1
|
Wang X, Wang X, Liu W, Chen H, Zhang Z, Zhao Y, Xiang P. Toxicological investigation of 25 aconitine-induced deaths from 2005 to 2023. Leg Med (Tokyo) 2025; 72:102564. [PMID: 39746252 DOI: 10.1016/j.legalmed.2024.102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/08/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Aconitum herbs contain several highly toxic diester-diterpenoid alkaloids, including aconitine, mesaconitine, and hypaconitine. However, finding the cause of death is rather difficult for forensic pathologists during forensic autopsy of aconitine-induced death. Therefore, the ability to determine Aconitum alkaloids is important in these cases. The aim of this study was to review the data for alkaloids in postmortem specimens from 25 aconitine-induced deaths received by the Academy of Forensic Science from 2005 to 2023. Aconitum alkaloids were analyzed using an LC-MS/MS method, which was validated for blood, urine, and liver tissue. Briefly, 0.5 mL (g) of biological sample was subjected to liquid-liquid extraction with diethyl ether at pH 9.2. In 25 aconitine-induced deaths, the blood levels of aconitine, mesaconitine, and hypaconitine were 2.9-470 ng/mL (n = 22), <LOQ-30 ng/mL (n = 10), and <LOQ-5.0 ng/mL (n = 10), respectively. In some cases, other biological samples (e.g., urine, gastric contents, and liver tissue) and the materials seized on site (e.g., homemade medicinal liquor) were also analyzed. A significant positive correlation was observed between the biological samples and the seized materials for the concentration ratios of aconitine to mesaconitine and of aconitine to hypaconitine. The risk of aconite poisoning is increased by inappropriate administration, including drinking of homemade medicinal liquors containing Aconitum alkaloids, the use of unprocessed or improperly processed Aconitum plant material, and excessive consumption or misuse without doctors' directions. Accidental death caused by misuse of herbal drugs was the main cause of death in the 25 aconitine-induced deaths studied here.
Collapse
Affiliation(s)
- Xinying Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China; Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai, China
| | - Xin Wang
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai, China
| | - Wei Liu
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai, China
| | - Hang Chen
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai, China
| | - Zhen Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China; Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai, China
| | - Yunli Zhao
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| | - Ping Xiang
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai, China.
| |
Collapse
|
2
|
Ding H, Liu Y, Wang S, Mei Y, Li L, Xiong A, Wang Z, Yang L. Metabolomics as an emerging tool for the pharmacological and toxicological studies on Aconitum alkaloids. Chin J Nat Med 2025; 23:182-190. [PMID: 39986694 DOI: 10.1016/s1875-5364(25)60822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/08/2024] [Accepted: 07/28/2024] [Indexed: 02/24/2025]
Abstract
Aconitum (Ranunculaceae) has a long-standing history in traditional Chinese medicine (TCM), where it has been widely used to treat conditions such as rheumatoid arthritis (RA), myocardial infarction, and heart failure. However, the potency of Aconitum alkaloids, the primary active components of Aconitum, also confers substantial toxicity. Therefore, assessing the efficacy and toxicity of these Aconitum alkaloids is crucial for ensuring clinical effectiveness and safety. Metabolomics, a quantitative method for analyzing low-molecular-weight metabolites involved in metabolic pathways, provides a comprehensive view of the metabolic state across multiple systems in vivo. This approach has become a vital investigative tool for facilitating the evaluation of their efficacy and toxicity, identifying potential sensitive biomarkers, and offering a promising avenue for elucidating the pharmacological and toxicological mechanisms underlying TCM. This review focuses on the applications of metabolomics in pharmacological and toxicological studies of Aconitum alkaloids in recent years and highlights the significant role of metabolomics in exploring compatibility detoxification and the mechanisms of TCM processing, aiming to identify more viable methods for characterizing toxic medicinal plants.
Collapse
Affiliation(s)
- Han Ding
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yamin Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sifan Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuqi Mei
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Aizhen Xiong
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Cheng D, Sheng S, Hu J, Cai S, Liu Y, Gan R, Zhu Z, Ge L, Chen W, Cheng X. Ershen Zhenwu Decoction suppresses myocardial fibrosis of chronic heart failure with heart-kidney Yang deficiency by down-regulating the Ras Homolog Gene Family Member A/Rho-Associated Coiled-Coil Kinases signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119146. [PMID: 39580131 DOI: 10.1016/j.jep.2024.119146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
ETHNOPHARMACOLOGICAL SIGNIFICANCE The therapeutic efficacy of Ershen Zhenwu Decoction (ESZWD)-a famous formulation from Xin'an for patients with chronic heart failure heart-kidney Yang deficiency (CHF-HKYD)-is well established. Still, the underlying molecular mechanism is not clear. AIM OF THE STUDY This study investigated mechanisms by which ESZWD suppresses cardiac pathology, including myocardial fibrosis, in CHF-HKYD model rats and Ang II-stimulated cardiac fibroblasts (CFs). MATERIALS AND METHODS The components in ESZWD were analyzed by ultra-high-performance liquid chromatography coupled with Quadrupole Time-Of-Flight mass spectrometry (UHPLC-Q-TOF-MS). CHF-HKYD model was established in the male Sprague-Dawley rats through bilateral thyroidectomy and intraperitoneal administration of 0.02% doxorubicin (DOX), twice weekly for 3 weeks. Subsequently, the CHF-HKYD model rats were randomly categorized into the Model, ESZWD-L (3.96 g/kg/d ESZWD), ESZWD-M (7.92 g/kg/d ESZWD), ESZWD-H (15.84 g/kg/d ESZWD), and Sac/Val (68 mg/kg/d sacubitril/valsartan) groups and treated daily for 4 weeks. As a control, the sham surgery group (Sham) was used. Primary cardiac fibroblasts (CFs) were categorized into Control, Model, ESZWD, and Sac/Val groups. Then, the CFs were stimulated with Ang-II. The ESZWD and Sac/Val groups were incubated with different concentrations of drug-containing sera and their effects on CF viability were assessed via the CCK-8 assay. The ESZWD and Sac/Val groups received drug-containing serum concentrations determined by CCK-8 assay results. The cardioprotective effects of ESZWD were determined using echocardiography, Hematoxylin & Eosin (H&E) staining, Masson staining, and Sirius red staining, and the Enzyme Linked Immunosorbent Assay (ELISA). ESZWD's effects on the Ras Homolog Gene Family Member A (RhoA)/Rho-Associated Coiled-Coil Kinases (ROCKs) signaling pathway and myocardial fibrosis were assessed by Western blotting and Quantitative Real-Time PCR (qRT-PCR) analyses. Immunofluorescence was used to observe fibrotic markers in CFs. RESULTS ESZWD treatment improved cardiac function in the CHF-HKYD rats by significantly reducing myocardial fibrosis and ventricular remodeling. ESZWD treatment increased the rats' body temperature (Tb) and 24-h urine volume, left ventricular ejection fraction (LVEF) and LV fractional shortening (LVFS), and decreased LV internal systolic diameter (LVIDs), LV internal diastolic diameter (LVIDd), and heart weight/body weight (HW/BW) compared to the Model group. In comparison to the model rats, ESZWD treatment decreased serum levels of B-type natriuretic peptide precursor (NT-proBNP), tumor necrosis factor-alpha (TNF-α), interleukin-11 (IL-11), and IL-17A. ESZWD treatment significantly down-regulated the protein and mRNA expression levels of collagen I A1, α-SMA, RhoA, ROCK1, and ROCK2 in the heart tissues of the CHF-HKYD rats and the Ang II-stimulated CFs. CONCLUSION ESZWD significantly improved cardiac function and attenuated myocardial fibrosis and inflammation in the CHF-HKYD rats by inhibiting the RhoA/ROCKs signaling pathway.
Collapse
Affiliation(s)
- Dan Cheng
- First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Shuguang Hospital Affiliated with Shanghai University of Chinese Medicine, Anhui Hospital, Hefei, China; Xin'an Key Laboratory of Medical Science, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Sheng Sheng
- Shuguang Hospital Affiliated with Shanghai University of Chinese Medicine, Anhui Hospital, Hefei, China; Xin'an Key Laboratory of Medical Science, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Hu
- First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Xin'an Key Laboratory of Medical Science, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Shanshan Cai
- First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Xin'an Key Laboratory of Medical Science, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Yan Liu
- First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Xin'an Key Laboratory of Medical Science, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Ruixi Gan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhenpeng Zhu
- First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Xin'an Key Laboratory of Medical Science, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Lan Ge
- First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Xin'an Key Laboratory of Medical Science, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China.
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| | - Xiaoyu Cheng
- First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Xin'an Key Laboratory of Medical Science, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
4
|
Kim SE, Chung G, Kim SK. Phytochemical-based therapeutics from traditional eastern medicine: analgesic effects and ion channel modulation. FRONTIERS IN PAIN RESEARCH 2025; 6:1537154. [PMID: 39958366 PMCID: PMC11825757 DOI: 10.3389/fpain.2025.1537154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/09/2025] [Indexed: 02/18/2025] Open
Abstract
Pain management remains a major challenge in the healthcare system. While synthetic analgesics are widely used for pain management, their effectiveness in managing chronic pain is often limited due to low efficacy or side effects. Thus, there is growing interest in exploring alternative pain relief methods, particularly using medicinal plants from traditional Eastern medicine and their phytochemicals. Previous studies have demonstrated the modulatory effects of various phytochemicals derived from herbal medicine on pain-related ion channels, such as voltage-gated sodium channels (Nav), calcium channels (Ca2+), and transient receptor potential (TRP) channels. Since these ion channels are integral to the transmission and modulation of pain signals, the ability of specific phytochemicals to activate or inhibit these channels presents a promising avenue for the development of novel analgesics. The goal of this review is to merge herbal insights with ion channel research to highlight the potential of natural compounds for safe and effective pain management. In this regard, we summarize the discovery and characterization of pain-relieving phytochemicals from herbal medicine, and we discuss their mechanisms of action and their potential to mimic or enhance the effects of conventional analgesics through ion channel modulation.
Collapse
Affiliation(s)
| | - Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Sharma D, Gautam S, Singh S, Srivastava N, Khan AM, Bisht D. Unveiling the nanoworld of antimicrobial resistance: integrating nature and nanotechnology. Front Microbiol 2025; 15:1391345. [PMID: 39850130 PMCID: PMC11754303 DOI: 10.3389/fmicb.2024.1391345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
A significant global health crisis is predicted to emerge due to antimicrobial resistance by 2050, with an estimated 10 million deaths annually. Increasing antibiotic resistance necessitates continuous therapeutic innovation as conventional antibiotic treatments become increasingly ineffective. The naturally occurring antibacterial, antifungal, and antiviral compounds offer a viable alternative to synthetic antibiotics. This review presents bacterial resistance mechanisms, nanocarriers for drug delivery, and plant-based compounds for nanoformulations, particularly nanoantibiotics (nAbts). Green synthesis of nanoparticles has emerged as a revolutionary approach, as it enhances the effectiveness, specificity, and transport of encapsulated antimicrobials. In addition to minimizing systemic side effects, these nanocarriers can maximize therapeutic impact by delivering the antimicrobials directly to the infection site. Furthermore, combining two or more antibiotics within these nanoparticles often exhibits synergistic effects, enhancing the effectiveness against drug-resistant bacteria. Antimicrobial agents are routinely obtained from secondary metabolites of plants, including essential oils, phenols, polyphenols, alkaloids, and others. Integrating plant-based antibacterial agents and conventional antibiotics, assisted by suitable nanocarriers for codelivery, is a potential solution for addressing bacterial resistance. In addition to increasing their effectiveness and boosting the immune system, this synergistic approach provides a safer and more effective method of tackling future bacterial infections.
Collapse
Affiliation(s)
- Devesh Sharma
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
- School of Studies in Biochemistry, Jiwaji University, Gwalior, India
| | - Sakshi Gautam
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Sakshi Singh
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Nalini Srivastava
- School of Studies in Biochemistry, Jiwaji University, Gwalior, India
| | - Abdul Mabood Khan
- Division of Clinical Trials and Implementation Research, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Deepa Bisht
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| |
Collapse
|
6
|
Marycleopha M, Johnson J, Singh A, Kumar S. Benzoylmesaconine alters the native structure and activity of hen egg white lysozyme: revealing possible mechanism of aconitum-induced toxicity. Forensic Toxicol 2024:10.1007/s11419-024-00709-w. [PMID: 39708282 DOI: 10.1007/s11419-024-00709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024]
Abstract
PURPOSE This study examines the interaction between benzoylmesaconine (BMA) and hen egg white lysozyme (HEWL) under various physiological conditions, aiming to determine how BMA affects the HEWL's structure and function. METHODS Several analytical techniques were used, including tryptophan assay, light scattering, thioflavin T (ThT)-binding assay, dynamic light scattering, 8-anilino-1-naphthalenesulfonic acid (ANS)-binding assay, circular dichroism (CD) spectroscopy, enzyme activity assay, and molecular docking. RESULTS The tryptophan assay displayed a concentration-dependent decrease in tryptophan fluorescence, showing an interaction between BMA and HEWL. Light scattering and ThT-binding assays confirmed increased protein aggregation and amyloid fibril formation, while the ANS-binding assay demonstrated altered exposed hydrophobic regions, implying structural changes. CD spectroscopy showed a reduction in α-helix content, indicating conformational alterations, and enzyme activity assays showed a loss of lytic function due to structural distortion. Finally, molecular docking identified significant bonds and hydrophobic interactions between BMA and HEWL residues. CONCLUSIONS BMA binding induces structural changes in proteins, forming small oligomers and amyloid fibrils that decrease HEWL enzymatic activity and disrupt functional integrity.
Collapse
Affiliation(s)
- Manka Marycleopha
- Laboratory of Forensic Biology and Biotechnology, School of Forensic Science, National Forensic Science University, Gandhinagar, Gujarat, 382007, India
| | - Jennifer Johnson
- Laboratory of Forensic Biology and Biotechnology, School of Forensic Science, National Forensic Science University, Gandhinagar, Gujarat, 382007, India
| | - Abhishek Singh
- National Forensic Sciences University, Goa Campus, Ponda, Goa, 403401, India
| | - Satish Kumar
- Laboratory of Forensic Biology and Biotechnology, School of Forensic Science, National Forensic Science University, Gandhinagar, Gujarat, 382007, India.
- National Forensic Sciences University, Bhopal Campus, Bhopal, Madhya Pradesh, 462030, India.
| |
Collapse
|
7
|
Heller CD, Zahedifard F, Doskocil I, Pamfil D, Zoltner M, Kokoska L, Rondevaldova J. Traditional Medicinal Ranunculaceae Species from Romania and Their In Vitro Antioxidant, Antiproliferative, and Antiparasitic Potential. Int J Mol Sci 2024; 25:10987. [PMID: 39456769 PMCID: PMC11507926 DOI: 10.3390/ijms252010987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Several Ranunculaceae species are used in folk medicine to eliminate pathologies associated with oxidative stress as well as parasitic infections; however, a number of studies confirming their pharmacological properties is limited. In this study, 19 ethanolic extracts obtained from 16 Ranunculaceae species were assayed for in vitro antioxidant, antiproliferative, and antiparasitic potential. The maximum antioxidant potential in both oxygen radical absorbance capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays was observed for Aconitum toxicum extract [half-maximal inhibitory concentration (IC50) 18.7 and 92.6 μg/mL]. Likewise, Anemone transsilvanica extract exerted the most promising antiproliferative activity against Caco-2 (IC50 46.9 μg/mL) and HT29 (IC50 70.2 μg/mL) cell lines in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Additionally, a dual antioxidant and cytotoxicity effect was demonstrated for Aconitum moldavicum and Caltha palustris extracts. Whilst the efficacy of extracts was modest against Trypanosoma brucei (IC50 ranging from 88.8 to 269.3 µg/mL), several extracts exhibited high potency against Leishmania infantum promastigotes (Aconitum vulparia IC50 18.8 µg/mL). We also tested them against the clinically relevant intracellular stage and found extract of A. vulparia to be the most effective (IC50 29.0 ± 1.1 µg/mL). All tested extracts showed no or low toxicity against FHs 74Int normal cell line (IC50 ranging from 152.9 to >512 µg/mL). In conclusion, we suggest the above-mentioned plant extracts as potential candidates for development of novel plant-based antioxidant and/or antiproliferative and/or antileishmanial compounds.
Collapse
Affiliation(s)
- Cristina D. Heller
- Laboratory of Molecular Therapy, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic;
| | - Farnaz Zahedifard
- Department of Parasitology, Faculty of Science, Charles University, 252 50 Prague, Czech Republic; (F.Z.); (M.Z.)
| | - Ivo Doskocil
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague-Suchdol, Czech Republic;
| | - Doru Pamfil
- Department of Horticulture and Landscape Architecture, Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăştur Street, 400372 Cluj-Napoca, Romania;
| | - Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University, 252 50 Prague, Czech Republic; (F.Z.); (M.Z.)
| | - Ladislav Kokoska
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague-Suchdol, Czech Republic;
| | - Johana Rondevaldova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague-Suchdol, Czech Republic;
| |
Collapse
|
8
|
Moise G, Jîjie AR, Moacă EA, Predescu IA, Dehelean CA, Hegheș A, Vlad DC, Popescu R, Vlad CS. Plants' Impact on the Human Brain-Exploring the Neuroprotective and Neurotoxic Potential of Plants. Pharmaceuticals (Basel) 2024; 17:1339. [PMID: 39458980 PMCID: PMC11510325 DOI: 10.3390/ph17101339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/19/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Plants have long been recognized for their potential to influence neurological health, with both neuroprotective and neurotoxic properties. This review explores the dual nature of plant-derived compounds and their impact on the human brain. DISCUSSION Numerous studies have highlighted the neuroprotective effects of various phytoconstituents, such as those found in Ginkgo biloba, Centella asiatica, Panax ginseng, Withania somnifera, and Curcuma longa. The neuroprotective compounds have demonstrated antioxidant, anti-inflammatory, and cognitive-enhancing properties, making them promising candidates for combating neurodegenerative diseases and improving brain function. Polyphenolic compounds, triterpenic acids, and specific phytocompounds like the ones from EGb 761 extract have shown interactions with key enzymes and receptors in the brain, leading to neuroprotective outcomes. However, this review also acknowledges the neurotoxic potential of certain plants, such as the Veratrum species, which contains steroidal alkaloids that can cause DNA damage and disrupt neurological function, or Atropa belladonna, which interfere with the normal functioning of the cholinergic system in the body, leading to a range of symptoms associated with anticholinergic toxicity. CONSLUSIONS This review also emphasizes the need for further research to elucidate the complex mechanisms underlying the neuroprotective and neurotoxic effects of plant-derived compounds, as well as to identify novel phytoconstituents with therapeutic potential. Understanding the complex relationship between plants and the human brain is crucial for harnessing the benefits of neuroprotective compounds while mitigating the risks associated with neurotoxic substances. This review provides a comprehensive overview of the knowledge on the neurological properties of plants and highlights the importance of continued research in this field for the development of novel therapeutic strategies targeting brain health and neurological disorders.
Collapse
Affiliation(s)
- Georgiana Moise
- Department of Clinical Pharmacology, The Doctoral School of Medicine, “Pius Brînzeu” County Emergency Clinical Hospital Timisoara, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Alex-Robert Jîjie
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (I.-A.P.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (I.-A.P.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Iasmina-Alexandra Predescu
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (I.-A.P.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Cristina Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (I.-A.P.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Alina Hegheș
- Department II—Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Daliborca Cristina Vlad
- Department IV—Department of Biochemistry and Pharmacology, Division of Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (D.C.V.); (C.S.V.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Roxana Popescu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
- Department II—Department of Microscopic Morphology, Division of Cell and Molecular Biology II, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Cristian Sebastian Vlad
- Department IV—Department of Biochemistry and Pharmacology, Division of Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (D.C.V.); (C.S.V.)
| |
Collapse
|
9
|
Xing P, Mao R, Zhang G, Li Y, Zhou W, Diao H, Ma R. Secondary metabolites in Cordyceps javanica with insecticidal potential. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106076. [PMID: 39277389 DOI: 10.1016/j.pestbp.2024.106076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 09/17/2024]
Abstract
Cordyceps javanica has been registered as a fungal insecticide in several countries. However, little is known about whether metabolic toxins are involved in the insecticidal process. In this research, we assessed the insecticidal activity of the fermentation broth of C. javanica. Myzus persicae mortality differed when exposed to the metabolized C. javanica broths at 3 days post fermentation (DPF) and 5 DPF. Comparison of the metabolic fluid at 3 DPF and 5 DPF revealed a key alkaloid, heteratisine, which was found to have insecticidal activity and acetylcholinesterase (AChE) inhibitory activity. Heteratisine has high insecticidal activity against adult M. persicae, the absolute 50% lethal concentration (LC50) was only 0.2272 mg/L. Heteratisine showed high inhibitory activity on AChE with the 50% maximal inhibitory concentration (IC50) of 76.69 μM. Molecular docking and dynamic simulations showed that heteratisine conjugation occurs at the peripheral anionic site (PAS) of the AChE of M. persicae, leading to suppression of enzyme activity. Heteratisine was rarely found in fungal metabolites, which helps us to understand the complex and elaborate insecticidal mechanism of C. javanica.
Collapse
Affiliation(s)
- Peixiang Xing
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China; State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Ruixia Mao
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Guisen Zhang
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Yihua Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Wenwen Zhou
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China; State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Hongliang Diao
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China; State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan 030031, Shanxi, China.
| | - Ruiyan Ma
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China; State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan 030031, Shanxi, China.
| |
Collapse
|
10
|
Ge M, Ouyang H, Shang Y, Biu AM, Wu X, Li C, Zuo F, Zhu Y, Xue Z, Hao J, He J. Investigation of the drug-drug interaction and incompatibility mechanism between Aconitum carmichaelii Debx and Pinellia ternata (Thunb.) Breit. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118212. [PMID: 38636577 DOI: 10.1016/j.jep.2024.118212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/03/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The combination of Aconitum carmichaelii Debx (Chuanwu, CW) and Pinellia ternata (Thunb.) Breit (Banxia, BX) forms an herbal pair within the eighteen incompatible medicaments (EIM), indicating that BX and CW are incompatible. However, the scientific understanding of this incompatibility mechanism, especially the corresponding drug-drug interaction (DDI), remains complex and unclear. AIM OF THE STUDY This study aims to explain the DDI and potential incompatibility mechanism between CW and BX based on pharmacokinetics and cocktail approach. MATERIALS AND METHODS Ultraperformance liquid chromatography-tandem mass spectrometry methods were established for pharmacokinetics and cocktail studies. To explore the DDI between BX and CW, in the pharmacokinetics study, 10 compounds were determined in rat plasma after administering CW and BX-CW herbal pair extracts. In the cocktail assay, the pharmacokinetic parameters of five probe substrates were utilized to assess the influence of BX on cytochrome P450 (CYP) isoenzyme (dapsone for CYP3A4, phenacetin for CYP1A2, dextromethorphan for CYP2D6, tolbutamide for CYP2C9, and omeprazole for CYP2C19). Finally, the DDI and incompatibility mechanism of CW and BX were integrated to explain the rationality of EIM theory. RESULTS BX not only enhances the absorption of aconitine and benzoylaconine but also accelerates the metabolism of mesaconitine, benzoylmesaconine, songorine, and fuziline. Moreover, BX affects the activity of CYP enzymes, which regulate the metabolism of toxic compounds. CONCLUSIONS BX altered the activity of CYP enzymes, consequently affecting the metabolism of toxic compounds from CW. This incompatibility mechanism may be related to the increased absorption of these toxic compounds in vivo.
Collapse
Affiliation(s)
- Minglei Ge
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300193, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Huizi Ouyang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300193, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 300193, Tianjin, China
| | - Ye Shang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Abdulmumin Muhammad Biu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiwei Wu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Caixia Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fanjiao Zuo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yameng Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zixiang Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jia Hao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, 301617, Tianjin, China.
| |
Collapse
|
11
|
Moon CS, Kang HM, Nam Y, Lim J, Kim J, Lee TH, Lee J, Chang MS, Lee JY. Structural Modification and Characteristics of Lappaconitine Alkaloid for the Discovery of Bioactive Components by Hypervalent Iodine Reagent. Org Lett 2024; 26:6535-6539. [PMID: 39087787 DOI: 10.1021/acs.orglett.4c01927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Lappaconitine, a diterpene alkaloid isolated from Aconitum sinomontanum Nakai, exhibits a wide range of biological activities, making it a promising candidate for the development of novel derivatives with therapeutic potential. In our research, we executed a two-step transformation via oxidative cleavage of lappaconitine's vicinal diol using the hypervalent iodine reagent PhI(OAc)2, followed by strong alkaline hydrolysis. This approach yielded four new unanticipated compounds, whose structures were identified by spectroscopic methods and/or X-ray crystallography. Thus, we proposed plausible reaction mechanisms for their formations and particularly investigated the remarkable diastereoselectivity for the formation of single stereoisomer 8 observed during the alkaline hydrolysis step. Among them, compound 8 (code name: QG3030) demonstrated both enhanced osteogenic differentiation of human mesenchymal stem cells and significant osteogenic effect in an ovariectomized rat model with no acute oral toxicity.
Collapse
Affiliation(s)
- Chang Sang Moon
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Heung Mo Kang
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yunchan Nam
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jiwoong Lim
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Jiewan Kim
- Qgenetics, Seoul Bio Cooperation Center 504, 23 Kyunghee dae-ro, Dongdaemun-gu Seoul 02447, Republic of Korea
| | - Tae-Hee Lee
- Qgenetics, Seoul Bio Cooperation Center 504, 23 Kyunghee dae-ro, Dongdaemun-gu Seoul 02447, Republic of Korea
| | - Junho Lee
- Qgenetics, Seoul Bio Cooperation Center 504, 23 Kyunghee dae-ro, Dongdaemun-gu Seoul 02447, Republic of Korea
| | - Mun Seog Chang
- Qgenetics, Seoul Bio Cooperation Center 504, 23 Kyunghee dae-ro, Dongdaemun-gu Seoul 02447, Republic of Korea
- Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae Yeol Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
12
|
Bian YY, Hou J, Khakurel S. Treatment of a patient with aconitine poisoning using veno-arterial membrane oxygenation: A case report. World J Clin Cases 2024; 12:4842-4852. [PMID: 39070832 PMCID: PMC11235513 DOI: 10.12998/wjcc.v12.i21.4842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Aconitine poisoning is highly prone to causing malignant arrhythmias. The elimination of aconitine from the body takes a considerable amount of time, and during this period, patients are at a significant risk of death due to malignant arrhythmias associated with aconitine poisoning. CASE SUMMARY A 30-year-old male patient was admitted due to accidental ingestion of aconitine-containing drugs. Upon arrival at the emergency department, the patient intermittently experienced malignant arrhythmias including ventricular tachycardia, ventricular fibrillation, ventricular premature beats, and cardiac arrest. Emergency interventions such as cardiopulmonary resuscitation and defibrillation were promptly administered. Additionally, veno-arterial extracorporeal membrane oxygenation (VA-ECMO) therapy was initiated. Successful resuscitation was achieved before ECMO placement, but upon initiation of ECMO, the patient experienced recurrent malignant arrhythmias. ECMO was utilized to maintain hemodynamics and respiration, while continuous blood purification therapy for toxin clearance, mechanical ventilation, and hypothermic brain protection therapy were concurrently administered. On the third day of VA-ECMO support, the patient's respiratory and hemodynamic status stabilized, with only frequent ventricular premature beats observed on electrocardiographic monitoring, and echocardiography indicated recovery of cardiac contractile function. On the fourth day, a significant reduction in toxin levels was observed, along with stable hemodynamic and respiratory functions. Following a successful pump-controlled retrograde trial occlusion test, ECMO assistance was terminated. The patient gradually improved postoperatively and achieved recovery. He was discharged 11 days later. CONCLUSION VA-ECMO can serve as a bridging resuscitation technique for patients with reversible malignant arrhythmias.
Collapse
Affiliation(s)
- Yu-Yao Bian
- Department of Emergency Medicine, Hebei Petro China Central Hospital, Langfang 065000, Hebei Province, China
| | - Jin Hou
- Department of Internal Medicine, Langfang Health Vocational College, Langfang 065000, Hebei Province, China
| | - Sudha Khakurel
- Dallas Campus, UT Health Houston School of Public Health, Dallas, TX 75201, United States
| |
Collapse
|
13
|
Wu Z, Qian J, Feng C, Chen Z, Gao X, Liu Y, Gao Y. A review of Aconiti Lateralis Radix Praeparata (Fuzi) for kidney disease: phytochemistry, toxicology, herbal processing, and pharmacology. Front Pharmacol 2024; 15:1427333. [PMID: 39021829 PMCID: PMC11251978 DOI: 10.3389/fphar.2024.1427333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Background Aconiti Lateralis Radix Praeparata, commonly known as Fuzi in. traditional Chinese medicine (TCM), is widely utilized in clinical practice despite its inherent toxicity. Since ancient times, TCM practitioners have explored various processing techniques to broaden its clinical applications and enhance its safety profile. This review aims to summarize the effects of processing on the chemical composition, toxicity, and pharmacological properties of Fuzi, as well as investigate potential underlying mechanisms. Methods Data on phytochemistry, toxicology, pharmacology, and processing methods of Fuzi were gathered from the literature of electronic databases, including Web of Science, PubMed, and CNKI. Results Fuzi contains over 100 kinds of chemical compounds, including alkaloids, flavonoids, and polysaccharides, among which alkaloids are the main active compounds. Diester-diterpenoid alkaloids are the main contributors to Fuzi's toxicity and have side effects on some organs, such as the heart, liver, kidneys, nervous system, and reproductive system. The chemical composition of aconite, particularly its alkaloid content, was changed by hydrolysis or substitution reaction during processing to enhance its efficacy and reduce its toxicity. Salted aconite could enhance the therapeutic efficacy of Fuzi in treating kidney diseases and influence its pharmacokinetics. Conclusion Processing plays an important role in increasing the efficiency and decreasing toxicity of aconite. Further studies are needed to elucidate the changes of aconite before and after processing and the underlying mechanisms of these changes, thereby providing evidence for the clinical safety of drug use.
Collapse
Affiliation(s)
- Ziyang Wu
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jiawen Qian
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Chenhang Feng
- The Third Affiliated Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhouqi Chen
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiangfu Gao
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, China
| | - Yuancheng Gao
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
14
|
Song L, Mi S, Zhao Y, Liu Z, Wang J, Wang H, Li W, Wang J, Zu W, Du H. Integrated virtual screening and in vitro studies for exploring the mechanism of triterpenoids in Chebulae Fructus alleviating mesaconitine-induced cardiotoxicity via TRPV1 channel. Front Pharmacol 2024; 15:1367682. [PMID: 38500766 PMCID: PMC10945000 DOI: 10.3389/fphar.2024.1367682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Background: In traditional Mongolian or Tibetan medicine in China, Chebulae Fructus (CF) is widely used to process or combine with aconitums to decrease the severe toxicity of aconitums. Researches in this area have predominantly focused on tannins, with few research on other major CF components for cardiotoxicity mitigation. The present study aimed to clarify whether triterpenoids can attenuate the cardiotoxicity caused by mesaconitine (MA) and investigate the mechanism of cardiotoxicity attenuation. Methods: Firstly, the pharmacophore model, molecular docking, and 3D-QSAR model were used to explore the mechanism of CF components in reducing the toxicity of MA mediated by the TRPV1 channel. Then three triterpenoids were selected to verify whether the triterpenoids had the effect of lowering the cardiotoxicity of MA using H9c2 cells combined with MTT, Hoechst 33258, and JC-1. Finally, Western blot, Fluo-3AM, and MTT assays combined with capsazepine were used to verify whether the triterpenoids reduced H9c2 cardiomyocyte toxicity induced by MA was related to the TRPV1 channel. Results: Seven triterpenoids in CF have the potential to activate the TRPV1 channel. And they exhibited greater affinity for TRPV1 compared to other compounds and MA. However, their activity was relatively lower than that of MA. Cell experiments revealed that MA significantly reduced H9c2 cell viability, resulting in diminished mitochondrial membrane potential and nuclear pyknosis and damage. In contrast, the triterpenoids could improve the survival rate significantly and counteract the damage of MA to the cells. We found that MA, arjungenin (AR), and maslinic acid (MSA) except corosolic acid (CRA) upregulated the expression of TRPV1 protein. MA induced a significant influx of calcium, whereas all three triterpenoids alleviated this trend. Blocking the TRPV1 channel with capsazepine only increased the cell viability that had been simultaneously treated with MA, and AR, or MSA. However, there was no significant difference in the CRA groups treated with or without capsazepine. Conclusion: The triterpenoids in CF can reduce the cardiotoxicity caused by MA. The MSA and AR function as TRPV1 agonists with comparatively reduced activity but a greater capacity to bind to TRPV1 receptors, thus antagonizing the excessive activation of TRPV1 by MA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hong Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
15
|
Xiang G, Guo S, Qin J, Gao H, Zhang Y, Wang S. Comprehensive insight into the pharmacology, pharmacokinetics, toxicity, detoxification and extraction of hypaconitine from Aconitum plants. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117505. [PMID: 38016573 DOI: 10.1016/j.jep.2023.117505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypaconitine (HA), a diterpenoid alkaloid, mainly derived from Aconitum plants such as Acoitum carmichaeli Debx. And Aconitum nagarum Stapf., has recently piqued significant interest among the scientific community given its multifaceted attributes including anti-inflammatory, anticancer, analgesic, and cardio-protective properties. AIM OF THE STUDY This review presents a comprehensive exploration of the research advancements regarding the traditional uses, pharmacology, pharmacokinetics, toxicity, and toxicity reduction of HA. It aims to provide a thorough understanding of HA's multifaceted properties and its potential applications in various fields. MATERIALS AND METHODS A systematic literature search was conducted using several prominent databases including PubMed, Web of Science, NCBI, and CNKI. The search was performed using specific keywords such as "hypaconitine," "heart failure," "anti-inflammatory," "aconite decoction," "pharmacological," "pharmacokinetics," "toxicity," "detoxification or toxicity reduction," and "extraction and isolation." The inclusion of these keywords ensured a comprehensive exploration of relevant studies and enabled the retrieval of valuable information pertaining to the various aspects of HA. RESULTS Existing research has firmly established that HA possesses a range of pharmacological effects, encompassing anti-cardiac failure, anti-inflammatory, analgesic, and anti-tumor properties. The therapeutic potential of HA is promising, with potential applications in heart failure, ulcerative colitis, cancer, and other diseases. Pharmacokinetic studies suggest that HA exhibits high absorption rates, broad distribution, and rapid metabolism. However, toxic effects of HA on the nerves, heart, and embryos have also been observed. To mitigate these risks, HA needs attenuation before use, with the most common detoxification methods being processing and combined use with other drugs. Extraction methods for HA most commonly include cold maceration, soxhlet reflux extraction, and ultrasonic-assisted extraction. Despite the potential therapeutic benefits of HA, further research is warranted to elucidate its anti-heart failure effects, particularly in vivo, exploring aspects such as in vivo metabolism, distribution, and metabolites. Additionally, the therapeutic effects of HA monomers on inflammation-induced diseases and tumors should be validated in a more diverse range of experimental models, while the mechanisms underlying the therapeutic effects of HA should be investigated in greater detail. CONCLUSION This review serves to emphasize the therapeutic potential of HA and highlights the crucial need to address its toxicity concerns before considering clinical application. Further research is required to comprehensively investigate the pharmacological properties of HA, with particular emphasis on its anti-cardiac failure and anti-inflammatory activities. Such research endeavors have the potential to unveil novel treatment avenues for a broad spectrum of diseases.
Collapse
Affiliation(s)
- Gelin Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jing Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Huimin Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China.
| |
Collapse
|
16
|
Zhao P, Tian Y, Geng Y, Zeng C, Ma X, Kang J, Lu L, Zhang X, Tang B, Geng F. Aconitine and its derivatives: bioactivities, structure-activity relationships and preliminary molecular mechanisms. Front Chem 2024; 12:1339364. [PMID: 38318112 PMCID: PMC10839071 DOI: 10.3389/fchem.2024.1339364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Aconitine (AC), which is the primary bioactive diterpene alkaloid derived from Aconitum L plants, have attracted considerable interest due to its unique structural feature. Additionally, AC demonstrates a range of biological activities, such as its ability to enhance cardiac function, inhibit tumor growth, reduce inflammation, and provide analgesic effects. However, the structure-activity relationships of AC are remain unclear. A clear understanding of these relationships is indeed critical in developing effective biomedical applications with AC. In line with these challenges, this paper summarized the structural characteristics of AC and relevant functional and bioactive properties and the structure-activity relationships presented in biomedical applications. The primary temporal scope of this review was established as the period spanning from 2010 to 2023. Subsequently, the objective of this review was to provide a comprehensive understanding of the specific action mechanism of AC, while also exploring potential novel applications of AC derivatives in the biomedical field, drawing upon their structural characteristics. In conclusion, this review has provided a comprehensive analysis of the challenges and prospects associated with AC in the elucidation of structure-bioactivity relationships. Furthermore, the importance of exploring modern biotechnology approaches to enhance the potential biomedical applications of AC has been emphasized.
Collapse
Affiliation(s)
- Pengyu Zhao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ye Tian
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Qianxinan Buyi and Miao Autonomous Prefecture, China
| | - Yuefei Geng
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| | - Chenjuan Zeng
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Qianxinan Buyi and Miao Autonomous Prefecture, China
| | - Xiuying Ma
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| | - Jie Kang
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Qianxinan Buyi and Miao Autonomous Prefecture, China
| | - Lin Lu
- Sichuan Engineering Research Center for Medicinal Animals, Chengdu, China
| | - Xin Zhang
- Sichuan Good Doctor Pharmaceutical Group, Chengdu, China
| | - Bo Tang
- Sichuan Engineering Research Center for Medicinal Animals, Chengdu, China
| | - Funeng Geng
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
17
|
Wang K, Liu X, Cai G, Gong J, Guo Y, Gao W. Chemical composition analysis of Angelica sinensis (Oliv.) Diels and its four processed products by ultra-high-performance liquid chromatography coupled with quadrupole-orbitrap mass spectrometry combining with nontargeted metabolomics. J Sep Sci 2023; 46:e2300473. [PMID: 37933715 DOI: 10.1002/jssc.202300473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/17/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023]
Abstract
Angelica sinensis (Oliv.) Diels. has been used for women to enrich the blood, prevent and treat blood deficiency syndrome in Traditional Chinese Medicine for thousands of years. Wine-processed Angelica sinensis, soil-processed Angelica sinensis, oil-processed Angelica sinensis, and charred-processed Angelica sinensis are the most significant four processed products used in Chinese clinic. However, there have been few studies aimed at comparing their chemical differences. Ultra-high-performance liquid chromatography coupled with quadrupole-orbitrap mass spectrometry combining with nontargeted metabolomics was applied to investigate the diversity of processed products of Angelica sinensis. A total of 74 compounds with the variable importance in the projection value more than 1.5 and P less than 0.05 in ANOVA were highlighted as the compounds that contribute most to the discrimination of Angelica sinensis and four processed products. The results showed the metabolic changes between Angelica sinensis and its four processed products, there were 19 metabolites, 3 metabolites, 6 metabolites, and 45 metabolites were tentatively assigned in soil-processed Angelica sinensis, wine-processed Angelica sinensis, oil-processed Angelica sinensis, and charred-processed Angelica sinensis, respectively. These results suggested that the proposed metabolomics approach was useful for the quality evaluation and control of processed products of Angelica sinensis.
Collapse
Affiliation(s)
- Kangyu Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Xiaokang Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Guangzhi Cai
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Jiyu Gong
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Yunlong Guo
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Wenyi Gao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, P. R. China
| |
Collapse
|
18
|
Gan X, Shu Z, Wang X, Yan D, Li J, Ofaim S, Albert R, Li X, Liu B, Zhou X, Barabási AL. Network medicine framework reveals generic herb-symptom effectiveness of traditional Chinese medicine. SCIENCE ADVANCES 2023; 9:eadh0215. [PMID: 37889962 PMCID: PMC10610911 DOI: 10.1126/sciadv.adh0215] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
Understanding natural and traditional medicine can lead to world-changing drug discoveries. Despite the therapeutic effectiveness of individual herbs, traditional Chinese medicine (TCM) lacks a scientific foundation and is often considered a myth. In this study, we establish a network medicine framework and reveal the general TCM treatment principle as the topological relationship between disease symptoms and TCM herb targets on the human protein interactome. We find that proteins associated with a symptom form a network module, and the network proximity of an herb's targets to a symptom module is predictive of the herb's effectiveness in treating the symptom. These findings are validated using patient data from a hospital. We highlight the translational value of our framework by predicting herb-symptom treatments with therapeutic potential. Our network medicine framework reveals the scientific foundation of TCM and establishes a paradigm for understanding the molecular basis of natural medicine and predicting disease treatments.
Collapse
Affiliation(s)
- Xiao Gan
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Network Science Institute, Northeastern University, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Zixin Shu
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100063, China
| | - Xinyan Wang
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100063, China
| | - Dengying Yan
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100063, China
| | - Jun Li
- Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Shany Ofaim
- Network Science Institute, Northeastern University, Boston, MA 02115, USA
| | - Réka Albert
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaodong Li
- Hubei University of Chinese Medicine, Wuhan 430065, China
- Hubei Provincial Hospital of Traditional Chinese Medicine (Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Hubei Academy of Chinese Medicine, Wuhan 430061, China
| | - Baoyan Liu
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xuezhong Zhou
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100063, China
| | - Albert-László Barabási
- Network Science Institute, Northeastern University, Boston, MA 02115, USA
- Department of Network and Data Science, Central European University, Budapest 1051, Hungary
| |
Collapse
|
19
|
Zou L, Wang Q, Li M, Wang S, Ye K, Dai W, Huang J. Culturable bacterial endophytes of Aconitum carmichaelii Debx. were diverse in phylogeny, plant growth promotion, and antifungal potential. Front Microbiol 2023; 14:1192932. [PMID: 37266004 PMCID: PMC10229814 DOI: 10.3389/fmicb.2023.1192932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/21/2023] [Indexed: 06/03/2023] Open
Abstract
Medicinal plants harbor tremendously diverse bacterial endophytes that maintain plant growth and health. In the present study, a total of 124 culturable bacterial endophytes were isolated from healthy Aconitum carmichaelii Debx. plants. These strains were clustered into 10 genera based on full-length 16S rDNA sequences, among which Bacillus and Pseudomonas were the dominant genera. In addition, A. carmichaelii may capture 10 potential new bacterial species based on multi-locus sequence analysis of three housekeeping genes (gyrA, rpoB, and atpD). The majority of these bacterial endophytes exhibited plant growth-promoting ability through diverse actions including the production of either indole acetic acid and siderophore or hydrolytic enzymes (glucanase, cellulose, and protease) and solubilization of phosphate or potassium. A total of 20 strains inhibited hyphal growth of fungal pathogens Sclerotium rolfsii and Fusarium oxysporum in vitro on root slices of A. carmichaelii by the dual-culture method, among which Pseudomonas sp. SWUSTb-19 showed the best antagonistic activity. Field experiment confirmed that Pseudomonas sp. SWUSTb-19 significantly reduced the occurrence of southern blight and promoted plant biomass compared with non-inoculation treatment. The possible mode of actions for Pseudomonas sp. SWUSTb-19 to antagonize against S. rolfsii involved the production of glucanase, siderophore, lipopeptides, and antimicrobial volatile compounds. Altogether, this study revealed that A. carmichaelii harbored diverse plant growth-promoting bacterial endophytes, and Pseudomonas sp. SWUSTb-19 could be served as a potential biocontrol agent against southern blight.
Collapse
Affiliation(s)
- Lan Zou
- School of Life Science and Engineering, Southwest University of Science and Technology, Miangyang, China
| | - Qian Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Miangyang, China
| | - Muyi Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Miangyang, China
| | - Siyu Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Miangyang, China
| | - Kunhao Ye
- Institute of Traditional Chinese Medicinal Materials, Miangyang Academy of Agricultural Science, Mianyang, China
| | - Wei Dai
- Institute of Traditional Chinese Medicinal Materials, Miangyang Academy of Agricultural Science, Mianyang, China
| | - Jing Huang
- School of Life Science and Engineering, Southwest University of Science and Technology, Miangyang, China
| |
Collapse
|
20
|
Salehi A, Ghanadian M, Zolfaghari B, Jassbi AR, Fattahian M, Reisi P, Csupor D, Khan IA, Ali Z. Neuropharmacological Potential of Diterpenoid Alkaloids. Pharmaceuticals (Basel) 2023; 16:ph16050747. [PMID: 37242531 DOI: 10.3390/ph16050747] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
This study provides a narrative review of diterpenoid alkaloids (DAs), a family of extremely important natural products found predominantly in some species of Aconitum and Delphinium (Ranunculaceae). DAs have long been a focus of research attention due to their numerous intricate structures and diverse biological activities, especially in the central nervous system (CNS). These alkaloids originate through the amination reaction of tetra or pentacyclic diterpenoids, which are classified into three categories and 46 types based on the number of carbon atoms in the backbone structure and structural differences. The main chemical characteristics of DAs are their heterocyclic systems containing β-aminoethanol, methylamine, or ethylamine functionality. Although the role of tertiary nitrogen in ring A and the polycyclic complex structure are of great importance in drug-receptor affinity, in silico studies have emphasized the role of certain sidechains in C13, C14, and C8. DAs showed antiepileptic effects in preclinical studies mostly through Na+ channels. Aconitine (1) and 3-acetyl aconitine (2) can desensitize Na+ channels after persistent activation. Lappaconitine (3), N-deacetyllapaconitine (4), 6-benzoylheteratisine (5), and 1-benzoylnapelline (6) deactivate these channels. Methyllycaconitine (16), mainly found in Delphinium species, possesses an extreme affinity for the binding sites of α7 nicotinic acetylcholine receptors (nAChR) and contributes to a wide range of neurologic functions and the release of neurotransmitters. Several DAs such as bulleyaconitine A (17), (3), and mesaconitine (8) from Aconitum species have a drastic analgesic effect. Among them, compound 17 has been used in China for decades. Their effect is explained by increasing the release of dynorphin A, activating the inhibitory noradrenergic neurons in the β-adrenergic system, and preventing the transmission of pain messages by inactivating the Na+ channels that have been stressed. Acetylcholinesterase inhibitory, neuroprotective, antidepressant, and anxiolytic activities are other CNS effects that have been investigated for certain DAs. However, despite various CNS effects, recent advances in developing new drugs from DAs were insignificant due to their neurotoxicity.
Collapse
Affiliation(s)
- Arash Salehi
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mustafa Ghanadian
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Behzad Zolfaghari
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Amir Reza Jassbi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Maryam Fattahian
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81745-33871, Iran
| | - Dezső Csupor
- Institute of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary
| | - Ikhlas A Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
21
|
He G, Wang X, Liu W, Li Y, Shao Y, Liu W, Liang X, Bao X. Chemical constituents, pharmacological effects, toxicology, processing and compatibility of Fuzi (lateral root of Aconitum carmichaelii Debx): A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116160. [PMID: 36773791 DOI: 10.1016/j.jep.2023.116160] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/23/2022] [Accepted: 01/08/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The lateral root of Aconitum carmichaelii Debx is known as Fuzi in Chinese. It is traditionally valued and used for dispelling cold, relieving pain effects, restoring 'Yang,' and treating shock despite its high toxicity. This review aims to provide comprehensive information on the chemical composition, pharmacological research, preparation, and compatibility of Fuzi to help reduce its toxicity and increase its efficiency, based on the scientific literature. In addition, this review will establish a new foundation for further studies on Fuzi. MATERIALS AND METHODS A systematic review of the literature on Fuzi was performed using several resources, namely classic books on Chinese herbal medicine and various scientific databases, such as PubMed, the Web of Science, and the China Knowledge Resource Integrated databases. RESULTS Fuzi extracts contain diester-type alkaloids, monoester-type alkaloids, other types of alkaloids, and non-alkaloids types, and have various pharmacological activities, such as strong heart effect, effect on blood vessels, and antidepressant, anti-diabetes, anti-inflammatory, pain-relieving, antitumor, immunomodulatory, and other therapeutic effects. However, these extracts can also lead to various toxicities such as cardiotoxicity, neurotoxicity, reproductive toxicity, hepatotoxicity, and embryonic toxicity. In vivo and in vitro experiments have demonstrated that different processing methods and suitable compatibility with other herbs can effectively reduce the toxicities and increase the efficiency of Fuzi. CONCLUSION The therapeutic potential of Fuzi has been demonstrated in conditions, such as heart failure, various pains, inflammation, and tumors, which is attributed to the diester-type alkaloids, monoester-type alkaloids, other types of alkaloids, and non-alkaloid types. In contrast, they are also toxic components. Proper processing and suitable compatibility can effectively reduce toxicity and increase the efficiency of Fuzi. Thus more pharmacological and toxicological mechanisms on main active compounds are necessary to be explored.
Collapse
Affiliation(s)
- Guannan He
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoxin Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weiran Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuling Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yumeng Shao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weidong Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaodong Liang
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Xia Bao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
22
|
Li X, Hou W, Lin T, Ni J, Qiu H, Fu Y, Zhao Z, Yang C, Li N, Zhou H, Zhang R, Liu Z, Fu L, Zhu L. Neoline, fuziline, songorine and 10-OH mesaconitine are potential quality markers of Fuzi: In vitro and in vivo explorations as well as pharmacokinetics, efficacy and toxicity evaluations. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115879. [PMID: 36370966 DOI: 10.1016/j.jep.2022.115879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuzi, the lateral roots of Aconitum carmichaelii Debx, plays an irreplaceable role in treating Yang deficiency and cold coagulation syndromes. However, Fuzi has a narrow margin of safety since its pharmacological constituents, Aconitum alkaloids, have potential cardiotoxicity and neurotoxicity. The current quality markers (Q-markers) for the control of Fuzi's efficacy and toxicity are 3 monoester-diterpenoid alkaloids, namely, benzoylaconine (BAC), benzoylhypaconine and benzoylmesaconine (BMA) and 3 diester-diterpenoid alkaloids, namely, aconitine (AC), hypaconitine and mesaconitine (MA). However, mounting evidence indicates that the current 6 Q-markers may not be efficacy- or toxicity-specific enough for Fuzi. AIM OF THE STUDY The aim of this study was to explore and evaluate efficacy- or toxicity-specific potential quality markers (PQ-markers) of Fuzi. MATERIALS AND METHODS PQ-markers were explored by analyzing 30 medicinal samples and alkaloids exposed in mouse. Pharmacokinetics of PQ-markers on C57BL/6J mice were determined. Anti-inflammatory effects of PQ-markers were evaluated by λ-carrageenan-induced paw edema model and lipopolysaccharide-induced RAW264.7 cell inflammatory model, while analgesic effects were assessed by acetic acid-induced pain model and Hargreaves test. Cardiotoxicity and neurotoxicity of PQ-markers were assessed by histological and biochemical analyses, while acute toxicity was evaluated by modified Kirschner method. RESULTS After in vitro and in vivo explorations, 7 PQ-markers, namely, neoline (NE), fuziline (FE), songorine (SE), 10-OH mesaconitine (10-OH MA), talatizamine, isotalatizidine and 16β-OH cardiopetalline, were found. In the herbal medicines, NE, FE, SE and 10-OH MA were found in greater abundance than many other alkaloids. Specifically, the amounts of NE, FE and SE in the Fuzi samples were all far higher than that of BAC, and the contents of 10-OH MA in 56.67% of the samples were higher than that of AC. In mouse plasma and tissues, NE, FE, SE, talatizamine, isotalatizidine and 16β-OH cardiopetalline had higher contents than the other alkaloids, including the 6 current Q-markers. The pharmacokinetics, efficacy and toxicity of NE, FE, SE and 10-OH MA were further evaluated. The average oral bioavailabilities of NE (63.82%), FE (18.14%) and SE (49.51%) were higher than that of BMA (3.05%). Additionally, NE, FE and SE produced dose-dependent anti-inflammatory and analgesic effects, and their actions were greater than those of BMA. Concurrently, the toxicities of NE, FE and SE were lower than those of BMA, since no cardiotoxicity or neurotoxicity was found in mice after NE, FE and SE treatment, while BMA treatment notably increased the creatine kinase activity and matrix metalloproteinase 9 level in mice. The average oral bioavailability of 10-OH MA (7.02%) was higher than that of MA (1.88%). The median lethal dose (LD50) of 10-OH MA in mice (0.11 mg/kg) after intravenous injection was close to that of MA (0.13 mg/kg). Moreover, 10-OH MA produced significant cardiotoxicity and neurotoxicity, and notable anti-inflammatory and analgesic effects that were comparable to those of MA. CONCLUSIONS Seven PQ-markers of Fuzi were found after in vitro and in vivo explorations. Among them, NE, FE and SE were found to be more efficacy-specific than BMA, and 10-OH MA was as toxicity-specific as MA.
Collapse
Affiliation(s)
- Xiaocui Li
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Weiqing Hou
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Tingting Lin
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiadong Ni
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huawei Qiu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yu Fu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhongxiang Zhao
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Caihua Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Hua Zhou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Rong Zhang
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhongqiu Liu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ling Fu
- Huizhou Hosptial of Guangzhou University of Chinese Medicine, Huizhou, 516000, China.
| | - Lijun Zhu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
23
|
Hu W, Hou J, Liu W, Gu X, Yang Y, Shang H, Zhang M. Online Pharmaceutical Process Analysis of Chinese Medicine Using a Miniature Mass Spectrometer: Extraction of Active Ingredients as An Example. J Pharm Anal 2023. [DOI: 10.1016/j.jpha.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
|
24
|
Tao H, Liu X, Tian R, Liu Y, Zeng Y, Meng X, Zhang Y. A review: Pharmacokinetics and pharmacology of aminoalcohol-diterpenoid alkaloids from Aconitum species. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115726. [PMID: 36183950 DOI: 10.1016/j.jep.2022.115726] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aconitum medicinal materials, such as Aconitum carmichaelii Debeaux (Chinese: Wutou/) and Aconitum kusnezoffii Reichb. (Chinese: Caowu/), are a kind of important Traditional Chinese Medicine (TCM) with great medicinal value. Statistics show that there are over 600 efficient TCM formulations comprising Aconitum medicinal materials. But high toxicity limits their clinical application. Clinically, the Aconitum medicinal materials must undergo a complex processing process that includes soaking, steaming, and boiling with pharmaceutical excipients, which makes highly toxic ester diterpenoid alkaloids are hydrolyzed to form less toxic aminoalcohol-diterpenoid alkaloids (ADAs). AIM OF THE STUDY This review aims to summarize the pharmacokinetic and pharmacological activities of low-toxicity ADAs, providing a reference for future ADAs research and drug development. MATERIALS AND METHODS Accessible literature on ADAs published between 1984 and 2022 were screened and obtained from available electronic databases such as PubMed, Web of Science, Springer, Science Direct and Google Scholar, followed by systematic analysis. RESULTS ADAs are secondary products of plant metabolism, widely distributed in the Aconitum species and Delphinium species. The toxicity of ADAs as pharmacodynamic components of Aconitum medicinal materials is much lower than that of other diterpenoid alkaloids due to the absence of ester bonds. On the one hand, the pharmacokinetics of ADAs have received little attention compared to other toxic alkaloids. The research primarily focuses on aconine and mesaconine. According to existing studies, ADAs absorption in the gastrointestinal tract is primarily passive with a short Tmax. Simultaneously, efflux transporters have less impact on ADAs absorption than non-ADAs. After entering the body, ADAs are widely distributed in the heart, liver, lungs, and kidney, but less in the brain. Notably, aconine is not well metabolized by liver microsomes. Aconine and mesaconine are excreted in urine and feces, respectively. ADAs, on the other hand, have been shown to have a variety of pharmacological activities, including cardiac, analgesic, anti-inflammatory, anti-tumor, antioxidant, and regenerative effects via regulating multiple signaling pathways, including Nrf2/ARE, PERK/eIF2α/ATF4/Chop, ERK/CREB, NF-κB, Bcl-2/Bax, and GSK3β/β-catenin signaling pathways. CONCLUSIONS ADAs have been shown to have beneficial effects on heart disease, neurological disease, and other systemic diseases. Moreover, ADAs have low toxicity and a wide range of safe doses. All of these suggest that ADAs have great potential for drug development.
Collapse
Affiliation(s)
- Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ruimin Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yong Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| |
Collapse
|
25
|
Zou L, Wang Q, Wu R, Zhang Y, Wu Q, Li M, Ye K, Dai W, Huang J. Biocontrol and plant growth promotion potential of endophytic Bacillus subtilis JY-7-2L on Aconitum carmichaelii Debx. Front Microbiol 2023; 13:1059549. [PMID: 36704569 PMCID: PMC9871935 DOI: 10.3389/fmicb.2022.1059549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Aconitum carmichaelii Debx. is a famous medicinal plant rich in alkaloids and widely used to treat various human diseases in Asian countries. However, southern blight caused by Sclerotium rolfsii severely hampered the yield of A. carmichaelii. Beneficial microbe-based biological control is becoming a promising alternative and an environmentally friendly approach for the management of plant diseases. In this study, we evaluated the biocontrol potential of an endophytic bacterial strain JY-7-2L, which was isolated from the leaves of A. carmichaelii, against southern blight in vitro and by a series of field experiments. JY-7-2L was identified as Bacillus subtilis based on multi-locus sequence analysis. JY-7-2L showed strong antagonistic activity against S. rolfsii in vitro and on A. carmichaelii root slices by dual-culture assay. Cell-free culture filtrate of JY-7-2L significantly inhibited the hyphal growth, sclerotia formation, and germination of S. rolfsii. In addition, volatile compounds produced by JY-7-2L completely and directly inhibited the growth of S. rolfsii. Furthermore, JY-7-2L was proved to produce hydrolytic enzymes including glucanase, cellulase, protease, indole acetic acid, and siderophore. The presence of bacA, fenA, fenB, fenD, srfAA, and baeA genes by PCR amplification indicated that JY-7-2L was able to produce antifungal lipopeptides and polyketides. Field trials indicated that application of the JY-7-2L fermentation culture significantly reduced southern blight disease severity by up to 30% with a long-acting duration of up to 62 days. Meanwhile, JY-7-2L significantly promoted the fresh and dry weights of the stem, main root, and lateral roots of A. carmichaelii compared to non-inoculation and/or commercial B. subtilis product treatments. Taken together, JY-7-2L can be used as a promising biocontrol agent for the control of southern blight in A. carmichaelii.
Collapse
Affiliation(s)
- Lan Zou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Qian Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Rongxing Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yaopeng Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Qingshan Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Muyi Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Kunhao Ye
- Mianyang Academy of Agricultural Science, Mianyang, China
| | - Wei Dai
- Mianyang Academy of Agricultural Science, Mianyang, China
| | - Jing Huang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China,*Correspondence: Jing Huang,
| |
Collapse
|
26
|
Xiang G, Xing N, Wang S, Zhang Y. Antitumor effects and potential mechanisms of aconitine based on preclinical studies: an updated systematic review and meta-analysis. Front Pharmacol 2023; 14:1172939. [PMID: 37180714 PMCID: PMC10174313 DOI: 10.3389/fphar.2023.1172939] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Background: Herbs originating from the Aconitum L. (Ranunculaceae), such as Aconitum carmichaelii Debeaux. (Wutou), Aconitum pendulum Busch. (Tiebangchui), and Aconitum kusnezoffii Reichb. (Caowu), etc. are highly valued for their medicinal properties. The roots and tubers of these herbs are commonly used to treat an array of ailments, including joint pain and tumors. The alkaloids present in them are the primary active components, with aconitine being the most notable. Aconitine has gained attention for its exceptional anti-inflammatory and analgesic properties, as well as its potential as an anti-tumor and cardiotonic agent. However, the exact process through which aconitine hinders the growth of cancerous cells and triggers their programmed cell death remains unclear. Therefore, we have undertaken a comprehensive systematic review and meta-analysis of the current research on the potential antitumor properties of aconitine. Methods: We conducted a thorough search of relevant preclinical studies in databases including PubMed, Web of Science, VIP, WanFang Data, CNKI, Embase, Cochrane Library, and National Center for Biotechnology Information (NCBI). The search was conducted up until 15 September 2022, and the data were statistically analyzed using RevMan 5.4 software. The number of tumor cell value-added, tumor cell apoptosis rate, thymus index (TI), and Bcl-2 gene expression level were the main indicators to be analyzed. Results: After applying the final inclusion criteria, a total of thirty-seven studies, comprising both in vivo and in vitro research were analyzed. The results showed that treatment with aconitine led to a significant reduction in tumor cell proliferation, a noteworthy increase in the rate of apoptosis among tumor cells, a decrease in the thymus index, and a reduction in the expression level of Bcl-2. These results suggested that aconitine could inhibit the proliferation, invasion, and migration abilities of tumor cells by regulating Bcl-2 etc., thereby enhancing the anti-tumor effects. Conclusion: In summary, our present study demonstrated that aconitine effectively reduced tumor size and volume, indicating a strong anti-tumor effect. Additionally, aconitine could increase the expression levels of caspase-3, Bax and other targets. Mechanistically, it may regulate the expression levels of Bax and Bcl-2 through the NF-κB signaling pathway, ultimately inhibiting tumor cell proliferation through autophagy.
Collapse
Affiliation(s)
- Gelin Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Shaohui Wang, ; Yi Zhang,
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Shaohui Wang, ; Yi Zhang,
| |
Collapse
|
27
|
Zhang Y, Chen S, Fan F, Xu N, Meng XL, Zhang Y, Lin JM. Neurotoxicity mechanism of aconitine in HT22 cells studied by microfluidic chip-mass spectrometry. J Pharm Anal 2023; 13:88-98. [PMID: 36820076 PMCID: PMC9937797 DOI: 10.1016/j.jpha.2022.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Aconitine, a common and main toxic component of Aconitum, is toxic to the central nervous system. However, the mechanism of aconitine neurotoxicity is not yet clear. In this work, we had the hypothesis that excitatory amino acids can trigger excitotoxicity as a pointcut to explore the mechanism of neurotoxicity induced by aconitine. HT22 cells were simulated by aconitine and the changes of target cell metabolites were real-time online investigated based on a microfluidic chip-mass spectrometry system. Meanwhile, to confirm the metabolic mechanism of aconitine toxicity on HT22 cells, the levels of lactate dehydrogenase, intracellular Ca2+, reactive oxygen species, glutathione and superoxide dismutase, and ratio of Bax/Bcl-2 protein were detected by molecular biotechnology. Integration of the detected results revealed that neurotoxicity induced by aconitine was associated with the process of excitotoxicity caused by glutamic acid and aspartic acid, which was followed by the accumulation of lactic acid and reduction of glucose. The surge of extracellular glutamic acid could further lead to a series of cascade reactions including intracellular Ca2+ overload and oxidative stress, and eventually result in cell apoptosis. In general, we illustrated a new mechanism of aconitine neurotoxicity and presented a novel analysis strategy that real-time online monitoring of cell metabolites can provide a new approach to mechanism analysis.
Collapse
Affiliation(s)
- Yingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China,Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shiyu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China,Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fangfang Fan
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ning Xu
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xian-Li Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China,Corresponding author.
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing, 100084, China,Corresponding author.
| |
Collapse
|
28
|
Punia A, Joshi R, Kumar R. Identification and quantification of eight alkaloids in Aconitum heterophyllum using UHPLC-DAD-QTOF-IMS: A valuable tool for quality control. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1121-1134. [PMID: 35794832 DOI: 10.1002/pca.3164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Aconitum spp. are prime medicinal plants rich in alkaloids and have been used as the main constituents of traditional medicine in India and China. The whole plant can be toxic and creates pathophysiological conditions inside the human body. Therefore, simultaneous quantification of alkaloids within plant parts and herbal medicines associated with this genus is essential for quality control. OBJECTIVE We aimed to develop and validate methods using ultra-high-performance liquid chromatography-diode array detector-quadrupole time-of-flight ion mobility mass spectrometry (UHPLC-DAD-QTOF-IMS) and to develop an analytical strategy for the identification and quantification of alkaloid compounds (aconitine, hypaconitine, mesaconitine, aconine, benzoylmesaconitine, benzoylaconine, bulleyaconitine A, and deoxyaconitine) from Aconitum heterophyllum. METHODOLOGY We developed a simultaneous identification and quantification method for eight alkaloids using UHPLC-DAD-QTOF-IMS. The method was validated as per International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines and also in IMS mode. RESULTS The developed method has good linearity (r2 = 0.997-0.999), LOD (0.63-8.31 μg/mL), LOQ (0.63-2.80 μg/mL), recovery (86.01-104.33%), reproducibility, intra- and inter-day variability (<3.25%), and stability. Significant qualitative and quantitative variations were found among different plant parts (flower, leaf, stem, root, and tuber) and five market products of A. heterophyllum. Furthermore, a total of 21 metabolites were also profiled based on the fragmentation pattern of MS2 using the validated method. CONCLUSION An appropriate mobile phase using acetonitrile and water in a gradient elution gave a satisfactory chromatographic separation of eight Aconitum alkaloids with their adjacent peaks. Therefore, this method could provide a scientific and technical platform for quality control assurance.
Collapse
Affiliation(s)
- Ashwani Punia
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh (H.P.), India
| | - Robin Joshi
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh (H.P.), India
| | - Rajiv Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh (H.P.), India
| |
Collapse
|
29
|
Content Determination and Release Characteristics of Six Components in the Different Phases of " Glycyrrhizaglabra- Nux vomica" Decoction by UPLC-MS/MS. Molecules 2022; 27:molecules27196180. [PMID: 36234720 PMCID: PMC9573149 DOI: 10.3390/molecules27196180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 02/05/2023] Open
Abstract
The decoction turns into a complex multiphase system following exposure to high temperature and a complex chemical environment. However, the differences in the concentration of key active ingredients in different phase states and the release of drugs in sedimentary phase have yet to be elucidated. A simple ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the simultaneous quantitative determination of brucine, strychnine, liquiritin, isoliquiritin, isoliquiritigenin and glycyrrhizic acid concentrations and it was applied to compare the content of different phases and measure the release characteristics of the sedimentary phase in "Glycyrrhiza glabra-Nux vomica" decoction (NGD). The results show that the method's selectivity, precision (intraday and interday ≤ 2%), matrix effect (101-108%), recovery and stability results were acceptable according to the guidelines. The method is sensitive and reliable. The content determination results show that the most toxic strychnine in the sedimentary phase accounted for 75.70% of the total components. The different components exhibited differential release in different media, and its components were released in the artificial intestinal fluid up to 81.02% in 12 h. Several components conformed to the primary kinetic model and the Ritger-Peppas model, and the most toxic compound exhibited slow release, thus conforming to the Ritger-Peppas model. This study provides a standard of reference for studies investigating reduction in toxicity of the combination of Glycyrrhiza glabra (Glycyrrhiza glabra L.) and Nux vomica (Strychnos nux-vomica L.).
Collapse
|
30
|
New understanding of aconitine hydrolysis pathway: isolation, identification and toxicity evaluation based on intermediate products. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
31
|
Wang Y, Ning Y, He T, Chen Y, Han W, Yang Y, Zhang CX. Explore the Potential Ingredients for Detoxification of Honey-Fired Licorice (ZGC) Based on the Metabolic Profile by UPLC-Q-TOF-MS. Front Chem 2022; 10:924685. [PMID: 35910719 PMCID: PMC9335949 DOI: 10.3389/fchem.2022.924685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Licorice is well known for its ability to reduce the toxicity of the whole prescription in traditional Chinese medicine theory. However, honey-fired licorice (ZGC for short), which is made of licorice after being stir-fried with honey water, is more commonly used for clinical practice. The metabolism in vivo and detoxification-related compounds of ZGC have not been fully elucidated. In this work, the chemical constituents in ZGC and its metabolic profile in rats were both identified by high ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The network pharmacology was applied to predict the potential detoxifying ingredients of ZGC. As a result, a total of 115 chemical compounds were identified or tentatively characterized in ZGC aqueous extract, and 232 xenobiotics (70 prototypes and 162 metabolites) were identified in serum, heart, liver, kidneys, feces, and urine. Furthermore, 41 compounds absorbed in serum, heart, liver, and kidneys were employed for exploring the detoxification of ZGC by network pharmacology. Ultimately, 13 compounds (five prototypes including P5, P24, P30, P41 and P44, and 8 phase Ⅰ metabolites including M23, M47, M53, M93, M100, M106, M118, and M134) and nine targets were anticipated to be potential mediums regulating detoxification actions. The network pharmacology analysis had shown that the ZGC could detoxify mainly through regulating the related targets of cytochrome P450 and glutathione. In summary, this study would help reveal potential active ingredients in vivo for detoxification of ZGC and provided practical evidence for explaining the theory of traditional Chinese medicine with modern technology.
Collapse
Affiliation(s)
- Yinjie Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Ning
- Ningxia Chinese Medicine Research Center, Yinchuan, China
| | - Ting He
- Ningxia Hui Medicine Research Institute, Yinchuan, China
| | - Yingtong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhui Han
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yinping Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cui-Xian Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Cui-Xian Zhang,
| |
Collapse
|
32
|
Chung G, Kim SK. Therapeutics for Chemotherapy-Induced Peripheral Neuropathy: Approaches with Natural Compounds from Traditional Eastern Medicine. Pharmaceutics 2022; 14:pharmaceutics14071407. [PMID: 35890302 PMCID: PMC9319448 DOI: 10.3390/pharmaceutics14071407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) often develops in patients with cancer treated with commonly used anti-cancer drugs. The symptoms of CIPN can occur acutely during chemotherapy or emerge after cessation, and often accompany long-lasting intractable pain. This adverse side effect not only affects the quality of life but also limits the use of chemotherapy, leading to a reduction in the survival rate of patients with cancer. Currently, effective treatments for CIPN are limited, and various interventions are being applied by clinicians and patients because of the unmet clinical need. Potential approaches to ameliorate CIPN include traditional Eastern medicine-based methods. Medicinal substances from traditional Eastern medicine have well-established analgesic effects and are generally safe. Furthermore, many substances can also improve other comorbid symptoms in patients. This article aims to provide information regarding traditional Eastern medicine-based plant extracts and natural compounds for CIPN. In this regard, we briefly summarized the development, mechanisms, and changes in the nervous system related to CIPN, and reviewed the substances of traditional Eastern medicine that have been exploited to treat CIPN in preclinical and clinical settings.
Collapse
Affiliation(s)
- Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence:
| |
Collapse
|
33
|
An insight into current advances on pharmacology, pharmacokinetics, toxicity and detoxification of aconitine. Biomed Pharmacother 2022; 151:113115. [PMID: 35605296 DOI: 10.1016/j.biopha.2022.113115] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
Aconitine is a diterpenoid alkaloid, which mainly exists in the plants of Aconitum. In the last decade, a plethora of studies on the pharmacological activities of aconitine has been conducted and demonstrated that aconitine possessed an extensive range of pharmacological activities such as anti-tumor, anti-inflammatory, analgesic, local anesthesia, and immunomodulatory effects. Pharmacokinetic studies indicated that aconitine may have the characteristics of poor bioavailability, wide distribution, and slow elimination. However, studies have also found that aconitine has toxic effects on the heart, nerves, embryos, etc. Therefore, we believe that aconitine may not be suitable for heart patients and pregnant women to treat related diseases. It is important to note that all of these pharmacological effects require further high-quality studies to determine the clinical efficacy of aconitine. This review aims to summarize the advances in pharmacological, pharmacokinetics, toxicity, and detoxification of aconitine in the last decade with an emphasis on its anti-tumor and anti-inflammatory activities, to provide researchers with the latest information and point out the limitations of relevant research at the current stage and the aspects that should be strengthened in future research.
Collapse
|
34
|
HO SF, Kuan KK. Management of a patient with polymorphic ventricular tachycardia from aconitum poisoning. PROCEEDINGS OF SINGAPORE HEALTHCARE 2022. [DOI: 10.1177/20101058221085742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
An 81-year-old man presented to the Emergency Department with shortness of breath, generalised weakness, numbness, giddiness, nausea and vomiting after consuming an inadequately prepared Traditional Chinese Medicine preparation that contained herbal aconitum (Chuanwu and Caowu). His electrocardiogram (ECG) and rhythm strips showed multiple runs of non-sustained ventricular tachycardia monomorphic ventricular tachycardia and slowed polymorphic ventricular tachycardia. He was treated with intravenous (IV) amiodarone, magnesium and lignocaine, and was started on IV noradrenaline after developing haemodynamic compromise. There was no digoxin detected in the blood and urine. At 12 h, aconitine was not detected in the blood (cut off at <1 ng/mL) but aconitine and hypaconitine was detected in the urine qualitatively. He underwent a coronary angiogram at 12 h post-admission which showed minor coronary artery disease. A formal echocardiogram showed left ventricular ejection fraction 50–55% with no regional wall motion abnormalities of the left ventricle. He made an uneventful recovery and reverted to normal sinus rhythm at 29 h of admission. He was discharged well on Day 4 of admission with a diagnosis of polymorphic ventricular tachycardia secondary to Aconitum poisoning.
Collapse
Affiliation(s)
- Shu Fang HO
- Department of Emergency Medicine, Singapore General Hospital, Singapore
| | | |
Collapse
|
35
|
Zhai L, Peng J, Zhuang M, Chang YY, Cheng KW, Ning ZW, Huang T, Lin C, Wong HLX, Lam YY, Tan HY, Xiao HT, Bian ZX. Therapeutic effects and mechanisms of Zhen-Wu-Bu-Qi Decoction on dextran sulfate sodium-induced chronic colitis in mice assessed by multi-omics approaches. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154001. [PMID: 35240530 DOI: 10.1016/j.phymed.2022.154001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Zhen-Wu-Bu-Qi Decoction (ZWBQD), a traditional Chinese medicine formula comprising Poria, Radix Paeoniae Alba, Rhizoma Atractylodis Macrocephalae, Rhizoma Zingiberis Recens, Radix Codonopsis and Rhizoma Coptidis, is used for treating ulcerative colitis (UC). In a previous study, we have reported ZWBQD mitigates the severity of dextran sulfate sodium (DSS)-induced colitis in mice. HYPOTHESIS In this study, we aimed to understand the systemic actions and underlying mechanisms of ZWBQD on experimental colitis in mice. METHODS We used multi-omics techniques and immunoblotting approach to study the pharmacological actions and mechanisms of ZWBQD in DSS-induced chronic colitic mice. RESULTS We showed that ZWBQD exhibited potent anti-inflammatory properties and significantly protected DSS-induced colitic mice against colon injury by regulating the PI3K-AKT, MAPK signaling pathway and NF-κB signaling pathways. We also revealed that ZWBQD significantly ameliorated gut microbiota dysbiosis and abnormalities of tryptophan catabolites induced by DSS. CONCLUSIONS We demonstrated that the therapeutic effects of ZWBQD on experimental colitis are mediated by regulating multiple signaling pathways and modulation of gut microbiota. Our study employed an integrative strategy to elucidate novel mechanisms of ZWBQD, which provides new insights into the development of Chinese herbal medicine-based therapeutics for UC.
Collapse
Affiliation(s)
- Lixiang Zhai
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jiao Peng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China; Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, China; School of Pharmacy, Guiyang Medical University, Guiyang 550004, China
| | - Min Zhuang
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yao-Yao Chang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Ka Wing Cheng
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zi-Wan Ning
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Tao Huang
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chengyuan Lin
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hoi Leong Xavier Wong
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yan Y Lam
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hor Yue Tan
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hai-Tao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China.
| | - Zhao-Xiang Bian
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
36
|
Weijie W, Xiaonan Y, Yilin W, Hudan P, Liang L. Study on the compatibility principle of Wutou Decoction based on network pharmacology. DIGITAL CHINESE MEDICINE 2022. [DOI: 10.1016/j.dcmed.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|