1
|
Jiang Y, Wu Q, Dang Y, Peng L, Meng L, You C. Untargeted metabolomics unveils critical metabolic signatures in novel phenotypes of acute ischemic stroke. Metab Brain Dis 2025; 40:130. [PMID: 39969622 DOI: 10.1007/s11011-024-01451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/01/2024] [Indexed: 02/20/2025]
Abstract
This study aimed to identify metabolic footprints associated with distinct phenotypes of acute ischemic stroke (AIS) using untargeted metabolomics. We included 20 samples each from AIS phenotype A (n = 251), B (n = 213), and C (n = 43) groups, along with 20 age- and gender-matched healthy controls (HCs). Plasma metabolic profiles were analyzed using liquid chromatography-mass spectrometry (LC-MS). Weighted gene correlation network analysis (WGCNA) evaluated associations between metabolite clusters and clinical traits, including the National Institutes of Health Stroke Scale (NIHSS) and the modified Rankin Scale (mRS). We identified three, five, and six key differential metabolites for diagnosing phenotypes A, B, and C, respectively, demonstrating high diagnostic performance. These metabolites were focused on fatty acids, sex hormones, amino acids, and their derivatives. WGCNA identified 12 core metabolites involved in phenotype progression. Notably, phenylalanylphenylalanine and phenylalanylleucine were inversely correlated with disease severity and disability. Metabolites related to energy supply and inflammation were common across phenotypes, with additional changes in ionic homeostasis in phenotype A and decreased neurotransmitter release in phenotype C. Biosynthesis of unsaturated fatty acids and the pentose phosphate pathway (PPP) were relevant across all phenotypes, while the folate biosynthesis pathway was linked to phenotype C and clinical scales. Key metabolites, including phenylalanylphenylalanine and phenylalanylleucine, and pathways such as folate biosynthesis, significantly contribute to AIS severity and differentiation of phenotypes. These findings offer new insights into the pathogenesis and mechanisms underlying AIS phenotypes.
Collapse
Affiliation(s)
- Yao Jiang
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Qian Wu
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yingqiang Dang
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Lingling Peng
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Ling Meng
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Chongge You
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
McCarrick S, Malmborg V, Gren L, Danielsen PH, Tunér M, Palmberg L, Broberg K, Pagels J, Vogel U, Gliga AR. Pulmonary exposure to renewable diesel exhaust particles alters protein expression and toxicity profiles in bronchoalveolar lavage fluid and plasma of mice. Arch Toxicol 2025; 99:797-814. [PMID: 39739031 PMCID: PMC11775017 DOI: 10.1007/s00204-024-03915-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/21/2024] [Indexed: 01/02/2025]
Abstract
Exposure to diesel exhaust is associated with increased risk of cardiovascular and lung disease. Substituting petroleum diesel with renewable diesel can alter emission properties but the potential health effects remain unclear. This study aimed to explore toxicity and underlying mechanisms of diesel exhaust from renewable fuels. Using proximity extension assay (Olink), 92 proteins linked to inflammation, cardiovascular function, and cancer were analyzed in bronchoalveolar lavage fluid (BALF) and plasma in mice 1 day after pulmonary exposure to exhaust particles at doses of 6, 18, and 54 µg/mouse. Particles were generated from combustion of renewable (rapeseed methyl ester, RME13, hydrogen-treated vegetable oil, HVO13; both at 13% O2 engine intake) and petroleum diesel (MK1 ultra-low-sulfur diesel at 13% and 17% O2 intake; DEP13 and DEP17). We identified positive dose-response relationships between exposure and proteins in BALF using linear models: 33 proteins for HVO13, 24 for DEP17, 22 for DEP13, and 12 for RME13 (p value < 0.05). In BALF, 11 proteins indicating cytokine signaling and inflammation (CCL2, CXCL1, CCL3L3, CSF2, IL1A, CCL20, TPP1, GDNF, LGMN, ITGB6, PDGFB) were common for all exposures. Several proteins in BALF (e.g., CCL2, CXCL1, CCL3L3, CSF2, IL1A) correlated (rs ≥ 0.5) with neutrophil cell count and DNA damage in BAL cells. Interestingly, plasma protein profiles were only affected by RME13 and, to lesser extent, by DEP13. Overall, we identified inflammation-related changes in the BALF as a common toxic mechanism for the combustion particles. Our protein-based approach enables sensitive detection of inflammatory protein changes across different matrices enhancing understanding of exhaust particle toxicity.
Collapse
Affiliation(s)
- Sarah McCarrick
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vilhelm Malmborg
- Division of Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Louise Gren
- Division of Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | | | - Martin Tunér
- Division of Combustion Engines, Lund University, Lund, Sweden
| | - Lena Palmberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Joakim Pagels
- Division of Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Anda R Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Faruqui N, Orell S, Dondi C, Leni Z, Kalbermatter DM, Gefors L, Rissler J, Vasilatou K, Mudway IS, Kåredal M, Shaw M, Larsson-Callerfelt AK. Differential Cytotoxicity and Inflammatory Responses to Particulate Matter Components in Airway Structural Cells. Int J Mol Sci 2025; 26:830. [PMID: 39859544 PMCID: PMC11765832 DOI: 10.3390/ijms26020830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different particle sizes, independent of their origin and chemical composition. The objective of this study was to assess the relative hazardous effects of carbonaceous particles (soot), ammonium nitrate, ammonium sulfate, and copper oxide (CuO), which are standard components of ambient air, reflecting contributions from primary combustion, secondary inorganic constituents, and non-exhaust emissions (NEE) from vehicular traffic. Human epithelial cells representing bronchial (BEAS-2B) and alveolar locations (H441 and A549) in the airways, human lung fibroblasts (HFL-1), and rat precision-cut lung slices (PCLS) were exposed in submerged cultures to different concentrations of particles for 5-72 h. Following exposure, cell viability, metabolic activity, reactive oxygen species (ROS) formation, and inflammatory responses were analyzed. CuO and, to a lesser extent, soot reduced cell viability in a dose-dependent manner, increased ROS formation, and induced inflammatory responses. Ammonium nitrate and ammonium sulfate did not elicit any significant cytotoxic responses but induced immunomodulatory alterations at very high concentrations. Our findings demonstrate that secondary inorganic components of PM have a lower hazard cytotoxicity compared with combustion-derived and indicative NEE components, and alveolar epithelial cells are more sensitive to PM exposure. This information should help to inform which sources of PM to target and feed into improved, targeted air quality guidelines.
Collapse
Affiliation(s)
- Nilofar Faruqui
- Department of Chemical & Biological Services, National Physical Laboratory, Teddington TW11 0LW, UK
| | - Sofie Orell
- Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden
| | - Camilla Dondi
- Department of Chemical & Biological Services, National Physical Laboratory, Teddington TW11 0LW, UK
| | - Zaira Leni
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | | | - Lina Gefors
- Lund University Bioimaging Centre (LBIC), Lund University, 221 84 Lund, Sweden
| | - Jenny Rissler
- Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering (LTH), Lund University, 223 62 Lund, Sweden
| | | | - Ian S. Mudway
- MRC Centre for Environment and Health, Imperial College London, London W2 1PG, UK
- National Institute of Health Protection Research Unit in Environmental Exposures and Health, London W2 1NY, UK
| | - Monica Kåredal
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 223 63 Lund, Sweden
- Department of Occupational and Environmental Medicine, Region Skåne, 223 63 Lund, Sweden
| | - Michael Shaw
- Department of Chemical & Biological Services, National Physical Laboratory, Teddington TW11 0LW, UK
- Department of Computer Science, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
4
|
Li YW, Wang DD, Chen HQ, Zeng Y, Wang N, Shi Y, Li JY, Zhou NY, Wang DP, Chen Q, Han X, Cao J, Liu WB. RNA reading protein YTHDF2 mediates Benzo(k)fluoranthene induced male reproductive injury by regulating the stability of BCL2. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124889. [PMID: 39236842 DOI: 10.1016/j.envpol.2024.124889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Benzo (k) fluoranthene (BkF) has adverse effects on male reproduction, but its specific mechanism of action is still unclear. This study focused on the role of RNA reading protein YTHDF2 and its mechanism in BkF induced male reproductive injury. Mouse GC-2 spermatocytes were exposed to 0, 40, 80, 160 μM BkF. It was found that BkF significantly increased the apoptosis of GC-2 cell and decreased its survival rate. BCL2 in spermatocytes decreased significantly, while the expression of P53 and BAX exhibited a notable increase. Interestingly, the expression of RNA reading protein YTHDF2 progressively rose in tandem with the escalating BkF exposure dosage. Overexpression of YTHDF2 significantly reduced the viability of cells and increased the apoptosis rate. Meanwhile, there was a substantial increase in the expression of P53 and BAX, BCL2 was significantly down-regulated. On the contrary, interfering with YTHDF2 increased cell proliferation and reduced cell apoptosis. Furthermore, YTHDF2 overexpression exacerbated the decrease in cell viability under BkF exposure, while YTHDF2 knockdown was the opposite. The results from the RIP assay demonstrated a significant enhancement in the interaction of YTHDF2 protein with BCL2 mRNA following the overexpression of YTHDF2. In addition, animal experiments showed that there was an increase in apoptosis and a decrease in proliferation of testicular cells in mice in the high-dose (30 mg/kg) BkF group by TUNEL staining and Ki67 staining. Immunohistochemical analysis showed that BCL2 levels were significantly lower in the high-dose group than in the control group, while YTHDF2, P53 and BAX were dramatically increased. In summary, our study suggests that YTHDF2 has been implicated in BkF-induced male reproductive injury by promoting the degradation of BCL2.
Collapse
Affiliation(s)
- Ya-Wen Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Dan-Dan Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yong Zeng
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Na Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yu Shi
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; College of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jiang-Ying Li
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; College of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Ni-Ya Zhou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Da-Peng Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Qing Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xue Han
- Department of Traditional Chinese Medicine Health and Preventive Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
5
|
Xu K, Wang Q, Zhang Y, Huang Y, Liu Q, Chen M, Wang C. Benzo(a)pyrene exposure impacts cerebrovascular development in zebrafish embryos and the antagonistic effect of berberine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174980. [PMID: 39053545 DOI: 10.1016/j.scitotenv.2024.174980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) widely present in the environment, but their effect on cerebrovascular development has been rarely reported. In this study, dechorionated zebrafish embryos at 24 hpf were exposed to benzo(a)pyrene (BaP) at 0.5, 5 and 50 nM for 48 h, cerebrovascular density showed a significant reduction in the 5 and 50 nM groups. The expression of aryl hydrocarbon receptor (AhR) was significantly increased. Transcriptomic analysis showed that the pathway of positive regulation of vascular development was down-regulated and the pathway of inflammation response was up-regulated. The transcription of main genes related to vascular development, such as vegf, bmper, cdh5, f3b, itgb1 and prkd1, was down-regulated. Addition of AhR-specific inhibitor CH233191 in the 50 nM BaP group rescued cerebrovascular developmental defects and down-regulation of relative genes, suggesting that BaP-induced cerebrovascular defects was AhR-dependent. The cerebrovascular defects were persistent into adult fish raised in clean water, showing that the relative area of vascular network, the length of vessels per unit area and the number of vascular junctions per unit area were significantly decreased in the 50 nM group. Supplementation of berberine (BBR), a naturally derived medicine from a Chinese medicinal herb, alleviated BaP-induced cerebrovascular defects, accompanied by the restoration of altered expression of AhR and relative genes, which might be due to that BBR promoted BaP elimination via enhancing detoxification enzyme activities, suggesting that BBR could be a potential agent in the prevention of cerebrovascular developmental defects caused by PAHs.
Collapse
Affiliation(s)
- Ke Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Qian Wang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, PR China
| | - Ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Yuehong Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Qingfeng Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Meng Chen
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| |
Collapse
|
6
|
Rude CI, Wilson LB, La Du J, Lalli PM, Colby SM, Schultz KJ, Smith JN, Waters KM, Tanguay RL. Aryl hydrocarbon receptor-dependent toxicity by retene requires metabolic competence. Toxicol Sci 2024; 202:50-68. [PMID: 39107868 PMCID: PMC11514837 DOI: 10.1093/toxsci/kfae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of organic compounds frequently detected in the environment with widely varying toxicities. Many PAHs activate the aryl hydrocarbon receptor (AHR), inducing the expression of a battery of genes, including xenobiotic metabolizing enzymes like cytochrome P450s (CYPs); however, not all PAHs act via this mechanism. We screened several parent and substituted PAHs in in vitro AHR activation assays to classify their unique activity. Retene (1-methyl-7-isopropylphenanthrene) displays Ahr2-dependent teratogenicity in zebrafish, but did not activate human AHR or zebrafish Ahr2, suggesting a retene metabolite activates Ahr2 in zebrafish to induce developmental toxicity. To investigate the role of metabolism in retene toxicity, studies were performed to determine the functional role of cyp1a, cyp1b1, and the microbiome in retene toxicity, identify the zebrafish window of susceptibility, and measure retene uptake, loss, and metabolite formation in vivo. Cyp1a-null fish were generated using CRISPR-Cas9. Cyp1a-null fish showed increased sensitivity to retene toxicity, whereas Cyp1b1-null fish were less susceptible, and microbiome elimination had no significant effect. Zebrafish required exposure to retene between 24 and 48 hours post fertilization (hpf) to exhibit toxicity. After static exposure, retene concentrations in zebrafish embryos increased until 24 hpf, peaked between 24 and 36 hpf, and decreased rapidly thereafter. We detected retene metabolites at 36 and 48 hpf, indicating metabolic onset preceding toxicity. This study highlights the value of combining molecular and systems biology approaches with mechanistic and predictive toxicology to interrogate the role of biotransformation in AHR-dependent toxicity.
Collapse
Affiliation(s)
- Christian I Rude
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| | - Lindsay B Wilson
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| | - Jane La Du
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| | - Priscila M Lalli
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Sean M Colby
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Katherine J Schultz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Jordan N Smith
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Katrina M Waters
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Robyn L Tanguay
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| |
Collapse
|
7
|
Song Y, Yen S, Southam K, Gaskin S, Hoy RF, Zosky GR. The aryl hydrocarbon receptor pathway is a marker of lung cell activation but does not play a central pathologic role in engineered stone-associated silicosis. J Appl Toxicol 2024; 44:1518-1527. [PMID: 38837244 DOI: 10.1002/jat.4653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024]
Abstract
Engineered stone-associated silicosis is characterised by a rapid progression of fibrosis linked to a shorter duration of exposure. To date, there is lack of information about molecular pathways that regulates disease development and the aggressiveness of this form of silicosis. Therefore, we compared transcriptome responses to different engineered stone samples and standard silica. We then identified and further tested a stone dust specific pathway (aryl hydrocarbon receptor [AhR]) in relation to mitigation of adverse lung cell responses. Cells (epithelial cells, A549; macrophages, THP-1) were exposed to two different benchtop stone samples, standard silica and vehicle control, followed by RNA sequencing analysis. Bioinformatics analyses were conducted, and the expression of dysregulated AhR pathway genes resulting from engineered stone exposure was then correlated with cytokine responses. Finally, we inhibited AhR pathway in cells pretreated with AhR antagonist and observed how this impacted cell cytotoxicity and inflammation. Through transcriptome analysis, we identified the AhR pathway genes (CYP1A1, CYP1B1 and TIPARP) that showed differential expression that was unique to engineered stones and common between both cell types. The expression of these genes was positively correlated with interleukin-8 production in A549 and THP-1 cells. However, we only observed a mild effect of AhR pathway inhibition on engineered stone dust induced cytokine responses. Given the dual roles of AhR pathway in physiological and pathological processes, our data showed that expression of AhR target genes could be markers for assessing toxicity of engineered stones; however, AhR pathway might not play a significant pathologic role in engineered stone-associated silicosis.
Collapse
Affiliation(s)
- Yong Song
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Seiha Yen
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Katherine Southam
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Sharyn Gaskin
- Adelaide Exposure Science and Health, School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Ryan F Hoy
- Monash Centre for Occupational and Environmental Health, School of Public Health & Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Department of Respiratory Medicine, Alfred Health, Melbourne, Victoria, Australia
| | - Graeme R Zosky
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
8
|
Xu P, Liu B, Chen H, Wang H, Guo X, Yuan J. PAHs as environmental pollutants and their neurotoxic effects. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109975. [PMID: 38972621 DOI: 10.1016/j.cbpc.2024.109975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), which are widely present in incompletely combusted air particulate matter <2.5 μm (PM2.5), tobacco and other organic materials, can enter the human body through various routes and are a class of environmental pollutants with neurotoxic effects. PAHs exposure can lead to abnormal development of the nervous system and neurobehavioral abnormalities in animals, including adverse effects on the nervous system of children and adults, such as a reduced learning ability, intellectual decline, and neural tube defects. After PAHs enter cells of the nervous system, they eventually lead to nervous system damage through mechanisms such as oxidative stress, DNA methylation and demethylation, and mitochondrial autophagy, potentially leading to a series of nervous system diseases, such as Alzheimer's disease. Therefore, preventing and treating neurological diseases caused by PAHs exposure are particularly important. From the perspective of the in vitro and in vivo effects of PAHs exposure, as well as its effects on human neurodevelopment, this paper reviews the toxic mechanisms of action of PAHs and the corresponding prevention and treatment methods to provide a relevant theoretical basis for preventing the neurotoxicity caused by PAHs, thereby reducing the incidence of diseases related to the nervous system and protecting human health.
Collapse
Affiliation(s)
- Peixin Xu
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Bingchun Liu
- Stem Cell Laboratory / Central Laboratory Of Organ Transplantation / Inner Mongolia Autonomous Region Engineering Laboratory For Genetic Test And Research Of Tumor Cells, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hong Chen
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Huizeng Wang
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xin Guo
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jianlong Yuan
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
9
|
Ding R, Huang L, Yan K, Sun Z, Duan J. New insight into air pollution-related cardiovascular disease: an adverse outcome pathway framework of PM2.5-associated vascular calcification. Cardiovasc Res 2024; 120:699-707. [PMID: 38636937 DOI: 10.1093/cvr/cvae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 04/20/2024] Open
Abstract
Despite the air quality has been generally improved in recent years, ambient fine particulate matter (PM2.5), a major contributor to air pollution, remains one of the major threats to public health. Vascular calcification is a systematic pathology associated with an increased risk of cardiovascular disease. Although the epidemiological evidence has uncovered the association between PM2.5 exposure and vascular calcification, little is known about the underlying mechanisms. The adverse outcome pathway (AOP) concept offers a comprehensive interpretation of all of the findings obtained by toxicological and epidemiological studies. In this review, reactive oxygen species generation was identified as the molecular initiating event (MIE), which targeted subsequent key events (KEs) such as oxidative stress, inflammation, endoplasmic reticulum stress, and autophagy, from the cellular to the tissue/organ level. These KEs eventually led to the adverse outcome, namely increased incidence of vascular calcification and atherosclerosis morbidity. To the best of our knowledge, this is the first AOP framework devoted to PM2.5-associated vascular calcification, which benefits future investigations by identifying current limitations and latent biomarkers.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
| | - Linyuan Huang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
| | - Kanglin Yan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
| |
Collapse
|
10
|
Zhang Y, Pei Y, Sun Y, Yang X, Liang J, Yin Z, Liu QS, Zhou Q, Jiang G. AhR Agonistic Components in Urban Particulate Matter Regulate Astrocytic Activation and Function. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4571-4580. [PMID: 38430186 DOI: 10.1021/acs.est.4c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Exposure to atmospheric particulate matter (PM) has been found to accelerate the onset of neurological disorders via the induction of detrimental neuroinflammatory responses. To reveal how astrocytes respond to urban atmospheric PM stimulation, a commercially available standard reference material (SRM1648a) was tested in this study on the activation of rat cortical astrocytes. The results showed that SRM1648a stimulation induced both A1 and A2 phenotypes in astrocytes, as characterized by the exposure concentration-dependent increases in Fkbp5, Sphk1, S100a10, and Il6 mRNA levels. Studying the functional alterations of astrocytes indicated that the neurotrophic factors of Gdnf and Ngf were transcriptionally upregulated due to astrocytic A2-type activation. SRM1648a also promoted autonomous motility of astrocytes and elevated the expressions of chemokines. The aryl hydrocarbon receptor (AhR) agonistic components, such as polycyclic aromatic hydrocarbons (PAHs), were recognized to greatly contribute to SRM1648a-induced effects on astrocytes, which was confirmed by the attenuation of PM-disturbed astrocytic effects via AhR blockage. This study, for the first time, uncovered the direct regulation of urban atmospheric PM on astrocytic activation and function and traced the containing bioactive components (e.g., PAHs) with AhR agonistic activity. The findings provided new knowledge on understanding the ambiguous neurological disturbance from ambient fine PM pollution.
Collapse
Affiliation(s)
- Yuzhu Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yumiao Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiefeng Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhipeng Yin
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Reale E, Zare Jeddi M, Paini A, Connolly A, Duca R, Cubadda F, Benfenati E, Bessems J, S Galea K, Dirven H, Santonen T, M Koch H, Jones K, Sams C, Viegas S, Kyriaki M, Campisi L, David A, Antignac JP, B Hopf N. Human biomonitoring and toxicokinetics as key building blocks for next generation risk assessment. ENVIRONMENT INTERNATIONAL 2024; 184:108474. [PMID: 38350256 DOI: 10.1016/j.envint.2024.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/15/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024]
Abstract
Human health risk assessment is historically built upon animal testing, often following Organisation for Economic Co-operation and Development (OECD) test guidelines and exposure assessments. Using combinations of human relevant in vitro models, chemical analysis and computational (in silico) approaches bring advantages compared to animal studies. These include a greater focus on the human species and on molecular mechanisms and kinetics, identification of Adverse Outcome Pathways and downstream Key Events as well as the possibility of addressing susceptible populations and additional endpoints. Much of the advancement and progress made in the Next Generation Risk Assessment (NGRA) have been primarily focused on new approach methodologies (NAMs) and physiologically based kinetic (PBK) modelling without incorporating human biomonitoring (HBM). The integration of toxicokinetics (TK) and PBK modelling is an essential component of NGRA. PBK models are essential for describing in quantitative terms the TK processes with a focus on the effective dose at the expected target site. Furthermore, the need for PBK models is amplified by the increasing scientific and regulatory interest in aggregate and cumulative exposure as well as interactions of chemicals in mixtures. Since incorporating HBM data strengthens approaches and reduces uncertainties in risk assessment, here we elaborate on the integrated use of TK, PBK modelling and HBM in chemical risk assessment highlighting opportunities as well as challenges and limitations. Examples are provided where HBM and TK/PBK modelling can be used in both exposure assessment and hazard characterization shifting from external exposure and animal dose/response assays to animal-free, internal exposure-based NGRA.
Collapse
Affiliation(s)
- Elena Reale
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| | - Maryam Zare Jeddi
- National Institute for Public Health and the Environment (RIVM), the Netherlands
| | | | - Alison Connolly
- UCD Centre for Safety & Health at Work, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, D04 V1W8, Dublin, Ireland for Climate and Air Pollution Studies, Physics, School of Natural Science and the Ryan Institute, National University of Ireland, University Road, Galway H91 CF50, Ireland
| | - Radu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire national de santé (LNS), 1, Rue Louis Rech, 3555 Dudelange, Luxembourg; Environment and Health, Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35, 3000 Leuven, Belgium
| | - Francesco Cubadda
- Istituto Superiore di Sanità - National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Jos Bessems
- VITO HEALTH, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Karen S Galea
- Institute of Occupational Medicine (IOM), Research Avenue North, Riccarton, Edinburgh EH14 4AP, UK
| | - Hubert Dirven
- Department of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Tiina Santonen
- Finnish Institute of Occupational Health (FIOH), P.O. Box 40, FI-00032 Työterveyslaitos, Finland
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Kate Jones
- HSE - Health and Safety Executive, Harpur Hill, Buxton SK17 9JN, UK
| | - Craig Sams
- HSE - Health and Safety Executive, Harpur Hill, Buxton SK17 9JN, UK
| | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Machera Kyriaki
- Benaki Phytopathological Institute, 8, Stephanou Delta Street, 14561 Kifissia, Athens, Greece
| | - Luca Campisi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Flashpoint srl, Via Norvegia 56, 56021 Cascina (PI), Italy
| | - Arthur David
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000 Rennes, France
| | | | - Nancy B Hopf
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland.
| |
Collapse
|
12
|
Wu K, Yao Y, Meng Y, Zhang X, Zhou R, Liu W, Ding X. Long-Term Atmosphere Surveillance (2016-2021) of PM 2.5-bound Polycyclic Aromatic Hydrocarbons and Health Risk Assessment in Yangtze River Delta, China. EXPOSURE AND HEALTH 2023:1-14. [PMID: 37360513 PMCID: PMC10208184 DOI: 10.1007/s12403-023-00572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/06/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023]
Abstract
Long-term atmospheric quality monitoring of fine particulate matter (PM2.5) and PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) was performed in Wuxi from 2016 to 2021. In total, 504 atmospheric PM2.5 samples were collected, and PM2.5-bound 16 PAHs were detected. The PM2.5 and ∑PAHs level decreased annually from 2016 to 2021, from 64.3 to 34.0 μg/m3 and 5.27 to 4.22 ng/m3, respectively. The benzo[a]pyrene (BaP) levels of 42% of the monitoring days in 2017 exceeded the recommended European Union (EU) health-based standard of 1 ng/m3. Five- and six-ring PAHs were found, including benz[a]anthracene, benzo[k]fluoranthene (Bkf), BaP, and benzo[g,h,i]perylene, which were the dominant components (indicating a prominent petroleum, biomass, and coal combustion contribution) using molecular diagnostic ratios and positive matrix factorization analysis. Moreover, PM2.5 and PAHs were significantly negatively associated with local precipitation over a period of six years. Statistically significant temporal and spatial distribution differences of PM2.5, and ∑PAHs were also found. The toxicity equivalent quotient (TEQ) of total PAHs was 0.70, and the TEQ of BaP (0.178) was the highest, followed by that of Bkf (0.090), dibenz[a,h]anthracene (Dah) (0.048), and indeno[1,2,3-cd]pyrene (0.034). The medians of the incremental lifetime cancer risk for long-term exposure to PAHs were 2.74E-8, 1.98E-8, and 1.71E-7 for children, teenagers, and adults, respectively, indicating that the carcinogenic risk of PAHs pollution in air was acceptable to local residents in this area. Sensitivity analysis revealed that BaP, Bkf, and Dah significantly contributed to carcinogenic toxicity. This research provides comprehensive statistics on the local air persistent organic pollutants profile, helps to identify the principal pollution source and compounds, and contributes to the prevention of regional air pollution. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12403-023-00572-x.
Collapse
Affiliation(s)
- Keqin Wu
- Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University), Wuxi, 214023 China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi, 214023 China
| | - Yuyang Yao
- Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University), Wuxi, 214023 China
| | - Yuanhua Meng
- Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University), Wuxi, 214023 China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi, 214023 China
| | - Xuhui Zhang
- Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University), Wuxi, 214023 China
| | - Run Zhou
- Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University), Wuxi, 214023 China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi, 214023 China
| | - Wenwei Liu
- Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University), Wuxi, 214023 China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi, 214023 China
| | - Xinliang Ding
- Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University), Wuxi, 214023 China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi, 214023 China
| |
Collapse
|
13
|
Nan N, Yan Z, Zhang Y, Chen R, Qin G, Sang N. Overview of PM 2.5 and health outcomes: Focusing on components, sources, and pollutant mixture co-exposure. CHEMOSPHERE 2023; 323:138181. [PMID: 36806809 DOI: 10.1016/j.chemosphere.2023.138181] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
PM2.5 varies in source and composition over time and space as a complicated mixture. Consequently, the health effects caused by PM2.5 varies significantly over time and generally exhibit significant regional variations. According to numerous studies, a notable relationship exists between PM2.5 and the occurrence of many diseases, such as respiratory, cardiovascular, and nervous system diseases, as well as cancer. Therefore, a comprehensive understanding of the effect of PM2.5 on human health is critical. The toxic effects of various PM2.5 components, as well as the overall toxicity of PM2.5 are discussed in this review to provide a foundation for precise PM2.5 emission control. Furthermore, this review summarizes the synergistic effect of PM2.5 and other pollutants, which can be used to draft effective policies.
Collapse
Affiliation(s)
- Nan Nan
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Zhipeng Yan
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Yaru Zhang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, PR China; Beijing City University, Beijing, 11418, PR China.
| | - Guohua Qin
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| |
Collapse
|
14
|
Choi S, Lee JH, Oh SW, Yu E, Kwon K, Jang SJ, Shin DS, Moh SH, Lee J. Anti-Pollutant Activity of Porphyra yezoensis Water Extract and Its Active Compound, Porphyra 334, against Urban Particulate Matter-Induced Keratinocyte Cell Damage. Mar Drugs 2023; 21:md21020121. [PMID: 36827162 PMCID: PMC9962167 DOI: 10.3390/md21020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Urban particulate matter (UPM) causes skin aging and inflammatory reactions by influencing skin cells through the aryl hydrocarbon receptor (AhR) signaling pathway. Porphyra yezoensis (also known as Pyropia yezoensis), a red alga belonging to the Bangiaceae family, is an edible red seaweed. Here, we examined the anti-pollutant effect of P. yezoensis water extract. While UPM treatment induced xenobiotic response element (XRE) promoter luciferase activity, P. yezoensis water extract reduced UPM-induced XRE activity. Next, we isolated an active compound from P. yezoensis and identified it as porphyra 334. Similar to the P. yezoensis water extract, porphyra 334 attenuated UPM-induced XRE activity. Moreover, although UPM augmented AhR nuclear translocation, which led to an increase in cytochrome P450 1A1 (CYP1A1) mRNA levels, these effects were reduced by porphyra 334. Moreover, UPM induced the production of reactive oxygen species (ROS) and reduced cell proliferation. These effects were attenuated in response to porphyra 334 treatment. Furthermore, our results revealed that the increased ROS levels induced by UPM treatment induced transient receptor potential vanilloid 1 (TRPV1) activity, which is related to skin aging and inflammatory responses. However, porphyra 334 treatment reduced this reaction by inhibiting ROS production induced by CYP1A1 activation. This indicates that porphyra 334, an active compound of P. yezoensis, attenuates UP-induced cell damage by inhibiting AhR-induced ROS production, which results in a reduction in TRPV1 activation, leading to cell proliferation. This also suggests that porphyra 334 could protect the epidermis from harmful pollutants.
Collapse
Affiliation(s)
- Seoyoung Choi
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Gyunggi Do, Republic of Korea
| | - Jeong Hun Lee
- Anti-Aging Research Institute of BIO-FD&C Co., Ltd., Incheon 460810, Republic of Korea
| | - Sae Woong Oh
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Gyunggi Do, Republic of Korea
| | - Eunbi Yu
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Gyunggi Do, Republic of Korea
| | - Kitae Kwon
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Gyunggi Do, Republic of Korea
| | - Sung Joo Jang
- Anti-Aging Research Institute of BIO-FD&C Co., Ltd., Incheon 460810, Republic of Korea
| | - Dong Sun Shin
- Anti-Aging Research Institute of BIO-FD&C Co., Ltd., Incheon 460810, Republic of Korea
| | - Sang Hyun Moh
- Anti-Aging Research Institute of BIO-FD&C Co., Ltd., Incheon 460810, Republic of Korea
- Correspondence: (S.H.M.); (J.L.); Tel.: +82-31-290-7861 (J.L.)
| | - Jongsung Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Gyunggi Do, Republic of Korea
- Correspondence: (S.H.M.); (J.L.); Tel.: +82-31-290-7861 (J.L.)
| |
Collapse
|
15
|
Zeng A, Yu X, Chen B, Hao L, Chen P, Chen X, Tian Y, Zeng J, Hua H, Dai Y, Zhao J. Tetrahydrocurcumin regulates the tumor immune microenvironment to inhibit breast cancer proliferation and metastasis via the CYP1A1/NF-κB signaling pathway. Cancer Cell Int 2023; 23:12. [PMID: 36707875 PMCID: PMC9881278 DOI: 10.1186/s12935-023-02850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
The NF-κB signaling pathway is overactivated in tumor cells, and the activation of the NF-κB signaling pathway releases a large number of inflammatory factors, which enhance tumor immunosuppression and promote tumor metastasis. The cytochrome P450 (CYP450) system consists of important metabolic enzymes present in different tissues and progressive tumors, which may lead to changes in the pharmacological action of drugs in inflammatory diseases such as tumors. In this study, the anticancer effect of tetrahydrocurcumin (THC), an active metabolite of curcumin, on breast cancer cells and the underlying mechanism were investigated. Result showed that THC selectively inhibited proliferation and triggered apoptosis in breast cancer cells in a concentration- and time-dependent manner. Moreover, THC-induced cell apoptosis via a mitochondria-mediated pathway, as indicated by the upregulated ratio of Bax/Bcl-2 and reactive oxygen species (ROS) induction. In addition, THC could affect the CYP450 enzyme metabolic pathway and inhibit the expression of CYP1A1 and activation of the NF-κB pathway, thereby inhibiting the migration and invasion of breast cancer cells. Furthermore, after overexpression of CYP1A1, the inhibitory effects of THC on the proliferation, metastasis, and induction of apoptosis in breast cancer cells were weakened. The knockdown of CYP1A1 significantly enhanced the inhibitory effect of THC on the proliferation, metastasis, and apoptosis induction of breast cancer cells. Notably, THC exhibited a significant tumor growth inhibition and anti-pulmonary metastasis effect in a tumor mouse model of MCF-7 and 4T1 cells by regulating the tumor immunosuppressive microenvironment. Collectively, these results showed that TH could effectively trigger apoptosis and inhibit the migration of breast cancer cells via the CYP1A1/NF-κB signaling pathway, indicating that THC serves as a potential candidate drug for the treatment of breast cancer.
Collapse
Affiliation(s)
- Anqi Zeng
- grid.496711.cSichuan Academy of Traditional Chinese Medicine, Chengdu, 610041 Sichuan China ,Sichuan Institute for Translational Chinese Medicine, Chengdu, 610041 Sichuan China ,grid.13291.380000 0001 0807 1581West China School of Pharmacy, Sichuan University, Chengdu, 610041 Sichuan China
| | - Xinyue Yu
- grid.13291.380000 0001 0807 1581West China School of Pharmacy, Sichuan University, Chengdu, 610041 Sichuan China
| | - Bao Chen
- grid.410578.f0000 0001 1114 4286School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Lu Hao
- Sichuan Institute for Translational Chinese Medicine, Chengdu, 610041 Sichuan China
| | - Ping Chen
- grid.496711.cSichuan Academy of Traditional Chinese Medicine, Chengdu, 610041 Sichuan China ,Sichuan Institute for Translational Chinese Medicine, Chengdu, 610041 Sichuan China
| | - Xue Chen
- grid.496711.cSichuan Academy of Traditional Chinese Medicine, Chengdu, 610041 Sichuan China ,Sichuan Institute for Translational Chinese Medicine, Chengdu, 610041 Sichuan China
| | - Yuan Tian
- grid.496711.cSichuan Academy of Traditional Chinese Medicine, Chengdu, 610041 Sichuan China ,Sichuan Institute for Translational Chinese Medicine, Chengdu, 610041 Sichuan China
| | - Jing Zeng
- grid.496711.cSichuan Academy of Traditional Chinese Medicine, Chengdu, 610041 Sichuan China ,Sichuan Institute for Translational Chinese Medicine, Chengdu, 610041 Sichuan China
| | - Hua Hua
- grid.496711.cSichuan Academy of Traditional Chinese Medicine, Chengdu, 610041 Sichuan China ,Sichuan Institute for Translational Chinese Medicine, Chengdu, 610041 Sichuan China
| | - Ying Dai
- grid.496711.cSichuan Academy of Traditional Chinese Medicine, Chengdu, 610041 Sichuan China ,Sichuan Institute for Translational Chinese Medicine, Chengdu, 610041 Sichuan China
| | - Junning Zhao
- grid.496711.cSichuan Academy of Traditional Chinese Medicine, Chengdu, 610041 Sichuan China ,Sichuan Institute for Translational Chinese Medicine, Chengdu, 610041 Sichuan China ,grid.13291.380000 0001 0807 1581West China School of Pharmacy, Sichuan University, Chengdu, 610041 Sichuan China
| |
Collapse
|