Mitigation strategies can take the form of synthetic or biomimetic nanomaterials/vesicles employed in vaccines, rapid diagnostics, antibiotic delivery, and nanotherapeutics. This review seeks to discuss the current potential of the aforementioned nanomaterials in detecting and treating MRSA.
Collapse
|
28
|
Guo H, Wang Y, Cui H, Ouyang Y, Yang T, Liu C, Liu X, Zhu Y, Deng H. Copper Induces Spleen Damage Through Modulation of Oxidative Stress, Apoptosis, DNA Damage, and Inflammation. Biol Trace Elem Res 2022; 200:669-677. [PMID: 33740180 DOI: 10.1007/s12011-021-02672-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 01/26/2023]
Abstract
Copper (Cu) is an essential micronutrient for both humans and animals; however, excessive intake of Cu can be immunotoxic. There are limited studies on spleen toxicity induced by Cu. This study was conducted to investigate the effects of Cu on spleen oxidative stress, apoptosis, and inflammatory responses in mice orally administered with 0 mg/kg, 10 mg/kg, 20 mg/kg, and 40 mg/kg of CuSO4 for 42 days. As discovered in this work, copper sulfate (CuSO4) reduced the activities of antioxidant enzymes (SOD, CAT, and GSH-Px), decreased GSH contents, and increased MDA contents. Meanwhile, CuSO4 induced apoptosis by increasing TUNEL-positive cells in the spleen. Also, CuSO4 increased the expression of γ-H2AX, which is the marker of DNA damage. Concurrently, CuSO4 caused inflammation by increasing the mRNA levels of interleukin-1β (IL-1β), IL-2, IL-4, IL-6, IL-12, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ). In conclusion, the abovementioned findings demonstrate that over 10 mg/kg CuSO4 can cause oxidative stress, apoptosis, DNA damage, and inflammatory responses, which contribute to spleen dysfunction in mice.
Collapse
Affiliation(s)
- Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Yuqin Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Agricultural information engineering of Sichuan Province, Sichuan Agriculture University, Yaan, 625014, Sichuan, China.
| | - Yujuan Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Tingyou Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Caiyun Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xiaoyu Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
29
|
Wang X, Wang WX. Cu-based nanoparticle toxicity to zebrafish cells regulated by cellular discharges. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118296. [PMID: 34627961 DOI: 10.1016/j.envpol.2021.118296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 05/21/2023]
Abstract
Cellular transport of metal nanoparticles (NPs) is critical in determining their potential toxicity, but the transformation of metal ions released from the internalized NPs is largely unknown. Cu-based NPs are the only metallic-based NPs that are reported to induce higher toxicity compared with their corresponding ions, likely due to their unique cellular turnover. In the present study, we developed a novel gold core to differentiate the particulate and ionic Cu in the Cu2O microparticles (MPs), and the kinetics of bioaccumulation, exocytosis, and cytotoxicity of Au@Cu2O MPs to zebrafish embryonic cells were subsequently studied. We demonstrated that the internalized MPs were rapidly dissolved to Cu ions, which then undergo lysosome-mediated exocytosis. The uptake rate of smaller MPs (130 nm) was lower than that of larger ones (200 nm), but smaller MPs were dissolved much quickly in cells and therefore activated the exocytosis more quickly. The rapid release of Cu ions resulted in an immediate toxic action of Cu2O MPs, while the cell deaths mainly occurred by necrosis. During this process, the buffering ability of glutathione greatly alleviated the Cu toxicity. Therefore, although the turnover of intracellular Cu at a sublethal exposure level was hundred times faster than the basal values, labile Cu(I) concentration increased by only 2 times at most. Overall, this work provided new insights into the toxicity of copper NPs, suggesting that tolerance to Cu-based NPs depended on their ability to discharge the released Cu ions.
Collapse
Affiliation(s)
- Xiangrui Wang
- School of Energy and Environment, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
30
|
Wall J, Seleci DA, Schworm F, Neuberger R, Link M, Hufnagel M, Schumacher P, Schulz F, Heinrich U, Wohlleben W, Hartwig A. Comparison of Metal-Based Nanoparticles and Nanowires: Solubility, Reactivity, Bioavailability and Cellular Toxicity. NANOMATERIALS 2021; 12:nano12010147. [PMID: 35010097 PMCID: PMC8746854 DOI: 10.3390/nano12010147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022]
Abstract
While the toxicity of metal-based nanoparticles (NP) has been investigated in an increasing number of studies, little is known about metal-based fibrous materials, so-called nanowires (NWs). Within the present study, the physico-chemical properties of particulate and fibrous nanomaterials based on Cu, CuO, Ni, and Ag as well as TiO2 and CeO2 NP were characterized and compared with respect to abiotic metal ion release in different physiologically relevant media as well as acellular reactivity. While none of the materials was soluble at neutral pH in artificial alveolar fluid (AAF), Cu, CuO, and Ni-based materials displayed distinct dissolution under the acidic conditions found in artificial lysosomal fluids (ALF and PSF). Subsequently, four different cell lines were applied to compare cytotoxicity as well as intracellular metal ion release in the cytoplasm and nucleus. Both cytotoxicity and bioavailability reflected the acellular dissolution rates in physiological lysosomal media (pH 4.5); only Ag-based materials showed no or very low acellular solubility, but pronounced intracellular bioavailability and cytotoxicity, leading to particularly high concentrations in the nucleus. In conclusion, in spite of some quantitative differences, the intracellular bioavailability as well as toxicity is mostly driven by the respective metal and is less modulated by the shape of the respective NP or NW.
Collapse
Affiliation(s)
- Johanna Wall
- Department of Food Chemistry and Toxicology, Faculty of Chemistry and Biosciences, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (J.W.); (F.S.); (R.N.); (M.L.); (M.H.); (P.S.)
| | | | - Feranika Schworm
- Department of Food Chemistry and Toxicology, Faculty of Chemistry and Biosciences, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (J.W.); (F.S.); (R.N.); (M.L.); (M.H.); (P.S.)
| | - Ronja Neuberger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry and Biosciences, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (J.W.); (F.S.); (R.N.); (M.L.); (M.H.); (P.S.)
| | - Martin Link
- Department of Food Chemistry and Toxicology, Faculty of Chemistry and Biosciences, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (J.W.); (F.S.); (R.N.); (M.L.); (M.H.); (P.S.)
| | - Matthias Hufnagel
- Department of Food Chemistry and Toxicology, Faculty of Chemistry and Biosciences, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (J.W.); (F.S.); (R.N.); (M.L.); (M.H.); (P.S.)
| | - Paul Schumacher
- Department of Food Chemistry and Toxicology, Faculty of Chemistry and Biosciences, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (J.W.); (F.S.); (R.N.); (M.L.); (M.H.); (P.S.)
| | | | | | | | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Faculty of Chemistry and Biosciences, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (J.W.); (F.S.); (R.N.); (M.L.); (M.H.); (P.S.)
- Correspondence:
| |
Collapse
|
31
|
Zhang Y, Mo Y, Yuan J, Zhang Y, Mo L, Zhang Q. MMP-3 activation is involved in copper oxide nanoparticle-induced epithelial-mesenchymal transition in human lung epithelial cells. Nanotoxicology 2021; 15:1380-1402. [PMID: 35108494 PMCID: PMC9484543 DOI: 10.1080/17435390.2022.2030822] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Copper oxide nanoparticles (Nano-CuO) are widely used in medical and industrial fields and our daily necessities. However, the biosafety assessment of Nano-CuO is far behind their rapid development. Here, we investigated the adverse effects of Nano-CuO on normal human bronchial epithelial BEAS-2B cells, especially determined whether Nano-CuO exposure would cause dysregulation of MMP-3, an important mediator in pulmonary fibrosis, and its potential role in epithelial-mesenchymal transition (EMT). Our results showed that exposure to Nano-CuO, but not Nano-TiO2, caused increased ROS generation, MAPKs activation, and MMP-3 upregulation. Nano-CuO-induced ROS generation was not observed in mitochondrial DNA-depleted BEAS-2B ρ0 cells, indicating that mitochondria may be the main source of Nano-CuO-induced ROS generation. Pretreatment of the cells with ROS scavengers or inhibitors or depleting mitochondrial DNA significantly attenuated Nano-CuO-induced MAPKs activation and MMP-3 upregulation, and pretreatment of cells with MAPKs inhibitors abolished Nano-CuO-induced MMP-3 upregulation, suggesting Nano-CuO-induced MMP-3 upregulation is through Nano-CuO-induced ROS generation and MAPKs activation. In addition, exposure of the cells to Nano-CuO for 48 h resulted in decreased E-cadherin expression and increased expression of vimentin, α-SMA, and fibronectin, which was ameliorated by MMP-3 siRNA transfection, suggesting an important role of MMP-3 in Nano-CuO-induced EMT. Taken together, our study demonstrated that Nano-CuO exposure caused mitochondrial ROS generation, MAPKs activation, and MMP-3 upregulation. Nano-CuO exposure also caused cells to undergo EMT, which was through Nano-CuO-induced dysregulation of ROS/MAPKs/MMP-3 pathway. Our findings will provide further understanding of the potential mechanisms involved in metal nanoparticle-induced various toxic effects including EMT and pulmonary fibrosis.
Collapse
Affiliation(s)
- Yuanbao Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Jiali Yuan
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yue Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Luke Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
32
|
Fischer J, Gräf T, Sakka Y, Tessarek C, Köser J. Ion compositions in artificial media control the impact of humic acid on colloidal behaviour, dissolution and speciation of CuO-NP. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147241. [PMID: 33930810 DOI: 10.1016/j.scitotenv.2021.147241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
The toxicity of copper oxide nanoparticles (CuO-NP) strongly depends on their interactions with the surrounding environment, impacting their dissolution and colloidal stability. This behaviour is studied quite extensively for simplified electrolytes, but information on the behaviour of CuO-NP in more complex artificial media are lacking. In our study, we analysed the colloidal behaviour and considered the speciation of CuO-NP in pure water and three artificial media of different complexity which are used in ecotoxicology. Measurements were done over 7 days in the absence and presence of humic acid (HA) as a model organic molecule. In pure water, the addition of HA lowered the zeta potential from +11 to -41 mV, while in all artificial media, it stayed constantly at about -20 mV. The hydrodynamic diameter of CuO-NP remained unaffected by HA in pure water and seawater, while in porewater and especially in freshwater, HA suppressed strong agglomeration. In pure water, HA strongly increased dissolution to the highest observed value (3% of total Cu), while HA reduced dissolution in all artificial media. Speciation calculations revealed that cations from the media competed with Cu from the NP surface for complexing sites of the HA. This competition may have caused the reduced dissolution in the presence of ions. Furthermore, speciation calculations also suggest that ion composition drove agglomeration behaviour rather than ion concentration: agglomeration was high when divalent cations where the major interaction partner and dominant in relative terms. HA may have reduced the relative dominance and thus altered the agglomeration, aligning it in all media. Summarizing, ion composition and the presence of HA strongly drive the dissolution and agglomeration of CuO-NP in artificial media, consequently, analysing complexation can help to predict environmental behaviour and toxicity.
Collapse
Affiliation(s)
- Jonas Fischer
- University of Bremen, UFT, General and Theoretical Ecology, Leobener Str. 6, 28359 Bremen, Germany.
| | - Tonya Gräf
- University of Bremen, UFT, General and Theoretical Ecology, Leobener Str. 6, 28359 Bremen, Germany
| | - Yvonne Sakka
- University of Bremen, UFT, General and Theoretical Ecology, Leobener Str. 6, 28359 Bremen, Germany
| | - Christian Tessarek
- University of Bremen, Institute of Solid State Physics, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Jan Köser
- University of Bremen, UFT, Chemical Engineering, Leobener Str. 6, 28359 Bremen, Germany
| |
Collapse
|
33
|
Wang HJ, Yang GG, Wu SS, Meng ZF, Zhang JM, Cao Y, Zhang YP. Toxicity of CuS/CdS semiconductor nanocomposites to liver cells and mice liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147221. [PMID: 34088078 DOI: 10.1016/j.scitotenv.2021.147221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Semiconductor nanomaterials not only bring great convenience to peoples lives but also become a potential hazard to human health. The purpose of this study was to evaluate the toxicity of CuS/CdS nanocomposites in hepatocytes and mice liver. The CuS/CdS semiconductor nanocomposites were synthesized by a biomimetic synthesis - ion exchange strategy. Nanosize was confirmed by high-resolution transmission electron microscopy and dynamic light scattering. The composition and physical properties were measured by powder X-ray diffraction, Fourier transform infrared spectra, atomic absorption spectroscopy, thermogravimetry-differential scanning calorimetry and zeta potential analysis. The results revealed that CuS/CdS nanocomposites had 8.7 nm diameter and negative potential. Ion exchange time could adjust the ratio of CuS and CdS in nanocomposites. The toxicological study revealed that CuS/CdS nanocomposites could be internalized into liver cells, inhibited endogenous defense system (e.g. GSH and SOD), induced the accumulation of oxidation products (e.g. ROS, GSSG and MDA), and caused hepatocyte apoptosis. The in vivo experiments in Balb/c mice showed that the experimental dose (4 mg/kg) didn't cause observable changes in mice behavior, physical activity and pathological characteristics, but the continuous accumulation of Cd2+ in the liver and kidney might be responsible for its long-term toxicity.
Collapse
Affiliation(s)
- Hua-Jie Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Gang-Gang Yang
- Department of Urology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No 1111 Xianxia Rd, Shanghai 200336, China
| | - Sha-Sha Wu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhi-Fen Meng
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Jia-Min Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Ying Cao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yu-Ping Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.
| |
Collapse
|
34
|
Guo H, Ouyang Y, Wang J, Cui H, Deng H, Zhong X, Jian Z, Liu H, Fang J, Zuo Z, Wang X, Zhao L, Geng Y, Ouyang P, Tang H. Cu-induced spermatogenesis disease is related to oxidative stress-mediated germ cell apoptosis and DNA damage. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125903. [PMID: 34492839 DOI: 10.1016/j.jhazmat.2021.125903] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/15/2021] [Accepted: 04/12/2021] [Indexed: 06/13/2023]
Abstract
Copper is considered as an indispensable trace element for living organisms. However, over-exposure to Cu can lead to adverse health effects on human. In this study, CuSO4 decreased sperm concentration and motility, increased sperm malformation rate. Concurrently, testicular damage including testicular histopathological aberrations and reduction of testis relative weight were observed. Then, the mechanism underlying Cu-induced testicular toxicity was explored. According to the results, CuSO4 elevated ROS production while reducing antioxidant function. Additionally, CuSO4 induced apoptosis which was featured by MMP depolarization and up-regulated levels of cleaved-caspase-3, cleaved-caspase-8, cleaved-caspase-9, caspase-12, cleaved-PARP and Bax, whereas down-regulated Bcl-2 expression. Meanwhile, CuSO4 caused testis DNA damage (up-regulation of γ-H2AX protein expression) and suppressed DNA repair pathways including BER, NER, HR, MMR, together with the NHEJ repair pathways, yet did not affect MGMT. To investigate the role of oxidative stress in CuSO4-induced apoptosis and DNA damage, the antioxidant NAC was co-treated with CuSO4. NAC attenuated CuSO4-induced ROS production, inhibited apoptosis and DNA damage. Furthermore, the spermatogenesis disorder was also abolished in the co-treatment with CuSO4 and NAC group. Altogether, abovementioned results indicated that CuSO4-induced spermatogenesis disorder is related to oxidative stress-mediated DNA damage and germ cell apoptosis, impairing male reproductive function.
Collapse
Affiliation(s)
- Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yujuan Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Jiaqi Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China; Key Laboratory of Agricultural Information Engineering of Sichuan Province, Sichuan Agriculture University, Yaan, Sichuan 625014, China.
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China.
| | - Xinyue Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Huan Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| |
Collapse
|
35
|
Kim M, Hosseindoust A, Choi Y, Lee J, Kim K, Kim T, Cho H, Kang W, Chae B. Effects of Hot-Melt Extruded Nano-Copper as an Alternative for the Pharmacological Dose of Copper Sulfate in Weanling Pigs. Biol Trace Elem Res 2021; 199:2925-2935. [PMID: 33078307 DOI: 10.1007/s12011-020-02426-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/05/2020] [Indexed: 01/23/2023]
Abstract
This study was conducted to investigate the effects of hot-melt extrusion (HME)-processed copper (Cu) sulfate supplementation on the growth performance, gut microbiota, metabolic function of Cu, and bioavailability of Cu in weanling pigs fed a corn-soybean meal basal diets. A total of 180 piglets (Yorkshire × Landrace × Duroc) of mixed-sex randomly were allotted to six treatments on the basis of initial average body weight (6.36 ± 0.39 kg) to six dietary treatments. There were six replicates in each treatment with 5 pigs per replicates. The dietary treatments included levels of CuSO4 (IN6, 6 mg Cu/kg diets; IN125, 125 mg Cu/kg diets), nano-CuSO4 (HME6, 6 mg Cu/kg diets; HME65, 65 mg Cu/kg diets; and HME125, 125 mg Cu/kg diets), and Cu-methionine (ORG125, 125 mg Cu/kg diets). The weanling pigs fed diets supplemented with the HME65 and HME125 showed a greater body weight and feed intake compared with IN6 and IN125 (P < 0.05). The weaning pigs fed diets supplemented with the HME125 showed the highest digestibility of gross energy in phase 1 and phase 2 (P < 0.05). The supplementation of HME125 significantly reduced the Escherichia coli (E.coli) in cecum and colon (P < 0.05). The supplementation of HME65 showed statistically equivalent effect on reduction of E. coli in the cecum and colon compared with IN125 and ORG125 treatments. The villus height in duodenum and jejunum of piglets in HME65 and HME125 treatments were higher than ORG125, HME6, IN6, and IN125 (P < 0.05). The gene expression of Atox1 was upregulated in IN125, HME125, and ORG125 treatments (P < 0.05). The expression of Sod1 was increased in IN125 treatment compared with IN6 treatment (P < 0.05). The HME125 treatment had the highest gene expression of ghrelin (P < 0.05). The Cu concentration of serum and liver was higher in the HME125 treatment than the HME6, IN6, and IN125 treatments (P < 0.05). The HME125 and ORG125 treatments showed a lower fecal Cu compared with IN125 treatment (P < 0.05). Taken together, these results suggest that the HME65 can be an alternative to IN125 in weanling pigs due to the greater overall average daily gain, improved villus height, and higher bioavailability.
Collapse
Affiliation(s)
- MinJu Kim
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Abdolreza Hosseindoust
- College of Animal Life Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - YoHan Choi
- Swine Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - JunHyung Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - KwangYeoul Kim
- College of Animal Life Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - TeaGyun Kim
- College of Animal Life Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - HyunJong Cho
- College of Pharmacy, Kangwon National College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - WeiSoo Kang
- Department of Bio-Health Technology, College of Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - ByungJo Chae
- College of Animal Life Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
36
|
The Relationship between Serum Trace Elements and Oxidative Stress of Patients with Different Types of Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4846951. [PMID: 34349873 PMCID: PMC8328730 DOI: 10.1155/2021/4846951] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/08/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022]
Abstract
Objective Many studies have identified causal and promotive roles of oxidative stress (OxS) and oxidative damage caused by OxS in the occurrence and progression of cancer. Many biomarkers in the blood circulation of patients may change correspondingly with the development of tumors. This study is aimed at investigating the correlation between OxS and serum trace element (TE) levels of patients with different types of cancer. Methods 1143 different types of cancer patients and 178 healthy controls from Mar. 2018 to Aug. 2020 in Mianyang Central Hospital were involved in this study. Their levels of OxS parameters (including total oxidant status (TOS), total antioxidant status (TAS), and oxidant stress index (OSI)) and the concentrations of serum TEs (including Cu, Zn, Fe, and Se) were determined. Results Compared with healthy controls, all types of cancer patients had higher TOS level (all Padj < 0.001) and OSI level (z = 6.228 ~ 9.909, all Padj < 0.001) and lower TAS level (all Padj < 0.001). Compared with healthy controls, the changes of four TE levels in serum were different in different types of cancer patients, among which Cu increased in all groups, but there was no statistical difference in gastric and brain cancer; Se decreased in all groups, but there was no statistical difference in gastric, colorectal, esophageal, and other cancer; Zn was significantly decreased in breast cancer patients (Padj < 0.001); there was no statistical difference in the change of Fe in liver, kidney, and other cancer. Spearman correlation showed that the change of Cu concentration was most closely related to the three OxS parameters and was strongly correlated in the observed several types of tumors (rs > 0.6). Multinomial logistic regression showed that the risks of different tumors are related to the level change of multiple TEs and OxS parameters (ORTOS = 1.19 ~ 2.82, OROSI = 2.56 ~ 4.70, ORTAS = 0.20 ~ 0.46, ORCu = 0.73 ~ 1.44, ORZn = 0.81 ~ 0.91, ORFe = 0.68 ~ 1.18, and ORSe = 0.22 ~ 0.45, all P < 0.006). Conclusions The OxS exists in the occurrence and development of cancer, which may be related to the changes of certain trace elements. In order to evaluate OxS correctly, it is necessary to detect TAS and TOS and at the same time, their ratio OSI should be detected. Assessment of markers representing the overall level of OxS and TEs may guarantee improved the monitoring of disease occurrence and development risk in cancer patients.
Collapse
|
37
|
Impact of Nanocomposite Combustion Aerosols on A549 Cells and a 3D Airway Model. NANOMATERIALS 2021; 11:nano11071685. [PMID: 34199005 PMCID: PMC8304990 DOI: 10.3390/nano11071685] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
The use of nanomaterials incorporated into plastic products is increasing steadily. By using nano-scaled filling materials, thermoplastics, such as polyethylene (PE), take advantage of the unique properties of nanomaterials (NM). The life cycle of these so-called nanocomposites (NC) usually ends with energetic recovery. However, the toxicity of these aerosols, which may consist of released NM as well as combustion-generated volatile compounds, is not fully understood. Within this study, model nanocomposites consisting of a PE matrix and nano-scaled filling material (TiO2, CuO, carbon nano tubes (CNT)) were produced and subsequently incinerated using a lab-scale model burner. The combustion-generated aerosols were characterized with regard to particle release as well as compound composition. Subsequently, A549 cells and a reconstituted 3D lung cell culture model (MucilAir™, Epithelix) were exposed for 4 h to the respective aerosols. This approach enabled the parallel application of a complete aerosol, an aerosol under conditions of enhanced particle deposition using high voltage, and a filtered aerosol resulting in the sole gaseous phase. After 20 h post-incubation, cytotoxicity, inflammatory response (IL-8), transcriptional toxicity profiling, and genotoxicity were determined. Only the exposure toward combustion aerosols originated from PE-based materials induced cytotoxicity, genotoxicity, and transcriptional alterations in both cell models. In contrast, an inflammatory response in A549 cells was more evident after exposure toward aerosols of nano-scaled filler combustion, whereas the thermal decomposition of PE-based materials revealed an impaired IL-8 secretion. MucilAir™ tissue showed a pronounced inflammatory response after exposure to either combustion aerosols, except for nanocomposite combustion. In conclusion, this study supports the present knowledge on the release of nanomaterials after incineration of nano-enabled thermoplastics. Since in the case of PE-based combustion aerosols no major differences were evident between exposure to the complete aerosol and to the gaseous phase, adverse cellular effects could be deduced to the volatile organic compounds that are generated during incomplete combustion of NC.
Collapse
|
38
|
Elsayed AM, Sherif NM, Hassan NS, Althobaiti F, Hanafy NAN, Sahyon HA. Novel quercetin encapsulated chitosan functionalized copper oxide nanoparticles as anti-breast cancer agent via regulating p53 in rat model. Int J Biol Macromol 2021; 185:134-152. [PMID: 34147524 DOI: 10.1016/j.ijbiomac.2021.06.085] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/01/2021] [Accepted: 06/12/2021] [Indexed: 01/18/2023]
Abstract
This study was designed to present a new quercetin encapsulated chitosan functionalized copper oxide nanoparticle (CuO-ChNPs-Q) and assessed its anti-breast cancer activity both in vitro and in vivo. The CuO-ChNPs-Q may act as anti-proliferating agent against DMBA-induced mammary carcinoma in female rats. The CuONPs was functionalized with chitosan then quercetin was conjugated with them producing CuO-ChNPs-Q, then characterized. The in vitro anti-proliferating activity of the CuO-ChNPs-Q was evaluated against three human cell line. Then, the anti-breast cancer effect of the CuO-ChNPs-Q was assessed against DMBA-induction compared to both CuONPs and Q in female rat model. The in vitro results proved the potent anticancer activity of the CuO-ChNPs-Q compared to CuONPs and quercetin. The in vivo data showed significant reduction in breast tumors of DMBA-induced rats treated with CuO-ChNPs-Q compared to CuONPs and Q. The CuO-ChNPs-Q treatment had induced apoptosis via increased p53 gene, arrested the cell-cycle, and increased both cytochrome c and caspase-3 levels leading to mammary carcinoma cell death. Also, the CuO-ChNPs-Q treatment had suppressed the PCNA gene which decreased the proliferation of the mammary carcinoma cells. In conclusion, the CuO-ChNPs-Q might be a promising chemotherapeutic agent for treatment of breast cancer with a minimal toxicity on vital organs.
Collapse
Affiliation(s)
- Awny M Elsayed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Naglaa M Sherif
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nahla S Hassan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Fayez Althobaiti
- Department of Biotechnology, Collage of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Nemany A N Hanafy
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| | - Heba A Sahyon
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| |
Collapse
|
39
|
Hufnagel M, Neuberger R, Wall J, Link M, Friesen A, Hartwig A. Impact of Differentiated Macrophage-Like Cells on the Transcriptional Toxicity Profile of CuO Nanoparticles in Co-Cultured Lung Epithelial Cells. Int J Mol Sci 2021; 22:ijms22095044. [PMID: 34068728 PMCID: PMC8126233 DOI: 10.3390/ijms22095044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
To mimic more realistic lung tissue conditions, co-cultures of epithelial and immune cells are one comparatively easy-to-use option. To reveal the impact of immune cells on the mode of action (MoA) of CuO nanoparticles (NP) on epithelial cells, A549 cells as a model for epithelial cells have been cultured with or without differentiated THP-1 cells, as a model for macrophages. After 24 h of submerged incubation, cytotoxicity and transcriptional toxicity profiles were obtained and compared between the cell culture systems. Dose-dependent cytotoxicity was apparent starting from 8.0 µg/cm2 CuO NP. With regard to gene expression profiles, no differences between the cell models were observed concerning metal homeostasis, oxidative stress, and DNA damage, confirming the known MoA of CuO NP, i.e., endocytotic particle uptake, intracellular particle dissolution within lysosomes with subsequent metal ion deliberation, increased oxidative stress, and genotoxicity. However, applying a co-culture of epithelial and macrophage-like cells, CuO NP additionally provoked a pro-inflammatory response involving NLRP3 inflammasome and pro-inflammatory transcription factor activation. This study demonstrates that the application of this easy-to-use advanced in vitro model is able to extend the detection of cellular effects provoked by nanomaterials by an immunological response and emphasizes the use of such models to address a more comprehensive MoA.
Collapse
|
40
|
Kinaret PAS, Ndika J, Ilves M, Wolff H, Vales G, Norppa H, Savolainen K, Skoog T, Kere J, Moya S, Handy RD, Karisola P, Fadeel B, Greco D, Alenius H. Toxicogenomic Profiling of 28 Nanomaterials in Mouse Airways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004588. [PMID: 34026454 PMCID: PMC8132046 DOI: 10.1002/advs.202004588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/26/2021] [Indexed: 05/04/2023]
Abstract
Toxicogenomics opens novel opportunities for hazard assessment by utilizing computational methods to map molecular events and biological processes. In this study, the transcriptomic and immunopathological changes associated with airway exposure to a total of 28 engineered nanomaterials (ENM) are investigated. The ENM are selected to have different core (Ag, Au, TiO2, CuO, nanodiamond, and multiwalled carbon nanotubes) and surface chemistries (COOH, NH2, or polyethylene glycosylation (PEG)). Additionally, ENM with variations in either size (Au) or shape (TiO2) are included. Mice are exposed to 10 µg of ENM by oropharyngeal aspiration for 4 consecutive days, followed by extensive histological/cytological analyses and transcriptomic characterization of lung tissue. The results demonstrate that transcriptomic alterations are correlated with the inflammatory cell infiltrate in the lungs. Surface modification has varying effects on the airways with amination rendering the strongest inflammatory response, while PEGylation suppresses toxicity. However, toxicological responses are also dependent on ENM core chemistry. In addition to ENM-specific transcriptional changes, a subset of 50 shared differentially expressed genes is also highlighted that cluster these ENM according to their toxicity. This study provides the largest in vivo data set currently available and as such provides valuable information to be utilized in developing predictive models for ENM toxicity.
Collapse
Affiliation(s)
- Pia A. S. Kinaret
- Institute of Biotechnology, Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinki00790Finland
- Faculty of Medicine and Health TechnologyTampere UniversityTampere33720Finland
| | - Joseph Ndika
- Human Microbiome Research Program (HUMI)University of HelsinkiHelsinki00014Finland
| | - Marit Ilves
- Human Microbiome Research Program (HUMI)University of HelsinkiHelsinki00014Finland
| | - Henrik Wolff
- Finnish Institute of Occupational HealthHelsinki00250Finland
| | - Gerard Vales
- Finnish Institute of Occupational HealthHelsinki00250Finland
| | - Hannu Norppa
- Finnish Institute of Occupational HealthHelsinki00250Finland
| | - Kai Savolainen
- Finnish Institute of Occupational HealthHelsinki00250Finland
| | - Tiina Skoog
- Department of Biosciences and NutritionKarolinska InstitutetStockholm141 83Sweden
| | - Juha Kere
- Department of Biosciences and NutritionKarolinska InstitutetStockholm141 83Sweden
| | - Sergio Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)Donostia‐San Sebastián20014Spain
| | - Richard D. Handy
- School of Biological & Marine SciencesUniversity of PlymouthPlymouthPL4 8AAUK
| | - Piia Karisola
- Human Microbiome Research Program (HUMI)University of HelsinkiHelsinki00014Finland
| | - Bengt Fadeel
- Institute of Environmental MedicineKarolinska InstitutetStockholm171 77Sweden
| | - Dario Greco
- Institute of Biotechnology, Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinki00790Finland
- Faculty of Medicine and Health TechnologyTampere UniversityTampere33720Finland
- BioMediTech InstituteTampere UniversityTampere33520Finland
- Finnish Center for Alternative Methods (FICAM)Tampere33520Finland
| | - Harri Alenius
- Human Microbiome Research Program (HUMI)University of HelsinkiHelsinki00014Finland
- Institute of Environmental MedicineKarolinska InstitutetStockholm171 77Sweden
| |
Collapse
|
41
|
Ude VC, Brown DM, Stone V, Johnston HJ. Time dependent impact of copper oxide nanomaterials on the expression of genes associated with oxidative stress, metal binding, inflammation and mucus secretion in single and co-culture intestinal in vitro models. Toxicol In Vitro 2021; 74:105161. [PMID: 33839236 DOI: 10.1016/j.tiv.2021.105161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/05/2021] [Accepted: 04/04/2021] [Indexed: 12/18/2022]
Abstract
The potential for ingestion of copper oxide nanomaterials (CuO NMs) is increasing due to their increased exploitation. Investigation of changes in gene expression allows toxicity to be detected at an early stage of NM exposure and can enable investigation of the mechanism of toxicity. Here, undifferentiated Caco-2 cells, differentiated Caco-2 cells, Caco-2/HT29-MTX (mucus secreting) and Caco-2/Raji B (M cell model) co-cultures were exposed to CuO NMs and copper sulphate (CuSO4) in order to determine their impacts. Cellular responses were measured in terms of production of reactive oxygen species (ROS), the gene expression of an antioxidant (haem oxygenase 1 (HMOX1)), the pro-inflammatory cytokine (interleukin 8 (IL8)), the metal binding (metallothionein 1A and 2A (MT1A and MT2A)) and the mucus secreting (mucin 2 (MUC2)), as well as HMOX-1 protein level. While CuSO4 induced ROS production in cells, no such effect was observed for CuO NMs. However, these particles did induce an increase in the level of HMOX-1 protein and upregulation of HMOX1, MT2A, IL8 and MUC2 genes in all cell models. In conclusion, the expression of HMOX1, IL8 and MT2A were responsive to CuO NMs at 4 to 12 h post exposure when investigating the toxicity of NMs using intestinal in vitro models. These findings can inform the selection of endpoints, timepoints and models when investigating NM toxicity to the intestine in vitro in the future.
Collapse
Affiliation(s)
- Victor C Ude
- Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - David M Brown
- Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Vicki Stone
- Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Helinor J Johnston
- Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
42
|
Morris AS, Givens BE, Silva A, Salem AK. Copper Oxide Nanoparticle Diameter Mediates Serum‐Sensitive Toxicity in BEAS‐2B Cells. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Angie S. Morris
- Department of Pharmaceutical Sciences College of Pharmacy University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
- Department of Chemistry College of Liberal Arts and Sciences University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
| | - Brittany E. Givens
- Department of Pharmaceutical Sciences College of Pharmacy University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
- Department of Chemical and Biochemical Engineering College of Engineering University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
- Department of Chemical and Materials Engineering College of Engineering University of Kentucky Lexington KY 40506 USA
| | - Aaron Silva
- Department of Pharmaceutical Sciences College of Pharmacy University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
- Roy J. Carver Department of Biomedical Engineering College of Engineering University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
| | - Aliasger K. Salem
- Department of Pharmaceutical Sciences College of Pharmacy University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
- Department of Chemistry College of Liberal Arts and Sciences University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
- Department of Chemical and Biochemical Engineering College of Engineering University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
- Roy J. Carver Department of Biomedical Engineering College of Engineering University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
| |
Collapse
|
43
|
Gosens I, Costa PM, Olsson M, Stone V, Costa AL, Brunelli A, Badetti E, Bonetto A, Bokkers BGH, de Jong WH, Williams A, Halappanavar S, Fadeel B, Cassee FR. Pulmonary toxicity and gene expression changes after short-term inhalation exposure to surface-modified copper oxide nanoparticles. NANOIMPACT 2021; 22:100313. [PMID: 35559970 DOI: 10.1016/j.impact.2021.100313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 06/15/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) have previously been shown to cause dose-dependent pulmonary toxicity following inhalation. Here, CuO NPs (10 nm), coated with polyethylenimine (PEI) or ascorbate (ASC) resulting in positively or negatively charged NPs, respectively, were evaluated. Rats were exposed nose-only to similar exposure dose levels of ASC or PEI coated CuO NPs for 5 consecutive days. On day 6 and day 27 post-exposure, pulmonary toxicity markers in bronchoalveolar lavage fluid (BALF), lung histopathology and genome-wide transcriptomic changes in lungs, were assessed. BALF analyses showed a dose-dependent pulmonary inflammation and cell damage, which was supported by the lung histopathological findings of hypertrophy/hyperplasia of bronchiolar and alveolar epithelium, interstitial and alveolar inflammation, and paracortical histiocytosis in mediastinal lymph nodes for both types of CuO NPs. Transcriptomics analysis showed that pathways related to inflammation and cell proliferation were significantly activated. Additionally, we found evidence for the dysregulation of drug metabolism-related genes, especially in rats exposed to ASC-coated CuO NPs. Overall, no differences in the type of toxic effects and potency between the two surface coatings could be established, except with respect to the (regional) dose that initiates bronchiolar and alveolar hypertrophy. This disproves our hypothesis that differences in surface coatings affect the pulmonary toxicity of CuO NPs.
Collapse
Affiliation(s)
- Ilse Gosens
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | - Pedro M Costa
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; UCIBIO - Applied molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Magnus Olsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vicki Stone
- Heriot-Watt University, School of Life Sciences, Edinburgh, UK
| | - Anna L Costa
- National Research Council, Institute of Science and Technology for Ceramics, Faenza, Italy
| | - Andrea Brunelli
- Department of Environmental Sciences, Informatics and Statistics, University of Venice Ca' Foscari, Venice, Italy
| | - Elena Badetti
- Department of Environmental Sciences, Informatics and Statistics, University of Venice Ca' Foscari, Venice, Italy
| | - Alessandro Bonetto
- Department of Environmental Sciences, Informatics and Statistics, University of Venice Ca' Foscari, Venice, Italy
| | - Bas G H Bokkers
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Wim H de Jong
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Andrew Williams
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Sabina Halappanavar
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada; Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Flemming R Cassee
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Institute for Risk Assessment Studies, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
44
|
Zou L, Cheng G, Xu C, Liu H, Wang Y, Li N, Fan X, Zhu C, Xia W. Copper Nanoparticles Induce Oxidative Stress via the Heme Oxygenase 1 Signaling Pathway in vitro Studies. Int J Nanomedicine 2021; 16:1565-1573. [PMID: 33664571 PMCID: PMC7924257 DOI: 10.2147/ijn.s292319] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/12/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose The toxicity of copper nanoparticle (CuNP) exposure in the ovaries has attracted attention recently, but the precise molecular mechanism involved requires further investigation. We investigated the cytotoxicity of CuNPs in ovarian granulosa cells and the protective effect of heme oxygenase 1 (HO-1) against CuNP-induced damage. Methods Human ovarian granulosa cells (COV434) were treated with CuNPs, and cytotoxicity was evaluated using Cell Counting Kit-8 and flow cytometry assays. Oxidative stress was identified using biochemical markers of oxidation and anti-oxidation. The protein levels of mitogen-activated protein kinase 14 (MAPK14), phospho-MAPK14, nuclear factor erythroid 2-related factor 2 (Nrf2), and HO-1 were measured by immunoblotting. Subsequently, for oxidative stress parameter detection, the cells were pre-treated with hemin to induce HO-1 expression prior to CuNP treatment. Results Exposure to CuNPs decreased cell viability and the mitochondrial membrane potential, increased the apoptosis rate, and induced oxidative stress. Furthermore, hemin pretreatment induced HO-1 expression in cells, which partially reduced the accumulation of reactive oxygen species induced by CuNPs and increased the levels of antioxidant enzymes. Conclusion CuNPs exert cytotoxic effects on human ovarian granulosa cells by inducing oxidative stress, and may induce HO-1 expression via the MAPK14-Nrf2 signaling pathway. Moreover, HO-1 protects against oxidative stress induced by CuNPs.
Collapse
Affiliation(s)
- Liping Zou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Guiping Cheng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chengcheng Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Heyu Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yingying Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Nianyu Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaorong Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Changhong Zhu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wei Xia
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
45
|
Fischer J, Evlanova A, Philippe A, Filser J. Soil properties can evoke toxicity of copper oxide nanoparticles towards springtails at low concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116084. [PMID: 33246757 DOI: 10.1016/j.envpol.2020.116084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Copper oxide nanoparticles (CuO-NP) are used as an efficient alternative to conventional Cu in agriculture and might end up in soils. They show a high toxicity towards cells and microorganisms, but only low toxicity towards soil invertebrates. However, most existing soil ecotoxicological studies were conducted in a sandy reference soil and at test concentrations ≥100 mg Cu/kg soil. Therefore, there is a knowledge gap concerning the effect of soil texture on the toxicity of CuO-NP at lower, more realistic test concentrations. In our study, a sandy reference soil and three loamy soils were spiked with CuO-NP at up to four concentrations, ranging from 5 to 158 mg Cu/kg. We investigated 28-day reproduction as well as weight and Cu content after 14-day bioaccumulation and subsequent 14-day elimination for the springtail Folsomia candida. For the first time we analysed the size distribution of CuO-NP in aqueous test soil extracts by single particle-ICP-MS which revealed that the diameter of CuO-NP significantly increased with increasing concentration, but did not vary between test soils. Negative effects on reproduction were only observed in loamy soils, most pronounced in a loamy-acidic soil (-61%), and they were always strongest at the lowest test concentration. The observed effects were much stronger than reported by other studies performed with sandy soils and higher CuO-NP concentrations. In the same soil and concentration, a moderate impact on growth (-28%) was observed, while Cu elimination from springtails was inhibited. Rather than Cu body concentration, the diameter of the CuO-NP taken up, as well as NP-clay interactions might play a crucial role regarding their toxicity. Our study reports for the first time toxic effects of CuO-NP towards a soil invertebrate at a low, realistic concentration range. The results strongly suggest including lower test concentrations and a range of soil types in nanotoxicity testing.
Collapse
Affiliation(s)
- Jonas Fischer
- University of Bremen, UFT, General and Theoretical Ecology, Leobener Str. 6, 28359, Bremen, Germany.
| | - Anna Evlanova
- University of Bremen, UFT, General and Theoretical Ecology, Leobener Str. 6, 28359, Bremen, Germany
| | - Allan Philippe
- IES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| | - Juliane Filser
- University of Bremen, UFT, General and Theoretical Ecology, Leobener Str. 6, 28359, Bremen, Germany
| |
Collapse
|
46
|
Boyadzhiev A, Avramescu ML, Wu D, Williams A, Rasmussen P, Halappanavar S. Impact of copper oxide particle dissolution on lung epithelial cell toxicity: response characterization using global transcriptional analysis. Nanotoxicology 2021; 15:380-399. [PMID: 33507836 DOI: 10.1080/17435390.2021.1872114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The in vitro and in vivo toxicity of copper oxide nanoparticles (CuO NPs) is attributed to both particle and dissolved copper ion species. However, a clear understanding of (1) the specific cellular responses that are modulated by the two species and (2) the temporal dynamics in toxicity, as the proportional amount of particulate and ionic forms change over time, is lacking. In the current study, in vitro responses to microparticulate CuO (CuO MPs), CuO NPs, and dissolved Cu2+ were characterized in order to elucidate particle and ion-induced kinetic effects. Particle dissolution experiments were carried out in a relevant cell culture medium, using CuO NPs and MPs. Mouse lung epithelial cells were exposed for 2-48 h with 1-25 µg/mL CuO MPs, CuO NPs, or 7 and 54 µg/mL CuCl2. Cellular viability and genome-wide transcriptional responses were assessed. Dose and time-dependent cytotoxicity were observed in CuO NP exposed cells, which was delayed and subtle in CuCl2 and not observed in CuO MPs treated cells. Analyses of differentially expressed genes and associated pathway perturbations showed that dissolved ions released by CuO NPs in the extracellular medium are insufficient to account for the observed potency and cytotoxicity. Further organization of gene expression results in an Adverse Outcome Pathway (AOP) framework revealed a series of key events potentially involved in CuO NPs toxicity. The AOP is applicable to toxicity induced by metal oxide nanoparticles of varying solubility, and thus, can facilitate the development of in vitro alternative strategies to screen their toxicity.
Collapse
Affiliation(s)
- Andrey Boyadzhiev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada.,Department of Biology, University of Ottawa, Ottawa, Canada
| | | | - Dongmei Wu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Pat Rasmussen
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada.,Earth and Environmental Sciences Department, University of Ottawa, Ottawa, Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada.,Department of Biology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
47
|
Joshi A, Farber K, Scheiber IF. Neurotoxicity of copper and copper nanoparticles. ADVANCES IN NEUROTOXICOLOGY 2021:115-157. [DOI: 10.1016/bs.ant.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
48
|
Vanamala K, Tatiparti K, Bhise K, Sau S, Scheetz MH, Rybak MJ, Andes D, Iyer AK. Novel approaches for the treatment of methicillin-resistant Staphylococcus aureus: Using nanoparticles to overcome multidrug resistance. Drug Discov Today 2021; 26:31-43. [PMID: 33091564 PMCID: PMC7855522 DOI: 10.1016/j.drudis.2020.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/15/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes serious infections in both community and hospital settings, with high mortality rates. Treatment of MRSA infections is challenging because of the rapidly evolving resistance mechanisms combined with the protective biofilms of S. aureus. Together, these characteristic resistance mechanisms continue to render conventional treatment modalities ineffective. The use of nanoformulations with unique modes of transport across bacterial membranes could be a useful strategy for disease-specific delivery. In this review, we summarize treatment approaches for MRSA, including novel techniques in nanoparticulate designing for better therapeutic outcomes; and facilitate an understanding that nanoparticulate delivery systems could be a robust approach in the successful treatment of MRSA.
Collapse
Affiliation(s)
- Kushal Vanamala
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Katyayani Tatiparti
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Ketki Bhise
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Samaresh Sau
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Marc H Scheetz
- Departments of Pharmacy Practice and Pharmacology, Midwestern University Chicago College of Pharmacy and Graduate Studies, Pharmacometric Center of Excellence, Chicago, IL, USA
| | - Michael J Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA; Division of Infectious Diseases, Department of Medicine, School of Medicine, Wayne State University, Detroit, MI, USA
| | - David Andes
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Arun K Iyer
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA; Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
49
|
Wei CC, Yen PL, Chaikritsadakarn A, Huang CW, Chang CH, Liao VHC. Parental CuO nanoparticles exposure results in transgenerational toxicity in Caenorhabditis elegans associated with possible epigenetic regulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111001. [PMID: 32888585 DOI: 10.1016/j.ecoenv.2020.111001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/05/2020] [Accepted: 07/04/2020] [Indexed: 05/21/2023]
Abstract
Environmental nanomaterials contamination is a great concern for organisms including human. Copper oxide nanoparticles (CuO NPs) are widely used in a huge range of applications which might pose potential risk to organisms. This study investigated the in vivo transgenerational toxicity on development and reproduction with parental CuO NPs exposure in the nematode Caenorhabditis elegans. The results showed that CuO NPs (150 mg/L) significantly reduced the body length of parental C. elegans (P0). Only about 1 mg/L Cu2+ (~0.73%) were detected from 150 mg/L CuO NPs in 0.5X K-medium after 48 h. In transgenerational assays, CuO NPs (150 mg/L) parental exposure significantly induced developmental and reproductive toxicity in non-exposed C. elegans progeny (CuO NPs free) on body length (F1) and brood size (F1 and F2), respectively. In contrast, parental exposure to Cu2+ (1 mg/L) did not cause transgenerational toxicity on growth and reproduction. This suggests that the transgenerational toxicity was mostly attributed to the particulate form of CuO NPs. Moreover, qRT-PCR results showed that the mRNA levels of met-2 and spr-5 genes were significantly decreased at P0 and F1 upon only maternal exposure to CuO NPs (150 mg/L), suggesting the observed transgenerational toxicity was associated with possible epigenetic regulation in C. elegans.
Collapse
Affiliation(s)
- Chia-Cheng Wei
- Institute of Food Safety and Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan; Department of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
| | - Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Amornrat Chaikritsadakarn
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Chi-Wei Huang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Chun-Han Chang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan.
| |
Collapse
|
50
|
Pandit A, Khare L, Jahagirdar D, Srivastav A, Jain R, Dandekar P. Probing synergistic interplay between bio-inspired peptidomimetic chitosan-copper complexes and doxorubicin. Int J Biol Macromol 2020; 161:1475-1483. [PMID: 32750482 DOI: 10.1016/j.ijbiomac.2020.07.241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 01/23/2023]
Abstract
The current investigation reports a novel and facile method for modification of low molecular weight chitosan (Cs) with guanidine moieties, aimed at enhancing its cellular interaction and thus augmenting its cellular internalization. Guadinylated chitosan-copper (Cs-Gn-Cu) chelates, based on copper-nitrogen co-ordination, were established. Characterization of chelates was conducted using 1H NMR, 13C NMR, XPS, XRD, TGA-DTA, and GPC techniques. Anticancer activity of formed chelates was confirmed against A549 cells using MTT assay. Experimental outcomes, for the first time, have provided an empirical evidence for synergistic interaction between the chelated polymer (Cs-Gn-Cu) and the established anti-cancer agent, Doxorubicin (Dox), based on analysis by the Chou Talalay method and estimation of their combination indices. ROS induction was demonstrated as the mechanism of action of the chelated polymer, which supplemented rapid destruction of cancerous cells by Dox. These findings strongly advocate the need for harnessing unexplored potential of these innovative metal polymer chelates in cases of Dox resistant lung cancer, wherein the polymeric system itself would serve as an anti-cancer agent.
Collapse
Affiliation(s)
- A Pandit
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai-19, India
| | - L Khare
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai-19, India
| | - D Jahagirdar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai-19, India
| | - A Srivastav
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai-19, India
| | - R Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai-19, India.
| | - P Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai-19, India.
| |
Collapse
|