1
|
Schaudien D, Hansen T, Tillmann T, Pohlmann G, Kock H, Creutzenberg O. Comparative toxicity study of three surface-modified titanium dioxide nanoparticles following subacute inhalation. Part Fibre Toxicol 2025; 22:5. [PMID: 39994642 PMCID: PMC11849269 DOI: 10.1186/s12989-025-00620-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND This study aimed to compare the toxic effects of three different titanium dioxide nanoparticles encoded in the European nanomaterial repository as NM-103 (rutile, hydrophobic), NM-104 (rutile, hydrophilic), and NM-105 (anatase/rutile, hydrophilic), suggesting different toxic potentials after uptake in the lungs. Wistar rats were exposed by nose-only inhalation to aerosol concentrations of 3, 12 and 48 mg/m3 for 4 weeks. This dosing scheme should induce non, partial and complete lung overload. The 4-week inhalation period was followed by 3-, 45- and 94-day exposure-free periods. Investigations according to the OECD 412 guideline were performed. Additional examinations, such as transmission electron microscopy and image analysis of tissue slides and cytospots, were performed to reveal possible differences among the three particle types. RESULTS Bronchoalveolar lavage fluid from the groups exposed to low concentrations of NM-103 or NM-104 presented slight inflammation. In the mid- and high-exposure groups, this was also present for the NM-105 group, however, weaker than those of NM-103 and NM-104. Histologically, all three groups presented similar distributions of particles in the respiratory tract. Although marginal differences in the degree of some changes exist, no obvious differences in the degree or characteristics of the induced lesions were observable. In general, compared with the higher exposure groups, all the middle exposure groups presented a greater accumulation and aggregation of macrophages at the terminal bronchi. Using transmission electron microscopy, particles were detected mainly in intraalveolar macrophages, followed by type 1 pneumocytes in the low- and mid-concentration groups and intraalveolar free particles in the high-concentration groups. Compared with the other groups, the NM-103 group presented greater numbers of free particles in the alveoli and fewer in the macrophages. With image analysis, the movement of particles to the bronchus-associated lymphoid tissue and lymph nodes could be detected comparably for the three different particle types. CONCLUSIONS The no observed adverse effect concentration was 3 mg/m3 for all three different TiO2 particles. Despite minimal differences, a ranking mainly based on granulocyte influx into the lung was NM-104 > NM-103 > NM-105.
Collapse
Affiliation(s)
- Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany.
| | - Tanja Hansen
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Thomas Tillmann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Gerd Pohlmann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Heiko Kock
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Otto Creutzenberg
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| |
Collapse
|
2
|
Hadrup N, Guldbrandsen M, Terrida E, Bendtsen KMS, Hougaard KS, Jacobsen NR, Vogel U. Intratracheal instillation for the testing of pulmonary toxicity in mice-Effects of instillation devices and feed type on inflammation. Animal Model Exp Med 2025; 8:378-386. [PMID: 39754368 PMCID: PMC11871123 DOI: 10.1002/ame2.12503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/22/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Inhalation exposure is the gold standard when assessing pulmonary toxicity. However, it typically requires substantial amounts of test material. Intratracheal instillation is an alternative administration technique, where the test substance is suspended in a liquid vehicle and deposited into the lung via the trachea. Instillation requires minimal test material, delivers an exact dose deep into the lung, and is less labor-intensive than inhalation exposures. However, one shortcoming is that the procedure may induce short-term inflammation. To minimize this, we tested different modifications of the technique to identify the potential for refinement. METHODS First, we tested whether previous findings of increased inflammation could be confirmed. Next, we tested whether instillation with a disposable 1 mL syringe with ball-tipped steel-needle (Disposable-syringe/steel-needle) induced less inflammation than the use of our standard set-up, a 250 μL reusable glass syringe with a disposable plastic catheter (Glass-syringe/plastic-catheter). Finally, we tested if access to pelleted and liquid feed prior to instillation affected inflammation. We evaluated inflammation by neutrophil numbers in bronchoalveolar fluid 24 h post-exposure. RESULTS Vehicle-instilled mice showed a small increase in neutrophil numbers compared to untreated mice. Neutrophil numbers were slightly elevated in the groups instilled with Disposable-syringe/steel-needle; an interaction with feed type indicated that the increase in neutrophils was more pronounced in combination with feed pellets compared to liquid feed. We found no difference between the feed types when using the Glass-syringe/plastic-catheter combination. CONCLUSION The Glass-syringe/plastic-catheter combination induced the least exposure-related inflammation, confirming this as a preferred instillation procedure.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working EnvironmentCopenhagenDenmark
- Research Group for Risk‐Benefit, National Food InstituteTechnical University of DenmarkCopenhagenDenmark
| | | | - Eva Terrida
- National Research Centre for the Working EnvironmentCopenhagenDenmark
| | | | - Karin S. Hougaard
- National Research Centre for the Working EnvironmentCopenhagenDenmark
- Department of Public HealthUniversity of CopenhagenCopenhagenDenmark
| | | | - Ulla Vogel
- National Research Centre for the Working EnvironmentCopenhagenDenmark
- National Food InstituteTechnical University of DenmarkCopenhagenDenmark
| |
Collapse
|
3
|
Makhado BP, Oladipo AO, Gumbi NN, De Kock LA, Andraos C, Gulumian M, Nxumalo EN. Unravelling the toxicity of carbon nanomaterials - From cellular interactions to mechanistic understanding. Toxicol In Vitro 2024; 100:105898. [PMID: 39029601 DOI: 10.1016/j.tiv.2024.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The application of carbon nanomaterials in diverse fields has substantially increased their demand for commercial usage. Within the earliest decade, the development of functional materials has further increased the significance of this element. Despite the advancements recorded, the potential harmful impacts of embracing carbon nanomaterials for biological applications must be balanced against their advantages. Interestingly, many studies have neglected the intriguing and dynamic cellular interaction of carbon nanomaterials and the mechanistic understanding of their property-driven behaviour, even though common toxicity profiles have been reported. Reiterating the toxicity issue, several researchers conclude that these materials have minimal toxicity and may be safe for contact with biological systems at certain dosages. Here, we aim to provide a report on the significance of some of the properties that influence their toxicity. After that, a description of the implication of nanotoxicology in humans and living systems, revealing piece by piece their exposure routes and possible risks, will be provided. Then, an extensive discussion of the mechanistic puzzle modulating the interface between various human cellular systems and carbon nanomaterials such as carbon nanotubes, carbon dots, graphene, fullerenes, and nanodiamonds will follow. Finally, this review also sheds light on the organization that handles the risk associated with nanomaterials.
Collapse
Affiliation(s)
- Bveledzani P Makhado
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Adewale O Oladipo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort 1710, South Africa
| | - Nozipho N Gumbi
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Lueta A De Kock
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Charlene Andraos
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa; National Institute for Occupational Health (NIOH), National Health Laboratory Service (NHLS), Johannesburg, South Africa; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mary Gulumian
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa
| | - Edward N Nxumalo
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa.
| |
Collapse
|
4
|
Moen A, Johnsen H, Hristozov D, Zabeo A, Pizzol L, Ibarrola O, Hannon G, Holmes S, Debebe Zegeye F, Vogel U, Prina Mello A, Zienolddiny-Narui S, Wallin H. Inflammation related to inhalation of nano and micron sized iron oxides: a systematic review. Nanotoxicology 2024; 18:511-526. [PMID: 39275857 DOI: 10.1080/17435390.2024.2399039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/19/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024]
Abstract
Inhalation exposure to iron oxide occurs in many workplaces and respirable aerosols occur during thermal processes (e.g. welding, casting) or during abrasion of iron and steel products (e.g. cutting, grinding, machining, polishing, sanding) or during handling of iron oxide pigments. There is limited evidence of adverse effects in humans specifically linked to inhalation of iron oxides. This contrasts to oxides of other metals used to alloy or for coating of steel and iron of which several have been classified as being hazardous by international and national agencies. Such metal oxides are often present in the air at workplaces. In general, iron oxides might therefore be regarded as low-toxicity, low-solubility (LTLS) particles, and are often considered to be nontoxic even if very high and prolonged inhalation exposures might result in diseases. In animal studies, such exposures lead to cancer, fibrosis and other diseases. Our hypothesis was that pulmonary-workplace exposure during manufacture and handling of SPION preparations might be harmful. We therefore conducted a systematic review of the relevant literature to understand how iron oxides deposited in the lung are related to acute and subchronic pulmonary inflammation. We included one human and several in vivo animal studies published up to February 2023. We found 25 relevant studies that were useful for deriving occupational exposure limits (OEL) for iron oxides based on an inflammatory reaction. Our review of the scientific literature indicates that lowering of health-based occupational exposure limits might be considered.
Collapse
Affiliation(s)
- Aurora Moen
- National Institute of Occupational Health, Oslo, Norway
| | - Helge Johnsen
- National Institute of Occupational Health, Oslo, Norway
| | | | - Alex Zabeo
- Ca' Foscari University of Venice, Venizia, Italy
| | | | | | - Gary Hannon
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College of Dublin, Dublin, Ireland
| | - Sarah Holmes
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College of Dublin, Dublin, Ireland
| | | | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Adriele Prina Mello
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College of Dublin, Dublin, Ireland
| | | | - Håkan Wallin
- National Institute of Occupational Health, Oslo, Norway
| |
Collapse
|
5
|
Poland CA, Duffin R, Weber K, Dekant W, Borm PJA. Is pulmonary inflammation a valid predictor of particle induced lung pathology? The case of amorphous and crystalline silicas. Toxicol Lett 2024; 399 Suppl 1:18-30. [PMID: 37454774 DOI: 10.1016/j.toxlet.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Although inflammation is a normal and beneficial response, it is also a key event in the pathology of many chronic diseases, including pulmonary and systemic particle-induced disease. In addition, inflammation is now considered as the key response in standard settings for inhaled particles and a critical endpoint in OECD-based sub-acute/ chronic animal inhalation testing protocols. In this paper, we discuss that whilst the role of inflammation in lung disease is undeniable, it is when inflammation deviates from normal parameters that adversity occurs. We introduce the importance of the time course and in particular, the reversibility of inflammation in the progression towards tissue remodelling and neoplastic changes as commonly seen in rat inhalation studies. For this purpose, we used sub-chronic/ chronic studies studies with synthetic amorphous silicas (SAS) and reactive crystalline silica (RCS) as a source of data to describe the time-course of inflammation towards and beyond adversity. Whilst amorphous silicas induce an acute but reversible inflammatory response, only RCS induces a persistent, progressive response after cessation of exposure, resulting in fibrosis and carcinogenicity in rodents and humans. This suggests that the use of inflammation as a fixed endpoint at the cessation of exposure may not be a reliable predictor of particle-induced lung pathology. We therefore suggest extending the current OECD testing guidelines with a recovery period, that allows inflammation to resolve or progress into altered structure and function, such as fibrosis.
Collapse
Affiliation(s)
- Craig A Poland
- Regulatory Compliance Limited, 6 Dryden Road, Loanhead, Midlothian EH20 9TY, UK; Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Rodger Duffin
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Klaus Weber
- AnaPath Services GmbH, Hammerstrasse 49, 4410 Liestal, Switzerland
| | - Wolfgang Dekant
- Department of Toxicology, University of Würzburg, Rhönstrasse 9, 97080 Würzburg, Germany
| | - Paul J A Borm
- Nanoconsult, Grindakker 10, Spaubeek, The Netherlands
| |
Collapse
|
6
|
Hristozov D, Badetti E, Bigini P, Brunelli A, Dekkers S, Diomede L, Doak SH, Fransman W, Gajewicz-Skretna A, Giubilato E, Gómez-Cuadrado L, Grafström R, Gutleb AC, Halappanavar S, Hischier R, Hunt N, Katsumiti A, Kermanizadeh A, Marcomini A, Moschini E, Oomen A, Pizzol L, Rumbo C, Schmid O, Shandilya N, Stone V, Stoycheva S, Stoeger T, Merino BS, Tran L, Tsiliki G, Vogel UB, Wohlleben W, Zabeo A. Next Generation Risk Assessment approaches for advanced nanomaterials: Current status and future perspectives. NANOIMPACT 2024; 35:100523. [PMID: 39059749 DOI: 10.1016/j.impact.2024.100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
This manuscript discusses the challenges of applying New Approach Methodologies (NAMs) for safe by design and regulatory risk assessment of advanced nanomaterials (AdNMs). The authors propose a framework for Next Generation Risk Assessment of AdNMs involving NAMs that is aligned to the conventional risk assessment paradigm. This framework is exposure-driven, endpoint-specific, makes best use of pre-existing information, and can be implemented in tiers of increasing specificity and complexity of the adopted NAMs. The tiered structure of the approach, which effectively combines the use of existing data with targeted testing will allow safety to be assessed cost-effectively and as far as possible with even more limited use of vertebrates. The regulatory readiness of state-of-the-art emerging NAMs is assessed in terms of Transparency, Reliability, Accessibility, Applicability, Relevance and Completeness, and their appropriateness for AdNMs is discussed in relation to each step of the risk assessment paradigm along with providing perspectives for future developments in the respective scientific and regulatory areas.
Collapse
Affiliation(s)
- Danail Hristozov
- East European Research and Innovation Enterprise (EMERGE), Otets Paisiy Str. 46, 1303 Sofa, Bulgaria.
| | - Elena Badetti
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Paolo Bigini
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Andrea Brunelli
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Susan Dekkers
- Netherlands Organisation for Applied Scientific Research (TNO), Princetonlaan 6, 3584 CB Utrecht, the Netherlands
| | - Luisa Diomede
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Shareen H Doak
- Swansea University Medical School, Faculty of Medicine, Health & Life Science, Singleton Park, Swansea SA2 8PP, United Kingdom
| | - Wouter Fransman
- Netherlands Organisation for Applied Scientific Research (TNO), Princetonlaan 6, 3584 CB Utrecht, the Netherlands
| | - Agnieszka Gajewicz-Skretna
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-309 Gdansk, Poland
| | - Elisa Giubilato
- GreenDecision Srl, Cannaregio 5904, 30121 Venezia, VE, Italy
| | - Laura Gómez-Cuadrado
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, Burgos 09001, Spain
| | - Roland Grafström
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 17177 Stockholm, Sweden
| | - Arno C Gutleb
- Luxemburg Institute of Science and Technology (LIST), 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Building, Banting Driveway, Ottawa, Ontario K1A 0K9, Canada
| | - Roland Hischier
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Neil Hunt
- Yordas Group, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Alberto Katsumiti
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Zamudio, Spain
| | - Ali Kermanizadeh
- University of Derby, College of Science and Engineering, Kedleston Road, Derby DE22 1GB, United Kingdom
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Elisa Moschini
- Luxemburg Institute of Science and Technology (LIST), 41, rue du Brill, L-4422 Belvaux, Luxembourg; Heriot-Watt University, School of Engineering and Physical Sciences (EPS), Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), David Brewster Building, Edinburgh EH14 4AS, United Kingdom
| | - Agnes Oomen
- National Institute for Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands
| | - Lisa Pizzol
- GreenDecision Srl, Cannaregio 5904, 30121 Venezia, VE, Italy
| | - Carlos Rumbo
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, Burgos 09001, Spain
| | - Otmar Schmid
- Helmholtz Munich, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Neeraj Shandilya
- Netherlands Organisation for Applied Scientific Research (TNO), Princetonlaan 6, 3584 CB Utrecht, the Netherlands
| | - Vicki Stone
- Heriot-Watt University, School of Engineering and Physical Sciences (EPS), Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), David Brewster Building, Edinburgh EH14 4AS, United Kingdom
| | - Stella Stoycheva
- Yordas Group, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Tobias Stoeger
- Helmholtz Munich, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | | | - Lang Tran
- Institute of Occupational Medicine (IOM), Research Avenue North, Riccarton, Edinburgh EH14 4AP, United Kingdom
| | - Georgia Tsiliki
- Purposeful IKE, Tritis Septembriou 144, Athens 11251, Greece
| | - Ulla Birgitte Vogel
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Wendel Wohlleben
- BASF SE, RGA/AP - B7, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Alex Zabeo
- GreenDecision Srl, Cannaregio 5904, 30121 Venezia, VE, Italy
| |
Collapse
|
7
|
Bahl A, Halappanavar S, Wohlleben W, Nymark P, Kohonen P, Wallin H, Vogel U, Haase A. Bioinformatics and machine learning to support nanomaterial grouping. Nanotoxicology 2024; 18:373-400. [PMID: 38949108 DOI: 10.1080/17435390.2024.2368005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
Nanomaterials (NMs) offer plenty of novel functionalities. Moreover, their physicochemical properties can be fine-tuned to meet the needs of specific applications, leading to virtually unlimited numbers of NM variants. Hence, efficient hazard and risk assessment strategies building on New Approach Methodologies (NAMs) become indispensable. Indeed, the design, the development and implementation of NAMs has been a major topic in a substantial number of research projects. One of the promising strategies that can help to deal with the high number of NMs variants is grouping and read-across. Based on demonstrated structural and physicochemical similarity, NMs can be grouped and assessed together. Within an established NM group, read-across may be performed to fill in data gaps for data-poor variants using existing data for NMs within the group. Establishing a group requires a sound justification, usually based on a grouping hypothesis that links specific physicochemical properties to well-defined hazard endpoints. However, for NMs these interrelationships are only beginning to be understood. The aim of this review is to demonstrate the power of bioinformatics with a specific focus on Machine Learning (ML) approaches to unravel the NM Modes-of-Action (MoA) and identify the properties that are relevant to specific hazards, in support of grouping strategies. This review emphasizes the following messages: 1) ML supports identification of the most relevant properties contributing to specific hazards; 2) ML supports analysis of large omics datasets and identification of MoA patterns in support of hypothesis formulation in grouping approaches; 3) omics approaches are useful for shifting away from consideration of single endpoints towards a more mechanistic understanding across multiple endpoints gained from one experiment; and 4) approaches from other fields of Artificial Intelligence (AI) like Natural Language Processing or image analysis may support automated extraction and interlinkage of information related to NM toxicity. Here, existing ML models for predicting NM toxicity and for analyzing omics data in support of NM grouping are reviewed. Various challenges related to building robust models in the field of nanotoxicology exist and are also discussed.
Collapse
Affiliation(s)
- Aileen Bahl
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Freie Universität Berlin, Institute of Pharmacy, Berlin, Germany
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Wendel Wohlleben
- BASF SE, Department Analytical and Material Science and Department Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Pekka Kohonen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Wallin
- Department of Chemical and Biological Risk Factors, National Institute of Occupational Health, Oslo, Norway
- Department of Public Health, Copenhagen University, Copenhagen, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Freie Universität Berlin, Institute of Pharmacy, Berlin, Germany
| |
Collapse
|
8
|
Fan J, Liu L, Lu Y, Chen Q, Fan S, Yang Y, Long Y, Liu X. Acute exposure to polystyrene nanoparticles promotes liver injury by inducing mitochondrial ROS-dependent necroptosis and augmenting macrophage-hepatocyte crosstalk. Part Fibre Toxicol 2024; 21:20. [PMID: 38610056 PMCID: PMC11010371 DOI: 10.1186/s12989-024-00578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The global use of plastic materials has undergone rapid expansion, resulting in the substantial generation of degraded and synthetic microplastics and nanoplastics (MNPs), which have the potential to impose significant environmental burdens and cause harmful effects on living organisms. Despite this, the detrimental impacts of MNPs exposure towards host cells and tissues have not been thoroughly characterized. RESULTS In the present study, we have elucidated a previously unidentified hepatotoxic effect of 20 nm synthetic polystyrene nanoparticles (PSNPs), rather than larger PS beads, by selectively inducing necroptosis in macrophages. Mechanistically, 20 nm PSNPs were rapidly internalized by macrophages and accumulated in the mitochondria, where they disrupted mitochondrial integrity, leading to heightened production of mitochondrial reactive oxygen species (mtROS). This elevated mtROS generation essentially triggered necroptosis in macrophages, resulting in enhanced crosstalk with hepatocytes, ultimately leading to hepatocyte damage. Additionally, it was demonstrated that PSNPs induced necroptosis and promoted acute liver injury in mice. This harmful effect was significantly mitigated by the administration of a necroptosis inhibitor or systemic depletion of macrophages prior to PSNPs injection. CONCLUSION Collectively, our study suggests a profound toxicity of environmental PSNP exposure by triggering macrophage necroptosis, which in turn induces hepatotoxicity via intercellular crosstalk between macrophages and hepatocytes in the hepatic microenvironment.
Collapse
Affiliation(s)
- Junjie Fan
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China
| | - Li Liu
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Qian Chen
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Shijun Fan
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Yongjun Yang
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Yupeng Long
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China.
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China.
| |
Collapse
|
9
|
Danielsen PH, Poulsen SS, Knudsen KB, Clausen PA, Jensen KA, Wallin H, Vogel U. Physicochemical properties of 26 carbon nanotubes as predictors for pulmonary inflammation and acute phase response in mice following intratracheal lung exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104413. [PMID: 38485102 DOI: 10.1016/j.etap.2024.104413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Carbon nanotubes (CNTs) vary in physicochemical properties which makes risk assessment challenging. Mice were pulmonary exposed to 26 well-characterized CNTs using the same experimental design and followed for one day, 28 days or 3 months. This resulted in a unique dataset, which was used to identify physicochemical predictors of pulmonary inflammation and systemic acute phase response. MWCNT diameter and SWCNT specific surface area were predictive of lower and higher neutrophil influx, respectively. Manganese and iron were shown to be predictive of higher neutrophil influx at day 1 post-exposure, whereas nickel content interestingly was predictive of lower neutrophil influx at all three time points and of lowered acute phase response at day 1 and 3 months post-exposure. It was not possible to separate effects of properties such as specific surface area and length in the multiple regression analyses due to co-variation.
Collapse
Affiliation(s)
- Pernille Høgh Danielsen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark
| | - Sarah Søs Poulsen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark
| | - Kristina Bram Knudsen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark
| | - Per Axel Clausen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark
| | - Keld Alstrup Jensen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark
| | - Håkan Wallin
- National Institute of Occupational Health, Pb 5330 Majorstuen, Oslo 0304, Norway; Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen K DK-1014, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark; DTU Food, Technical University of Denmark (DTU), Anker Engelunds Vej 1, Lyngby DK-2800 Kgs, Denmark.
| |
Collapse
|
10
|
Petpiroon N, Netkueakul W, Sukrak K, Wang C, Liang Y, Wang M, Liu Y, Li Q, Kamran R, Naruse K, Aueviriyavit S, Takahashi K. Development of lung tissue models and their applications. Life Sci 2023; 334:122208. [PMID: 37884207 DOI: 10.1016/j.lfs.2023.122208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
The lungs are important organs that play a critical role in the development of specific diseases, as well as responding to the effects of drugs, chemicals, and environmental pollutants. Due to the ethical concerns around animal testing, alternative methods have been sought which are more time-effective, do not pose ethical issues for animals, do not involve species differences, and provide easy investigation of the pathobiology of lung diseases. Several national and international organizations are working to accelerate the development and implementation of structurally and functionally complex tissue models as alternatives to animal testing, particularly for the lung. Unfortunately, to date, there is no lung tissue model that has been accepted by regulatory agencies for use in inhalation toxicology. This review discusses the challenges involved in developing a relevant lung tissue model derived from human cells such as cell lines, primary cells, and pluripotent stem cells. It also introduces examples of two-dimensional (2D) air-liquid interface and monocultured and co-cultured three-dimensional (3D) culture techniques, particularly organoid culture and 3D bioprinting. Furthermore, it reviews development of the lung-on-a-chip model to mimic the microenvironment and physiological performance. The applications of lung tissue models in various studies, especially disease modeling, viral respiratory infection, and environmental toxicology will be also introduced. The development of a relevant lung tissue model is extremely important for standardizing and validation the in vitro models for inhalation toxicity and other studies in the future.
Collapse
Affiliation(s)
- Nalinrat Petpiroon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Woranan Netkueakul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Kanokwan Sukrak
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Thailand Network Center on Air Quality Management: TAQM, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chen Wang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Yin Liang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Mengxue Wang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Yun Liu
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Qiang Li
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Rumaisa Kamran
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Keiji Naruse
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Sasitorn Aueviriyavit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Ken Takahashi
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan.
| |
Collapse
|
11
|
Berthing T, Lard M, Danielsen PH, Abariute L, Barfod KK, Adolfsson K, Knudsen KB, Wolff H, Prinz CN, Vogel U. Pulmonary toxicity and translocation of gallium phosphide nanowires to secondary organs following pulmonary exposure in mice. J Nanobiotechnology 2023; 21:322. [PMID: 37679803 PMCID: PMC10483739 DOI: 10.1186/s12951-023-02049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND III-V semiconductor nanowires are envisioned as being integrated in optoelectronic devices in the near future. However, the perspective of mass production of these nanowires raises concern for human safety due to their asbestos- and carbon nanotube-like properties, including their high aspect ratio shape. Indeed, III-V nanowires have similar dimensions as Mitsui-7 multi-walled carbon nanotubes, which induce lung cancer by inhalation in rats. It is therefore urgent to investigate the toxicological effects following lung exposure to III-V nanowires prior to their use in industrial production, which entails risk of human exposure. Here, female C57BL/6J mice were exposed to 2, 6, and 18 µg (0.12, 0.35 and 1.1 mg/kg bw) of gallium phosphide (III-V) nanowires (99 nm diameter, 3.7 μm length) by intratracheal instillation and the toxicity was investigated 1, 3, 28 days and 3 months after exposure. Mitsui-7 multi-walled carbon nanotubes and carbon black Printex 90 nanoparticles were used as benchmark nanomaterials. RESULTS Gallium phosphide nanowires induced genotoxicity in bronchoalveolar lavage cells and acute inflammation with eosinophilia observable both in bronchoalveolar lavage and lung tissue (1 and 3 days post-exposure). The inflammatory response was comparable to the response following exposure to Mitsui-7 multi-walled carbon nanotubes at similar dose levels. The nanowires underwent partial dissolution in the lung resulting in thinner nanowires, with an estimated in vivo half-life of 3 months. Despite the partial dissolution, nanowires were detected in lung, liver, spleen, kidney, uterus and brain 3 months after exposure. CONCLUSION Pulmonary exposure to gallium phosphide nanowires caused similar toxicological effects as the multi-walled carbon nanotube Mitsui-7.
Collapse
Affiliation(s)
- Trine Berthing
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Mercy Lard
- Division of Solid State Physics and NanoLund, Lund University, Lund, 22 100, Sweden
| | | | - Laura Abariute
- Division of Solid State Physics and NanoLund, Lund University, Lund, 22 100, Sweden
- Phase Holographic Imaging PHI AB, Lund, 224 78, Sweden
| | - Kenneth K Barfod
- The National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Food Science, Microbiology and Fermentation, University of Copenhagen, Copenhagen, Denmark
| | - Karl Adolfsson
- Division of Solid State Physics and NanoLund, Lund University, Lund, 22 100, Sweden
- Axis Communications AB, Lund, 223 69, Sweden
| | - Kristina B Knudsen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Henrik Wolff
- Finnish Institute of Occupational Health, Helsinki, Finland
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Christelle N Prinz
- Division of Solid State Physics and NanoLund, Lund University, Lund, 22 100, Sweden.
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Copenhagen, Denmark.
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
12
|
Valentino SA, Seidel C, Lorcin M, Sébillaud S, Wolff H, Grossmann S, Viton S, Nunge H, Saarimäki LA, Greco D, Cosnier F, Gaté L. Identification of a Gene Signature Predicting (Nano)Particle-Induced Adverse Lung Outcome in Rats. Int J Mol Sci 2023; 24:10890. [PMID: 37446067 DOI: 10.3390/ijms241310890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Nanoparticles are extensively used in industrial products or as food additives. However, despite their contribution to improving our quality of life, concerns have been raised regarding their potential impact on occupational and public health. To speed up research assessing nanoparticle-related hazards, this study was undertaken to identify early markers of harmful effects on the lungs. Female Sprague Dawley rats were either exposed to crystalline silica DQ-12 with instillation, or to titanium dioxide P25, carbon black Printex-90, or multi-walled carbon nanotube Mitsui-7 with nose-only inhalation. Tissues were collected at three post-exposure time points to assess short- and long-term effects. All particles induced lung inflammation. Histopathological and biochemical analyses revealed phospholipid accumulation, lipoproteinosis, and interstitial thickening with collagen deposition after exposure to DQ-12. Exposure to the highest dose of Printex-90 and Mitsui-7, but not P25, induced some phospholipid accumulation. Comparable histopathological changes were observed following exposure to P25, Printex-90, and Mitsui-7. Comparison of overall gene expression profiles identified 15 potential early markers of adverse lung outcomes induced by spherical particles. With Mitsui-7, a distinct gene expression signature was observed, suggesting that carbon nanotubes trigger different toxicity mechanisms to spherical particles.
Collapse
Affiliation(s)
- Sarah Amandine Valentino
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Carole Seidel
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Mylène Lorcin
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Sylvie Sébillaud
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Henrik Wolff
- Finnish Institute of Occupational Health, FI-00251 Helsinki, Finland
| | - Stéphane Grossmann
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Stéphane Viton
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Hervé Nunge
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Laura Aliisa Saarimäki
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00100 Helsinki, Finland
| | - Frédéric Cosnier
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Laurent Gaté
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| |
Collapse
|
13
|
Hadrup N, Sahlgren N, Jacobsen NR, Saber AT, Hougaard KS, Vogel U, Jensen KA. Toxicity dose descriptors from animal inhalation studies of 13 nanomaterials and their bulk and ionic counterparts and variation with primary particle characteristics. Nanotoxicology 2023:1-34. [PMID: 37300873 DOI: 10.1080/17435390.2023.2221728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
This study collects toxicity data from animal inhalation studies of some nanomaterials and their bulk and ionic counterparts. To allow potential grouping and interpretations, we retrieved the primary physicochemical and exposure data to the extent possible for each of the materials. Reviewed materials are compounds (mainly elements, oxides and salts) of carbon (carbon black, carbon nanotubes, and graphene), silver, cerium, cobalt, copper, iron, nickel, silicium (amorphous silica and quartz), titanium (titanium dioxide), and zinc (chemical symbols: Ag, C, Ce, Co, Cu, Fe, Ni, Si, Ti, TiO2, and Zn). Collected endpoints are: a) pulmonary inflammation, measured as neutrophils in bronchoalveolar lavage (BAL) fluid at 0-24 hours after last exposure; and b) genotoxicity/carcinogenicity. We present the dose descriptors no-observed-adverse-effect concentrations (NOAECs) and lowest-observed-adverse-effect concentrations (LOAECs) for 88 nanomaterial investigations in data-library and graph formats. We also calculate 'the value where 25% of exposed animals develop tumors' (T25) for carcinogenicity studies. We describe how the data may be used for hazard assessment of the materials using carbon black as an example. The collected data also enable hazard comparison between different materials. An important observation for poorly soluble particles is that the NOAEC for neutrophil numbers in general lies around 1 to 2 mg/m3. We further discuss why some materials' dose descriptors deviate from this level, likely reflecting the effects of the ionic form and effects of the fiber-shape. Finally, we discuss that long-term studies, in general, provide the lowest dose descriptors, and dose descriptors are positively correlated with particle size for near-spherical materials.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
- Research group for risk-benefit, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Nicklas Sahlgren
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| | - Nicklas R Jacobsen
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| | - Anne T Saber
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| | - Karin S Hougaard
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Keld A Jensen
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| |
Collapse
|
14
|
Barthel H, Sébillaud S, Lorcin M, Wolff H, Viton S, Cosnier F, Gaté L, Seidel C. Needlelike, short and thin multi-walled carbon nanotubes: comparison of effects on wild type and p53 +/- rat lungs. Nanotoxicology 2023; 17:270-288. [PMID: 37126100 DOI: 10.1080/17435390.2023.2204933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Carbon nanotubes (CNTs) are nanomaterials presenting an occupational inhalation risk during production or handling. The International Agency for Research on Cancer classified one CNT, Mitsui-7 (MWNT-7), as 'possibly carcinogenic to humans'. In recognition of their similarities, a proposal has been submitted to the risk assessment committee of ECHA to classify all fibers with 'Fibre Paradigm' (FP)-compatible dimensions as carcinogenic. However, there is a lack of clarity surrounding the toxicity of fibers that do not fit the FP criteria. In this study, we compared the effects of the FP-compatible Mitsui-7, to those of NM-403, a CNT that is too short and thin to fit the paradigm. Female Sprague Dawley rats deficient for p53 (GMO) and wild type (WT) rats were exposed to the two CNTs (0.25 mg/rat/week) by intratracheal instillation. Animals (GMO and WT) were exposed weekly for four consecutive weeks and were sacrificed 3 days or 8 months after the last instillation. Exposure to both CNTs induced acute lung inflammation. However, persistent inflammation at 8 months was only observed in the lungs of rats exposed to NM-403. In addition to the persistent inflammation, NM-403 stimulated hyperplasic changes in rat lungs, and no adenomas or carcinomas were detected. The degree and extent of hyperplasia was significantly more pronounced in GMO rats. These results suggest that CNT not meeting the FP criteria can cause persistent inflammation and hyperplasia. Consequently, their health effects should be carefully assessed.
Collapse
Affiliation(s)
- Hélène Barthel
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre-lès-Nancy, France
- Ingénierie Moléculaire et Physiophatologie Articulaire (IMoPA), Biopôle, Campus Biologie Santé, UMR 7365 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Sylvie Sébillaud
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre-lès-Nancy, France
| | - Mylène Lorcin
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre-lès-Nancy, France
| | - Henrik Wolff
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Stéphane Viton
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre-lès-Nancy, France
| | - Frédéric Cosnier
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre-lès-Nancy, France
| | - Laurent Gaté
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre-lès-Nancy, France
| | - Carole Seidel
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
15
|
Dazon C, Bau S, Payet R, Fierro V, Witschger O. Towards a surface metric to measure the dustiness of nanomaterial powders. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:670-679. [PMID: 36806437 DOI: 10.1039/d2em00514j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The relevance of dustiness methods is increasingly recognized in the preliminary exposure evaluation of workers handling nanomaterials in powder form, and should also be transposed to the assessment of environmental risk in the future. The methods currently recommended in the European standards are mainly based on determining a mass-based dustiness index [mg kg-1], whereas surface area is regularly put forward as a more appropriate determinant to assess the pulmonary toxicity of nanoparticles. In this study, we describe an operational methodology leading us to propose a surface metric to determine the dustiness index [m2 kg-1] of nanoparticulate matter. To this end, we demonstrate the equivalence between the external specific surface area of a nanopowder and that of its aerosol with five nanomaterials produced and used on an industrial scale, and covering a range of external specific surface areas from 35 to 230 m2 g-1. Compared to the conventional mass-based dustiness index, the surface-based dustiness index (1) is more discriminating, covering an additional order of magnitude, and (2) has an impact on the powder ranking with potential consequences on the preventive measures to be implemented. Finally, our proposal has the potential to be included in future revisions of European standards for workplace exposure and dustiness measurement, provided that further experimental results on surface-based dustiness indices support these preliminary data.
Collapse
Affiliation(s)
- Claire Dazon
- Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Paris, France.
| | - Sébastien Bau
- Aerosol Metrology Laboratory, INRS, Vandoeuvre, France
| | - Raphaël Payet
- Aerosol Metrology Laboratory, INRS, Vandoeuvre, France
| | | | | |
Collapse
|
16
|
Sørli JB, Jensen ACØ, Mortensen A, Szarek J, Chatzigianelli E, Gutierrez CAT, Jacobsen NR, Poulsen SS, Hafez I, Loizides C, Biskos G, Hougaard KS, Vogel U, Hadrup N. Genotoxicity in the absence of inflammation after tungsten inhalation in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104074. [PMID: 36724834 DOI: 10.1016/j.etap.2023.104074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Tungsten is used in several applications and human exposure may occur. To assess its pulmonary toxicity, we exposed male mice to nose-only inhalation of tungsten particles at 9, 23 or 132 mg/m3 (Low, Mid and High exposure) (45 min/day, 5 days/week for 2 weeks). Increased genotoxicity (assessed by comet assay) was seen in bronchoalveolar (BAL) fluid cells at Low and High exposure. We measured acellular ROS production, and cannot exclude that ROS contributed to the observed genotoxicity. We saw no effects on body weight gain, pulmonary inflammation, lactate dehydrogenase or protein in BAL fluid, pathology of liver or kidney, or on sperm counts. In conclusion, tungsten showed non-dose dependent genotoxicity in the absence of inflammation and therefore interpreted to be primary genotoxicity. Based on genotoxicity, a Lowest Observed Adverse Effect Concentration (LOAEC) could be set at 9 mg/m3. It was not possible to establish a No Adverse Effect Concentration (NOAEC).
Collapse
Affiliation(s)
- Jorid B Sørli
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Alexander C Ø Jensen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Alicja Mortensen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Józef Szarek
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, University of Warmia and Mazury in Olsztyn, Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland.
| | - Eleni Chatzigianelli
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Claudia A T Gutierrez
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark; Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Nicklas R Jacobsen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Sarah S Poulsen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Iosif Hafez
- Climate and Atmosphere Research Centre, The Cyprus Institute, 20 Konstantinou Kavafi Street, 2121, Aglantzia Nicosia, Cyprus.
| | - Charis Loizides
- Climate and Atmosphere Research Centre, The Cyprus Institute, 20 Konstantinou Kavafi Street, 2121, Aglantzia Nicosia, Cyprus.
| | - George Biskos
- Climate and Atmosphere Research Centre, The Cyprus Institute, 20 Konstantinou Kavafi Street, 2121, Aglantzia Nicosia, Cyprus; Faculty of Civil Engineering and Geosciences, Delft University of Technology, Gebouw 23 Stevinweg 1, 2628 CN Delft, the Netherlands.
| | - Karin S Hougaard
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark; Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark.
| | - Ulla Vogel
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark; DTU Food, Technical University of Denmark, Kemitorvet Bygning 202, 2800 Kongens Lyngby, Denmark.
| | - Niels Hadrup
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark; Research group for Risk-benefit, National Food Institute, Technical University of Denmark, Kemitorvet Bygning 202, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
17
|
McLean P, Mueller W, Gosens I, Cassee FR, Rothen-Rutishauser B, Boyles M, Tran L. Establishing relationships between particle-induced in vitro and in vivo inflammation endpoints to better extrapolate between in vitro markers and in vivo fibrosis. Part Fibre Toxicol 2023; 20:5. [PMID: 36759844 PMCID: PMC9909881 DOI: 10.1186/s12989-023-00516-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Toxicity assessment for regulatory purposes is starting to move away from traditional in vivo methods and towards new approach methodologies (NAM) such as high-throughput in vitro models and computational tools. For materials with limited hazard information, utilising quantitative Adverse Outcome Pathways (AOPs) in a testing strategy involving NAM can produce information relevant for risk assessment. The aim of this work was to determine the feasibility of linking in vitro endpoints to in vivo events, and moreover to key events associated with the onset of a chosen adverse outcome to aid in the development of NAM testing strategies. To do this, we focussed on the adverse outcome pathway (AOP) relating to the onset of pulmonary fibrosis. RESULTS We extracted in vivo and in vitro dose-response information for particles known to induce this pulmonary fibrosis (crystalline silica, specifically α-quartz). To test the in vivo-in vitro extrapolation (IVIVE) determined for crystalline silica, cerium dioxide nanoparticles (nano-CeO2) were used as a case study allowing us to evaluate our findings with a less studied substance. The IVIVE methodology outlined in this paper is formed of five steps, which can be more generally summarised into two categories (i) aligning the in vivo and in vitro dosimetry, (ii) comparing the dose-response curves and derivation of conversion factors. CONCLUSION Our analysis shows promising results with regards to correlation of in vitro cytokine secretion to in vivo acute pulmonary inflammation assessed by polymorphonuclear leukocyte influx, most notable is the potential of using IL-6 and IL-1β cytokine secretion from simple in vitro submerged models as a screening tool to assess the likelihood of lung inflammation at an early stage in product development, hence allowing a more targeted investigation using either a smaller, more targeted in vivo study or in the future a more complex in vitro protocol. This paper also highlights the strengths and limitations as well as the current difficulties in performing IVIVE assessment and suggestions for overcoming these issues.
Collapse
Affiliation(s)
- Polly McLean
- Institute of Occupational Medicine (IOM), Edinburgh, UK.
| | - William Mueller
- grid.410343.10000 0001 2224 0230Institute of Occupational Medicine (IOM), Edinburgh, UK
| | - Ilse Gosens
- grid.31147.300000 0001 2208 0118National Institute for Public Health and the Environment – RIVM, Bilthoven, The Netherlands
| | - Flemming R. Cassee
- grid.31147.300000 0001 2208 0118National Institute for Public Health and the Environment – RIVM, Bilthoven, The Netherlands ,grid.5477.10000000120346234Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Barbara Rothen-Rutishauser
- grid.8534.a0000 0004 0478 1713Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Matthew Boyles
- grid.410343.10000 0001 2224 0230Institute of Occupational Medicine (IOM), Edinburgh, UK
| | - Lang Tran
- grid.410343.10000 0001 2224 0230Institute of Occupational Medicine (IOM), Edinburgh, UK
| |
Collapse
|
18
|
Sørli JB, Jensen ACØ, Mortensen A, Szarek J, Gutierrez CAT, Givelet L, Loeschner K, Loizides C, Hafez I, Biskos G, Vogel U, Hadrup N. Pulmonary toxicity of molybdenum disulphide after inhalation in mice. Toxicology 2023; 485:153428. [PMID: 36641057 DOI: 10.1016/j.tox.2023.153428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Molybdenum disulphide (MoS2) is a constituent of many products. To protect humans, it is important to know at what air concentrations it becomes toxic. For this, we tested MoS2 particles by nose-only inhalation in mice. Exposures were set to 13, 50 and 150 mg MoS2/m3 (=8, 30 and 90 mg Mo/m3), corresponding to Low, Mid and High exposure. The duration was 30 min/day, 5 days/week for 3 weeks. Molybdenum lung-deposition levels were estimated based on aerosol particle size distribution measurements, and empirically determined with inductively coupled plasma-mass spectrometry (ICP-MS). Toxicological endpoints were body weight gain, respiratory function, pulmonary inflammation, histopathology, and genotoxicity (comet assay). Acellular reactive oxygen species (ROS) production was also determined. The aerosolised MoS2 powder had a mean aerodynamic diameter of 800 nm, and a specific surface area of 8.96 m2/g. Alveolar deposition of MoS2 in lung was estimated at 7, 27 and 79 µg/mouse and measured as 35, 101 and 171 µg/mouse for Low, Mid and High exposure, respectively. Body weight gain was lower than in controls at Mid and High exposure. The tidal volume was decreased with Low and Mid exposure on day 15. Increased genotoxicity was seen in bronchoalveolar lavage (BAL) fluid cells at Mid and High exposures. ROS production was substantially lower than for carbon black nanoparticles used as bench-mark, when normalised by mass. Yet if ROS of MoS2 was normalised by surface area, it was similar to that of carbon black, suggesting that a ROS contribution to the observed genotoxicity cannot be ruled out. In conclusion, effects on body weight gain and genotoxicity indicated that Low exposure (13 mg MoS2/m3, corresponding to 0.8 mg/m3 for an 8-hour working day) was a No Observed Adverse Effect Concentration (NOAEC,) while effects on respiratory function suggested this level as a Lowest Observed Adverse Effect Concentration (LOAEC).
Collapse
Affiliation(s)
- Jorid B Sørli
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Alexander C Ø Jensen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Alicja Mortensen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Józef Szarek
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | - Claudia A T Gutierrez
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark; Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Lucas Givelet
- Research Group for Analytical Food Chemistry, National Food Institute, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark.
| | - Katrin Loeschner
- Research Group for Analytical Food Chemistry, National Food Institute, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark.
| | - Charis Loizides
- Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia 2121, Cyprus.
| | - Iosif Hafez
- Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia 2121, Cyprus.
| | - George Biskos
- Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia 2121, Cyprus; Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft, the Netherlands.
| | - Ulla Vogel
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark; DTU Food, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Niels Hadrup
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark; Research group for Risk-Benefit, National Food Institute, Technical University of Denmark, Denmark.
| |
Collapse
|
19
|
Farnoud A, Tofighian H, Baumann I, Ahookhosh K, Pourmehran O, Cui X, Heuveline V, Song C, Vreugde S, Wormald PJ, Menden MP, Schmid O. Numerical and Machine Learning Analysis of the Parameters Affecting the Regionally Delivered Nasal Dose of Nano- and Micro-Sized Aerosolized Drugs. Pharmaceuticals (Basel) 2023; 16:ph16010081. [PMID: 36678578 PMCID: PMC9863249 DOI: 10.3390/ph16010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023] Open
Abstract
The nasal epithelium is an important target for drug delivery to the nose and secondary organs such as the brain via the olfactory bulb. For both topical and brain delivery, the targeting of specific nasal regions such as the olfactory epithelium (brain) is essential, yet challenging. In this study, a numerical model was developed to predict the regional dose as mass per surface area (for an inhaled mass of 2.5 mg), which is the biologically most relevant dose metric for drug delivery in the respiratory system. The role of aerosol diameter (particle diameter: 1 nm to 30 µm) and inhalation flow rate (4, 15 and 30 L/min) in optimal drug delivery to the vestibule, nasal valve, olfactory and nasopharynx is assessed. To obtain the highest doses in the olfactory region, we suggest aerosols with a diameter of 20 µm and a medium inlet air flow rate of 15 L/min. High deposition on the olfactory epithelium was also observed for nanoparticles below 1 nm, as was high residence time (slow flow rate of 4 L/min), but the very low mass of 1 nm nanoparticles is prohibitive for most therapeutic applications. Moreover, high flow rates (30 L/min) and larger micro-aerosols lead to highest doses in the vestibule and nasal valve regions. On the other hand, the highest drug doses in the nasopharynx are observed for nano-aerosol (1 nm) and fine microparticles (1-20 µm) with a relatively weak dependence on flow rate. Furthermore, using the 45 different inhalation scenarios generated by numerical models, different machine learning models with five-fold cross-validation are trained to predict the delivered dose and avoid partial differential equation solvers for future predictions. Random forest and gradient boosting models resulted in R2 scores of 0.89 and 0.96, respectively. The aerosol diameter and region of interest are the most important features affecting delivered dose, with an approximate importance of 42% and 47%, respectively.
Collapse
Affiliation(s)
- Ali Farnoud
- Computational Health Center, Helmholtz Munich, 85764 Neuherberg, Germany
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
- Institute of Lung Health and Immunity, Helmholtz Zentrum München–German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Correspondence:
| | - Hesam Tofighian
- Department of Mechanical Engineering, Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Ingo Baumann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Center of Heidelberg University, 69120 Heidelberg, Germany
| | - Kaveh Ahookhosh
- Biomedical MRI and MoSAIC, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Oveis Pourmehran
- Department of Otolaryngology, Head and Neck Surgery, Adelaide Medical School, The University of Adelaide, Adelaide 5011, Australia
- School of Mechanical Engineering, The University of Adelaide, Adelaide 5005, Australia
| | - Xinguang Cui
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Vincent Heuveline
- Engineering Mathematics and Computing Lab (EMCL), Heidelberg University, 69120 Heidelberg, Germany
| | - Chen Song
- Engineering Mathematics and Computing Lab (EMCL), Heidelberg University, 69120 Heidelberg, Germany
| | - Sarah Vreugde
- Department of Otolaryngology, Head and Neck Surgery, Adelaide Medical School, The University of Adelaide, Adelaide 5011, Australia
| | - Peter-John Wormald
- Department of Otolaryngology, Head and Neck Surgery, Adelaide Medical School, The University of Adelaide, Adelaide 5011, Australia
| | - Michael P. Menden
- Computational Health Center, Helmholtz Munich, 85764 Neuherberg, Germany
- Department of Biology, Ludwig-Maximilian University Munich, 82152 Planegg, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
| | - Otmar Schmid
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
- Institute of Lung Health and Immunity, Helmholtz Zentrum München–German Research Center for Environmental Health, 85764 Neuherberg, Germany
| |
Collapse
|
20
|
Wierzbicka A, Omelekhina Y, Saber AT, Bloom E, Gren L, Poulsen SS, Strandberg B, Pagels J, Jacobsen NR. Indoor PM 2.5 from occupied residences in Sweden caused higher inflammation in mice compared to outdoor PM 2.5. INDOOR AIR 2022; 32:e13177. [PMID: 36567521 PMCID: PMC10107884 DOI: 10.1111/ina.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
We spend most of our time indoors; however, little is known about the effects of exposure to aerosol particles indoors. We aimed to determine differences in relative toxicity and physicochemical properties of PM2.5 collected simultaneously indoors (PM2.5 INDOOR ) and outdoors (PM2.5 OUTDOOR ) in 15 occupied homes in southern Sweden. Collected particles were extracted from filters, pooled (indoor and outdoor separately), and characterized for chemical composition and endotoxins before being tested for toxicity in mice via intratracheal instillation. Various endpoints including lung inflammation, genotoxicity, and acute-phase response in lung and liver were assessed 1, 3, and 28 days post-exposure. Chemical composition of particles used in toxicological assessment was compared to particles analyzed without extraction. Time-resolved particle mass and number concentrations were monitored. PM2.5 INDOOR showed higher relative concentrations (μg mg-1 ) of metals, PAHs, and endotoxins compared to PM2.5 OUTDOOR . These differences may be linked to PM2.5 INDOOR causing significantly higher lung inflammation and lung acute-phase response 1 day post-exposure compared to PM2.5 OUTDOOR and vehicle controls, respectively. None of the tested materials caused genotoxicity. PM2.5 INDOOR displayed higher relative toxicity than PM2.5 OUTDOOR under the studied conditions, that is, wintertime with reduced air exchange rates, high influence of indoor sources, and relatively low outdoor concentrations of PM. Reducing PM2.5 INDOOR exposure requires reduction of both infiltration from outdoors and indoor-generated particles.
Collapse
Affiliation(s)
- Aneta Wierzbicka
- Ergonomics and Aerosol TechnologyLund UniversityLundSweden
- Centre for Healthy Indoor EnvironmentsLund UniversityLundSweden
| | - Yuliya Omelekhina
- Ergonomics and Aerosol TechnologyLund UniversityLundSweden
- Centre for Healthy Indoor EnvironmentsLund UniversityLundSweden
| | | | - Erica Bloom
- Division of Built EnvironmentRISE Research Institutes of SwedenStockholmSweden
| | - Louise Gren
- Ergonomics and Aerosol TechnologyLund UniversityLundSweden
| | - Sarah Søs Poulsen
- The National Research Centre for the Working EnvironmentCopenhagenDenmark
| | - Bo Strandberg
- Division of Occupational and Environmental MedicineLund UniversityLundSweden
- Department of Occupational and Environmental MedicineRegion SkåneLundSweden
| | - Joakim Pagels
- Ergonomics and Aerosol TechnologyLund UniversityLundSweden
| | | |
Collapse
|
21
|
Tschiche HR, Bierkandt FS, Creutzenberg O, Fessard V, Franz R, Greiner R, Gruber-Traub C, Haas KH, Haase A, Hartwig A, Hesse B, Hund-Rinke K, Iden P, Kromer C, Loeschner K, Mutz D, Rakow A, Rasmussen K, Rauscher H, Richter H, Schoon J, Schmid O, Som C, Spindler LM, Tovar GEM, Westerhoff P, Wohlleben W, Luch A, Laux P. Analytical and toxicological aspects of nanomaterials in different product groups: Challenges and opportunities. NANOIMPACT 2022; 28:100416. [PMID: 35995388 DOI: 10.1016/j.impact.2022.100416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/15/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
The widespread integration of engineered nanomaterials into consumer and industrial products creates new challenges and requires innovative approaches in terms of design, testing, reliability, and safety of nanotechnology. The aim of this review article is to give an overview of different product groups in which nanomaterials are present and outline their safety aspects for consumers. Here, release of nanomaterials and related analytical challenges and solutions as well as toxicological considerations, such as dose-metrics, are discussed. Additionally, the utilization of engineered nanomaterials as pharmaceuticals or nutraceuticals to deliver and release cargo molecules is covered. Furthermore, critical pathways for human exposure to nanomaterials, namely inhalation and ingestion, are discussed in the context of risk assessment. Analysis of NMs in food, innovative medicine or food contact materials is discussed. Specific focus is on the presence and release of nanomaterials, including whether nanomaterials can migrate from polymer nanocomposites used in food contact materials. With regard to the toxicology and toxicokinetics of nanomaterials, aspects of dose metrics of inhalation toxicity as well as ingestion toxicology and comparison between in vitro and in vivo conclusions are considered. The definition of dose descriptors to be applied in toxicological testing is emphasized. In relation to potential exposure from different products, opportunities arising from the use of advanced analytical techniques in more unique scenarios such as release of nanomaterials from medical devices such as orthopedic implants are addressed. Alongside higher product performance and complexity, further challenges regarding material characterization and safety, as well as acceptance by the general public are expected.
Collapse
Affiliation(s)
- Harald R Tschiche
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany.
| | - Frank S Bierkandt
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Otto Creutzenberg
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Valerie Fessard
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of contaminants Unit, Fougères, France
| | - Roland Franz
- Fraunhofer Institute for Process Engineering and Packaging (IVV), Freising, Germany
| | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Karlsruhe, Germany
| | - Carmen Gruber-Traub
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany
| | - Karl-Heinz Haas
- Fraunhofer Institute for Silicate Research (ISC), Würzburg, Germany
| | - Andrea Haase
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Andrea Hartwig
- Karlsruhe Institute of Technology (KIT), Institute of Applied Biosciences (IAB), Food Chemistry and Toxicology, Germany
| | - Bernhard Hesse
- European Synchrotron Radiation Facility, Grenoble, France
| | - Kerstin Hund-Rinke
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schmallenberg, Germany
| | | | - Charlotte Kromer
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Katrin Loeschner
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Diana Mutz
- German Federal Institute for Risk Assessment (BfR), Research Strategy and Coordination, Berlin, Germany
| | - Anastasia Rakow
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Berlin, Germany; Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | | | - Hubert Rauscher
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Hannes Richter
- Fraunhofer IKTS - Institute for Ceramic Technologies and Systems, Hermsdorf, Germany
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Otmar Schmid
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany; Institute of Lung Health and Immunity, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Som
- Technology and Society Laboratory, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Lena M Spindler
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany; University of Stuttgart, Institute of Interfacial Process Engineering and Plasma Technology (IGVP), Stuttgart, Germany
| | - Günter E M Tovar
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany; University of Stuttgart, Institute of Interfacial Process Engineering and Plasma Technology (IGVP), Stuttgart, Germany
| | - Paul Westerhoff
- Arizona State University, Tempe, AZ, United States of America
| | | | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Peter Laux
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| |
Collapse
|
22
|
Di Ianni E, Møller P, Cholakova T, Wolff H, Jacobsen NR, Vogel U. Assessment of primary and inflammation-driven genotoxicity of carbon black nanoparticles in vitro and in vivo. Nanotoxicology 2022; 16:526-546. [PMID: 35993455 DOI: 10.1080/17435390.2022.2106906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Carbon black nanoparticles (CBNPs) have a large surface area/volume ratio and are known to generate oxidative stress and inflammation that may result in genotoxicity and cancer. Here, we evaluated the primary and inflammatory response-driven (i.e. secondary) genotoxicity of two CBNPs, Flammruss101 (FL101) and PrintexXE2B (XE2B) that differ in size and specific surface area (SSA), and cause different amounts of reactive oxygen species. Three doses (low, medium and high) of FL101 and XE2B were assessed in vitro in the lung epithelial (A549) and activated THP-1 (THP-1a) monocytic cells exposed in submerged conditions for 6 and 24 h, and in C57BL/6 mice at day 1, 28 and 90 following intratracheal instillation. In vitro, we assessed pro-inflammatory response as IL-8 and IL-1β gene expression, and in vivo, inflammation was determined as inflammatory cell infiltrates in bronchial lavage (BAL) fluid and as histological changes in lung tissue. DNA damage was quantified in vitro and in vivo as DNA strand breaks levels by the alkaline comet assay. Inflammatory responses in vitro and in vivo correlated with dosed CBNPs SSA. Both materials induced DNA damage in THP-1a (correlated with dosed mass), and only XE2B in A549 cells. Non-statistically significant increase in DNA damage in vivo was observed in BAL cells. In conclusion, this study shows dosed SSA predicted inflammation both in vivo and in vitro, whereas dosed mass predicted genotoxicity in vitro in THP-1a cells. The observed lack of correlation between CBNP surface area and genotoxicity provides little evidence of inflammation-driven genotoxicity in vivo and in vitro.
Collapse
Affiliation(s)
- Emilio Di Ianni
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Tanya Cholakova
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Henrik Wolff
- Occupational Safety, Finnish Institute of Occupational Health, Helsinki, Finland
| | | | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark.,National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
23
|
Romeo D, Hischier R, Nowack B, Wick P. Approach toward In Vitro-Based Human Toxicity Effect Factors for the Life Cycle Impact Assessment of Inhaled Low-Solubility Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8552-8560. [PMID: 35657801 PMCID: PMC9227749 DOI: 10.1021/acs.est.2c01816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Today's scarcity of animal toxicological data for nanomaterials could be lifted by substituting in vivo data with in vitro data to calculate nanomaterials' effect factors (EF) for Life Cycle Assessment (LCA). Here, we present a step-by-step procedure to calculate in vitro-to-in vivo extrapolation factors to estimate human Benchmark Doses and subsequently in vitro-based EFs for several inhaled nonsoluble nanomaterials. Based on mouse data, the in vitro-based EF of TiO2 is between 2.76 · 10-4 and 1.10 · 10-3 cases/(m2/g·kg intake), depending on the aerodynamic size of the particle, which is in good agreement with in vivo-based EFs (1.51 · 10-4-5.6 · 10-2 cases/(m2/g·kg intake)). The EF for amorphous silica is in a similar range as for TiO2, but the result is less robust due to only few in vivo data available. The results based on rat data are very different, confirming the importance of selecting animal species representative of human responses. The discrepancy between in vivo and in vitro animal data in terms of availability and quality limits the coverage of further nanomaterials. Systematic testing on human and animal cells is needed to reduce the variability in toxicological response determined by the differences in experimental conditions, thus helping improve the predictivity of in vitro-to-in vivo extrapolation factors.
Collapse
Affiliation(s)
- Daina Romeo
- Particles-Biology
Interactions Laboratory, Empa, Swiss Federal
Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Roland Hischier
- Technology and Society Laboratory, Empa, Swiss Federal Laboratories for Materials Science and
Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Bernd Nowack
- Technology and Society Laboratory, Empa, Swiss Federal Laboratories for Materials Science and
Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Peter Wick
- Particles-Biology
Interactions Laboratory, Empa, Swiss Federal
Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
24
|
Visser M, Gosens I, Bard D, van Broekhuizen P, Janer G, Kuempel E, Riediker M, Vogel U, Dekkers S. Towards health-based nano reference values (HNRVs) for occupational exposure: Recommendations from an expert panel. NANOIMPACT 2022; 26:100396. [PMID: 35560294 PMCID: PMC10617652 DOI: 10.1016/j.impact.2022.100396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/23/2022] [Accepted: 03/11/2022] [Indexed: 06/15/2023]
Abstract
Unique physicochemical characteristics of engineered nanomaterials (ENMs) suggest the need for nanomaterial-specific occupational exposure limits (OELs). Setting these limits remains a challenge. Therefore, the aim of this study was to set out a framework to evaluate the feasibility of deriving advisory health-based occupational limit values for groups of ENMs, based on scientific knowledge. We have used an expert panel approach to address three questions: 1) What ENM-categories should be distinguished to derive advisory health-based occupational limit values (or health-based Nano Reference Values, HNRVs) for groups of ENMs? 2) What evidence would be needed to define values for these categories? And 3) How much effort would it take to achieve this? The panel experts distinguished six possible categories of HNRVs: A) WHO-fiber-like high aspect ratio ENMs (HARNs), B) Non-WHO-fiber-like HARNs and other non-spheroidal ENMs, C) readily soluble spheroidal ENMs, D) biopersistent spheroidal ENMs with unknown toxicity, E) biopersistent spheroidal ENMs with substance-specific toxicity and F) biopersistent spheroidal ENMs with relatively low substance-specific toxicity. For category A, the WHO-fiber-like HARNs, agreement was reached on criteria defining this category and the approach of using health-based risk estimates for asbestos to derive the HNRV. For category B, a quite heterogeneous category, more toxicity data are needed to set an HNRV. For category C, readily soluble spheroidal ENMs, using the OEL of their molecular or ionic counterpart would be a good starting point. For the biopersistent ENMs with unknown toxicity, HNRVs cannot be applied as case-by-case testing is required. For the other biopersistent ENMs in category E and F, we make several recommendations that can facilitate the derivation of these HNRVs. The proposed categories and recommendations as outlined by this expert panel can serve as a reference point for derivation of HNRVs when health-based OELs for ENMs are not yet available.
Collapse
Affiliation(s)
- Maaike Visser
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | - Ilse Gosens
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Delphine Bard
- Health and Safety Executive (HSE) Science and Research Centre, Buxton, United Kingdom
| | | | - Gemma Janer
- Leitat Technological Center, Barcelona, Spain
| | - Eileen Kuempel
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Michael Riediker
- Swiss Centre for Occupational and Environmental Health, Winterthur, Switzerland
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Susan Dekkers
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
25
|
Meldrum K, Evans SJ, Vogel U, Tran L, Doak SH, Clift MJD. The influence of exposure approaches to in vitro lung epithelial barrier models to assess engineered nanomaterial hazard. Nanotoxicology 2022; 16:114-134. [PMID: 35343373 DOI: 10.1080/17435390.2022.2051627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Exposure to engineered nanomaterials (ENM) poses a potential health risk to humans through long-term, repetitive low-dose exposures. Currently, this is not commonplace within in vitro lung cell cultures. Therefore, the purpose of this study was to consider the optimal exposure approach toward determining the stability, sensitivity and validity of using in vitro lung cell mono- and co-cultures to determine ENM hazard. A range of exposure scenarios were conducted with DQ12 (previously established as a positive particle control) (historic and re-activated), TiO2 (JRC NM-105) and BaSO4 (JRC NM-220) on both monocultures of A549 cells as well as co-cultures of A549 cells and differentiated THP-1 cells. Cell cultures were exposed to either a single, or a repeated exposure over 24, 48- or 72-hours at in vivo extrapolated concentrations of 0-5.2 µg/cm2, 0-6 µg/cm2 and 0-1µg/cm2. The focus of this study was the pro-inflammatory, cytotoxic and genotoxic response elicited by these ENMs. Exposure to DQ12 caused pro-inflammatory responses after 48 hours repeat exposures, as well as increases in micronucleus frequency. Neither TiO2 nor BaSO4 elicited a pro-inflammatory response at this time point. However, there was induction of IL-6 after 24 hours TiO2 exposure. In conclusion, it is important to consider the appropriateness of the positive control implemented, the cell culture model, the time of exposure as well as the type of exposure (bolus or fractionated) before establishing if an in vitro model is appropriate to determine the level of response to the specific ENM of interest.
Collapse
Affiliation(s)
- Kirsty Meldrum
- In Vitro Toxicology Group, Swansea University, Swansea, UK
| | | | - Ulla Vogel
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Lang Tran
- Institute of Occupational Medicine (IOM), Edinburgh, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Swansea University, Swansea, UK
| | | |
Collapse
|
26
|
Del Secco B, Trabucco S, Ravegnani F, Koivisto AJ, Zanoni I, Blosi M, Ortelli S, Altin M, Bartolini G, Costa AL, Belosi F. Particles Emission from an Industrial Spray Coating Process Using Nano-Materials. NANOMATERIALS 2022; 12:nano12030313. [PMID: 35159658 PMCID: PMC8838285 DOI: 10.3390/nano12030313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/16/2021] [Accepted: 01/13/2022] [Indexed: 01/08/2023]
Abstract
Industrial spray coating processes are known to produce excellent coatings on large surfaces and are thus often used for in-line production. However, they could be one of the most critical sources of worker exposure to ultrafine particles (UFPs). A monitoring campaign at the Witek s.r.l. (Florence, Italy) was deployed to characterize the release of TiO2 NPs doped with nitrogen (TiO2-N) and Ag capped with hydroxyethyl cellulose (AgHEC) during automatic industrial spray-coating of polymethyl methacrylate (PMMA) and polyester. Aerosol particles were characterized inside the spray chamber at near field (NF) and far field (FF) locations using on-line and off-line instruments. Results showed that TiO2-N suspension produced higher particle number concentrations than AgHEC in the size range 0.3–1 µm (on average 1.9 102 p/cm3 and 2.5 101 p/cm3, respectively) after background removing. At FF, especially at worst case scenario (4 nozzles, 800 mL/min flow rate) for TiO2-N, the spray spikes were correlated with NF, with an observed time lag of 1 minute corresponding to a diffusion speed of 0.1 m/s. The averaged ratio between particles mass concentrations in the NF position and inside the spray chamber was 1.7% and 1.5% for TiO2-N and for AgHEC suspensions, respectively. The released particles’ number concentration of TiO2-N in the size particles range 0.3–1 µm was comparable for both PMMA and polyester substrates, about 1.5 and 1.6 102 p/cm3. In the size range 0.01–30 µm, the aerosol number concentration at NF for both suspensions was lower than the nano reference values (NRVs) of 16·103 p/cm-3.
Collapse
Affiliation(s)
- Benedetta Del Secco
- CNR-ISAC, Institute of Atmospheric Sciences and Climate-National Research Council of Italy, Via Gobetti, 101, 40129 Bologna, Italy; (S.T.); (F.R.); (F.B.)
- Correspondence:
| | - Sara Trabucco
- CNR-ISAC, Institute of Atmospheric Sciences and Climate-National Research Council of Italy, Via Gobetti, 101, 40129 Bologna, Italy; (S.T.); (F.R.); (F.B.)
| | - Fabrizio Ravegnani
- CNR-ISAC, Institute of Atmospheric Sciences and Climate-National Research Council of Italy, Via Gobetti, 101, 40129 Bologna, Italy; (S.T.); (F.R.); (F.B.)
| | | | - Ilaria Zanoni
- CNR-ISTEC, Institute of Science and Technology for Ceramics-National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy; (I.Z.); (M.B.); (S.O.); (A.L.C.)
| | - Magda Blosi
- CNR-ISTEC, Institute of Science and Technology for Ceramics-National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy; (I.Z.); (M.B.); (S.O.); (A.L.C.)
| | - Simona Ortelli
- CNR-ISTEC, Institute of Science and Technology for Ceramics-National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy; (I.Z.); (M.B.); (S.O.); (A.L.C.)
| | - Marko Altin
- Witek srl., Via Siena 47, 50142 Firenze, Italy; (M.A.); (G.B.)
| | | | - Anna Luisa Costa
- CNR-ISTEC, Institute of Science and Technology for Ceramics-National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy; (I.Z.); (M.B.); (S.O.); (A.L.C.)
| | - Franco Belosi
- CNR-ISAC, Institute of Atmospheric Sciences and Climate-National Research Council of Italy, Via Gobetti, 101, 40129 Bologna, Italy; (S.T.); (F.R.); (F.B.)
| |
Collapse
|
27
|
Murugadoss S, Mülhopt S, Diabaté S, Ghosh M, Paur HR, Stapf D, Weiss C, Hoet PH. Agglomeration State of Titanium-Dioxide (TiO 2) Nanomaterials Influences the Dose Deposition and Cytotoxic Responses in Human Bronchial Epithelial Cells at the Air-Liquid Interface. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3226. [PMID: 34947575 PMCID: PMC8703437 DOI: 10.3390/nano11123226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022]
Abstract
Extensive production and use of nanomaterials (NMs), such as titanium dioxide (TiO2), raises concern regarding their potential adverse effects to humans. While considerable efforts have been made to assess the safety of TiO2 NMs using in vitro and in vivo studies, results obtained to date are unreliable, possibly due to the dynamic agglomeration behavior of TiO2 NMs. Moreover, agglomerates are of prime importance in occupational exposure scenarios, but their toxicological relevance remains poorly understood. Therefore, the aim of this study was to investigate the potential pulmonary effects induced by TiO2 agglomerates of different sizes at the air-liquid interface (ALI), which is more realistic in terms of inhalation exposure, and compare it to results previously obtained under submerged conditions. A nano-TiO2 (17 nm) and a non-nano TiO2 (117 nm) was selected for this study. Stable stock dispersions of small agglomerates and their respective larger counterparts of each TiO2 particles were prepared, and human bronchial epithelial (HBE) cells were exposed to different doses of aerosolized TiO2 agglomerates at the ALI. At the end of 4h exposure, cytotoxicity, glutathione depletion, and DNA damage were evaluated. Our results indicate that dose deposition and the toxic potential in HBE cells are influenced by agglomeration and exposure via the ALI induces different cellular responses than in submerged systems. We conclude that the agglomeration state is crucial in the assessment of pulmonary effects of NMs.
Collapse
Affiliation(s)
- Sivakumar Murugadoss
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium; (M.G.); (P.H.H.)
| | - Sonja Mülhopt
- Institute for Technical Chemistry, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany; (H.-R.P.); (D.S.)
| | - Silvia Diabaté
- Institute of Biological and Chemical Systems—Biological Information Processing, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany; (S.D.); (C.W.)
| | - Manosij Ghosh
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium; (M.G.); (P.H.H.)
| | - Hanns-Rudolf Paur
- Institute for Technical Chemistry, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany; (H.-R.P.); (D.S.)
| | - Dieter Stapf
- Institute for Technical Chemistry, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany; (H.-R.P.); (D.S.)
| | - Carsten Weiss
- Institute of Biological and Chemical Systems—Biological Information Processing, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany; (S.D.); (C.W.)
| | - Peter H. Hoet
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium; (M.G.); (P.H.H.)
| |
Collapse
|