1
|
Park BJ, Dhong KR, Park HJ. Cordyceps militaris Grown on Germinated Rhynchosia nulubilis (GRC) Encapsulated in Chitosan Nanoparticle (GCN) Suppresses Particulate Matter (PM)-Induced Lung Inflammation in Mice. Int J Mol Sci 2024; 25:10642. [PMID: 39408971 PMCID: PMC11477187 DOI: 10.3390/ijms251910642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Cordyceps militaris grown on germinated Rhynchosia nulubilis (GRC) exerts various biological effects, including anti-allergic, anti-inflammatory, and immune-regulatory effects. In this study, we investigated the anti-inflammatory effects of GRC encapsulated in chitosan nanoparticles (CN) against particulate matter (PM)-induced lung inflammation. Optimal CN (CN6) (CHI: TPP w/w ratio of 4:1; TPP pH 2) exhibited a zeta potential of +22.77 mV, suitable for GRC encapsulation. At different GRC concentrations, higher levels (60 and 120 mg/mL) led to increased negative zeta potential, enhancing stability. The optimal GRC concentration for maximum entrapment (31.4 ± 1.35%) and loading efficiency (7.6 ± 0.33%) of GRC encapsulated in CN (GCN) was 8 mg/mL with a diameter of 146.1 ± 54 nm and zeta potential of +30.68. In vivo studies revealed that administering 300 mg/kg of GCN significantly decreased the infiltration of macrophages and T cells in the lung tissues of PM-treated mice, as shown by immunohistochemical analysis of CD4 and F4/80 markers. Additionally, GCN ameliorated PM-induced lung tissue damage, inflammatory cell infiltration, and alveolar septal hypertrophy. GCN also decreased total cells and neutrophils, showing notable anti-inflammatory effects in the bronchoalveolar lavage fluid (BALF) from PM-exposed mice, compared to GRC. Next the anti-inflammatory properties of GCN were further explored in PM- and LPS-exposed RAW264.7 cells; it significantly reduced PM- and LPS-induced cell death, NO production, and levels of inflammatory cytokine mRNAs (IL-1β, IL-6, and COX-2). GCN also suppressed NF-κB/MAPK signaling pathways by reducing levels of p-NF-κB, p-ERK, and p-c-Jun proteins, indicating its potential in managing PM-related inflammatory lung disease. Furthermore, GCN significantly reduced PM- and LPS-induced ROS production. The enhanced bioavailability of GRC components was demonstrated by an increase in fluorescence intensity in the intestinal absorption study using FITC-GCN. Our data indicated that GCN exhibited enhanced bioavailability and potent anti-inflammatory and antioxidant effects in cells and in vivo, making it a promising candidate for mitigating PM-induced lung inflammation and oxidative stress.
Collapse
Affiliation(s)
- Byung-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - Kyu-Ree Dhong
- Magicbullettherapeutics Inc., 150 Yeongdeungpo-ro, Yeongdeungpo-gu, Seoul 07292, Republic of Korea;
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
2
|
Du SL, Zhou YT, Hu HJ, Lin L, Zhang ZQ. Silica-induced ROS in alveolar macrophages and its role on the formation of pulmonary fibrosis via polarizing macrophages into M2 phenotype: a review. Toxicol Mech Methods 2024:1-12. [PMID: 39223849 DOI: 10.1080/15376516.2024.2400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Alveolar macrophages (AMs), the first line against the invasion of foreign invaders, play a predominant role in the pathogenesis of silicosis. Studies have shown that inhaled silica dust is recognized and engulfed by AMs, resulting in the production of large amounts of silica-induced reactive oxygen species (ROS), including particle-derived ROS and macrophage-derived ROS. These ROS change the microenvironment of the AMs where the macrophage phenotype is stimulated to swift from M0 to M1 and/or M2, and ultimately emerge as the M2 phenotype to trigger silicosis. This is a complex process accompanied by various molecular biological events. Unfortunately, the detailed processes and mechanisms have not been systematically described. In this review, we first systematically introduce the process of ROS induced by silica in AMs. Then, describe the role and molecular mechanism of M2-type macrophage polarization caused by silica-induced ROS. Finally, we review the mechanism of pulmonary fibrosis induced by M2 polarized AMs. We conclude that silica-induced ROS initiate the fibrotic process of silicosis by inducing macrophage into M2 phenotype, and that targeted intervention of silica-induced ROS in AMs can reprogram the macrophage polarization and ameliorate the pathogenesis of silicosis.
Collapse
Affiliation(s)
- Shu-Ling Du
- School of Public Health, Shandong Second Medical University, Weifang, China
- School of Public Health, Jining Medical University, Jining, China
| | - Yu-Ting Zhou
- School of Public Health, Jining Medical University, Jining, China
| | - Hui-Jie Hu
- School of Public Health, Shandong Second Medical University, Weifang, China
- School of Public Health, Jining Medical University, Jining, China
| | - Li Lin
- School of Public Health, Jining Medical University, Jining, China
| | - Zhao-Qiang Zhang
- School of Public Health, Jining Medical University, Jining, China
| |
Collapse
|
3
|
Ervik TK, Leite M, Weinbruch S, Nordby KC, Ellingsen DG, Ulvestad B, Dahl K, Berlinger B, Skaugset NP. Characterization of particle exposure during tunnel excavation by tunnel boring machines. Ann Work Expo Health 2024; 68:713-724. [PMID: 38816184 PMCID: PMC11306322 DOI: 10.1093/annweh/wxae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
Tunnel boring machines (TBMs) are used to excavate tunnels in a manner where the rock is constantly penetrated with rotating cutter heads. Fine particles of the rock minerals are thereby generated. Workers on and in the vicinity of the TBM are exposed to particulate matter (PM) consisting of bedrock minerals including α-quartz. Exposure to respirable α-quartz remains a concern because of the respiratory diseases associated with this exposure. The particle size distribution of PM and α-quartz is of special importance because of its influence on adverse health effects, monitoring and control strategies as well as accurate quantification of α-quartz concentrations. The major aim of our study was therefore to investigate the particle size distribution of airborne PM and α-quartz generated during tunnel excavation using TBMs in an area dominated by gneiss, a metamorphic type of rock. Sioutas cascade impactors were used to collect personal samples on 3 separate days. The impactor fractionates the dust in 5 size fractions, from 10 µm down to below 0.25 µm. The filters were weighted, and the α-quartz concentrations were quantified using X-ray diffraction (XRD) analysis and the NIOSH 7500 method on the 5 size fractions. Other minerals were determined using Rietveld refinement XRD analysis. The size and elemental composition of individual particles were investigated by scanning electron microscopy. The majority of PM mass was collected on the first 3 stages (aerodynamic diameter = 10 to 0.5 µm) of the Sioutas cascade impactor. No observable differences were found for the size distribution of the collected PM and α-quartz for the 3 sampling days nor the various work tasks. However, the α-quartz proportion varied for the 3 sampling days demonstrating a dependence on geology. The collected α-quartz consisted of more particles with sizes below 1 µm than the calibration material, which most likely affected the accuracy of the measured respirable α-quartz concentrations. This potential systematic error is important to keep in mind when analyzing α-quartz from occupational samples. Knowledge of the particle size distribution is also important for control measures, which should target particle sizes that efficiently capture the respirable α-quartz concentration.
Collapse
Affiliation(s)
- Torunn K Ervik
- National Institute of Occupational Health, P.O. Box 5330, Majorstuen, 0304 Oslo, Norway
| | - Mimmi Leite
- National Institute of Occupational Health, P.O. Box 5330, Majorstuen, 0304 Oslo, Norway
| | - Stephan Weinbruch
- National Institute of Occupational Health, P.O. Box 5330, Majorstuen, 0304 Oslo, Norway
- Technical University of Darmstadt, Institute of Applied Geosciences, Schnittspahnstrasse 9, D-64287, Darmstadt, Germany
| | - Karl-Christian Nordby
- National Institute of Occupational Health, P.O. Box 5330, Majorstuen, 0304 Oslo, Norway
| | - Dag G Ellingsen
- National Institute of Occupational Health, P.O. Box 5330, Majorstuen, 0304 Oslo, Norway
| | - Bente Ulvestad
- National Institute of Occupational Health, P.O. Box 5330, Majorstuen, 0304 Oslo, Norway
| | - Kari Dahl
- National Institute of Occupational Health, P.O. Box 5330, Majorstuen, 0304 Oslo, Norway
| | - Balazs Berlinger
- National Institute of Occupational Health, P.O. Box 5330, Majorstuen, 0304 Oslo, Norway
| | - Nils Petter Skaugset
- National Institute of Occupational Health, P.O. Box 5330, Majorstuen, 0304 Oslo, Norway
| |
Collapse
|
4
|
Hang W, Bu C, Cui Y, Chen K, Zhang D, Li H, Wang S. Research progress on the pathogenesis and prediction of pneumoconiosis among coal miners. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:319. [PMID: 39012521 DOI: 10.1007/s10653-024-02114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
Pneumoconiosis is the most common occupational disease among coal miners, which is a lung disease caused by long-term inhalation of coal dust and retention in the lungs. The early stage of this disease is highly insidious, and pulmonary fibrosis may occur in the middle and late stages, leading to an increase in patient pain index and mortality rate. Currently, there is a lack of effective treatment methods. The pathogenesis of pneumoconiosis is complex and has many influencing factors. Although the characteristics of coal dust have been considered the main cause of different mechanisms of pneumoconiosis, the effects of coal dust composition, particle size and shape, and coal dust concentration on the pathogenesis of pneumoconiosis have not been systematically elucidated. Meanwhile, considering the irreversibility of pneumoconiosis progression, early prediction for pneumoconiosis patients is particularly important. However, there is no early prediction standard for pneumoconiosis among coal miners. This review summarizes the relevant research on the pathogenesis and prediction of pneumoconiosis in coal miners in recent years. Firstly, the pathogenesis of coal worker pneumoconiosis and silicosis was discussed, and the impact of coal dust characteristics on pneumoconiosis was analyzed. Then, the early diagnostic methods for pneumoconiosis have been systematically introduced, with a focus on image collaborative computer-aided diagnosis analysis and biomarker detection. Finally, the challenge of early screening technology for miners with pneumoconiosis was proposed.
Collapse
Affiliation(s)
- Wenlu Hang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu Province, People's Republic of China
| | - Chunlu Bu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu Province, People's Republic of China
| | - Yuming Cui
- School of Mechatronic Engineering, Jiangsu Normal University, Xuzhou, 221000, Jiangsu Province, People's Republic of China
| | - Kai Chen
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu Province, People's Republic of China
| | - Dekun Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu Province, People's Republic of China
| | - Haiquan Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu Province, People's Republic of China.
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 221000, Jiangsu Province, People's Republic of China.
| | - Songquan Wang
- School of Mechatronic Engineering, Jiangsu Normal University, Xuzhou, 221000, Jiangsu Province, People's Republic of China.
| |
Collapse
|
5
|
Zhao JH, Li S, Du SL, Zhang ZQ. The role of mitochondrial dysfunction in macrophages on SiO 2 -induced pulmonary fibrosis: A review. J Appl Toxicol 2024; 44:86-95. [PMID: 37468209 DOI: 10.1002/jat.4517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023]
Abstract
Several epidemiologic and toxicological studies have widely regarded that mitochondrial dysfunction is a popular molecular event in the process of silicosis from different perspectives, but the details have not been systematically summarized yet. Thus, it is necessary to investigate how silica dust leads to pulmonary fibrosis by damaging the mitochondria of macrophages. In this review, we first introduce the molecular mechanisms that silica dust induce mitochondrial morphological and functional abnormalities and then introduce the main molecular mechanisms that silica-damaged mitochondria induce pulmonary fibrosis. Finally, we conclude that the mitochondrial abnormalities of alveolar macrophages caused by silica dust are involved deeply in the pathogenesis of silicosis through these two sequential mechanisms. Therefore, reducing the silica-damaged mitochondria will prevent the potential occurrence and fatality of the disease in the future.
Collapse
Affiliation(s)
- Jia-Hui Zhao
- Weifang Medical University, Weifang, Shandong, China
- Department of Public Health, Jining Medical University, Jining, Shandong, China
| | - Shuang Li
- Department of Public Health, Jining Medical University, Jining, Shandong, China
- Binzhou Medical University, Yantai, Shandong, China
| | - Shu-Ling Du
- Weifang Medical University, Weifang, Shandong, China
- Department of Public Health, Jining Medical University, Jining, Shandong, China
| | - Zhao-Qiang Zhang
- Department of Public Health, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
6
|
Geng F, An J, Wang Y, Gui C, Guo H, Wen T. Suspension characteristics of the coal-quartz dust mixture in the working environment during the fully mechanized mining process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102244-102259. [PMID: 37665436 DOI: 10.1007/s11356-023-28911-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023]
Abstract
Dust exposures during mining activity can result in lung diseases such as coal workers' pneumoconiosis (CWP) and silicosis, and it is closely related to quartz dust. In the present study, coal-quartz dust mixture were investigated considering the particle size and the specific constituents. Multiple numerical techniques, including computational fluid dynamics and discrete element method (CFD-DEM), hard sphere model, and direct Monte Carlo simulation (DSMC), were presented, and the dust diffusion processes were investigated. According to the validation of the numerical method, the suspension characteristics of the polydisperse mixed dust were analyzed in detail. The results show that PM10 responds quickly, has a large diffusion range, and is easily affected by the reflux. The particle size increases gradually from top to bottom. When the air velocity is low, the percentage of coal dust in the breathing zone tends to be 50%. The results provide theoretical guidance for the comprehensive prevention of the mixed dust in underground coal mines.
Collapse
Affiliation(s)
- Fan Geng
- School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Jiajun An
- School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Yingchao Wang
- School of Mechanics & Civil Engineering, China University of Mining & Technology, Xuzhou, 221116, Jiangsu, China
| | - Changgeng Gui
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Heng Guo
- School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Tianliang Wen
- School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
7
|
Bellomo C, Pavan C, Fiore G, Escolano-Casado G, Mino L, Turci F. Top-Down Preparation of Nanoquartz for Toxicological Investigations. Int J Mol Sci 2022; 23:15425. [PMID: 36499757 PMCID: PMC9738116 DOI: 10.3390/ijms232315425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Occupational exposure to quartz dust is associated with fatal diseases. Quartz dusts generated by mechanical fracturing are characterized by a broad range of micrometric to nanometric particles. The contribution of this nanometric fraction to the overall toxicity of quartz is still largely unexplored, primarily because of the strong electrostatic adhesion forces that prevent isolation of the nanofraction. Furthermore, fractured silica dust exhibits special surface features, namely nearly free silanols (NFS), which impart a membranolytic activity to quartz. Nanoquartz can be synthetized via bottom-up methods, but the surface chemistry of such crystals strongly differs from that of nanoparticles resulting from fracturing. Here, we report a top-down milling procedure to obtain a nanometric quartz that shares the key surface properties relevant to toxicity with fractured quartz. The ball milling was optimized by coupling the dry and wet milling steps, using water as a dispersing agent, and varying the milling times and rotational speeds. Nanoquartz with a strong tendency to form submicrometric agglomerates was obtained. The deagglomeration with surfactants or simulated body fluids was negligible. Partial lattice amorphization and a bimodal crystallite domain size were observed. A moderate membranolytic activity, which correlated with the number of NFS, signaled coherence with the previous toxicological data. A membranolytic nanoquartz for toxicological investigations was obtained.
Collapse
Affiliation(s)
- Chiara Bellomo
- Department of Chemistry, University of Turin, 10125 Turin, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, 10125 Turin, Italy
| | - Cristina Pavan
- Department of Chemistry, University of Turin, 10125 Turin, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, 10125 Turin, Italy
- Louvain Centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Gianluca Fiore
- Department of Chemistry, University of Turin, 10125 Turin, Italy
- Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, 10125 Turin, Italy
| | - Guillermo Escolano-Casado
- Department of Chemistry, University of Turin, 10125 Turin, Italy
- Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, 10125 Turin, Italy
| | - Lorenzo Mino
- Department of Chemistry, University of Turin, 10125 Turin, Italy
- Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, 10125 Turin, Italy
| | - Francesco Turci
- Department of Chemistry, University of Turin, 10125 Turin, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, 10125 Turin, Italy
- Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, 10125 Turin, Italy
| |
Collapse
|
8
|
Marrocco A, Ortiz LA. Role of metabolic reprogramming in pro-inflammatory cytokine secretion from LPS or silica-activated macrophages. Front Immunol 2022; 13:936167. [PMID: 36341426 PMCID: PMC9633986 DOI: 10.3389/fimmu.2022.936167] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
In the lungs, macrophages constitute the first line of defense against pathogens and foreign bodies and play a fundamental role in maintaining tissue homeostasis. Activated macrophages show altered immunometabolism and metabolic changes governing immune effector mechanisms, such as cytokine secretion characterizing their classic (M1) or alternative (M2) activation. Lipopolysaccharide (LPS)-stimulated macrophages demonstrate enhanced glycolysis, blocked succinate dehydrogenase (SDH), and increased secretion of interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). Glycolysis suppression using 2 deoxyglucose in LPS-stimulated macrophages inhibits IL-1β secretion, but not TNF-α, indicating metabolic pathway specificity that determines cytokine production. In contrast to LPS, the nature of the immunometabolic responses induced by non-organic particles, such as silica, in macrophages, its contribution to cytokine specification, and disease pathogenesis are not well understood. Silica-stimulated macrophages activate pattern recognition receptors (PRRs) and NLRP3 inflammasome and release IL-1β, TNF-α, and interferons, which are the key mediators of silicosis pathogenesis. In contrast to bacteria, silica particles cannot be degraded, and the persistent macrophage activation results in an increased NADPH oxidase (Phox) activation and mitochondrial reactive oxygen species (ROS) production, ultimately leading to macrophage death and release of silica particles that perpetuate inflammation. In this manuscript, we reviewed the effects of silica on macrophage mitochondrial respiration and central carbon metabolism determining cytokine specification responsible for the sustained inflammatory responses in the lungs.
Collapse
Affiliation(s)
- Antonella Marrocco
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Luis A. Ortiz
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Pulmonary Toxicity of Silica Linked to Its Micro- or Nanometric Particle Size and Crystal Structure: A Review. NANOMATERIALS 2022; 12:nano12142392. [PMID: 35889616 PMCID: PMC9318389 DOI: 10.3390/nano12142392] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
Abstract
Silicon dioxide (SiO2) is a mineral compound present in the Earth’s crust in two mineral forms: crystalline and amorphous. Based on epidemiological and/or biological evidence, the pulmonary effects of crystalline silica are considered well understood, with the development of silicosis, emphysema, chronic bronchitis, or chronic obstructive pulmonary disease. The structure and capacity to trigger oxidative stress are recognized as relevant determinants in crystalline silica’s toxicity. In contrast, natural amorphous silica was long considered nontoxic, and was often used as a negative control in experimental studies. However, as manufactured amorphous silica nanoparticles (or nanosilica or SiNP) are becoming widely used in industrial applications, these paradigms must now be reconsidered at the nanoscale (<100 nm). Indeed, recent experimental studies appear to point towards significant toxicity of manufactured amorphous silica nanoparticles similar to that of micrometric crystalline silica. In this article, we present an extensive review of the nontumoral pulmonary effects of silica based on in vitro and in vivo experimental studies. The findings of this review are presented both for micro- and nanoscale particles, but also based on the crystalline structure of the silica particles.
Collapse
|
10
|
Characterization Analysis of Airborne Particulates from Australian Underground Coal Mines Using the Mineral Liberation Analyser. MINERALS 2022. [DOI: 10.3390/min12070796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Exposure monitoring and health surveillance of coal mine workers has been improved in Australia since coal workers’ pneumoconiosis was reidentified in 2015 in Queensland. Regional variations in the prevalence of mine dust lung disease have been observed, prompting a more detailed look into the size, shape, and mineralogical classes of the dust that workers are being exposed to. This study collected respirable samples of ambient air from three operating coal mines in Queensland and New South Wales for characterization analysis using the Mineral Liberation Analyser (MLA), a type of scanning electron microscope (SEM) that uses a combination of the backscattered electron (BSE) image and characteristic X-rays for mineral identification. This research identified 25 different minerals present in the coal samples with varying particle size distributions for the overall samples and the individual mineralogies. While Mine 8 was very consistent in mineralogy with a high carbon content, Mine 6 and 7 were found to differ more significantly by location within the mine.
Collapse
|
11
|
Wieland S, Balmes A, Bender J, Kitzinger J, Meyer F, Ramsperger AF, Roeder F, Tengelmann C, Wimmer BH, Laforsch C, Kress H. From properties to toxicity: Comparing microplastics to other airborne microparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128151. [PMID: 35042167 DOI: 10.1016/j.jhazmat.2021.128151] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Microplastic (MP) debris is considered as a potentially hazardous material. It is omnipresent in our environment, and evidence that MP is also abundant in the atmosphere is increasing. Consequently, the inhalation of these particles is a significant exposure route to humans. Concerns about potential effects of airborne MP on human health are rising. However, currently, there are not enough studies on the putative toxicity of airborne MP to adequately assess its impact on human health. Therefore, we examined potential drivers of airborne MP toxicity. Physicochemical properties like size, shape, ζ-potential, adsorbed molecules and pathogens, and the MP's bio-persistence have been proposed as possible drivers of MP toxicity. Since their role in MP toxicity is largely unknown, we reviewed the literature on toxicologically well-studied non-plastic airborne microparticles (asbestos, silica, soot, wood, cotton, hay). We aimed to link the observed health effects and toxicology of these microparticles to the abovementioned properties. By comparing this information with studies on the effects of airborne MP, we analyzed possible mechanisms of airborne MP toxicity. Thus, we provide a basis for a mechanistic understanding of airborne MP toxicity. This may enable the assessment of risks associated with airborne MP pollution, facilitating effective policymaking and product design.
Collapse
Affiliation(s)
- Simon Wieland
- Biological Physics, University of Bayreuth, Bayreuth, Germany; Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Aylin Balmes
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
| | - Julian Bender
- Institute for Biochemistry and Biotechnology, Interdisciplinary Research Center HALOmem, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jonas Kitzinger
- Department of Physics, Humboldt University of Berlin, Berlin, Germany
| | - Felix Meyer
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Anja Frm Ramsperger
- Biological Physics, University of Bayreuth, Bayreuth, Germany; Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Franz Roeder
- Institute of Optics and Quantum Electronics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Caroline Tengelmann
- Medical Faculty, University of Würzburg, Würzburg, Germany; Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, Germany
| | | | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany.
| | - Holger Kress
- Biological Physics, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
12
|
Favor OK, Pestka JJ, Bates MA, Lee KSS. Centrality of Myeloid-Lineage Phagocytes in Particle-Triggered Inflammation and Autoimmunity. FRONTIERS IN TOXICOLOGY 2021; 3:777768. [PMID: 35295146 PMCID: PMC8915915 DOI: 10.3389/ftox.2021.777768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
Exposure to exogenous particles found as airborne contaminants or endogenous particles that form by crystallization of certain nutrients can activate inflammatory pathways and potentially accelerate autoimmunity onset and progression in genetically predisposed individuals. The first line of innate immunological defense against particles are myeloid-lineage phagocytes, namely macrophages and neutrophils, which recognize/internalize the particles, release inflammatory mediators, undergo programmed/unprogrammed death, and recruit/activate other leukocytes to clear the particles and resolve inflammation. However, immunogenic cell death and release of damage-associated molecules, collectively referred to as "danger signals," coupled with failure to efficiently clear dead/dying cells, can elicit unresolved inflammation, accumulation of self-antigens, and adaptive leukocyte recruitment/activation. Collectively, these events can promote loss of immunological self-tolerance and onset/progression of autoimmunity. This review discusses critical molecular mechanisms by which exogenous particles (i.e., silica, asbestos, carbon nanotubes, titanium dioxide, aluminum-containing salts) and endogenous particles (i.e., monosodium urate, cholesterol crystals, calcium-containing salts) may promote unresolved inflammation and autoimmunity by inducing toxic responses in myeloid-lineage phagocytes with emphases on inflammasome activation and necrotic and programmed cell death pathways. A prototypical example is occupational exposure to respirable crystalline silica, which is etiologically linked to systemic lupus erythematosus (SLE) and other human autoimmune diseases. Importantly, airway instillation of SLE-prone mice with crystalline silica elicits severe pulmonary pathology involving accumulation of particle-laden alveolar macrophages, dying and dead cells, nuclear and cytoplasmic debris, and neutrophilic inflammation that drive cytokine, chemokine, and interferon-regulated gene expression. Silica-induced immunogenic cell death and danger signal release triggers accumulation of T and B cells, along with IgG-secreting plasma cells, indicative of ectopic lymphoid tissue neogenesis, and broad-spectrum autoantibody production in the lung. These events drive early autoimmunity onset and accelerate end-stage autoimmune glomerulonephritis. Intriguingly, dietary supplementation with ω-3 fatty acids have been demonstrated to be an intervention against silica-triggered murine autoimmunity. Taken together, further insight into how particles drive immunogenic cell death and danger signaling in myeloid-lineage phagocytes and how these responses are influenced by the genome will be essential for identification of novel interventions for preventing and treating inflammatory and autoimmune diseases associated with these agents.
Collapse
Affiliation(s)
- Olivia K. Favor
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - James J. Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Melissa A. Bates
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
13
|
Marrocco A, Frawley K, Pearce LL, Peterson J, O'Brien JP, Mullett SJ, Wendell SG, St Croix CM, Mischler SE, Ortiz LA. Metabolic Adaptation of Macrophages as Mechanism of Defense against Crystalline Silica. THE JOURNAL OF IMMUNOLOGY 2021; 207:1627-1640. [PMID: 34433619 DOI: 10.4049/jimmunol.2000628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/08/2021] [Indexed: 11/19/2022]
Abstract
Silicosis is a lethal pneumoconiosis for which no therapy is available. Silicosis is a global threat, and more than 2.2 million people per year are exposed to silica in the United States. The initial response to silica is mediated by innate immunity. Phagocytosis of silica particles by macrophages is followed by recruitment of mitochondria to phagosomes, generation of mitochondrial reactive oxygen species, and cytokine (IL-1β, TNF-α, IFN-β) release. In contrast with LPS, the metabolic remodeling of silica-exposed macrophages is unclear. This study contrasts mitochondrial and metabolic alterations induced by LPS and silica on macrophages and correlates them with macrophage viability and cytokine production, which are central to the pathogenesis of silicosis. Using high-resolution respirometer and liquid chromatography-high-resolution mass spectrometry, we determined the effects of silica and LPS on mitochondrial respiration and determined changes in central carbon metabolism of murine macrophage cell lines RAW 264.7 and IC-21. We show that silica induces metabolic reprogramming of macrophages. Silica, as well as LPS, enhances glucose uptake and increases aerobic glycolysis in macrophages. In contrast with LPS, silica affects mitochondria respiration, reducing complex I and enhancing complex II activity, to sustain cell viability. These mitochondrial alterations are associated in silica, but not in LPS-exposed macrophages, with reductions of tricarboxylic acid cycle intermediates, including succinate, itaconate, glutamate, and glutamine. Furthermore, in contrast with LPS, these silica-induced metabolic adaptations do not correlate with IL-1β or TNF-α production, but with the suppressed release of IFN-β. Our data highlight the importance of complex II activity and tricarboxylic acid cycle remodeling to macrophage survival and cytokine-mediated inflammation in silicosis.
Collapse
Affiliation(s)
- Antonella Marrocco
- Department of Environmental and Occupational Health, Graduate School of Public Health at the University of Pittsburgh, Pittsburgh, PA
| | - Krystin Frawley
- Department of Environmental and Occupational Health, Graduate School of Public Health at the University of Pittsburgh, Pittsburgh, PA
| | - Linda L Pearce
- Department of Environmental and Occupational Health, Graduate School of Public Health at the University of Pittsburgh, Pittsburgh, PA
| | - James Peterson
- Department of Environmental and Occupational Health, Graduate School of Public Health at the University of Pittsburgh, Pittsburgh, PA
| | - James P O'Brien
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA.,Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, PA
| | - Stacy G Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA.,Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, PA.,Clinical Translational Science Institute, University of Pittsburgh, Pittsburgh, PA; and
| | | | - Steven E Mischler
- Department of Environmental and Occupational Health, Graduate School of Public Health at the University of Pittsburgh, Pittsburgh, PA
| | - Luis A Ortiz
- Department of Environmental and Occupational Health, Graduate School of Public Health at the University of Pittsburgh, Pittsburgh, PA;
| |
Collapse
|
14
|
Ahmad R, Akhter QS, Haque M. Occupational Cement Dust Exposure and Inflammatory Nemesis: Bangladesh Relevance. J Inflamm Res 2021; 14:2425-2444. [PMID: 34135615 PMCID: PMC8200167 DOI: 10.2147/jir.s312960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/22/2021] [Indexed: 12/15/2022] Open
Abstract
Background Prolonged, repeated exposure to cement dust, depending on duration and sensitivity of cement dust-exposed workers, may cause deteriorating effects on the skin, eye, respiratory and hematological system. Toxic cement dust causes inflammatory damage to different body organs. White blood cells (WBCs) are considered cellular markers of ongoing tissue inflammation. Aim of the Study Determining the influence of occupational cement dust exposure on WBCs with its differentials (inflammatory markers) in workers from the cement manufacturing plant. Methodology Ninety-two seemingly healthy male subjects (46 workers of cement plant and 46 control subjects, who do not contact cement dust, residing in Dhaka) aged between 20 and 50 years participated in this cross-sectional study. This study took place in Dhaka Medical College, Bangladesh, between the years of 2017 and 2018. An automated hematoanalyser was used to assess both the total and differential count of WBC. Data were analyzed with multivariate regression analysis, independent samples t-test, and correlation test. Results The total WBC count, differential count of lymphocyte, and eosinophil were significantly (p< 0.05) higher in cement dust-exposed recruits than in the control group. Additionally, multivariate regression analysis revealed that duration of cement dust exposure showed a significant association with total WBC count [odds ratio (OR)=4.42,95%, confidence level (CI) 1.56,12.47, p 0.005]. Furthermore, univariate analysis revealed that the control group (not exposed to cement dust) was less likely to have the total WBC count alteration (OR = 0.122, 95% CI =0.047 to 0.311) than the cement dust-exposed group. The total WBC count showed a significant positive correlation with exposure duration to this toxic dust. Conclusion Cement dust exposure causes harmful inflammatory responses, as evidenced by increased total and differential WBC count. The period of contact with this toxic dust has an impact on WBC count.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, Bangladesh
| | | | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Abstract
The re-identification of coal workers’ pneumoconiosis in Queensland in 2015 has prompted improvements in exposure monitoring and health surveillance in Australia. The potential consequences of excessive exposure to respirable dust may depend upon the size, shape and mineralogical classes of the dust. Technology has now advanced to the point that the dust characteristics can be explored in detail. This research collected respirable dust samples from four operating underground coal mines in Australia for characterization analysis using scanning electron microscopy (SEM) with energy dispersive X-ray (EDX). The research found multiple mineralogical classes present with their own particle size distributions. The variation between mines appears to have had a larger effect on particle size distribution than the differences in mining processes within individual mines. This may be due to variations in the geologic conditions, seam variation or mining conditions.
Collapse
|
16
|
Zazouli MA, Dehbandi R, Mohammadyan M, Aarabi M, Dominguez AO, Kelly FJ, Khodabakhshloo N, Rahman MM, Naidu R. Physico-chemical properties and reactive oxygen species generation by respirable coal dust: Implication for human health risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124185. [PMID: 33189473 DOI: 10.1016/j.jhazmat.2020.124185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/22/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
This study investigates the mineralogy, micro-morphology, chemical characteristics and oxidation toxicity of respirable dusts generated in underground coal mines. The active sampling was applied to collect airborne particulates with aerodynamic diameter <4 µm (PM4) at depth greater than 500 m from earth surface. The average mass concentration of PM4 was extremely higher than recommended values. QXRD and FESEM-EDS analyses were applied to study the micro-mineralogy and micro-morphology of respirable dusts. The chemical analysis by ICP-MS revealed an enrichment of V, Cr, Cu, Zn, As, Ag, Cd and Sb in respirable dust compared with the background environment and world coals. The EPA's health risk model showed that the health risk posed by Cr and Co in all workplaces exceeded the acceptable risk value for human health. The synthetic respiratory tract lining fluid (RTLF) model was utilized to achieve a novel insight into the toxicity of respirable coal dust. The result showed an overall depletion of lung surface antioxidants with the decreasing trend of ascorbic acid > reduced glutathione >> urate, implying low- to medium level of oxidative stress. The result of this study can be applied globally by decision-makers to decrease hazardous exposure of mine workers to respirable dust.
Collapse
Affiliation(s)
- Mohammad Ali Zazouli
- Department of Environmental Health Engineering, Faculty of Health, Mazandaran University of Medical Sciences, Sari, Iran; Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Dehbandi
- Department of Environmental Health Engineering, Faculty of Health, Mazandaran University of Medical Sciences, Sari, Iran; Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mahmoud Mohammadyan
- Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohsen Aarabi
- Department of Family Medicine, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ana Oliete Dominguez
- MRC Centre for Environment and Health, Imperial College London, White City Campus, 80-92 Wood Lane, London, UK
| | - Frank J Kelly
- MRC Centre for Environment and Health, Imperial College London, White City Campus, 80-92 Wood Lane, London, UK
| | - Nafise Khodabakhshloo
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz 71454, Iran; Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, New South Wales 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), ATC Building, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, New South Wales 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), ATC Building, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
17
|
Baranov MV, Kumar M, Sacanna S, Thutupalli S, van den Bogaart G. Modulation of Immune Responses by Particle Size and Shape. Front Immunol 2021; 11:607945. [PMID: 33679696 PMCID: PMC7927956 DOI: 10.3389/fimmu.2020.607945] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
The immune system has to cope with a wide range of irregularly shaped pathogens that can actively move (e.g., by flagella) and also dynamically remodel their shape (e.g., transition from yeast-shaped to hyphal fungi). The goal of this review is to draw general conclusions of how the size and geometry of a pathogen affect its uptake and processing by phagocytes of the immune system. We compared both theoretical and experimental studies with different cells, model particles, and pathogenic microbes (particularly fungi) showing that particle size, shape, rigidity, and surface roughness are important parameters for cellular uptake and subsequent immune responses, particularly inflammasome activation and T cell activation. Understanding how the physical properties of particles affect immune responses can aid the design of better vaccines.
Collapse
Affiliation(s)
- Maksim V. Baranov
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Manoj Kumar
- Simons Center for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Stefano Sacanna
- Molecular Design Institute, Department of Chemistry, New York University, New York, NY, United States
| | - Shashi Thutupalli
- Simons Center for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
- International Centre for Theoretical Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Geert van den Bogaart
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
18
|
Haque M, Ahmed R, Akhter Q. Cement dust revelation and inflammatory response: Global health comportment with special consideration towards Bangladesh. ADVANCES IN HUMAN BIOLOGY 2021. [DOI: 10.4103/aihb.aihb_59_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
19
|
Liu T, Liu S. The impacts of coal dust on miners' health: A review. ENVIRONMENTAL RESEARCH 2020; 190:109849. [PMID: 32763275 DOI: 10.1016/j.envres.2020.109849] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/14/2020] [Accepted: 06/16/2020] [Indexed: 05/28/2023]
Abstract
As one of the most important energy resources in the world, coal contributes a great deal to the world economy. Coal mining and processing involve multiple dust generation processes including coal cutting, transport, crushing and milling etc. Coal dust is one of the main sources of health hazard for the coal workers. Exposure of coal dusts can be prevented through administrative controls and engineering controls. Ineffective control of coal dust exposure can harm coal workers' health. Although many efforts have been made to eliminate these threats, recent years have seen an unexpected increase in coal workers' pneumoconiosis (CWP) in Appalachian basin in US. To explore the reasons for this phenomenon, in this review, we first reviewed the historical studies on coal mine dust including the regulation and engineering controls. Then, the effects of coal dust on human health was comprehensively reviewed. Next, the effects of nanoparticles on human health were reviewed, with an emphasis on toxicity of nanoparticles such as carbon nanotubes in other industries. From all this information, we hypothesize that nano-sized coal dust has contributed to the increase of CWP prevalence in recent years. As no research has been reported in this area, four directions which may need further investigation and future studies are recommended in this review. They include: 1) Systematic characterization of physicochemical properties of nano-size coal dust; 2) Toxicity and pathogenesis of nano-sized coal dust; 3) Development of real-time monitoring technology and equipment for nano-sized coal dust; 4) Development of exposure control technology and equipment. The intent of this review paper is to demonstrate the variation of coal dust properties and their impact on the mine worker's health. We suggest that the impact of nano-sized coal mine dust on miner's health has not yet been understood well and further improvements are necessary.
Collapse
Affiliation(s)
- Ting Liu
- School of Safety Engineering, China University of Mining & Technology, Xuzhou, 221116, China; Department of Energy and Mineral Engineering, G3 Center and EMS Energy Institute, The Pennsylvania State University, University Park, PA, USA
| | - Shimin Liu
- Department of Energy and Mineral Engineering, G3 Center and EMS Energy Institute, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
20
|
Lee T, Ku BK, Walker R, Kulkarni P, Barone T, Mischler S. Aerodynamic size separation of glass fiber aerosols. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2020; 17:301-311. [PMID: 32294024 PMCID: PMC7473384 DOI: 10.1080/15459624.2020.1742915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The objective of this study was to investigate the efficacy of an aerodynamic separation scheme for obtaining aerosols with nearly monodisperse fiber lengths as test samples for mechanistic toxicological evaluations. The approach involved the separation of aerosolized glass fibers using an Aerodynamic Aerosol Classifier (AAC) or a multi-cyclone sampling array, followed by the collection of separated samples on filter substrates, and the measurement of each sample fiber length distribution. A glass fiber aerosol with a narrow range of aerodynamic sizes was selected and sampled with the AAC or multi-cyclone sampling array in two separate setups. The fiber length and diameter were measured using a field emission scanning electron microscope. The glass fiber aerosol was separated in distinct groups of eight with the AAC and of four with the multi-cyclone sampling array. The geometric standard deviations of the fiber length distributions of the separated aerosols ranged from 1.49 to 1.69 for the AAC and from 1.6 to 1.8 for multi-cyclone sampling array. While the separation of glass fiber aerosols with an AAC is likely to produce two different length fiber groups and the length resolution may be acceptable, the overall mass throughput of these separation schemes is limited.
Collapse
Affiliation(s)
- Taekhee Lee
- Dust, Ventilation, and Toxic Substances Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania
| | - Bon Ki Ku
- Chemical and Biological Monitoring Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio
| | - Rachel Walker
- Dust, Ventilation, and Toxic Substances Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania
| | - Pramod Kulkarni
- Chemical and Biological Monitoring Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio
| | - Teresa Barone
- Dust, Ventilation, and Toxic Substances Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania
| | - Steven Mischler
- Dust, Ventilation, and Toxic Substances Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Colaço M, Duarte A, Zuzarte M, Costa BFO, Borges O. Airborne environmental fine particles induce intense inflammatory response regardless of the absence of heavy metal elements. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110500. [PMID: 32222596 DOI: 10.1016/j.ecoenv.2020.110500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
Airborne environmental particles (EP) more commonly referred as particulate matter (PM) are an illustrative marker of air pollution that is associated with adverse effects on human health. Considering, PM is a complex mixture, not only in terms of its chemical composition, but also in the range of particle size, it is difficult to identify which attribute contributes more for the toxicity. Currently, there is no report about the immunotoxicological effects caused by PM with reduced content of heavy metals. This study intends to address this gap and provides a detailed characterization and immunotoxicity evaluation of PM collected in an urban area with heavy traffic congestion. Environmental particles were separated by different sizes though a sucrose gradient. This method allowed to achieve 4 sized fractions: EP f 15 % with a mean diameter of 284 nm ± 1.86 nm, EP f 25 % with a mean diameter of 461 nm ± 1.72 nm, EP f 35 % with a mean diameter of 1845 nm ± 251 nm and EP f 45 % with a mean diameter of 2204 nm ± 310 nm. Only the fractions with the smallest sizes (EP f 15 % and EP f 25 %) were subsequently studied. The chemical composition of both fractions was not substantially different, and the dominant elements were C, O, Ca and K. Only EP f 25 % showed to have a small amount of Fe. Therefore, the heavy metal elements were eliminated through centrifugation. Essentially, we found that the EP f 15 % was more cytotoxic in RAW 264.7 cells than EP f 25 %, which indicates the smaller size as the motive for the higher toxicity. In addition, both fractions of EP presented a good internalization in macrophages after 2 h exposure and induced the production of reactive oxygen species in a concentration-dependent manner. Moreover, EP f 15 % and EP f 25 % led to a strong secretion of proinflammatory cytokines (TNF-α and IL-6) in human peripheral blood mononuclear cells (hPBMCs) in the 3 concentrations tested. The inflammatory response observed was independent of the presence of heavy metals and endotoxins, since these last were suppressed by using polymyxin B sulfate. This report emphasizes the importance of an adequate physicochemical characterization and adequate controls in the experiments to achieve a right interpretation of the biological effects caused by PM.
Collapse
Affiliation(s)
- Mariana Colaço
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Alana Duarte
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Mónica Zuzarte
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Benilde F O Costa
- CFisUC, Physics Department, University of Coimbra, 3004-516, Coimbra, Portugal
| | - Olga Borges
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
22
|
Skuland T, Låg M, Gutleb AC, Brinchmann BC, Serchi T, Øvrevik J, Holme JA, Refsnes M. Pro-inflammatory effects of crystalline- and nano-sized non-crystalline silica particles in a 3D alveolar model. Part Fibre Toxicol 2020; 17:13. [PMID: 32316988 PMCID: PMC7175518 DOI: 10.1186/s12989-020-00345-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/07/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Silica nanoparticles (SiNPs) are among the most widely manufactured and used nanoparticles. Concerns about potential health effects of SiNPs have therefore risen. Using a 3D tri-culture model of the alveolar lung barrier we examined effects of exposure to SiNPs (Si10) and crystalline silica (quartz; Min-U-Sil) in the apical compartment consisting of human alveolar epithelial A549 cells and THP-1-derived macrophages, as well as in the basolateral compartment with Ea.hy926 endothelial cells. Inflammation-related responses were measured by ELISA and gene expression. RESULTS Exposure to both Si10 and Min-U-Sil induced gene expression and release of CXCL8, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α) and interleukin-1β (IL-1β) in a concentration-dependent manner. Cytokine/chemokine expression and protein levels were highest in the apical compartment. Si10 and Min-U-Sil also induced expression of adhesion molecules ICAM-1 and E-selectin in the apical compartment. In the basolateral endothelial compartment we observed marked, but postponed effects on expression of all these genes, but only at the highest particle concentrations. Geneexpressions of heme oxygenase-1 (HO-1) and the metalloproteases (MMP-1 and MMP-9) were less affected. The IL-1 receptor antagonist (IL-1RA), markedly reduced effects of Si10 and Min-U-Sil exposures on gene expression of cytokines and adhesion molecules, as well as cytokine-release in both compartments. CONCLUSIONS Si10 and Min-U-Sil induced gene expression and release of pro-inflammatory cytokines/adhesion molecules at both the epithelial/macrophage and endothelial side of a 3D tri-culture. Responses in the basolateral endothelial cells were only induced at high concentrations, and seemed to be mediated by IL-1α/β released from the apical epithelial cells and macrophages.
Collapse
Affiliation(s)
- Tonje Skuland
- Section of Air Pollution and Noise, Department of Environment and Health, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403, Oslo, Norway.
| | - Marit Låg
- Section of Air Pollution and Noise, Department of Environment and Health, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403, Oslo, Norway
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Belvaux, Grand Duchy of Luxembourg, Luxembourg
| | - Bendik C Brinchmann
- Section of Air Pollution and Noise, Department of Environment and Health, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403, Oslo, Norway
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway
| | - Tommaso Serchi
- Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Belvaux, Grand Duchy of Luxembourg, Luxembourg
| | - Johan Øvrevik
- Section of Air Pollution and Noise, Department of Environment and Health, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403, Oslo, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Jørn A Holme
- Section of Air Pollution and Noise, Department of Environment and Health, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403, Oslo, Norway
| | - Magne Refsnes
- Section of Air Pollution and Noise, Department of Environment and Health, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403, Oslo, Norway
| |
Collapse
|
23
|
Doney BC, Blackley D, Hale JM, Halldin C, Kurth L, Syamlal G, Laney AS. Respirable coal mine dust at surface mines, United States, 1982-2017. Am J Ind Med 2020; 63:232-239. [PMID: 31820465 DOI: 10.1002/ajim.23074] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 11/12/2022]
Abstract
BACKGROUND Exposure to respirable coal mine dust can cause pneumoconiosis, an irreversible lung disease that can be debilitating. The mass concentration and quartz mass percent of respirable coal mine dust samples (annually, by occupation, by geographic region) from surface coal mines and surface facilities at U.S. underground mines during 1982-2017 were summarized. METHODS Mine Safety and Health Administration (MSHA) collected and analyzed data for respirable dust and a subset of the samples were analyzed for quartz content. We calculated the respirable dust and quartz concentration geometric mean, arithmetic mean, and percent of samples exceeding the respirable dust permissible exposure limit (PEL) of 2.0 mg/m3, and the average percent of quartz content in samples. RESULTS The geometric mean for 288 705 respirable dust samples was 0.17 mg/m3 with 1.6% of the samples exceeding the 2.0 mg/m3 PEL. Occupation-specific geometric means for respirable dust in active mining areas were highest among drillers. The geometric mean for respirable dust was higher in central Appalachia compared to the rest of the U.S. The geometric mean for respirable quartz including 54 040 samples was 0.02 mg/m3 with 15.3% of these samples exceeding the applicable standard (PEL or reduced PEL). Occupation-specific geometric means for respirable quartz were highest among drillers. CONCLUSION Higher concentrations of respirable dust or quartz in specific coal mining occupations, notably drilling occupations, and in certain U.S. regions, underscores the need for continued surveillance to identify workers at higher risk for pneumoconiosis.
Collapse
Affiliation(s)
- Brent C. Doney
- Respiratory Health Division, National Institute for Occupational Safety and HealthCenters for Disease Control and Prevention Morgantown West Virginia
| | - David Blackley
- Respiratory Health Division, National Institute for Occupational Safety and HealthCenters for Disease Control and Prevention Morgantown West Virginia
| | - Janet M. Hale
- Respiratory Health Division, National Institute for Occupational Safety and HealthCenters for Disease Control and Prevention Morgantown West Virginia
| | - Cara Halldin
- Respiratory Health Division, National Institute for Occupational Safety and HealthCenters for Disease Control and Prevention Morgantown West Virginia
| | - Laura Kurth
- Respiratory Health Division, National Institute for Occupational Safety and HealthCenters for Disease Control and Prevention Morgantown West Virginia
| | - Girija Syamlal
- Respiratory Health Division, National Institute for Occupational Safety and HealthCenters for Disease Control and Prevention Morgantown West Virginia
| | - A. Scott Laney
- Respiratory Health Division, National Institute for Occupational Safety and HealthCenters for Disease Control and Prevention Morgantown West Virginia
| |
Collapse
|
24
|
Effects of abnormal expression of fusion and fission genes on the morphology and function of lung macrophage mitochondria in SiO2-induced silicosis fibrosis in rats in vivo. Toxicol Lett 2019; 312:181-187. [DOI: 10.1016/j.toxlet.2019.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/11/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022]
|
25
|
Wu Q, Xu T, Liu Y, Li Y, Yuan J, Yao W, Xu Q, Yan W, Ni C. miR-1224-5p Mediates Mitochondrial Damage to Affect Silica-Induced Pulmonary Fibrosis by Targeting BECN1. Int J Mol Sci 2017; 18:ijms18112357. [PMID: 29112159 PMCID: PMC5713326 DOI: 10.3390/ijms18112357] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022] Open
Abstract
Silicosis is associated with fibroblast proliferation and extracellular matrix deposition in lung tissues. The dysregulation of miR-1224-5p has been implicated in several human cancers; however, the expression and function of miR-1224-5p in silicosis is unknown. The mitochondrial dysfunctions play critical roles in some diseases, but how these processes are regulated in silicosis remains limited. Here, we explored the role of miR-1224-5p in a mouse model of silicosis. We showed that the expression of miR-1224-5p is increased both in lung tissues of silica-induced pulmonary fibrosis and fibroblasts exposed to TGF-β1. Repression of miR-1224-5p expression attenuated silica-induced fibrotic progression in vivo and TGF-β1-induced myofibroblast differentiation in vitro. Additionally, we demonstrated that miR-1224-5p facilitated silica-induced pulmonary fibrosis primarily by repressing one of target genes, BECN1, thereby blocking PARK2 translocation to mitochondria and inducing the accumulation of damaged mitochondria. Furthermore, the activation of PDGFR signal mediated by mitochondrial damage and insufficient mitophagy resulted in myofibroblast differentiation. Collectively, these data indicated that miR-1224-5p exerts key functions in silica-induced pulmonary fibrosis and may represent a potential therapeutic target for silicosis.
Collapse
Affiliation(s)
- Qiuyun Wu
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China.
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Tiantian Xu
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Yi Liu
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Yan Li
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jiali Yuan
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Wenxi Yao
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Qi Xu
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Weiwen Yan
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Chunhui Ni
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
26
|
Li C, Lu Y, Du S, Li S, Zhang Y, Liu F, Chen Y, Weng D, Chen J. Dioscin Exerts Protective Effects Against Crystalline Silica-induced Pulmonary Fibrosis in Mice. Theranostics 2017; 7:4255-4275. [PMID: 29158824 PMCID: PMC5695011 DOI: 10.7150/thno.20270] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/29/2017] [Indexed: 12/15/2022] Open
Abstract
Inhalation of crystalline silica particles leads to pulmonary fibrosis, eventually resulting in respiratory failure and death. There are few effective drugs that can delay the progression of this disease; thus, patients with silicosis are usually only offered supportive care. Dioscin, a steroidal saponin, exhibits many biological activities and health benefits including its protective effects against hepatic fibrosis. However, the effect of dioscin on silicosis is unknown. Methods: We employed experimental mouse mode of silicosis. Different doses of dioscin were gavaged to the animals 1 day after crystalline silica instillation to see the effect of dioscin on crystalline silica induced pulmonary fibrosis. Also, we used RAW264.7 and NIH-3T3 cell lines to explore dioscin effects on macrophages and fibroblasts. Dioscin was also oral treatment but 10 days after crystalline silica instillation to see its effect on established pulmonary fibrosis. Results: Dioscin treatment reduced pro-inflammation and pro-fibrotic cytokine secretion by modulating innate and adaptive immune responses. It also reduced the recruitment of fibrocytes, protected epithelial cells from crystalline silica injury, inhibited transforming growth factor beta/Smad3 signaling and fibroblast activation. Together, these effects delayed the progression of crystalline silica-induced pulmonary fibrosis. The mechanism by which dioscin treatment alleviated CS-induced inflammation appeared to be via the reduction of macrophage, B lymphocyte, and T lymphocte infiltration into lung. Dioscin inhibits macrophages and fibroblasts from secreting pro-inflammatory cytokines and may also function as a modulator of T helper cells responses, concurrent with attenuated phosphorylation of the apoptosis signal-regulating kinase 1-p38/c-Jun N-terminal kinase pathway. Also, dioscin could block the phosphorylation of Smad3 in fibroblast. Oral treatment of dioscin could also effectively postpone the progression of established silicosis. Conclusion: Oral treatment dioscin delays crystalline silica-induced pulmonary fibrosis and exerts pulmonary protective effects in mice. Dioscin may be a novel and potent candidate for protection against crystalline silica-induced pulmonary fibrosis.
Collapse
|
27
|
Seidel C, Kirsch A, Fontana C, Visvikis A, Remy A, Gaté L, Darne C, Guichard Y. Epigenetic changes in the early stage of silica-induced cell transformation. Nanotoxicology 2017; 11:923-935. [PMID: 28958182 DOI: 10.1080/17435390.2017.1382599] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 08/31/2017] [Accepted: 09/18/2017] [Indexed: 01/03/2023]
Abstract
The increasing use of nanomaterials in numerous domains has led to growing concern about their potential toxicological properties, and the potential risk to human health posed by silica nanoparticles remains under debate. Recent studies proposed that these particles could alter gene expression through the modulation of epigenetic marks, and the possible relationship between particle exposure and these mechanisms could represent a critical factor in carcinogenicity. In this study, using the Bhas 42 cell model, we compare the effects of exposure to two transforming particles, a pyrogenic amorphous silica nanoparticle NM-203 to those of the crystalline silica particle Min-U-Sil® 5. Short-term treatment by Min-U-Sil® 5 decreased global DNA methylation and increased the expression of the two de novo DNMTs, DNMT3a and DNMT3b. NM-203 treatment affected neither the expression of these enzymes nor DNA methylation. Moreover, modified global histone H4 acetylation status and HDAC protein levels were observed only in the Min-U-Sil® 5-treated cells. Finally, both types of particle treatment induced strong c-Myc expression in the early stage of cell transformation and this correlated with enrichment in RNA polymerase II as well as histone active marks on its promoter. Lastly, almost all parameters that were modulated in the early stage were restored in transformed cells suggesting their involvement mainly in the first steps of cell transformation.
Collapse
Affiliation(s)
- Carole Seidel
- a Département Toxicologie et Biométrologie , Institut National de Recherche et Sécurité (INRS) , Vandoeuvre-lès-Nancy Cedex , France
| | - Anaïs Kirsch
- a Département Toxicologie et Biométrologie , Institut National de Recherche et Sécurité (INRS) , Vandoeuvre-lès-Nancy Cedex , France
| | - Caroline Fontana
- a Département Toxicologie et Biométrologie , Institut National de Recherche et Sécurité (INRS) , Vandoeuvre-lès-Nancy Cedex , France
| | - Athanase Visvikis
- b Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA) , UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé , Vandoeuvre-lès-Nancy , France
| | - Aurélie Remy
- a Département Toxicologie et Biométrologie , Institut National de Recherche et Sécurité (INRS) , Vandoeuvre-lès-Nancy Cedex , France
| | - Laurent Gaté
- a Département Toxicologie et Biométrologie , Institut National de Recherche et Sécurité (INRS) , Vandoeuvre-lès-Nancy Cedex , France
| | - Christian Darne
- a Département Toxicologie et Biométrologie , Institut National de Recherche et Sécurité (INRS) , Vandoeuvre-lès-Nancy Cedex , France
| | - Yves Guichard
- a Département Toxicologie et Biométrologie , Institut National de Recherche et Sécurité (INRS) , Vandoeuvre-lès-Nancy Cedex , France
| |
Collapse
|
28
|
IL-10-Producing B Cells Suppress Effector T Cells Activation and Promote Regulatory T Cells in Crystalline Silica-Induced Inflammatory Response In Vitro. Mediators Inflamm 2017; 2017:8415094. [PMID: 28831210 PMCID: PMC5558645 DOI: 10.1155/2017/8415094] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/11/2017] [Indexed: 12/11/2022] Open
Abstract
Long-term exposure to crystalline silica leads to silicosis, which is characterized by persistent lung inflammation and lung fibrosis. Multiple immune cells have been demonstrated to participate in crystalline silica-induced immune responses. Our previous study indicated that B10 could control lung inflammation through modulating the Th balance in experimental silicosis in mice. However, the regulatory mechanism of B10 on CD4+ T cells is still unclear. MACS-sorted CD19+ B cells from the three different groups were cultured with CD4+ T cells either with or without transwell insert plates to evaluate the effects of B10 on CD4+ T cells, including Teff and Treg. B10 was eliminated by anti-CD22 application in vivo. Flow cytometry was used to test the frequencies of CD4+ T cells, and the expressions of the related cytokines were detected by real-time PCR and CBA. Insufficient B10 elevated the levels of proinflammatory cytokines and promoted Th responses in a way independent upon cell-cell contact in the Teff and B cell coculture system. B10 could both increase Treg activity and enhance conversion of Teff into Treg. Our findings demonstrated that B10 could affect Th responses by the release of IL-10, enhancing Treg functions and converting Teff into Treg.
Collapse
|