1
|
Baigadilov A, Colombano S, Omirbekov S, Cochennec M, Davarzani D, Lion F, Bodiguel H, Oxarango L. Stability and flow behavior of polymer-enhanced foams for improved in-situ remediation of hydrocarbons: Effect of polymer-surfactant interactions. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137004. [PMID: 39742864 DOI: 10.1016/j.jhazmat.2024.137004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Conventional in-situ hydrocarbon remediation technologies face challenges associated with high costs and low long-term efficacy. Aqueous foam injection presents a promising approach by enhancing volumetric sweeping efficiency. This study investigates the efficiency of polymer-enhanced foams (PEFs) for in-situ remediation of hydrocarbon-contaminated soil, focusing on the impact of Xanthan Gum (XG) biopolymer on foam stability against antifoaming diesel and the flow behavior in soil matrices. We examined two PEFs: Sodium Dodecyl Sulfate (SDS)-based and a blend of SDS and Cocamidopropyl Hydroxysultane (SDS-CAHS: SC)-based. Bulk foam tests pre-evaluated foam stability, while 1D sandpack experiments assessed PEFs' performance in porous media mimicking contaminated soil remediation. Stability tests showed that XG strengthens the foam by increasing liquid phase viscosity and improving overall foam stability. The findings emphasize the importance of the interactions inside polymer-surfactant complexes, where SDS was more impacted by XG than SC due to repulsive forces and hydrophobic interactions. Foam flow experiments revealed PEFs' higher mobility reduction factors (MRF) and noticable recovery improvement of the free-phase product (≥95 %) compared to traditional surfactant-based foams. This research provides valuable insights into optimizing PEF compositions, potentially guiding future scale-up applications for hydrocarbon-contaminated sites.
Collapse
Affiliation(s)
- Adil Baigadilov
- BRGM, Orléans F-45060, France; Univ. Grenoble Alpes, CNRS, Grenoble INP, LRP, Grenoble 38000, France; Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, Grenoble 38000, France.
| | | | - Sagyn Omirbekov
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | | | | | | | - Hugues Bodiguel
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LRP, Grenoble 38000, France
| | - Laurent Oxarango
- Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, Grenoble 38000, France
| |
Collapse
|
2
|
Hadi NSA, Stopper H. Micronuclei as genotoxicity endpoint applied in the co-culture of two mammalian cell lines. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2025; 901:503839. [PMID: 39855823 DOI: 10.1016/j.mrgentox.2024.503839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/14/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025]
Abstract
There has been a shift from traditional animal models towards alternative methods. While 2D cell culture has a decade long tradition, more advances methods like 3D cultures, organoids, and co-culture techniques, which better mimic in vivo conditions, are not yet well established in every research area. Genotoxicity assessment is an integral part of toxicological testing or regulatory approval of pharmaceuticals and chemicals. The micronucleus assay is now a standard method in this context. In this systematic literature review, we aim to describe the state of the art of the application of co-cultures of two mammalian cell lines for micronucleus assessment. We summarized the cell types used, methods for co-culture, disease models and agents, as well as the application of additional genotoxicity endpoints and viability tests. Airway system cells were the most frequent, followed by macrophage-like cells, liver cells, and various others. Co-culture techniques involve either direct physical contact or separation by porous membranes. Within a limited number of investigations using other genotoxicity assays like the comet and γH2AX assays in parallel, the micronucleus assay performed well. Overall, the micronucleus test demonstrating its suitability in disease models and for a more complex substance testing beyond simple 2D cultures, encouraging a more widespread use in co-culture systems in the future.
Collapse
Affiliation(s)
- Naji Said Aboud Hadi
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Strasse 9, 97078 Würzburg, Germany; School of Health and Human Sciences, Pwani University, Kilifi, Kenya
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Strasse 9, 97078 Würzburg, Germany.
| |
Collapse
|
3
|
Burgum MJ, Alcolea-Rodríguez V, Saarelainen H, Portela R, Reinosa JJ, Fernández JF, Dumit VI, Catalán J, Simeone FC, Faccani L, Clift MJD, Evans SJ, Bañares MA, Doak SH. The dispersion method does not affect the in vitro genotoxicity of multi-walled carbon nanotubes despite inducing surface alterations. NANOIMPACT 2025; 37:100539. [PMID: 39716585 DOI: 10.1016/j.impact.2024.100539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Multi-walled carbon nanotubes (MWCNTs) are a desirable class of high aspect ratio nanomaterials (HARNs) owing to their extensive applications. Given their demand, the growing occupational and consumer exposure to these materials has warranted an extensive investigation into potential hazards they may pose towards human health. This study utilised both the in vitro mammalian cell gene mutation and the cytokinesis-blocked micronucleus (CBMN) assays to investigate genotoxicity in human lymphoblastoid (TK6) and 16HBE14o- human lung epithelial cells, following exposure to NM-400 and NM-401 MWCNTs for 24 h. To evaluate the potential for secondary genotoxicity, the CBMN assay was applied on a co-culture of 16HBE14o- with differentiated human monocytic (dTHP-1) cells. In addition, two dispersion methods (NanoGenoTox vs. high shear mixing) were utilised prior to exposures and in acellular experiments to assess the effects on MWCNT oxidative potential, aspect ratio and surface properties. These were characterized in chemico as well as by electron microscopy and Raman spectroscopy. Structural damage of NM-400 was observed following both dispersion approaches; Raman spectra highlighted greater oxidative transformation under probe sonication as opposed to high shear mixing. Despite the changes to the oxidative potential of the MWCNTs, no statistically significant genotoxicity was observed under the conditions applied. There was also no visible signs of cellular internaliation of NM-400 or NM-401 into either cell type under the test conditions, which may support the negative genotoxic response. Whilst these HARNs may have oxidative potential, cells have natural protective mechanisms for repairing transient DNA damage. Therefore, it is crucial to evaluate biological endpoints which measure fixed DNA damage to account for the impact of DNA repair mechanisms.
Collapse
Affiliation(s)
- Michael J Burgum
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK
| | | | - Hanna Saarelainen
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland
| | - Raquel Portela
- Institute of Catalysis and Petrochemistry, CSIC, C/Marie Curie, 2, E-28049 Madrid, Spain
| | - Julián J Reinosa
- Instituto de Cerámica y Vidrio, CSIC, c/Kelsen, 5, E-28049 Madrid, Spain
| | - José F Fernández
- Instituto de Cerámica y Vidrio, CSIC, c/Kelsen, 5, E-28049 Madrid, Spain
| | - Verónica I Dumit
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Germany
| | - Julia Catalán
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland; Department of Anatomy Embryology and Genetics, University of Zaragoza, c/Miguel Servet, 177, E-50013 Zaragoza, Spain
| | - Felice C Simeone
- Institute for Science, Sustainability and Technology of Ceramics-ISSMC-CNR, via Granarolo 64, 48018 Faenza, Italy
| | - Lara Faccani
- Institute for Science, Sustainability and Technology of Ceramics-ISSMC-CNR, via Granarolo 64, 48018 Faenza, Italy
| | - Martin J D Clift
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK
| | - Stephen J Evans
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK
| | - Miguel A Bañares
- Institute of Catalysis and Petrochemistry, CSIC, C/Marie Curie, 2, E-28049 Madrid, Spain
| | - Shareen H Doak
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
4
|
Wu J, Gupta G, Buerki-Thurnherr T, Nowack B, Wick P. Bridging the gap: Innovative human-based in vitro approaches for nanomaterials hazard assessment and their role in safe and sustainable by design, risk assessment, and life cycle assessment. NANOIMPACT 2024; 36:100533. [PMID: 39454678 DOI: 10.1016/j.impact.2024.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
The application of nanomaterials in industry and consumer products is growing exponentially, which has pressed the development and use of predictive human in vitro models in pre-clinical analysis to closely extrapolate potential toxic effects in vivo. The conventional cytotoxicity investigation of nanomaterials using cell lines from cancer origin and culturing them two-dimensionally in a monolayer without mimicking the proper pathophysiological microenvironment may affect a precise prediction of in vitro effects at in vivo level. In recent years, complex in vitro models (also belonging to the new approach methodologies, NAMs) have been established in unicellular to multicellular cultures either by using cell lines, primary cells or induced pluripotent stem cells (iPSCs), and reconstituted into relevant biological dimensions mimicking in vivo conditions. These advanced in vitro models retain physiologically reliant exposure scenarios particularly appropriate for oral, dermal, respiratory, and intravenous administration of nanomaterials, which have the potential to improve the in vivo predictability and lead to reliable outcomes. In this perspective, we discuss recent developments and breakthroughs in using advanced human in vitro models for hazard assessment of nanomaterials. We identified fit-for-purpose requirements and remaining challenges for the successful implementation of in vitro data into nanomaterials Safe and Sustainable by Design (SSbD), Risk Assessment (RA), and Life Cycle Assessment (LCA). By addressing the gap between in vitro data generation and the utility of in vitro data for nanomaterial safety assessments, a prerequisite for SSbD approaches, we outlined potential key areas for future development.
Collapse
Affiliation(s)
- Jimeng Wu
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Govind Gupta
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Tina Buerki-Thurnherr
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Bernd Nowack
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| |
Collapse
|
5
|
Meldrum K, Evans SJ, Burgum MJ, Doak SH, Clift MJD. Determining the toxicological effects of indoor air pollution on both a healthy and an inflammatory-comprised model of the alveolar epithelial barrier in vitro. Part Fibre Toxicol 2024; 21:25. [PMID: 38760786 PMCID: PMC11100169 DOI: 10.1186/s12989-024-00584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/20/2024] [Indexed: 05/19/2024] Open
Abstract
Exposure to indoor air pollutants (IAP) has increased recently, with people spending more time indoors (i.e. homes, offices, schools and transportation). Increased exposures of IAP on a healthy population are poorly understood, and those with allergic respiratory conditions even less so. The objective of this study, therefore, was to implement a well-characterised in vitro model of the human alveolar epithelial barrier (A549 + PMA differentiated THP-1 incubated with and without IL-13, IL-5 and IL-4) to determine the effects of a standardised indoor particulate (NIST 2583) on both a healthy lung model and one modelling a type-II (stimulated with IL-13, IL-5 and IL-4) inflammatory response (such as asthma).Using concentrations from the literature, and an environmentally appropriate exposure we investigated 232, 464 and 608ng/cm2 of NIST 2583 respectively. Membrane integrity (blue dextran), viability (trypan blue), genotoxicity (micronucleus (Mn) assay) and (pro-)/(anti-)inflammatory effects (IL-6, IL-8, IL-33, IL-10) were then assessed 24 h post exposure to both models. Models were exposed using a physiologically relevant aerosolisation method (VitroCell Cloud 12 exposure system).No changes in Mn frequency or membrane integrity in either model were noted when exposed to any of the tested concentrations of NIST 2583. A significant decrease (p < 0.05) in cell viability at the highest concentration was observed in the healthy model. Whilst cell viability in the "inflamed" model was decreased at the lower concentrations (significantly (p < 0.05) after 464ng/cm2). A significant reduction (p < 0.05) in IL-10 and a significant increase in IL-33 was seen after 24 h exposure to NIST 2583 (464, 608ng/cm2) in the "inflamed" model.Collectively, the results indicate the potential for IAP to cause the onset of a type II response as well as exacerbating pre-existing allergic conditions. Furthermore, the data imposes the importance of considering unhealthy individuals when investigating the potential health effects of IAP. It also highlights that even in a healthy population these particles have the potential to induce this type II response and initiate an immune response following exposure to IAP.
Collapse
Affiliation(s)
- Kirsty Meldrum
- In Vitro Toxicology Group, Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea, Wales, SA2 8PP, UK.
| | - Stephen J Evans
- In Vitro Toxicology Group, Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea, Wales, SA2 8PP, UK
| | - Michael J Burgum
- In Vitro Toxicology Group, Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea, Wales, SA2 8PP, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea, Wales, SA2 8PP, UK
| | - Martin J D Clift
- In Vitro Toxicology Group, Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea, Wales, SA2 8PP, UK.
| |
Collapse
|
6
|
Burgum MJ, Ulrich C, Partosa N, Evans SJ, Gomes C, Seiffert SB, Landsiedel R, Honarvar N, Doak SH. Adapting the in vitro micronucleus assay (OECD Test Guideline No. 487) for testing of manufactured nanomaterials: recommendations for best practices. Mutagenesis 2024; 39:205-217. [PMID: 38502821 DOI: 10.1093/mutage/geae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/18/2024] [Indexed: 03/21/2024] Open
Abstract
The current Organisation for Economic Co-Operation and Development test guideline number 487 (OECD TG No. 487) provides instruction on how to conduct the in vitro micronucleus assay. This assay is one of the gold standard approaches for measuring the mutagenicity of test items; however, it is directed at testing low molecular weight molecules and may not be appropriate for particulate materials (e.g. engineered nanoparticles [ENPs]). This study aimed to adapt the in vitro micronucleus assay for ENP testing and underpins the development of an OECD guidance document. A harmonized, nano-specific protocol was generated and evaluated by two independent laboratories. Cell lines utilized were human lymphoblastoid (TK6) cells, human liver hepatocytes (HepG2) cells, Chinese hamster lung fibroblast (V79) cells, whole blood, and buffy coat cells from healthy human volunteers. These cells were exposed to reference ENPs from the Joint Research Council (JRC): SiO2 (RLS-0102), Au5nm and Au30nm (RLS-03, RLS-010), CeO2 (NM212), and BaSO4 (NM220). Tungsten carbide-cobalt (WC/Co) was used as a trial particulate positive control. The chemical controls were positive in all cell cultures, but WC/Co was only positive in TK6 and buffy coat cells. In TK6 cells, mutagenicity was observed for SiO2- and both Au types. In HepG2 cells, Au5nm and SiO2 showed sub-two-fold increases in micronuclei. In V79 cells, whole blood, and buffy coat cells, no genotoxicity was detected with the test materials. The data confirmed that ENPs could be tested with the harmonized protocol, additionally, concordant data were observed across the two laboratories with V79 cells. WC/Co may be a suitable particulate positive control in the in vitro micronucleus assay when using TK6 and buffy coat cells. Detailed recommendations are therefore provided to adapt OECD TG No. 487 for testing ENP.
Collapse
Affiliation(s)
- Michael J Burgum
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, United Kingdom
| | - Clarissa Ulrich
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen, Germany
| | - Natascha Partosa
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen, Germany
| | - Stephen J Evans
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, United Kingdom
| | - Caroline Gomes
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen, Germany
| | | | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen, Germany
- Free University of Berlin, Pharmacy - Pharmacology and Toxicology, 14195 Berlin, Germany
| | - Naveed Honarvar
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen, Germany
| | - Shareen H Doak
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, United Kingdom
| |
Collapse
|
7
|
Li Y, Jiao H, Zhang H, Wang X, Fu Y, Wang Q, Liu H, Yong YC, Guo J, Liu J. Biosafety consideration of nanocellulose in biomedical applications: A review. Int J Biol Macromol 2024; 265:130900. [PMID: 38499126 DOI: 10.1016/j.ijbiomac.2024.130900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Nanocellulose-based biomaterials have gained significant attention in various fields, especially in medical and pharmaceutical areas, due to their unique properties, including non-toxicity, high specific surface area, biodegradability, biocompatibility, and abundant feasible and sophisticated strategies for functional modification. The biosafety of nanocellulose itself is a prerequisite to ensure the safe and effective application of biomaterials as they interact with living cells, tissues, and organs at the nanoscale. Potential residual endogenous impurities and exogenous contaminants could lead to the failure of the intended functionalities or even serious health complications if they are not adequately removed and assessed before use. This review summarizes the sources of impurities in nanocellulose that may pose potential hazards to their biosafety, including endogenous impurities that co-exist in the cellulosic raw materials themselves and exogenous contaminants caused by external exposure. Strategies to reduce or completely remove these impurities are outlined and classified as chemical, physical, biological, and combined methods. Additionally, key points that require careful consideration in the interpretation of the biosafety evaluation outcomes were discussed to ensure the safety and effectiveness of the nanocellulose-based biomaterials in medical applications.
Collapse
Affiliation(s)
- Yan Li
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Haixin Jiao
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Hongxing Zhang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Xiangyu Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Huan Liu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jun Liu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
8
|
Varet J, Barranger A, Crochet C, Huet S, Hogeveen K, Le Hégarat L, Fessard V. New methodological developments for testing the in vitro genotoxicity of nanomaterials: Comparison of 2D and 3D HepaRG liver cell models and classical and high throughput comet assay formats. CHEMOSPHERE 2024; 350:140975. [PMID: 38142884 DOI: 10.1016/j.chemosphere.2023.140975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023]
Abstract
Nanomaterials (NMs) are defined as materials with at least one external dimension below 100 nm. Their small size confers them interesting unique physico-chemical properties, hence NMs are increasingly used in a diversity of applications. However, the specific properties of NMs could also make them more harmful than their bulk counterparts. Therefore, there is a crucial need to deliver efficient NM hazard assessment in order to sustain the responsible development of nanotechnology. This study analysed the genotoxic potential of several NMs: one titanium dioxide (TiO2) and two zinc oxide NMs (ZnO) that were tested up to 100 μg/mL on 2D and 3D hepatic HepaRG models. Genotoxicity analysis was performed comparing the alkaline comet assay in classical and high throughput formats. Moreover, oxidative DNA lesions were investigated with the Fpg-modified comet assay. Results showed that TiO2 NMs were not cytotoxic and not genotoxic in either cell model, although a small increase in the % tail DNA was observed in 3D HepaRG cells at 100 μg/mL in the classical format. The two ZnO NMs (ZnO S. NMs a commercial suspension and NM110 provided by the European Union Joint Research Centre) induced a concentration-dependent increase in cytotoxicity that was more pronounced in the 2D (>20% cytotoxicity was observed for ZnO S. at concentrations greater than 25 μg/mL, and for NM 110 at 50 μg/mL) than in the 3D model (more than 20% cytotoxicity for ZnO S. NMs at 50 μg/mL). While ZnO S. NMs induced DNA damage associated with cytotoxicity (at 25 and 50 μg/mL in 2D and 50 μg/mL in 3D), NM110 showed a clear genotoxic effect at non-cytotoxic concentrations (25 μg/mL in 2D and at 25 and 50 μg/mL in 3D). No major differences could be observed in the comet assay in the presence or absence of the Fpg enzyme. High throughput analysis using CometChip® mostly confirmed the results obtained with the classical format, and even enhanced the detection of genotoxicity in the 3D model. In conclusion, this study demonstrated that new approach methodologies (NAMs), 3D models and the high throughput format for the comet assay, were more efficient in the detection of genotoxic effects, and are therefore promising approaches to improve hazard assessment of NMs.
Collapse
Affiliation(s)
- Julia Varet
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France.
| | - Audrey Barranger
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Camille Crochet
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Sylvie Huet
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Kevin Hogeveen
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Ludovic Le Hégarat
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Valérie Fessard
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France.
| |
Collapse
|
9
|
Brown S, Evans SJ, Burgum MJ, Meldrum K, Herridge J, Akinbola B, Harris LG, Jenkins R, Doak SH, Clift MJD, Wilkinson TS. An In Vitro Model to Assess Early Immune Markers Following Co-Exposure of Epithelial Cells to Carbon Black (Nano)Particles in the Presence of S. aureus: A Role for Stressed Cells in Toxicological Testing. Biomedicines 2024; 12:128. [PMID: 38255233 PMCID: PMC10813740 DOI: 10.3390/biomedicines12010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The exposure of human lung and skin to carbon black (CB) is continuous due to its widespread applications. Current toxicological testing uses 'healthy' cellular systems; however, questions remain whether this mimics the everyday stresses that human cells are exposed to, including infection. Staphylococcus aureus lung and skin infections remain prevalent in society, and include pneumonia and atopic dermatitis, respectively, but current in vitro toxicological testing does not consider infection stress. Therefore, investigating the effects of CB co-exposure in 'stressed' infected epithelial cells in vitro may better approximate true toxicity. This work aims to study the impact of CB exposure during Staphylococcus aureus infection stress in A549 (lung) and HaCaT (skin) epithelial cells. Physicochemical characterisation of CB confirmed its dramatic polydispersity and potential to aggregate. CB significantly inhibited S. aureus growth in cell culture media. CB did not induce cytokines or antimicrobial peptides from lung and skin epithelial cells, when given alone, but did reduce HaCaT and A549 cell viability to 55% and 77%, respectively. In contrast, S. aureus induced a robust interleukin (IL)-8 response in both lung and skin epithelial cells. IL-6 and human beta defensin (hβD)-2 could only be detected when cells were stimulated with S. aureus with no decreases in cell viability. However, co-exposure to CB (100 µg/mL) and S. aureus resulted in significant inhibition of IL-8 (compared to S. aureus alone) without further reduction in cell viability. Furthermore, the same co-exposure induced significantly more hβD-2 (compared to S. aureus alone). This work confirms that toxicological testing in healthy versus stressed cells gives significantly different responses. This has significant implications for toxicological testing and suggests that cell stresses (including infection) should be included in current models to better represent the diversity of cell viabilities found in lung and skin within a general population. This model will have significant application when estimating CB exposure in at-risk groups, such as factory workers, the elderly, and the immunocompromised.
Collapse
Affiliation(s)
- Scott Brown
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK
| | - Stephen J. Evans
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK (M.J.D.C.)
| | - Michael J. Burgum
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK (M.J.D.C.)
| | - Kirsty Meldrum
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK (M.J.D.C.)
| | - Jack Herridge
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK
| | - Blessing Akinbola
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK
| | - Llinos G. Harris
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK
| | - Rowena Jenkins
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK
| | - Shareen H. Doak
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK (M.J.D.C.)
| | - Martin J. D. Clift
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK (M.J.D.C.)
| | - Thomas S. Wilkinson
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK
| |
Collapse
|
10
|
Jeon S, Jeon JH, Jeong J, Kim G, Lee S, Kim S, Maruthupandy M, Lee K, Yang SI, Cho WS. Size- and oxidative potential-dependent toxicity of environmentally relevant expanded polystyrene styrofoam microplastics to macrophages. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132295. [PMID: 37597397 DOI: 10.1016/j.jhazmat.2023.132295] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/31/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
Expanded polystyrene (EPS), also known as Styrofoam, is a widespread global pollutant, and its lightweight floating property increases its chances of weathering by abrasion and ultraviolet (UV) irradiation, resulting in microplastics. Herein, we investigated the effects of particle size ((1 µm versus 10 µm), UV irradiation (pristine versus UV oxidation), and origin (secondary versus primary) on the toxicity of Styrofoam microplastics. The target cells used in this study were selected based on human exposure-relevant cell lines: differentiated THP-1 cells for macrophages, Caco-2 for enterocytes, HepG2 for hepatocytes, and A549 for alveolar epithelial cells. In the differentiated THP-1 cells, the levels of cytotoxicity and inflammatory cytokines showed size- (1 µm > 10 µm), UV oxidation- (UV > pristine), and origin- (secondary > primary) dependency. Furthermore, the intrinsic oxidative potential of the test particles was positively correlated with cellular oxidative levels and toxicity endpoints, suggesting that the toxicity of Styrofoam microplastics also follows the oxidative stress paradigm. Additionally, all microplastics induced the activation of the pyrin domain-containing protein 3 (NLRP3) inflammasome and the release of interleukin-1β (IL-1β). These results imply that weathering process can aggravate the toxicity of Styrofoam microplastics due to the increased oxidative potential and decreased particle size.
Collapse
Affiliation(s)
- Soyeon Jeon
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Jun Hui Jeon
- Department of Applied Chemistry, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Jiyoung Jeong
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Gyuri Kim
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Sinuk Lee
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Songyeon Kim
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Muthuchamy Maruthupandy
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea
| | - Sung Ik Yang
- Department of Applied Chemistry, Kyung Hee University, Yongin-si 17104, Republic of Korea.
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea.
| |
Collapse
|
11
|
Doak SH, Andreoli C, Burgum MJ, Chaudhry Q, Bleeker EAJ, Bossa C, Domenech J, Drobne D, Fessard V, Jeliazkova N, Longhin E, Rundén-Pran E, Stępnik M, El Yamani N, Catalán J, Dusinska M. Current status and future challenges of genotoxicity OECD Test Guidelines for nanomaterials: a workshop report. Mutagenesis 2023; 38:183-191. [PMID: 37234002 PMCID: PMC10448853 DOI: 10.1093/mutage/gead017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
Genotoxicity testing for nanomaterials remains challenging as standard testing approaches require some adaptation, and further development of nano-specific OECD Test Guidelines (TGs) and Guidance Documents (GDs) are needed. However, the field of genotoxicology continues to progress and new approach methodologies (NAMs) are being developed that could provide relevant information on the range of mechanisms of genotoxic action that may be imparted by nanomaterials. There is a recognition of the need for implementation of new and/or adapted OECD TGs, new OECD GDs, and utilization of NAMs within a genotoxicity testing framework for nanomaterials. As such, the requirements to apply new experimental approaches and data for genotoxicity assessment of nanomaterials in a regulatory context is neither clear, nor used in practice. Thus, an international workshop with representatives from regulatory agencies, industry, government, and academic scientists was convened to discuss these issues. The expert discussion highlighted the current deficiencies that exist in standard testing approaches within exposure regimes, insufficient physicochemical characterization, lack of demonstration of cell or tissue uptake and internalization, and limitations in the coverage of genotoxic modes of action. Regarding the latter aspect, a consensus was reached on the importance of using NAMs to support the genotoxicity assessment of nanomaterials. Also highlighted was the need for close engagement between scientists and regulators to (i) provide clarity on the regulatory needs, (ii) improve the acceptance and use of NAM-generated data, and (iii) define how NAMs may be used as part of weight of evidence approaches for use in regulatory risk assessments.
Collapse
Affiliation(s)
- Shareen H Doak
- Institute of Life Science, Swansea University Medical School, Singelton Park, Swansea, SA2 8PP Wales, United Kingdom
| | - Cristina Andreoli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Michael J Burgum
- Institute of Life Science, Swansea University Medical School, Singelton Park, Swansea, SA2 8PP Wales, United Kingdom
| | - Qasim Chaudhry
- University of Chester, Parkgate Road, Chester, United Kingdom
| | - Eric A J Bleeker
- National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Cecilia Bossa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Josefa Domenech
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Vecan pot 111, 1000 Ljubljana, Slovenia
| | - Valérie Fessard
- ANSES French Agency for Food, Environmental and Occupational Health and Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10b rue Claude Bourgelat, Fougères 35306, France
| | | | - Eleonora Longhin
- NILU-Norwegian Institute for Air Research, Instituttveien 18, Kjeller 2002, Norway
| | - Elise Rundén-Pran
- NILU-Norwegian Institute for Air Research, Instituttveien 18, Kjeller 2002, Norway
| | | | - Naouale El Yamani
- NILU-Norwegian Institute for Air Research, Instituttveien 18, Kjeller 2002, Norway
| | - Julia Catalán
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland
- Department of Anatomy, Embryology, and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| | - Maria Dusinska
- NILU-Norwegian Institute for Air Research, Instituttveien 18, Kjeller 2002, Norway
| |
Collapse
|
12
|
Pantzke J, Koch A, Zimmermann EJ, Rastak N, Offer S, Bisig C, Bauer S, Oeder S, Orasche J, Fiala P, Stintz M, Rüger CP, Streibel T, Di Bucchianico S, Zimmermann R. Processing of carbon-reinforced construction materials releases PM 2.5 inducing inflammation and (secondary) genotoxicity in human lung epithelial cells and fibroblasts. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104079. [PMID: 36796551 DOI: 10.1016/j.etap.2023.104079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Building demolition following domestic fires or abrasive processing after thermal recycling can release particles harmful for the environment and human health. To mimic such situations, particles release during dry-cutting of construction materials was investigated. A reinforcement material consisting of carbon rods (CR), carbon concrete composite (C³) and thermally treated C³ (ttC³) were physicochemically and toxicologically analyzed in monocultured lung epithelial cells, and co-cultured lung epithelial cells and fibroblasts at the air-liquid interface. C³ particles reduced their diameter to WHO fibre dimensions during thermal treatment. Caused by physical properties or by polycyclic aromatic hydrocarbons and bisphenol A found in the materials, especially the released particles of CR and ttC³ induced an acute inflammatory response and (secondary) DNA damage. Transcriptome analysis indicated that CR and ttC³ particles carried out their toxicity via different mechanisms. While ttC³ affected pro-fibrotic pathways, CR was mostly involved in DNA damage response and in pro-oncogenic signaling.
Collapse
Affiliation(s)
- Jana Pantzke
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany; Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Arne Koch
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
| | - Elias J Zimmermann
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany; Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Narges Rastak
- Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Svenja Offer
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany; Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Christoph Bisig
- Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Jürgen Orasche
- Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Petra Fiala
- Department of Mechanical Process Engineering, Technical University of Dresden, 01187 Dresden, Germany
| | - Michael Stintz
- Department of Mechanical Process Engineering, Technical University of Dresden, 01187 Dresden, Germany
| | - Christopher P Rüger
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany; Department Life, Light & Matter (LLM), University of Rostock, 18051 Rostock, Germany
| | - Thorsten Streibel
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany; Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany.
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany; Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department Life, Light & Matter (LLM), University of Rostock, 18051 Rostock, Germany
| |
Collapse
|
13
|
Domenech J, Annangi B, Marcos R, Hernández A, Catalán J. Insights into the potential carcinogenicity of micro- and nano-plastics. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 791:108453. [PMID: 36739075 DOI: 10.1016/j.mrrev.2023.108453] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/14/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
There is a growing concern regarding the potential health effects that continuous exposure to environmental micro- and nano-plastics (MNPLs) may cause on humans. Due to their persistent nature, MNPLs may accumulate in different organs and tissues and may induce in the long term the development of cancer. The present study aimed to review the existing literature on the carcinogenic potential of MNPLs. As studies directly assessing carcinogenicity were expected to be scarce, studies dealing with indirect outcomes associated with the carcinogenic process were considered in the literature search. Of the 126 studies screened, 19 satisfied the inclusion criteria. Besides, 7 additional cross-referenced articles, identified through a careful reading of the previously selected papers, also met the inclusion criteria and, consequently, were included in the review. Most of the selected studies were performed using in vitro models whereas about 40% of the studies were done in rodents, although none of them included a 2-year carcinogenicity assay. Most of the reviewed studies pointed out the potential of MNPLs to induce inflammation and genotoxicity, the latter being recognized as a strong predictor of carcinogenicity. These, along with other important findings such as the MNPLs' ability to accumulate into cells and tissues, or their capacity to induce fibrosis, may suggest an association between MNPLs exposures and the carcinogenic potential. Nevertheless, the limited number of available studies precludes reaching clear conclusions. Therefore, this review also provides several recommendations to cover the current knowledge gaps and address the future evaluation of the MNPLs' carcinogenic risk.
Collapse
Affiliation(s)
- Josefa Domenech
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, Helsinki 00032, Finland
| | - Balasubramanyam Annangi
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Julia Catalán
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, Helsinki 00032, Finland; Department of Anatomy, Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain.
| |
Collapse
|
14
|
Ruijter N, Soeteman-Hernández LG, Carrière M, Boyles M, McLean P, Catalán J, Katsumiti A, Cabellos J, Delpivo C, Sánchez Jiménez A, Candalija A, Rodríguez-Llopis I, Vázquez-Campos S, Cassee FR, Braakhuis H. The State of the Art and Challenges of In Vitro Methods for Human Hazard Assessment of Nanomaterials in the Context of Safe-by-Design. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:472. [PMID: 36770432 PMCID: PMC9920318 DOI: 10.3390/nano13030472] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The Safe-by-Design (SbD) concept aims to facilitate the development of safer materials/products, safer production, and safer use and end-of-life by performing timely SbD interventions to reduce hazard, exposure, or both. Early hazard screening is a crucial first step in this process. In this review, for the first time, commonly used in vitro assays are evaluated for their suitability for SbD hazard testing of nanomaterials (NMs). The goal of SbD hazard testing is identifying hazard warnings in the early stages of innovation. For this purpose, assays should be simple, cost-effective, predictive, robust, and compatible. For several toxicological endpoints, there are indications that commonly used in vitro assays are able to predict hazard warnings. In addition to the evaluation of assays, this review provides insights into the effects of the choice of cell type, exposure and dispersion protocol, and the (in)accurate determination of dose delivered to cells on predictivity. Furthermore, compatibility of assays with challenging advanced materials and NMs released from nano-enabled products (NEPs) during the lifecycle is assessed, as these aspects are crucial for SbD hazard testing. To conclude, hazard screening of NMs is complex and joint efforts between innovators, scientists, and regulators are needed to further improve SbD hazard testing.
Collapse
Affiliation(s)
- Nienke Ruijter
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | | | - Marie Carrière
- Univ. Grenoble-Alpes, CEA, CNRS, SyMMES-CIBEST, 17 rue des Martyrs, 38000 Grenoble, France
| | - Matthew Boyles
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Polly McLean
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Julia Catalán
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| | - Alberto Katsumiti
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | | | | | | | | | - Isabel Rodríguez-Llopis
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | | | - Flemming R. Cassee
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Hedwig Braakhuis
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
15
|
Landsiedel R, Honarvar N, Seiffert SB, Oesch B, Oesch F. Genotoxicity testing of nanomaterials. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1833. [DOI: 10.1002/wnan.1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Robert Landsiedel
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
- Pharmacy, Pharmacology and Toxicology Free University of Berlin Berlin Germany
| | - Naveed Honarvar
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
| | | | - Barbara Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
| | - Franz Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
- Institute of Toxicology Johannes Gutenberg University Mainz Germany
| |
Collapse
|
16
|
Siivola KK, Burgum MJ, Suárez-Merino B, Clift MJD, Doak SH, Catalán J. A systematic quality evaluation and review of nanomaterial genotoxicity studies: a regulatory perspective. Part Fibre Toxicol 2022; 19:59. [PMID: 36104711 PMCID: PMC9472411 DOI: 10.1186/s12989-022-00499-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/26/2022] [Indexed: 12/29/2022] Open
Abstract
The number of publications in the field of nanogenotoxicology and the amount of genotoxicity data on nanomaterials (NMs) in several databases generated by European Union (EU) funded projects have increased during the last decade. In parallel, large research efforts have contributed to both our understanding of key physico-chemical (PC) parameters regarding NM characterization as well as the limitations of toxicological assays originally designed for soluble chemicals. Hence, it is becoming increasingly clear that not all of these data are reliable or relevant from the regulatory perspective. The aim of this systematic review is to investigate the extent of studies on genotoxicity of NMs that can be considered reliable and relevant by current standards and bring focus to what is needed for a study to be useful from the regulatory point of view. Due to the vast number of studies available, we chose to limit our search to two large groups, which have raised substantial interest in recent years: nanofibers (including nanotubes) and metal-containing nanoparticles. Focusing on peer-reviewed publications, we evaluated the completeness of PC characterization of the tested NMs, documentation of the model system, study design, and results according to the quality assessment approach developed in the EU FP-7 GUIDEnano project. Further, building on recently published recommendations for best practices in nanogenotoxicology research, we created a set of criteria that address assay-specific reliability and relevance for risk assessment purposes. Articles were then reviewed, the qualifying publications discussed, and the most common shortcomings in NM genotoxicity studies highlighted. Moreover, several EU projects under the FP7 and H2020 framework set the aim to collectively feed the information they produced into the eNanoMapper database. As a result, and over the years, the eNanoMapper database has been extended with data of various quality depending on the existing knowledge at the time of entry. These activities are highly relevant since negative results are often not published. Here, we have reviewed the NanoInformaTIX instance under the eNanoMapper database, which hosts data from nine EU initiatives. We evaluated the data quality and the feasibility of use of the data from a regulatory perspective for each experimental entry.
Collapse
Affiliation(s)
- Kirsi K. Siivola
- grid.6975.d0000 0004 0410 5926Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland
| | - Michael J. Burgum
- grid.4827.90000 0001 0658 8800In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP Wales UK
| | | | - Martin J. D. Clift
- grid.4827.90000 0001 0658 8800In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP Wales UK
| | - Shareen H. Doak
- grid.4827.90000 0001 0658 8800In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP Wales UK
| | - Julia Catalán
- grid.6975.d0000 0004 0410 5926Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland ,grid.11205.370000 0001 2152 8769Department of Anatomy Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|
17
|
Evans SJ, Lawrence RL, Ilett M, Burgum MJ, Meldrum K, Hondow N, Jenkins GJ, Clift MJD, Doak SH. Industrial-relevant TiO 2 types do not promote cytotoxicity in the A549 or TK6 cell lines regardless of cell specific interaction. Toxicol In Vitro 2022; 83:105415. [PMID: 35752104 DOI: 10.1016/j.tiv.2022.105415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/07/2022] [Accepted: 06/04/2022] [Indexed: 01/09/2023]
Abstract
Due to the expansive application of TiO2 and its variance in physico-chemical characteristics, the toxicological profile of TiO2, in all its various forms, requires evaluation. This study aimed to assess the hazard of five TiO2 particle-types in relation to their cytotoxic profile correlated to their cellular interaction, specifically in human lymphoblast (TK6) and type-II alveolar epithelial (A549) cells. Treatment with the test materials was undertaken at a concentration range of 1-100 μg/cm2 over 24 and 72 h exposure. TiO2 interaction with both cell types was visualised by transmission electron microscopy, supported by energy-dispersive X-ray. None of the TiO2 materials tested promoted cytotoxicity in either cell type over the concentration and time range studied. All materials were observed to interact with the A549 cells and were further noted to be internalised following 24 h exposure. In contrast, only the pigmentary rutile was internalised by TK6 lymphoblasts after 24 h exposure. Where uptake was observed there was no evidence, as determined by 2D microscopy techniques, of particle localisation within the nucleus of either cell type. This study indicates that industrially relevant TiO2 particles demonstrate cell interactions that are cell-type dependent and do not induce cytotoxicity at the applied dose range.
Collapse
Affiliation(s)
- Stephen J Evans
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Rachel L Lawrence
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Martha Ilett
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Michael J Burgum
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Kirsty Meldrum
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Gareth J Jenkins
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Martin J D Clift
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK.
| |
Collapse
|
18
|
Di Ianni E, Møller P, Cholakova T, Wolff H, Jacobsen NR, Vogel U. Assessment of primary and inflammation-driven genotoxicity of carbon black nanoparticles in vitro and in vivo. Nanotoxicology 2022; 16:526-546. [PMID: 35993455 DOI: 10.1080/17435390.2022.2106906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Carbon black nanoparticles (CBNPs) have a large surface area/volume ratio and are known to generate oxidative stress and inflammation that may result in genotoxicity and cancer. Here, we evaluated the primary and inflammatory response-driven (i.e. secondary) genotoxicity of two CBNPs, Flammruss101 (FL101) and PrintexXE2B (XE2B) that differ in size and specific surface area (SSA), and cause different amounts of reactive oxygen species. Three doses (low, medium and high) of FL101 and XE2B were assessed in vitro in the lung epithelial (A549) and activated THP-1 (THP-1a) monocytic cells exposed in submerged conditions for 6 and 24 h, and in C57BL/6 mice at day 1, 28 and 90 following intratracheal instillation. In vitro, we assessed pro-inflammatory response as IL-8 and IL-1β gene expression, and in vivo, inflammation was determined as inflammatory cell infiltrates in bronchial lavage (BAL) fluid and as histological changes in lung tissue. DNA damage was quantified in vitro and in vivo as DNA strand breaks levels by the alkaline comet assay. Inflammatory responses in vitro and in vivo correlated with dosed CBNPs SSA. Both materials induced DNA damage in THP-1a (correlated with dosed mass), and only XE2B in A549 cells. Non-statistically significant increase in DNA damage in vivo was observed in BAL cells. In conclusion, this study shows dosed SSA predicted inflammation both in vivo and in vitro, whereas dosed mass predicted genotoxicity in vitro in THP-1a cells. The observed lack of correlation between CBNP surface area and genotoxicity provides little evidence of inflammation-driven genotoxicity in vivo and in vitro.
Collapse
Affiliation(s)
- Emilio Di Ianni
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Tanya Cholakova
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Henrik Wolff
- Occupational Safety, Finnish Institute of Occupational Health, Helsinki, Finland
| | | | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark.,National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
19
|
Di Ianni E, Jacobsen NR, Vogel UB, Møller P. Systematic review on primary and secondary genotoxicity of carbon black nanoparticles in mammalian cells and animals. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108441. [PMID: 36007825 DOI: 10.1016/j.mrrev.2022.108441] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 01/01/2023]
Abstract
Carbon black exposure causes oxidative stress, inflammation and genotoxicity. The objective of this systematic review was to assess the contributions of primary (i.e. direct formation of DNA damage) and secondary genotoxicity (i.e., DNA lesions produced indirectly by inflammation) to the overall level of DNA damage by carbon black. The database is dominated by studies that have measured DNA damage by the comet assay. Cell culture studies indicate a genotoxic action of carbon black, which might be mediated by oxidative stress. Many in vivo studies originate from one laboratory that has investigated the genotoxic effects of Printex 90 in mice by intra-tracheal instillation. Meta-analysis and pooled analysis of these results demonstrate that Printex 90 exposure is associated with a slightly increased level of DNA strand breaks in bronchoalveolar lavage cells and lung tissue. Other types of genotoxic damage have not been investigated as thoroughly as DNA strand breaks, although there is evidence to suggest that carbon black exposure might increase the mutation frequency and cytogenetic endpoints. Stratification of studies according to concurrent inflammation and DNA damage does not indicate that carbon black exposure gives rise to secondary genotoxicity. Even substantial pulmonary inflammation is at best only associated with a weak genotoxic response in lung tissue. In conclusion, the review indicates that nanosized carbon black is a weak genotoxic agent and this effect is more likely to originate from a primary genotoxic mechanism of action, mediated by e.g., oxidative stress, than inflammation-driven (secondary) genotoxicity.
Collapse
Affiliation(s)
- Emilio Di Ianni
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark
| | - Nicklas Raun Jacobsen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark
| | - Ulla Birgitte Vogel
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark; National Food Institute, Technical University of Denmark, Kemitorvet, Bygning 202, DK-2800 Kgs Lyngby, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen, Denmark.
| |
Collapse
|
20
|
Aimonen K, Hartikainen M, Imani M, Suhonen S, Vales G, Moreno C, Saarelainen H, Siivola K, Vanhala E, Wolff H, Rojas OJ, Norppa H, Catalán J. Effect of Surface Modification on the Pulmonary and Systemic Toxicity of Cellulose Nanofibrils. Biomacromolecules 2022; 23:2752-2766. [PMID: 35680128 DOI: 10.1021/acs.biomac.2c00072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cellulose nanofibrils (CNFs) have emerged as sustainable options for a wide range of applications. However, the high aspect ratio and biopersistence of CNFs raise concerns about potential health effects. Here, we evaluated the in vivo pulmonary and systemic toxicity of unmodified (U-CNF), carboxymethylated (C-CNF), and TEMPO (2,2,6,6-tetramethyl-piperidin-1-oxyl)-oxidized (T-CNF) CNFs, fibrillated in the same way and administered to mice by repeated (3×) pharyngeal aspiration (14, 28, and 56 μg/mouse/aspiration). Toxic effects were assessed up to 90 days after the last administration. Some mice were treated with T-CNF samples spiked with lipopolysaccharide (LPS; 0.02-50 ng/mouse/aspiration) to assess the role of endotoxin contamination. The CNFs induced an acute inflammatory reaction that subsided within 90 days, except for T-CNF. At 90 days post-administration, an increased DNA damage was observed in bronchoalveolar lavage and hepatic cells after exposure to T-CNF and C-CNF, respectively. Besides, LPS contamination dose-dependently increased the hepatic genotoxic effects of T-CNF.
Collapse
Affiliation(s)
- Kukka Aimonen
- Finnish Institute of Occupational Health, P.O. Box 40, 00032 Helsinki, Finland
| | - Mira Hartikainen
- Finnish Institute of Occupational Health, P.O. Box 40, 00032 Helsinki, Finland
| | - Monireh Imani
- Department of Bioproducts and Biosystems, Aalto University, 02150 Espoo, Finland
| | - Satu Suhonen
- Finnish Institute of Occupational Health, P.O. Box 40, 00032 Helsinki, Finland
| | - Gerard Vales
- Finnish Institute of Occupational Health, P.O. Box 40, 00032 Helsinki, Finland
| | - Carlos Moreno
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| | - Hanna Saarelainen
- Finnish Institute of Occupational Health, P.O. Box 40, 00032 Helsinki, Finland
| | - Kirsi Siivola
- Finnish Institute of Occupational Health, P.O. Box 40, 00032 Helsinki, Finland
| | - Esa Vanhala
- Finnish Institute of Occupational Health, P.O. Box 40, 00032 Helsinki, Finland
| | - Henrik Wolff
- Finnish Institute of Occupational Health, P.O. Box 40, 00032 Helsinki, Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, Aalto University, 02150 Espoo, Finland.,Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, Vancouver BC V6T 1Z3, Canada
| | - Hannu Norppa
- Finnish Institute of Occupational Health, P.O. Box 40, 00032 Helsinki, Finland
| | - Julia Catalán
- Finnish Institute of Occupational Health, P.O. Box 40, 00032 Helsinki, Finland.,Department of Anatomy, Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|
21
|
Nanosafety: An Evolving Concept to Bring the Safest Possible Nanomaterials to Society and Environment. NANOMATERIALS 2022; 12:nano12111810. [PMID: 35683670 PMCID: PMC9181910 DOI: 10.3390/nano12111810] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
Abstract
The use of nanomaterials has been increasing in recent times, and they are widely used in industries such as cosmetics, drugs, food, water treatment, and agriculture. The rapid development of new nanomaterials demands a set of approaches to evaluate the potential toxicity and risks related to them. In this regard, nanosafety has been using and adapting already existing methods (toxicological approach), but the unique characteristics of nanomaterials demand new approaches (nanotoxicology) to fully understand the potential toxicity, immunotoxicity, and (epi)genotoxicity. In addition, new technologies, such as organs-on-chips and sophisticated sensors, are under development and/or adaptation. All the information generated is used to develop new in silico approaches trying to predict the potential effects of newly developed materials. The overall evaluation of nanomaterials from their production to their final disposal chain is completed using the life cycle assessment (LCA), which is becoming an important element of nanosafety considering sustainability and environmental impact. In this review, we give an overview of all these elements of nanosafety.
Collapse
|
22
|
Genotoxicity of Graphene-Based Materials. NANOMATERIALS 2022; 12:nano12111795. [PMID: 35683650 PMCID: PMC9182450 DOI: 10.3390/nano12111795] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/27/2023]
Abstract
Graphene-based materials (GBMs) are a broad family of novel carbon-based nanomaterials with many nanotechnology applications. The increasing market of GBMs raises concerns on their possible impact on human health. Here, we review the existing literature on the genotoxic potential of GBMs over the last ten years. A total of 50 articles including in vitro, in vivo, in silico, and human biomonitoring studies were selected. Graphene oxides were the most analyzed materials, followed by reduced graphene oxides. Most of the evaluations were performed in vitro using the comet assay (detecting DNA damage). The micronucleus assay (detecting chromosome damage) was the most used validated assay, whereas only two publications reported results on mammalian gene mutations. The same material was rarely assessed with more than one assay. Despite inhalation being the main exposure route in occupational settings, only one in vivo study used intratracheal instillation, and another one reported human biomonitoring data. Based on the studies, some GBMs have the potential to induce genetic damage, although the type of damage depends on the material. The broad variability of GBMs, cellular systems and methods used in the studies precludes the identification of physico-chemical properties that could drive the genotoxicity response to GBMs.
Collapse
|
23
|
Verdon R, Stone V, Murphy F, Christopher E, Johnston H, Doak S, Vogel U, Haase A, Kermanizadeh A. The application of existing genotoxicity methodologies for grouping of nanomaterials: towards an integrated approach to testing and assessment. Part Fibre Toxicol 2022; 19:32. [PMID: 35525968 PMCID: PMC9080165 DOI: 10.1186/s12989-022-00476-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
The incorporation of nanomaterials (NMs) in consumer products has proven to be highly valuable in many sectors. Unfortunately, however, the same nano specific physicochemical properties, which make these material attractive, might also contribute to hazards for people exposed to these materials. The physicochemical properties of NMs will impact their interaction with biological surroundings and influence their fate and their potential adverse effects such as genotoxicity. Due to the large and expanding number of NMs produced, their availability in different nanoforms (NFs) and their utilization in various formats, it is impossible for risk assessment to be conducted on an individual NF basis. Alternative methods, such as grouping are needed for streamlining hazard assessment. The GRACIOUS Framework provides a logical and science evidenced approach to group similar NFs, allowing read-across of hazard information from source NFs (or non-NFs) with adequate hazard data to target NFs that lack such data. Here, we propose a simple three-tiered testing strategy to gather evidence to determine whether different NFs are sufficiently similar with respect to their potential to induce genotoxicity, in order to be grouped. The tiered testing strategy includes simple in vitro models as well as a number of alternative more complex multi-cellular in vitro models to allow for a better understanding of secondary NM-induced DNA damage, something that has been more appropriate in vivo until recently.
Collapse
Affiliation(s)
- Rachel Verdon
- Nano Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | - Vicki Stone
- Nano Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | - Fiona Murphy
- Nano Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | | | - Helinor Johnston
- Nano Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | - Shareen Doak
- Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Andrea Haase
- Department of Chemicals and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Ali Kermanizadeh
- Human Sciences Research Centre, University of Derby, Derby, DE22 1GB, UK.
| |
Collapse
|
24
|
Alijagic A, Engwall M, Särndahl E, Karlsson H, Hedbrant A, Andersson L, Karlsson P, Dalemo M, Scherbak N, Färnlund K, Larsson M, Persson A. Particle Safety Assessment in Additive Manufacturing: From Exposure Risks to Advanced Toxicology Testing. FRONTIERS IN TOXICOLOGY 2022; 4:836447. [PMID: 35548681 PMCID: PMC9081788 DOI: 10.3389/ftox.2022.836447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Additive manufacturing (AM) or industrial three-dimensional (3D) printing drives a new spectrum of design and production possibilities; pushing the boundaries both in the application by production of sophisticated products as well as the development of next-generation materials. AM technologies apply a diversity of feedstocks, including plastic, metallic, and ceramic particle powders with distinct size, shape, and surface chemistry. In addition, powders are often reused, which may change the particles' physicochemical properties and by that alter their toxic potential. The AM production technology commonly relies on a laser or electron beam to selectively melt or sinter particle powders. Large energy input on feedstock powders generates several byproducts, including varying amounts of virgin microparticles, nanoparticles, spatter, and volatile chemicals that are emitted in the working environment; throughout the production and processing phases. The micro and nanoscale size may enable particles to interact with and to cross biological barriers, which could, in turn, give rise to unexpected adverse outcomes, including inflammation, oxidative stress, activation of signaling pathways, genotoxicity, and carcinogenicity. Another important aspect of AM-associated risks is emission/leakage of mono- and oligomers due to polymer breakdown and high temperature transformation of chemicals from polymeric particles, both during production, use, and in vivo, including in target cells. These chemicals are potential inducers of direct toxicity, genotoxicity, and endocrine disruption. Nevertheless, understanding whether AM particle powders and their byproducts may exert adverse effects in humans is largely lacking and urges comprehensive safety assessment across the entire AM lifecycle-spanning from virgin and reused to airborne particles. Therefore, this review will detail: 1) brief overview of the AM feedstock powders, impact of reuse on particle physicochemical properties, main exposure pathways and protective measures in AM industry, 2) role of particle biological identity and key toxicological endpoints in the particle safety assessment, and 3) next-generation toxicology approaches in nanosafety for safety assessment in AM. Altogether, the proposed testing approach will enable a deeper understanding of existing and emerging particle and chemical safety challenges and provide a strategy for the development of cutting-edge methodologies for hazard identification and risk assessment in the AM industry.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Helen Karlsson
- Department of Health, Medicine and Caring Sciences, Occupational and Environmental Medicine Center in Linköping, Linköping University, Linköping, Sweden
| | - Alexander Hedbrant
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Lena Andersson
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Occupational and Environmental Medicine, Örebro University, Örebro, Sweden
| | - Patrik Karlsson
- Department of Mechanical Engineering, Örebro University, Örebro, Sweden
| | | | - Nikolai Scherbak
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | | | - Maria Larsson
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | - Alexander Persson
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
25
|
Meldrum K, Evans SJ, Vogel U, Tran L, Doak SH, Clift MJD. The influence of exposure approaches to in vitro lung epithelial barrier models to assess engineered nanomaterial hazard. Nanotoxicology 2022; 16:114-134. [PMID: 35343373 DOI: 10.1080/17435390.2022.2051627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Exposure to engineered nanomaterials (ENM) poses a potential health risk to humans through long-term, repetitive low-dose exposures. Currently, this is not commonplace within in vitro lung cell cultures. Therefore, the purpose of this study was to consider the optimal exposure approach toward determining the stability, sensitivity and validity of using in vitro lung cell mono- and co-cultures to determine ENM hazard. A range of exposure scenarios were conducted with DQ12 (previously established as a positive particle control) (historic and re-activated), TiO2 (JRC NM-105) and BaSO4 (JRC NM-220) on both monocultures of A549 cells as well as co-cultures of A549 cells and differentiated THP-1 cells. Cell cultures were exposed to either a single, or a repeated exposure over 24, 48- or 72-hours at in vivo extrapolated concentrations of 0-5.2 µg/cm2, 0-6 µg/cm2 and 0-1µg/cm2. The focus of this study was the pro-inflammatory, cytotoxic and genotoxic response elicited by these ENMs. Exposure to DQ12 caused pro-inflammatory responses after 48 hours repeat exposures, as well as increases in micronucleus frequency. Neither TiO2 nor BaSO4 elicited a pro-inflammatory response at this time point. However, there was induction of IL-6 after 24 hours TiO2 exposure. In conclusion, it is important to consider the appropriateness of the positive control implemented, the cell culture model, the time of exposure as well as the type of exposure (bolus or fractionated) before establishing if an in vitro model is appropriate to determine the level of response to the specific ENM of interest.
Collapse
Affiliation(s)
- Kirsty Meldrum
- In Vitro Toxicology Group, Swansea University, Swansea, UK
| | | | - Ulla Vogel
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Lang Tran
- Institute of Occupational Medicine (IOM), Edinburgh, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Swansea University, Swansea, UK
| | | |
Collapse
|
26
|
Aimonen K, Imani M, Hartikainen M, Suhonen S, Vanhala E, Moreno C, Rojas OJ, Norppa H, Catalán J. Surface functionalization and size modulate the formation of reactive oxygen species and genotoxic effects of cellulose nanofibrils. Part Fibre Toxicol 2022; 19:19. [PMID: 35296350 PMCID: PMC8925132 DOI: 10.1186/s12989-022-00460-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/02/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cellulose nanofibrils (CNFs) have emerged as a sustainable and environmentally friendly option for a broad range of applications. The fibrous nature and high biopersistence of CNFs call for a thorough toxicity assessment, but it is presently unclear which physico-chemical properties could play a role in determining the potential toxic response to CNF. Here, we assessed whether surface composition and size could modulate the genotoxicity of CNFs in human bronchial epithelial BEAS-2B cells. We examined three size fractions (fine, medium and coarse) of four CNFs with different surface chemistry: unmodified (U-CNF) and functionalized with 2,2,6,6-tetramethyl-piperidin-1-oxyl (TEMPO) (T-CNF), carboxymethyl (C-CNF) and epoxypropyltrimethylammonium chloride (EPTMAC) (E-CNF). In addition, the source fibre was also evaluated as a non-nanosized material. RESULTS The presence of the surface charged groups in the functionalized CNF samples resulted in higher amounts of individual nanofibrils and less aggregation compared with the U-CNF. T-CNF was the most homogenous, in agreement with its high surface group density. However, the colloidal stability of all the CNF samples dropped when dispersed in cell culture medium, especially in the case of T-CNF. CNF was internalized by a minority of BEAS-2B cells. No remarkable cytotoxic effects were induced by any of the cellulosic materials. All cellulosic materials, except the medium fraction of U-CNF, induced a dose-dependent intracellular formation of reactive oxygen species (ROS). The fine fraction of E-CNF, which induced DNA damage (measured by the comet assay) and chromosome damage (measured by the micronucleus assay), and the coarse fraction of C-CNF, which produced chromosome damage, also showed the most effective induction of ROS in their respective size fractions. CONCLUSIONS Surface chemistry and size modulate the in vitro intracellular ROS formation and the induction of genotoxic effects by fibrillated celluloses. One cationic (fine E-CNF) and one anionic (coarse C-CNF) CNF showed primary genotoxic effects, possibly partly through ROS generation. However, the conclusions cannot be generalized to all types of CNFs, as the synthesis process and the dispersion method used for testing affect their physico-chemical properties and, hence, their toxic effects.
Collapse
Affiliation(s)
- Kukka Aimonen
- Finnish Institute of Occupational Health, Työterveyslaitos, Box 40, 00032, Helsinki, Finland
| | - Monireh Imani
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Mira Hartikainen
- Finnish Institute of Occupational Health, Työterveyslaitos, Box 40, 00032, Helsinki, Finland
| | - Satu Suhonen
- Finnish Institute of Occupational Health, Työterveyslaitos, Box 40, 00032, Helsinki, Finland
| | - Esa Vanhala
- Finnish Institute of Occupational Health, Työterveyslaitos, Box 40, 00032, Helsinki, Finland
| | - Carlos Moreno
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, Zaragoza, Spain
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
- Bioproducts Institute, Departments of Chemical and Biological Engineering, Chemistry and Wood Science, The University of British Columbia, Vancouver, BC, Canada
| | - Hannu Norppa
- Finnish Institute of Occupational Health, Työterveyslaitos, Box 40, 00032, Helsinki, Finland
| | - Julia Catalán
- Finnish Institute of Occupational Health, Työterveyslaitos, Box 40, 00032, Helsinki, Finland.
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
27
|
Vallabani NVS, Karlsson HL. Primary and Secondary Genotoxicity of Nanoparticles: Establishing a Co-Culture Protocol for Assessing Micronucleus Using Flow Cytometry. FRONTIERS IN TOXICOLOGY 2022; 4:845987. [PMID: 35295219 PMCID: PMC8915829 DOI: 10.3389/ftox.2022.845987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/17/2022] [Indexed: 01/15/2023] Open
Abstract
Genotoxicity is an important endpoint to assess for understanding the risks associated with nanoparticles (NPs). Most genotoxicity studies performed on NPs have focused on primary genotoxicity analyzed by comet- or micronuclei (MN) assay using microscopic scoring. Here, we established a protocol for a more efficient version of MN assessment using flow cytometry and, importantly, both primary and secondary (inflammation-driven) genotoxicity was assessed. Human bronchial epithelial cells (HBEC-3kt) were exposed to nickel oxide (NiO) NPs directly or indirectly. The indirect exposure was done to assess secondary genotoxicity, and in this case immune cells (THP-1 derived macrophages) were exposed on inserts and the HBEC were cultured in the lower compartment. The results in monocultures showed that no increased MN formation was observed in the HBEC cells but instead a clear MN induction was noted in THP-1 cells indicating higher sensitivity. No MN formation was either observed when the HBEC were indirectly exposed, but an increase in DNA strand breaks was detected using the comet assay. Taken together, the present study emphasizes the feasibility of assessing primary and secondary genotoxicity and, furthermore, shows a clear MN induction in THP-1 monoculture following NiO NPs exposure.
Collapse
|
28
|
Offer S, Hartner E, Di Bucchianico S, Bisig C, Bauer S, Pantzke J, Zimmermann EJ, Cao X, Binder S, Kuhn E, Huber A, Jeong S, Käfer U, Martens P, Mesceriakovas A, Bendl J, Brejcha R, Buchholz A, Gat D, Hohaus T, Rastak N, Jakobi G, Kalberer M, Kanashova T, Hu Y, Ogris C, Marsico A, Theis F, Pardo M, Gröger T, Oeder S, Orasche J, Paul A, Ziehm T, Zhang ZH, Adam T, Sippula O, Sklorz M, Schnelle-Kreis J, Czech H, Kiendler-Scharr A, Rudich Y, Zimmermann R. Effect of Atmospheric Aging on Soot Particle Toxicity in Lung Cell Models at the Air–Liquid Interface: Differential Toxicological Impacts of Biogenic and Anthropogenic Secondary Organic Aerosols (SOAs). ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:27003. [PMID: 35112925 PMCID: PMC8812555 DOI: 10.1289/ehp9413] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background: Secondary organic aerosols (SOAs) formed from anthropogenic or biogenic gaseous precursors in the atmosphere substantially contribute to the ambient fine particulate matter [PM ≤2.5μm in aerodynamic diameter (PM2.5)] burden, which has been associated with adverse human health effects. However, there is only limited evidence on their differential toxicological impact. Objectives: We aimed to discriminate toxicological effects of aerosols generated by atmospheric aging on combustion soot particles (SPs) of gaseous biogenic (β-pinene) or anthropogenic (naphthalene) precursors in two different lung cell models exposed at the air–liquid interface (ALI). Methods: Mono- or cocultures of lung epithelial cells (A549) and endothelial cells (EA.hy926) were exposed at the ALI for 4 h to different aerosol concentrations of a photochemically aged mixture of primary combustion SP and β-pinene (SOAβPIN-SP) or naphthalene (SOANAP-SP). The internally mixed soot/SOA particles were comprehensively characterized in terms of their physical and chemical properties. We conducted toxicity tests to determine cytotoxicity, intracellular oxidative stress, primary and secondary genotoxicity, as well as inflammatory and angiogenic effects. Results: We observed considerable toxicity-related outcomes in cells treated with either SOA type. Greater adverse effects were measured for SOANAP-SP compared with SOAβPIN-SP in both cell models, whereas the nano-sized soot cores alone showed only minor effects. At the functional level, we found that SOANAP-SP augmented the secretion of malondialdehyde and interleukin-8 and may have induced the activation of endothelial cells in the coculture system. This activation was confirmed by comet assay, suggesting secondary genotoxicity and greater angiogenic potential. Chemical characterization of PM revealed distinct qualitative differences in the composition of the two secondary aerosol types. Discussion: In this study using A549 and EA.hy926 cells exposed at ALI, SOA compounds had greater toxicity than primary SPs. Photochemical aging of naphthalene was associated with the formation of more oxidized, more aromatic SOAs with a higher oxidative potential and toxicity compared with β-pinene. Thus, we conclude that the influence of atmospheric chemistry on the chemical PM composition plays a crucial role for the adverse health outcome of emissions. https://doi.org/10.1289/EHP9413
Collapse
Affiliation(s)
- Svenja Offer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Elena Hartner
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christoph Bisig
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jana Pantzke
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Elias J. Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Xin Cao
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Stefanie Binder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Evelyn Kuhn
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anja Huber
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Seongho Jeong
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Uwe Käfer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Patrick Martens
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Arunas Mesceriakovas
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jan Bendl
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Chemistry and Environmental Engineering, University of the Bundeswehr Munich, Neubiberg, Germany
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ramona Brejcha
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Angela Buchholz
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Daniella Gat
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Thorsten Hohaus
- Institute of Energy and Climate Research, Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Narges Rastak
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gert Jakobi
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Markus Kalberer
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | | | - Yue Hu
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christoph Ogris
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Annalisa Marsico
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Fabian Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michal Pardo
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Thomas Gröger
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jürgen Orasche
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andreas Paul
- Institute of Energy and Climate Research, Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Till Ziehm
- Institute of Energy and Climate Research, Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Zhi-Hui Zhang
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Thomas Adam
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Chemistry and Environmental Engineering, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Olli Sippula
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Martin Sklorz
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jürgen Schnelle-Kreis
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Hendryk Czech
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Astrid Kiendler-Scharr
- Institute of Energy and Climate Research, Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- JMSC at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| |
Collapse
|
29
|
Guan YH, Wang N, Deng ZW, Chen XG, Liu Y. Exploiting autophagy-regulative nanomaterials for activation of dendritic cells enables reinforced cancer immunotherapy. Biomaterials 2022; 282:121434. [DOI: 10.1016/j.biomaterials.2022.121434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/15/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
|
30
|
Groff K, Evans SJ, Doak SH, Pfuhler S, Corvi R, Saunders S, Stoddart G. In vitro and integrated in vivo strategies to reduce animal use in genotoxicity testing. Mutagenesis 2021; 36:389-400. [PMID: 34555171 DOI: 10.1093/mutage/geab035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Scientific, financial, and ethical drivers have led to unprecedented interest in implementing human-relevant, mechanistic in vitro and in silico testing approaches. Further, as non-animal approaches are being developed and validated, researchers are interested in strategies that can immediately reduce the use of animals in toxicology testing. Here, we aim to outline a testing strategy for assessing genotoxicity beginning with standard in vitro methods, such as the bacterial reverse mutation test and the in vitro micronucleus test, followed by a second tier of in vitro assays including those using advanced 3D tissue models. Where regulatory agencies require in vivo testing, one demonstrated strategy is to combine genotoxicity studies traditionally conducted separately into a single test or to integrate genotoxicity studies into other toxicity studies. Standard setting organisations and regulatory agencies have encouraged such strategies, and examples of their use can be found in the scientific literature. Employing approaches outlined here will reduce animal use as well as study time and costs.
Collapse
Affiliation(s)
- Katherine Groff
- PETA Science Consortium International e.V., Stuttgart, Germany
| | | | | | | | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Gilly Stoddart
- PETA Science Consortium International e.V., Stuttgart, Germany
| |
Collapse
|
31
|
Di Ianni E, Møller P, Vogel UB, Jacobsen NR. Pro-inflammatory response and genotoxicity caused by clay and graphene nanomaterials in A549 and THP-1 cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 872:503405. [PMID: 34798932 DOI: 10.1016/j.mrgentox.2021.503405] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/02/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Nanoclays and graphene oxide nanomaterials represent a class of materials sharing similar shapes constituted of high aspect ratio platelets. The increased production of these materials for various industrial applications increases the risk of occupational exposure, consequently with elevated risk of adverse reactions and development of pulmonary diseases, including lung cancer. In this study, pro-inflammatory responses and genotoxicity were assessed in alveolar epithelial cells (A549) and activated THP-1 macrophages (THP-1a) after exposure to three nanoclays; a pristine (Bentonite) and two surface modified (benzalkonium chloride-coated Nanofil9, and dialkyldimethyl-ammonium-coated NanofilSE3000); graphene oxide (GO) and reduced graphene oxide (r-GO) nanomaterials. The pro-inflammatory response in terms of IL-8 expression was strongest in cells exposed to Bentonite, whereas surface modification resulted in decreased toxicity in both cell lines when exposed to Nanofil9 and NanofilSE3000. GO and r-GO induced a pro-inflammatory response in A549 cells, while no effect was detected with the two nanomaterials on THP-1a cells. The pro-inflammatory response was strongly correlated with in vivo inflammation in mice after intra-tracheal instillation when doses were normalized against surface area. Genotoxicity was assessed as DNA strand breaks, using the alkaline comet assay. In A549 cells, an increase in DNA strand breaks was detected only in cells exposed to Bentonite, whereas Bentonite, NanofilSE3000 and GO caused an increased level of genotoxicity in THP-1a cells. Genotoxicity in THP-1a cells was concordant with the DNA damage in bronchoalveolar lavage fluid cells following 1 and 3 days after intra-tracheal instillation in mice. In conclusion, this study shows that surface modification of pristine nanoclays reduces the inflammatory and genotoxic response in A549 and THP-1a cells, and these in vitro models show comparable toxicity to what seen in previous mouse studies with the same materials.
Collapse
Affiliation(s)
- Emilio Di Ianni
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Peter Møller
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Birgitte Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark; National Food Institute, Technical University of Denmark, Kgs.Lyngby, Denmark
| | | |
Collapse
|
32
|
Kah M, Johnston LJ, Kookana RS, Bruce W, Haase A, Ritz V, Dinglasan J, Doak S, Garelick H, Gubala V. Comprehensive framework for human health risk assessment of nanopesticides. NATURE NANOTECHNOLOGY 2021; 16:955-964. [PMID: 34518657 DOI: 10.1038/s41565-021-00964-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Nanopesticides are not only in an advanced state of research and development but have started to appear on the market. Industry and regulatory agencies need a consolidated and comprehensive framework and guidance for human health risk assessments. In this perspective we develop such a comprehensive framework by exploring two case studies from relevant product types: an active ingredient delivered with a nanocarrier system, and a nanoparticle as an active ingredient. For a nanocarrier system, three entities are tracked during the assessment: the nanocarrier-active ingredient complex, the empty nanocarrier remaining after the complete release of the active ingredient, and the released active ingredient. For the nanoparticle of pure active ingredient, only two entities are relevant: the nanoparticle and the released ions. We suggest important adaptations of the existing pesticide framework to determine the relevant nanopesticide entities and their concentrations for toxicity testing. Depending on the nature of the nanopesticides, additional data requirements, such as those pertaining to durability in biological media and potential for crossing biological barriers, have also been identified. Overall, our framework suggests a tiered approach for human health risk assessment, which is applicable for a range of nanopesticide products to support regulators and industry in making informed decisions on nanopesticide submissions. Brief summaries of suitable methods including references to existing standards (if available) have been included together with an analysis of current knowledge gaps. Our study is an important step towards a harmonized approach accepted by regulatory agencies for assessing nanopesticides.
Collapse
Affiliation(s)
- Melanie Kah
- School of Environment, The University of Auckland, Auckland, New Zealand.
| | - Linda J Johnston
- Metrology Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Rai S Kookana
- CSIRO, Glen Osmond, South Australia, Australia
- University of Adelaide, Glen Osmond, South Australia, Australia
| | - Wendy Bruce
- Health Evaluation Directorate, Health Canada's Pest Management Regulatory Agency, Ottawa, Ontario, Canada
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Vera Ritz
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | - Shareen Doak
- Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Hemda Garelick
- Department of Natural Science, Faculty of Technology, Middlesex University, London, UK
| | - Vladimir Gubala
- Medway School of Pharmacy, University of Kent, Chatham Maritime, UK
| |
Collapse
|
33
|
More S, Bampidis V, Benford D, Bragard C, Halldorsson T, Hernández‐Jerez A, Hougaard Bennekou S, Koutsoumanis K, Lambré C, Machera K, Naegeli H, Nielsen S, Schlatter J, Schrenk D, Silano (deceased) V, Turck D, Younes M, Castenmiller J, Chaudhry Q, Cubadda F, Franz R, Gott D, Mast J, Mortensen A, Oomen AG, Weigel S, Barthelemy E, Rincon A, Tarazona J, Schoonjans R. Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: human and animal health. EFSA J 2021; 19:e06768. [PMID: 34377190 PMCID: PMC8331059 DOI: 10.2903/j.efsa.2021.6768] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
The EFSA has updated the Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain, human and animal health. It covers the application areas within EFSA's remit, including novel foods, food contact materials, food/feed additives and pesticides. The updated guidance, now Scientific Committee Guidance on nano risk assessment (SC Guidance on Nano-RA), has taken account of relevant scientific studies that provide insights to physico-chemical properties, exposure assessment and hazard characterisation of nanomaterials and areas of applicability. Together with the accompanying Guidance on Technical requirements for regulated food and feed product applications to establish the presence of small particles including nanoparticles (Guidance on Particle-TR), the SC Guidance on Nano-RA specifically elaborates on physico-chemical characterisation, key parameters that should be measured, methods and techniques that can be used for characterisation of nanomaterials and their determination in complex matrices. The SC Guidance on Nano-RA also details aspects relating to exposure assessment and hazard identification and characterisation. In particular, nanospecific considerations relating to in vitro/in vivo toxicological studies are discussed and a tiered framework for toxicological testing is outlined. Furthermore, in vitro degradation, toxicokinetics, genotoxicity, local and systemic toxicity as well as general issues relating to testing of nanomaterials are described. Depending on the initial tier results, additional studies may be needed to investigate reproductive and developmental toxicity, chronic toxicity and carcinogenicity, immunotoxicity and allergenicity, neurotoxicity, effects on gut microbiome and endocrine activity. The possible use of read-across to fill data gaps as well as the potential use of integrated testing strategies and the knowledge of modes or mechanisms of action are also discussed. The Guidance proposes approaches to risk characterisation and uncertainty analysis.
Collapse
|
34
|
Nymark P, Karlsson HL, Halappanavar S, Vogel U. Adverse Outcome Pathway Development for Assessment of Lung Carcinogenicity by Nanoparticles. FRONTIERS IN TOXICOLOGY 2021; 3:653386. [PMID: 35295099 PMCID: PMC8915843 DOI: 10.3389/ftox.2021.653386] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Lung cancer, one of the most common and deadly forms of cancer, is in some cases associated with exposure to certain types of particles. With the rise of nanotechnology, there is concern that some engineered nanoparticles may be among such particles. In the absence of epidemiological evidence, assessment of nanoparticle carcinogenicity is currently performed on a time-consuming case-by-case basis, relying mainly on animal experiments. Non-animal alternatives exist, including a few validated cell-based methods accepted for regulatory risk assessment of nanoparticles. Furthermore, new approach methodologies (NAMs), focused on carcinogenic mechanisms and capable of handling the increasing numbers of nanoparticles, have been developed. However, such alternative methods are mainly applied as weight-of-evidence linked to generally required animal data, since challenges remain regarding interpretation of the results. These challenges may be more easily overcome by the novel Adverse Outcome Pathway (AOP) framework, which provides a basis for validation and uptake of alternative mechanism-focused methods in risk assessment. Here, we propose an AOP for lung cancer induced by nanosized foreign matter, anchored to a selection of 18 standardized methods and NAMs for in silico- and in vitro-based integrated assessment of lung carcinogenicity. The potential for further refinement of the AOP and its components is discussed in relation to available nanosafety knowledge and data. Overall, this perspective provides a basis for development of AOP-aligned alternative methods-based integrated testing strategies for assessment of nanoparticle-induced lung cancer.
Collapse
Affiliation(s)
- Penny Nymark
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hanna L. Karlsson
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
- DTU Health Tech, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
35
|
Burgum MJ, Clift MJD, Evans SJ, Hondow N, Miller M, Lopez SB, Williams A, Tarat A, Jenkins GJ, Doak SH. In Vitro Primary-Indirect Genotoxicity in Bronchial Epithelial Cells Promoted by Industrially Relevant Few-Layer Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2002551. [PMID: 32734718 DOI: 10.1002/smll.202002551] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Few-layer graphene (FLG) has garnered much interest owing to applications in hydrogen storage and reinforced nanocomposites. Consequently, these engineered nanomaterials (ENMs) are in high demand, increasing occupational exposure. This investigation seeks to assess the inhalation hazard of industrially relevant FLG engineered with: (i) no surface functional groups (neutral), (ii) amine, and (iii) carboxyl group functionalization. A monoculture of human lung epithelial (16HBE14o- ) cells is exposed to each material for 24-h, followed by cytotoxicity and genotoxicity evaluation using relative population doubling (RPD) and the cytokinesis-blocked micronucleus (CBMN) assay, respectively. Neutral-FLG induces the greatest (two-fold) significant increase (p < 0.05) in micronuclei, whereas carboxyl-FLG does not induce significant (p < 0.05) genotoxicity. These findings correlate to significant (p < 0.05) concentration-dependent increases in interleukin (IL)-8, depletion of intracellular glutathione (rGSH) and a depletion in mitochondrial ATP production. Uptake of FLG is evaluated by transmission electron microscopy, whereby FLG particles are observed within membrane-bound vesicles in the form of large agglomerates (>1 µm diameter). The findings of the present study have demonstrated the capability of neutral-FLG and amine-FLG to induce genotoxicity in 16HBE14o- cells through primary indirect mechanisms, suggesting a possible role for carboxyl groups in scavenging radicals produced via oxidative stress.
Collapse
Affiliation(s)
- Michael J Burgum
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Martin J D Clift
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Stephen J Evans
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark Miller
- Centre for Cardiovascular Science, The University of Edinburgh, Queens Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | | | - Adam Williams
- Department of Physics, Swansea University, Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Afshin Tarat
- Perpetuus Carbon Technologies, Unit B1, Olympus Court, Millstream Way, Swansea Vale, Llansamlet, Swansea, SA70AQ, UK
| | - Gareth J Jenkins
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Shareen H Doak
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, Wales, SA2 8PP, UK
| |
Collapse
|
36
|
Burgum MJ, Clift MJD, Evans SJ, Hondow N, Tarat A, Jenkins GJ, Doak SH. Few-layer graphene induces both primary and secondary genotoxicity in epithelial barrier models in vitro. J Nanobiotechnology 2021; 19:24. [PMID: 33468168 PMCID: PMC7816456 DOI: 10.1186/s12951-021-00769-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Toxicological evaluation of engineered nanomaterials (ENMs) is essential for occupational health and safety, particularly where bulk manufactured ENMs such as few-layer graphene (FLG) are concerned. Additionally, there is a necessity to develop advanced in vitro models when testing ENMs to provide a physiologically relevant alternative to invasive animal experimentation. The aim of this study was to determine the genotoxicity of non-functionalised (neutral), amine- and carboxyl-functionalised FLG upon both human-transformed type-I (TT1) alveolar epithelial cell monocultures, as well as co-cultures of TT1 and differentiated THP-1 monocytes (d.THP-1 (macrophages)). RESULTS In monocultures, TT1 and d.THP-1 macrophages showed a statistically significant (p < 0.05) cytotoxic response with each ENM following 24-h exposures. Monoculture genotoxicity measured by the in vitro cytokinesis blocked micronucleus (CBMN) assay revealed significant (p < 0.05) micronuclei induction at 8 µg/ml for amine- and carboxyl-FLG. Transmission electron microscopy (TEM) revealed ENMs were internalised by TT1 cells within membrane-bound vesicles. In the co-cultures, ENMs induced genotoxicity in the absence of cytotoxic effects. Co-cultures pre-exposed to 1.5 mM N-acetylcysteine (NAC), showed baseline levels of micronuclei induction, indicating that the genotoxicity observed was driven by oxidative stress. CONCLUSIONS Therefore, FLG genotoxicity when examined in monocultures, results in primary-indirect DNA damage; whereas co-cultured cells reveal secondary mechanisms of DNA damage.
Collapse
Affiliation(s)
- Michael J Burgum
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Martin J D Clift
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Stephen J Evans
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Afshin Tarat
- Perpetuus Carbon Technologies, Unit B1, Olympus Court, Millstream Way, Llansamlet, Swansea Vale, SA70AQ, UK
| | - Gareth J Jenkins
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Shareen H Doak
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK.
| |
Collapse
|
37
|
Feng X, Zhang Y, Zhang C, Lai X, Zhang Y, Wu J, Hu C, Shao L. Nanomaterial-mediated autophagy: coexisting hazard and health benefits in biomedicine. Part Fibre Toxicol 2020; 17:53. [PMID: 33066795 PMCID: PMC7565835 DOI: 10.1186/s12989-020-00372-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Widespread biomedical applications of nanomaterials (NMs) bring about increased human exposure risk due to their unique physicochemical properties. Autophagy, which is of great importance for regulating the physiological or pathological activities of the body, has been reported to play a key role in NM-driven biological effects both in vivo and in vitro. The coexisting hazard and health benefits of NM-mediated autophagy in biomedicine are nonnegligible and require our particular concerns. MAIN BODY We collected research on the toxic effects related to NM-mediated autophagy both in vivo and in vitro. Generally, NMs can be delivered into animal models through different administration routes, or internalized by cells through different uptake pathways, exerting varying degrees of damage in tissues, organs, cells, and organelles, eventually being deposited in or excreted from the body. In addition, other biological effects of NMs, such as oxidative stress, inflammation, necroptosis, pyroptosis, and ferroptosis, have been associated with autophagy and cooperate to regulate body activities. We therefore highlight that NM-mediated autophagy serves as a double-edged sword, which could be utilized in the treatment of certain diseases related to autophagy dysfunction, such as cancer, neurodegenerative disease, and cardiovascular disease. Challenges and suggestions for further investigations of NM-mediated autophagy are proposed with the purpose to improve their biosafety evaluation and facilitate their wide application. Databases such as PubMed and Web of Science were utilized to search for relevant literature, which included all published, Epub ahead of print, in-process, and non-indexed citations. CONCLUSION In this review, we focus on the dual effect of NM-mediated autophagy in the biomedical field. It has become a trend to use the benefits of NM-mediated autophagy to treat clinical diseases such as cancer and neurodegenerative diseases. Understanding the regulatory mechanism of NM-mediated autophagy in biomedicine is also helpful for reducing the toxic effects of NMs as much as possible.
Collapse
Affiliation(s)
- Xiaoli Feng
- Stomatological Hospital, Southern Medical University, 366 South Jiangnan Road, Guangzhou, 510280, China
| | - Yaqing Zhang
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China
| | - Chao Zhang
- Orthodontic Department, Stomatological Hospital, Southern Medical University, 366 South Jiangnan Road, Guangzhou, 510280, China
| | - Xuan Lai
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, 366 South Jiangnan Road, Guangzhou, 510280, China
| | - Junrong Wu
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China
| | - Chen Hu
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China.
| |
Collapse
|
38
|
Cao Y, Li S, Chen J. Modeling better in vitro models for the prediction of nanoparticle toxicity: a review. Toxicol Mech Methods 2020; 31:1-17. [PMID: 32972312 DOI: 10.1080/15376516.2020.1828521] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P. R. China
| | - Shuang Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P. R. China
| | - Jiamao Chen
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P. R. China
| |
Collapse
|
39
|
Ali N, Bilal M, Khan A, Ali F, Iqbal HMN. Effective exploitation of anionic, nonionic, and nanoparticle-stabilized surfactant foams for petroleum hydrocarbon contaminated soil remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135391. [PMID: 31806317 DOI: 10.1016/j.scitotenv.2019.135391] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023]
Abstract
Contaminated environments posed serious threats to the ecosystems and their living beings. Suitable preventive approaches should be adopted for effective remediation of contaminated environments to remove or lower their health and environmentally-related hazardous aspects. Petroleum or traces of petroleum contamination from oil fields and refineries to exposed soil in the form of gasoline, petrol, diesel, and used motor oil are a rich source of potential damage to the environment. Conventional ways of treatment and management of hydrocarbon are complicated, insufficient, and expensive. Herein, we reviewed a smart approach for the removal of petroleum source contamination from exposed soil using environment-friendly chemical surfactants and nanoscale surfactant system. The host/guest complexes formation of surfactants with the hydrocarbons (hydrophobic contaminants) of soil and water by the encapsulation mechanism of hydrophobes into the (micelles) a self-assembly aggregation of surfactants. Recently, surfactants stabilized by nanoparticles (NPs) acquired more importance and popularity over surfactant alone. The persistence of diverse hydrocarbon-based contaminants and the mechanisms of removal using pristine surfactants or NP-stabilized surfactant foams are discussed with suitable examples. In summary, herein, an effort has been made to present the notable potentialities of pristine surfactants and NP-stabilized surfactant foams to remediate the petroleum hydrocarbon contaminated soil for a greener and sustainable ecosystem.
Collapse
Affiliation(s)
- Nisar Ali
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL CP 64849, Mexico.
| |
Collapse
|
40
|
New Frontiers in Molecular Imaging with Superparamagnetic Iron Oxide Nanoparticles (SPIONs): Efficacy, Toxicity, and Future Applications. Nucl Med Mol Imaging 2020; 54:65-80. [PMID: 32377258 DOI: 10.1007/s13139-020-00635-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 12/29/2022] Open
Abstract
Supermagnetic Iron Oxide Nanoparticles (SPIONs) are nanoparticles that have an iron oxide core and a functionalized shell. SPIONs have recently raised much interest in the scientific community, given their exciting potential diagnostic and theragnostic applications. The possibility to modify their surface and the characteristics of their core make SPIONs a specific contrast agent for magnetic resonance imaging but also an intriguing family of tracer for nuclear medicine. An example is 68Ga-radiolabeled bombesin-conjugated to superparamagnetic nanoparticles coated with trimethyl chitosan that is selective for the gastrin-releasing peptide receptors. These receptors are expressed by several human cancer cells such as breast and prostate neoplasia. Since the coating does not interfere with the properties of the molecules bounded to the shell, it has been proposed to link SPIONs with antibodies. SPIONs can be used also to monitor the biodistribution of mesenchymal stromal cells and take place in various applications. The aim of this review of literature is to analyze the diagnostic aspect of SPIONs in magnetic resonance imaging and in nuclear medicine, with a particular focus on sentinel lymph node applications. Moreover, it is taken into account the possible toxicity and the effects on human physiology to determine the SPIONs' safety.
Collapse
|
41
|
Pfuhler S, van Benthem J, Curren R, Doak SH, Dusinska M, Hayashi M, Heflich RH, Kidd D, Kirkland D, Luan Y, Ouedraogo G, Reisinger K, Sofuni T, van Acker F, Yang Y, Corvi R. Use of in vitro 3D tissue models in genotoxicity testing: Strategic fit, validation status and way forward. Report of the working group from the 7 th International Workshop on Genotoxicity Testing (IWGT). Mutat Res 2020; 850-851:503135. [PMID: 32247552 DOI: 10.1016/j.mrgentox.2020.503135] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/25/2022]
Abstract
Use of three-dimensional (3D) tissue equivalents in toxicology has been increasing over the last decade as novel preclinical test systems and as alternatives to animal testing. In the area of genetic toxicology, progress has been made with establishing robust protocols for skin, airway (lung) and liver tissue equivalents. In light of these advancements, a "Use of 3D Tissues in Genotoxicity Testing" working group (WG) met at the 7th IWGT meeting in Tokyo in November 2017 to discuss progress with these models and how they may fit into a genotoxicity testing strategy. The workshop demonstrated that skin models have reached an advanced state of validation following over 10 years of development, while liver and airway model-based genotoxicity assays show promise but are at an early stage of development. Further effort in liver and airway model-based assays is needed to address the lack of coverage of the three main endpoints of genotoxicity (mutagenicity, clastogenicity and aneugenicity), and information on metabolic competence. The IWGT WG believes that the 3D skin comet and micronucleus assays are now sufficiently validated to undergo an independent peer review of the validation study, followed by development of individual OECD Test Guidelines.
Collapse
Affiliation(s)
- Stefan Pfuhler
- Procter and Gamble, Mason Business Centre, Mason, OH, USA.
| | - Jan van Benthem
- National Institute for Public Health and the Environment, Centre for Health Protection, Bilthoven, the Netherlands
| | - Rodger Curren
- Institute for In Vitro Sciences, Inc., Gaithersburg, MD, USA
| | - Shareen H Doak
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | | | - Robert H Heflich
- U.S. Food and Drug Administration/National Center for Toxicological Research, Jefferson, AR, USA
| | - Darren Kidd
- Covance Laboratories Ltd, Otley Road, Harrogate, HG3 1PY, UK
| | | | - Yang Luan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | | | | | - Toshio Sofuni
- Formerly National Institute of Health Sciences, Tokyo, Japan
| | | | - Ying Yang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, PR China
| | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
42
|
Cytotoxicity and genotoxicity of silver nanoparticles in Chinese Hamster ovary cell line (CHO-K1) cells. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00295-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
43
|
Åkerlund E, Islam MS, McCarrick S, Alfaro-Moreno E, Karlsson HL. Inflammation and (secondary) genotoxicity of Ni and NiO nanoparticles. Nanotoxicology 2019; 13:1060-1072. [PMID: 31322448 DOI: 10.1080/17435390.2019.1640908] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nanoparticle-induced genotoxicity can arise through different mechanisms, and generally, primary and secondary genotoxicity can be distinguished where the secondary is driven by an inflammatory response. It is, however, yet unclear how a secondary genotoxicity can be detected using in vitro methods. The aim of this study was to investigate inflammation and genotoxicity caused by agglomerated nickel (Ni) and nickel oxide (NiO) nanoparticles and, furthermore, to explore the possibility to test secondary (inflammation-driven) genotoxicity in vitro. As a benchmark particle to compare with, we used crystalline silica (quartz). A proteome profiler antibody array was used to screen for changes in release of 105 different cytokines and the results showed an increased secretion of various cytokines including vascular endothelial growth factor (VEGF) following exposure of macrophages (differentiated THP-1 cells). Both Ni and NiO caused DNA damage (comet assay) following exposure of human bronchial epithelial cells (HBEC) and interestingly conditioned media (CM) from exposed macrophages also resulted in DNA damage (2- and 3-fold increase for Ni and NiO, respectively). Similar results were also found when using a co-culture system of macrophages and epithelial cells. In conclusion, this study shows that it is possible to detect a secondary genotoxicity in lung epithelial cells by using in vitro methods based on conditioned media or co-cultures. Further investigation is needed in order to find out what factors that are causing this secondary genotoxicity and whether such effects are caused by numerous nanoparticles.
Collapse
Affiliation(s)
- Emma Åkerlund
- Institute of Environmental Medicine, Karolinska Institutet , Stockholm , Sweden
| | - Md Shafiqul Islam
- Institute of Environmental Medicine, Karolinska Institutet , Stockholm , Sweden
| | - Sarah McCarrick
- Institute of Environmental Medicine, Karolinska Institutet , Stockholm , Sweden
| | - Ernesto Alfaro-Moreno
- Institute of Environmental Medicine, Karolinska Institutet , Stockholm , Sweden.,Man-Technology-Environment Research Centre (MTM), Örebro University , Örebro , Sweden
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|