1
|
De Bortoli M, Queisser A, Pham VC, Dompmartin A, Helaers R, Boutry S, Claus C, De Roo AK, Hammer F, Brouillard P, Abdelilah-Seyfried S, Boon LM, Vikkula M. Somatic Loss-of-Function PIK3R1 and Activating Non-hotspot PIK3CA Mutations Associated with Capillary Malformation with Dilated Veins (CMDV). J Invest Dermatol 2024; 144:2066-2077.e6. [PMID: 38431221 DOI: 10.1016/j.jid.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 03/05/2024]
Abstract
Common capillary malformations are red vascular skin lesions, most commonly associated with somatic activating GNAQ or GNA11 mutations. We focused on capillary malformations lacking such a mutation to identify previously unreported genetic causes. We used targeted next-generation sequencing on 82 lesions. Bioinformatic analysis allowed the identification of 9 somatic pathogenic variants in PIK3R1 and PIK3CA, encoding for the regulatory and catalytic subunits of phosphoinositide 3-kinase, respectively. Recharacterization of these lesions unraveled a common phenotype: a pale capillary malformation associated with visible dilated veins. Primary endothelial cells from 2 PIK3R1-mutated lesions were isolated, and PI3k-Akt-mTOR and RAS-RAF-MAPK signaling were assessed by western blot. This unveiled an abnormal increase in Akt phosphorylation, effectively reduced by PI3K pathway inhibitors, such as mTOR, Akt, and PIK3CA inhibitors. The effects of mutant PIK3R1 were further studied using zebrafish embryos. Endothelium-specific expression of PIK3R1 mutants resulted in abnormal development of the posterior capillary-venous plexus. In summary, capillary malformation associated with visible dilated veins emerges as a clinical entity associated with somatic pathogenic variants in PIK3R1 or PIK3CA (nonhotspot). Our findings suggest that the activated Akt signaling can be effectively reversed by PI3K pathway inhibitors. In addition, the proposed zebrafish model holds promise as a valuable tool for future drug screening aimed at developing patient-tailored treatments.
Collapse
Affiliation(s)
- Martina De Bortoli
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Angela Queisser
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Van Cuong Pham
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Anne Dompmartin
- Department of Dermatology, VASCERN VASCA European Reference Center, Université de Caen Basse Normandie, Caen, France
| | - Raphaël Helaers
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Simon Boutry
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium; Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
| | - Cathy Claus
- Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - An-Katrien De Roo
- Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium; Service d'anatomopathologie, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium; Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Frank Hammer
- Department of Medical Imaging, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Pascal Brouillard
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | | | - Laurence M Boon
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium; Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - Miikka Vikkula
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium; Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium.
| |
Collapse
|
2
|
Lee S, Luhar A, Miller J. Lymphatic Malformations: Review of Diagnosis and Management for the Interventional Radiologist. Semin Intervent Radiol 2024; 41:389-403. [PMID: 39524235 PMCID: PMC11543113 DOI: 10.1055/s-0044-1791281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Lymphatic malformations (LMs) arise from errors in lymphatic vascular development during embryogenesis and encompass an array of conditions that span from common cystic LMs to complex lymphatic anomalies (CLAs). Manifestations of LMs are wide-ranging, from clinically inconsequential to life-threatening. Proper diagnosis and management can be challenging and often benefit from an experienced multidisciplinary team. Cystic LMs are localized entities for which percutaneous sclerotherapy is the mainstay treatment. CLAs, on the other hand, are more diffuse in involvement and typically require multimodal therapy. With advances in the genetic understanding of LMs, targeted systemic therapies have been increasingly utilized with promising results. Thoracic duct interventions, both surgical and percutaneous, have a limited role in CLAs and should be approached cautiously to avoid significant complications. In this review, we discuss the genetic basis, imaging findings, and management options for LMs, with a particular focus on relevant interventional radiology techniques.
Collapse
Affiliation(s)
- Shimwoo Lee
- Department of Interventional Radiology, Children's Hospital Los Angeles, Los Angeles, California
| | - Aarti Luhar
- Department of Interventional Radiology, UCLA Ronald Reagan Medical Center, Los Angeles, California
| | - Joseph Miller
- Department of Interventional Radiology, Children's Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
3
|
Morin GM, Zerbib L, Kaltenbach S, Fraissenon A, Balducci E, Asnafi V, Canaud G. PIK3CA-Related Disorders: From Disease Mechanism to Evidence-Based Treatments. Annu Rev Genomics Hum Genet 2024; 25:211-237. [PMID: 38316164 DOI: 10.1146/annurev-genom-121222-114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Recent advances in genetic sequencing are transforming our approach to rare-disease care. Initially identified in cancer, gain-of-function mutations of the PIK3CA gene are also detected in malformation mosaic diseases categorized as PIK3CA-related disorders (PRDs). Over the past decade, new approaches have enabled researchers to elucidate the pathophysiology of PRDs and uncover novel therapeutic options. In just a few years, owing to vigorous global research efforts, PRDs have been transformed from incurable diseases to chronic disorders accessible to targeted therapy. However, new challenges for both medical practitioners and researchers have emerged. Areas of uncertainty remain in our comprehension of PRDs, especially regarding the relationship between genotype and phenotype, the mechanisms underlying mosaicism, and the processes involved in intercellular communication. As the clinical and biological landscape of PRDs is constantly evolving, this review aims to summarize current knowledge regarding PIK3CA and its role in nonmalignant human disease, from molecular mechanisms to evidence-based treatments.
Collapse
Affiliation(s)
- Gabriel M Morin
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lola Zerbib
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sophie Kaltenbach
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Antoine Fraissenon
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- CREATIS, CNRS UMR 5220, Villeurbanne, France
- Service de Radiologie Mère-Enfant, Hôpital Nord, Saint Etienne, France
- Service d'Imagerie Pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Estelle Balducci
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vahid Asnafi
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Guillaume Canaud
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
4
|
Chen H, Sun B, Liu H, Gao W, Qiu Y, Hua C, Lin X. Delineation of the phenotypes and genotypes of PIK3CA-related overgrowth spectrum in East asians. Mol Genet Genomics 2024; 299:66. [PMID: 38980418 DOI: 10.1007/s00438-024-02159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
PIK3CA-related overgrowth spectrum (PROS) is an umbrella term to describe a diverse range of developmental disorders. Research to date has predominantly emerged from Europe and North America, resulting in a notable scarcity of studies focusing on East Asian populations. Currently, the prevalence and distribution of PIK3CA variants across various genetic loci and their correlation with distinct phenotypes in East Asian populations remain unclear. This study aims to elucidate the phenotype-genotype correlations of PROS in East Asian populations. We presented the phenotypes and genotypes of 82 Chinese patients. Among our cohort, 67 individuals carried PIK3CA variants, including missense, frameshift, and splice variants. Six patients presented with both PIK3CA and an additional variant. Seven PIK3CA-negative patients exhibited overlapping PROS manifestations with variants in GNAQ, AKT1, PTEN, MAP3K3, GNA11, or KRAS. An integrative review of the literature pertaining to East Asian populations revealed that specific variants are uniquely associated with certain PROS phenotypes. Some rare variants were exclusively identified in cases of megalencephaly and diffuse capillary malformation with overgrowth. Non-hotspot variants with undefined oncogenicity were more common in CNS phenotypes. Diseases with vascular malformation were more likely to have variants in the helical domain, whereas phenotypes involving adipose/muscle overgrowth without vascular abnormalities predominantly presented variants in the C2 domain. Our findings underscore the unique phenotype-genotype patterns within the East Asian PROS population, highlighting the necessity for an expanded cohort to further elucidate these correlations. Such endeavors would significantly facilitate the development of PI3Kα selective inhibitors tailored for the East Asian population in the future.
Collapse
Affiliation(s)
- Hongrui Chen
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Bin Sun
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Hongyuan Liu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Wei Gao
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Yajing Qiu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Chen Hua
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China.
| | - Xiaoxi Lin
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China.
| |
Collapse
|
5
|
Alpaslan M, Fastré E, Mestre S, van Haeringen A, Repetto GM, Keymolen K, Boon LM, Belva F, Giacalone G, Revencu N, Sznajer Y, Riches K, Keeley V, Mansour S, Gordon K, Martin-Almedina S, Dobbins S, Ostergaard P, Quere I, Brouillard P, Vikkula M. Pathogenic variants in HGF give rise to childhood-to-late onset primary lymphoedema by loss of function. Hum Mol Genet 2024; 33:1250-1261. [PMID: 38676400 PMCID: PMC11227619 DOI: 10.1093/hmg/ddae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Developmental and functional defects in the lymphatic system are responsible for primary lymphoedema (PL). PL is a chronic debilitating disease caused by increased accumulation of interstitial fluid, predisposing to inflammation, infections and fibrosis. There is no cure, only symptomatic treatment is available. Thirty-two genes or loci have been linked to PL, and another 22 are suggested, including Hepatocyte Growth Factor (HGF). We searched for HGF variants in 770 index patients from the Brussels PL cohort. We identified ten variants predicted to cause HGF loss-of-function (six nonsense, two frameshifts, and two splice-site changes; 1.3% of our cohort), and 14 missense variants predicted to be pathogenic in 17 families (2.21%). We studied co-segregation within families, mRNA stability for non-sense variants, and in vitro functional effects of the missense variants. Analyses of the mRNA of patient cells revealed degradation of the nonsense mutant allele. Reduced protein secretion was detected for nine of the 14 missense variants expressed in COS-7 cells. Stimulation of lymphatic endothelial cells with these 14 HGF variant proteins resulted in decreased activation of the downstream targets AKT and ERK1/2 for three of them. Clinically, HGF-associated PL was diverse, but predominantly bilateral in the lower limbs with onset varying from early childhood to adulthood. Finally, aggregation study in a second independent cohort underscored that rare likely pathogenic variants in HGF explain about 2% of PL. Therefore, HGF signalling seems crucial for lymphatic development and/or maintenance in human beings and HGF should be included in diagnostic genetic screens for PL.
Collapse
Affiliation(s)
- Murat Alpaslan
- Human Molecular Genetics, de Duve Institute, University of Louvain, Avenue Hippocrate 74, Brussels 1200, Belgium
| | - Elodie Fastré
- Human Molecular Genetics, de Duve Institute, University of Louvain, Avenue Hippocrate 74, Brussels 1200, Belgium
| | - Sandrine Mestre
- Department of vascular medicine, Hospital Saint-Eloi, University Hospital of Montpellier, Avenue Augustin Fliche 80, Montpellier 34090, France
| | - Arie van Haeringen
- Leiden University Medical Center, Albinusdreef 2, Leiden 2333, the Netherlands
| | - Gabriela M Repetto
- Clinica Alemana Universidad del Desarrollo, Av Plaza 680, Las Condes, Lo Barnechea, Región Metropolitana 7710167, Chile
| | - Kathelijn Keymolen
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels 1090, Belgium
| | - Laurence M Boon
- Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc, University of Louvain, Avenue Hippocrate 10, Brussels 1200, Belgium
| | - Florence Belva
- Department of Lymphatic Surgery, AZ Sint-Maarten Hospital, VASCERN PPL European Reference Centre, Liersesteenweg 435, Mechelen 2800, Belgium
| | - Guido Giacalone
- Department of Lymphatic Surgery, AZ Sint-Maarten Hospital, VASCERN PPL European Reference Centre, Liersesteenweg 435, Mechelen 2800, Belgium
| | - Nicole Revencu
- Center for Human Genetics, Cliniques Universitaires Saint-Luc, University of Louvain, Avenue Hippocrate 10, Brussels 1200, Belgium
| | - Yves Sznajer
- Center for Human Genetics, Cliniques Universitaires Saint-Luc, University of Louvain, Avenue Hippocrate 10, Brussels 1200, Belgium
| | - Katie Riches
- University Hospitals of Derby and Burton NHS Foundation Trust, Uttoxeter Rd, Derby DE22 3NE, United Kingdom
| | - Vaughan Keeley
- University Hospitals of Derby and Burton NHS Foundation Trust, Uttoxeter Rd, Derby DE22 3NE, United Kingdom
- University of Nottingham Medical School, Nottingham, East Block, Lenton, Nottingham NG7 2UH, United Kingdom
| | - Sahar Mansour
- Cardiovascular and Genomics Research Institute, St. George's University of London, Blackshaw Rd, London SW17 0QT, United Kingdom
- South West Thames Regional Centre for Genomics, St. George's Universities Hospitals NHS Foundation Trust, Blackshaw Rd, London SW17 0QT, United Kingdom
| | - Kristiana Gordon
- Cardiovascular and Genomics Research Institute, St. George's University of London, Blackshaw Rd, London SW17 0QT, United Kingdom
- Dermatology and Lymphovascular Medicine, St. George's Universities NHS Foundation Trust, Blackshaw Rd, London SW17 0QT, United Kingdom
| | - Silvia Martin-Almedina
- Cardiovascular and Genomics Research Institute, St. George's University of London, Blackshaw Rd, London SW17 0QT, United Kingdom
| | - Sara Dobbins
- Cardiovascular and Genomics Research Institute, St. George's University of London, Blackshaw Rd, London SW17 0QT, United Kingdom
| | - Pia Ostergaard
- Cardiovascular and Genomics Research Institute, St. George's University of London, Blackshaw Rd, London SW17 0QT, United Kingdom
| | - Isabelle Quere
- Department of vascular medicine, Hospital Saint-Eloi, University Hospital of Montpellier, Avenue Augustin Fliche 80, Montpellier 34090, France
| | - Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, Avenue Hippocrate 74, Brussels 1200, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Avenue Hippocrate 74, Brussels 1200, Belgium
- WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, Wavre 1300, Belgium
| |
Collapse
|
6
|
Revencu N, Eijkelenboom A, Bracquemart C, Alhopuro P, Armstrong J, Baselga E, Cesario C, Dentici ML, Eyries M, Frisk S, Karstensen HG, Gene-Olaciregui N, Kivirikko S, Lavarino C, Mero IL, Michiels R, Pisaneschi E, Schönewolf-Greulich B, Wieland I, Zenker M, Vikkula M. Assessment of gene-disease associations and recommendations for genetic testing for somatic variants in vascular anomalies by VASCERN-VASCA. Orphanet J Rare Dis 2024; 19:213. [PMID: 38778413 PMCID: PMC11110196 DOI: 10.1186/s13023-024-03196-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Vascular anomalies caused by somatic (postzygotic) variants are clinically and genetically heterogeneous diseases with overlapping or distinct entities. The genetic knowledge in this field is rapidly growing, and genetic testing is now part of the diagnostic workup alongside the clinical, radiological and histopathological data. Nonetheless, access to genetic testing is still limited, and there is significant heterogeneity across the approaches used by the diagnostic laboratories, with direct consequences on test sensitivity and accuracy. The clinical utility of genetic testing is expected to increase progressively with improved theragnostics, which will be based on information about the efficacy and safety of the emerging drugs and future molecules. The aim of this study was to make recommendations for optimising and guiding the diagnostic genetic testing for somatic variants in patients with vascular malformations. RESULTS Physicians and lab specialists from 11 multidisciplinary European centres for vascular anomalies reviewed the genes identified to date as being involved in non-hereditary vascular malformations, evaluated gene-disease associations, and made recommendations about the technical aspects for identification of low-level mosaicism and variant interpretation. A core list of 24 genes were selected based on the current practices in the participating laboratories, the ISSVA classification and the literature. In total 45 gene-phenotype associations were evaluated: 16 were considered definitive, 16 strong, 3 moderate, 7 limited and 3 with no evidence. CONCLUSIONS This work provides a detailed evidence-based view of the gene-disease associations in the field of vascular malformations caused by somatic variants. Knowing both the gene-phenotype relationships and the strength of the associations greatly help laboratories in data interpretation and eventually in the clinical diagnosis. This study reflects the state of knowledge as of mid-2023 and will be regularly updated on the VASCERN-VASCA website (VASCERN-VASCA, https://vascern.eu/groupe/vascular-anomalies/ ).
Collapse
Affiliation(s)
- Nicole Revencu
- Center for Human Genetics, Cliniques universitaires Saint-Luc, University of Louvain, VASCERN VASCA European Reference Centre, Brussels, Belgium
| | - Astrid Eijkelenboom
- Department of Pathology, Radboud University Medical Center, VASCERN VASCA European Reference Centre, PO Box 9101, 6500, HB, Nijmegen, the Netherlands
| | - Claire Bracquemart
- Normandie Univ, UNICAEN, Service de Génétique, CHU Caen Normandie, BIOTARGEN EA 7450, VASCERN VASCA European Reference Centre, Caen, 14000, France
| | - Pia Alhopuro
- HUS Diagnostic Center, Laboratory of Genetics, University of Helsinki and Helsinki University Hospital, VASCERN VASCA European Reference Centre, Helsinki, Finland
| | - Judith Armstrong
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, CIBER-ER (Biomedical Network Research Center for Rare Diseases), Instituto de Salud Carlos III (ISCIII), Madrid, and Genomic Unit, Molecular and Genetic Medicine Section, Hospital Sant Joan de Déu, VASCERN VASCA European Reference Centre, Barcelona, Spain
| | - Eulalia Baselga
- Department of Dermatology, Hospital Sant Joan de Deu, VASCERN VASCA European Reference Centre, Barcelona, Spain
| | - Claudia Cesario
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, VASCERN VASCA European Reference Centre, Rome, Italy
| | - Maria Lisa Dentici
- Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCCS, VASCERN VASCA European Reference Centre, 00165, Rome, Italy
| | - Melanie Eyries
- Sorbonne Université, Département de Génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, VASCERN VASCA European Reference Centre, Paris, France
| | - Sofia Frisk
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Department of Clinical Genetics, Karolinska University Hospital, VASCERN VASCA European Reference Centre, Stockholm, Sweden
| | - Helena Gásdal Karstensen
- Department of Genetics, Center of Diagnostics, Copenhagen University Hospital - Rigshospitalet, VASCERN VASCA European Reference Centre, Copenhagen, Denmark
| | - Nagore Gene-Olaciregui
- Laboratory of Molecular Oncology, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, VASCERN VASCA European Reference Centre, Barcelona, Spain
| | - Sirpa Kivirikko
- Department of Clinical Genetics, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, VASCERN VASCA European Reference Centre, Helsinki, Finland
| | - Cinzia Lavarino
- Laboratory of Molecular Oncology, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, VASCERN VASCA European Reference Centre, Barcelona, Spain
| | - Inger-Lise Mero
- Department of Medical Genetics, Oslo University Hospital, VASCERN VASCA European Reference Centre, Oslo, Norway
| | - Rodolphe Michiels
- Center for Human Genetics, Cliniques universitaires Saint-Luc, University of Louvain, VASCERN VASCA European Reference Centre, Brussels, Belgium
| | - Elisa Pisaneschi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, VASCERN VASCA European Reference Centre, Rome, Italy
| | - Bitten Schönewolf-Greulich
- Department of Genetics, Center of Diagnostics, Copenhagen University Hospital - Rigshospitalet, VASCERN VASCA European Reference Centre, Copenhagen, Denmark
| | - Ilse Wieland
- Institute of Human Genetics, University Hospital Otto-Von-Guericke-University, Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Otto-Von-Guericke-University, Magdeburg, Germany
| | - Miikka Vikkula
- Center for Vascular Anomalies, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
- Human Molecular Genetics , de Duve Institute, University of Louvain, VASCERN VASCA European Reference Centre, Brussels, Belgium.
- WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300, Wavre, Belgium.
| |
Collapse
|
7
|
Seront E, Froidure A, Revencu N, Dekeuleneer V, Clapuyt P, Dumitriu D, Vikkula M, Boon LM. Targeted treatment in complex lymphatic anomaly: a case of synergistic efficacy of trametinib and sirolimus. Orphanet J Rare Dis 2024; 19:199. [PMID: 38750525 PMCID: PMC11097431 DOI: 10.1186/s13023-024-03211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024] Open
Abstract
Repurposing anticancer drugs to vascular malformations has significantly improved patient outcomes. Complex Lymphatic Anomalies (CLA) are part of the spectrum of lymphatic malformations (LMs) that share similar oncogenic mutations to cancer. We report the case of a young patient with highly symptomatic CLA who was initially treated with sirolimus, due to the frequent involvement of the PI3K-AKT-mTOR pathway in CLA pathogenesis. Despite an initial reduction in symptoms, sirolimus progressively lost its effectiveness. After an unsuccessful attempt with trametinib alone, sirolimus was added to trametinib and resulted in a significant, rapid and sustained improvement in symptoms. This suggests that, contrary to current dogmas, combination therapy using sub-therapeutic doses targeting both the PI3K and RAS pathways retains efficacy without generating the toxicity known for combination therapies, and is beneficial in the management of CLAs and potentially other vascular anomalies.
Collapse
Affiliation(s)
- Emmanuel Seront
- Institut Roi Albert II, Department of Medical Oncology, Center for Vascular Anomalies, Saint-Luc University Hospital, VASCERN VASCA European Reference Centre, UCLouvain, Brussels, Belgium
| | - Antoine Froidure
- Department of Pneumology, Center for Vascular Anomalies, Saint-Luc University Hospital, VASCERN VASCA European Reference Centre, UCLouvain, Brussels, Belgium
| | - Nicole Revencu
- Center for Human Genetics, Center for Vascular Anomalies, Saint-Luc University Hospital, VASCERN VASCA European Reference Centre, UCLouvain, Brussels, Belgium
| | - Valerie Dekeuleneer
- Division of Plastic Surgery, Center for Vascular Anomalies, Saint-Luc University Hospital, VASCERN VASCA European Reference Centre, UCLouvain, Cliniques Universitaires St Luc, Avenue Hippocrate 10, Brussels, B-1200, Belgium
| | - Philippe Clapuyt
- Department of Pediatric Radiology, Center for Vascular Anomalies, Saint-Luc University Hospital, VASCERN VASCA European Reference Centre, UCLouvain, Brussels, Belgium
| | - Dana Dumitriu
- Department of Pediatric Radiology, Center for Vascular Anomalies, Saint-Luc University Hospital, VASCERN VASCA European Reference Centre, UCLouvain, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, De Duve Institute, UCLouvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, Wavre, 1300, Belgium
| | - Laurence M Boon
- Division of Plastic Surgery, Center for Vascular Anomalies, Saint-Luc University Hospital, VASCERN VASCA European Reference Centre, UCLouvain, Cliniques Universitaires St Luc, Avenue Hippocrate 10, Brussels, B-1200, Belgium.
- Human Molecular Genetics, De Duve Institute, UCLouvain, Brussels, Belgium.
| |
Collapse
|
8
|
Petkova M, Ferby I, Mäkinen T. Lymphatic malformations: mechanistic insights and evolving therapeutic frontiers. J Clin Invest 2024; 134:e172844. [PMID: 38488007 PMCID: PMC10940090 DOI: 10.1172/jci172844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024] Open
Abstract
The lymphatic vascular system is gaining recognition for its multifaceted role and broad pathological significance. Once perceived as a mere conduit for interstitial fluid and immune cell transport, recent research has unveiled its active involvement in critical physiological processes and common diseases, including inflammation, autoimmune diseases, and atherosclerosis. Consequently, abnormal development or functionality of lymphatic vessels can result in serious health complications. Here, we discuss lymphatic malformations (LMs), which are localized lesions that manifest as fluid-filled cysts or extensive infiltrative lymphatic vessel overgrowth, often associated with debilitating, even life-threatening, consequences. Genetic causes of LMs have been uncovered, and several promising drug-based therapies are currently under investigation and will be discussed.
Collapse
Affiliation(s)
- Milena Petkova
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ingvar Ferby
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Nriagu BN, Williams LS, Brewer N, Surrey LF, Srinivasan AS, Li D, Britt A, Treat J, Crowley TB, O’Connor N, Ganguly A, Low D, Queenan M, Drivas TG, Zackai EH, Adams DM, Hakonarson H, Snyder KM, Sheppard SE. Microcystic lymphatic malformations in Turner syndrome are due to somatic mosaicism of PIK3CA. Am J Med Genet A 2024; 194:64-69. [PMID: 37705207 PMCID: PMC10829943 DOI: 10.1002/ajmg.a.63385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/13/2023] [Accepted: 08/19/2023] [Indexed: 09/15/2023]
Abstract
Turner syndrome (45,X) is caused by a complete or partial absence of a single X chromosome. Vascular malformations occur due to abnormal development of blood and/or lymphatic vessels. They arise from either somatic or germline pathogenic variants in the genes regulating growth and apoptosis of vascular channels. Aortic abnormalities are a common, known vascular anomaly of Turner syndrome. However, previous studies have described other vascular malformations as a rare feature of Turner syndrome and suggested that vascular abnormalities in individuals with Turner syndrome may be more generalized. In this study, we describe two individuals with co-occurrence of Turner syndrome and vascular malformations with a lymphatic component. In these individuals, genetic testing of the lesional tissue revealed a somatic pathogenic variant in PIK3CA-a known and common cause of lymphatic malformations. Based on this finding, we conclude that the vascular malformations presented here and likely those previously in the literature are not a rare part of the clinical spectrum of Turner syndrome, but rather a separate clinical entity that may or may not co-occur in individuals with Turner syndrome.
Collapse
Affiliation(s)
- Bede N. Nriagu
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA
- Comprehensive Vascular Anomalies Program, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Lydia S. Williams
- Comprehensive Vascular Anomalies Program, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Niambi Brewer
- Genetic Diagnostic Laboratory, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Lea F. Surrey
- Comprehensive Vascular Anomalies Program, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia PA
| | - Abhay S. Srinivasan
- Comprehensive Vascular Anomalies Program, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia PA
| | - Dong Li
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Allison Britt
- Comprehensive Vascular Anomalies Program, Children’s Hospital of Philadelphia, Philadelphia, PA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - James Treat
- Comprehensive Vascular Anomalies Program, Children’s Hospital of Philadelphia, Philadelphia, PA
- Section of Dermatology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - T. Blaine Crowley
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Nora O’Connor
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Arupa Ganguly
- Genetic Diagnostic Laboratory, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - David Low
- Comprehensive Vascular Anomalies Program, Children’s Hospital of Philadelphia, Philadelphia, PA
- Division of Plastic and Reconstructive Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Maria Queenan
- Comprehensive Vascular Anomalies Program, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia PA
| | - Theodore G. Drivas
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Elaine H. Zackai
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Denise M. Adams
- Comprehensive Vascular Anomalies Program, Children’s Hospital of Philadelphia, Philadelphia, PA
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA
- Comprehensive Vascular Anomalies Program, Children’s Hospital of Philadelphia, Philadelphia, PA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Kristen M. Snyder
- Comprehensive Vascular Anomalies Program, Children’s Hospital of Philadelphia, Philadelphia, PA
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Sarah E. Sheppard
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| |
Collapse
|
10
|
Seront E, Van Damme A, Legrand C, Bisdorff-Bresson A, Orcel P, Funck-Brentano T, Sevestre MA, Dompmartin A, Quere I, Brouillard P, Revencu N, De Bortoli M, Hammer F, Clapuyt P, Dumitriu D, Vikkula M, Boon LM. Preliminary results of the European multicentric phase III trial regarding sirolimus in slow-flow vascular malformations. JCI Insight 2023; 8:e173095. [PMID: 37937645 PMCID: PMC10721262 DOI: 10.1172/jci.insight.173095] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/27/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUNDSlow-flow vascular malformations frequently harbor activating mutations in the PI3K/AKT/mTOR cascade. Phase II trials pinpointed sirolimus effectiveness as a drug therapy. Efficacy and safety of sirolimus thus need to be evaluated in large prospective phase III trials.METHODSThe Vascular Anomaly-Sirolimus-Europe (VASE) trial, initiated in 2016, is a large multicentric prospective phase III trial (EudraCT 2015-001703-32), which evaluates efficacy and safety of sirolimus for 2 years in pediatric and adult patients with symptomatic slow-flow vascular malformations. In this interim analysis, we studied all patients enrolled up to October 2021 who received sirolimus for 12 or more months or who prematurely stopped the treatment.RESULTSThirty-one pediatric and 101 adult patients were included in this analysis; 107 completed 12 or more months of sirolimus, including 61 who were treated for the whole 2-year period. Sirolimus resulted in a clinical improvement in 85% of patients. The efficacy appeared within the first month for the majority of them. Grade 3-4 adverse events were observed in 24 (18%) patients; all resolved after treatment interruption/arrest. Sirolimus increased feasibility of surgery or sclerotherapy in 20 (15%) patients initially deemed unsuitable for intervention. Among the 61 patients who completed the 2-year treatment, 33 (54%) reported a recurrence of symptoms after a median follow-up of 13 months after sirolimus arrest. While there was no difference in efficacy, clinical improvement was faster but subsided more rapidly in PIK3CA-mutated (n = 24) compared with TIE2-mutated (n = 19) patients.CONCLUSIONSirolimus has a high efficacy and good tolerance in treatment of slow-flow vascular malformations in children and adults.TRIAL REGISTRATIONClinicalTrials.gov NCT02638389 and EudraCT 2015-001703-32.FUNDINGThe Fonds de la Recherche Scientifique (FNRS grants T.0247.19, P.C005.22, T.0146.16, and P.C013.20), the Fund Generet managed by the King Baudouin Foundation (grant 2018-J1810250-211305), the Walloon Region through the FRFS-WELBIO strategic research programme (WELBIO-CR-2019C-06), the MSCA-ITN network V.A. Cure no. 814316, the Leducq Foundation Networks of Excellence Program grant "ReVAMP" (LFCR grant 21CVD03), the European Union's Horizon 2020 research and innovation programme under grant agreement no. 874708 (Theralymph), the Swiss National Science Foundation under the Sinergia project no. CRSII5_193694, and a Pierre M. fellowship.
Collapse
Affiliation(s)
- Emmanuel Seront
- Center for Vascular Anomalies, Cliniques universitaires Saint-Luc, University of Louvain, VASCERN VASCA European Reference Centre, Brussels, Belgium
- Institut Roi Albert II, Department of Medical Oncology, and
| | - An Van Damme
- Center for Vascular Anomalies, Cliniques universitaires Saint-Luc, University of Louvain, VASCERN VASCA European Reference Centre, Brussels, Belgium
- Institut Roi Albert II, Department of Pediatric Hematology & Oncology, Cliniques universitaires Saint-Luc, University of Louvain, Brussels, Belgium
| | | | - Annouk Bisdorff-Bresson
- Neuroradiology Department of Pr Houdart Lariboisière Hospital, Center of vascular anomalies clinic VASCERN VASCA European Reference Centre, Paris, France
| | - Philippe Orcel
- Department of Rheumatology - DMU Locomotion, AP-HP Nord - University of Paris and INSERM U1132 BIOSCAR, Paris, France, Paris, France
| | - Thomas Funck-Brentano
- Department of Rheumatology - DMU Locomotion, AP-HP Nord - University of Paris and INSERM U1132 BIOSCAR, Paris, France, Paris, France
| | | | - Anne Dompmartin
- Department of Dermatology, CHU Université Caen Normandie, Caen, France
| | - Isabelle Quere
- IDESP, Univeristy of Montpellier - INSERM, CHU Montpellier, CRMR FAVA-Multi, Montpellier, France
| | - Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Nicole Revencu
- Center for Vascular Anomalies, Cliniques universitaires Saint-Luc, University of Louvain, VASCERN VASCA European Reference Centre, Brussels, Belgium
- Centre for Human Genetics, Cliniques universitaires Saint-Luc, University of Louvain, Brussels, Belgium
| | - Martina De Bortoli
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Frank Hammer
- Center for Vascular Anomalies, Cliniques universitaires Saint-Luc, University of Louvain, VASCERN VASCA European Reference Centre, Brussels, Belgium
- Division of Interventional Radiology, and
| | - Philippe Clapuyt
- Center for Vascular Anomalies, Cliniques universitaires Saint-Luc, University of Louvain, VASCERN VASCA European Reference Centre, Brussels, Belgium
- Department of Pediatric Radiology, Cliniques universitaires Saint-Luc, University of Louvain, Brussels, Belgium
| | - Dana Dumitriu
- Center for Vascular Anomalies, Cliniques universitaires Saint-Luc, University of Louvain, VASCERN VASCA European Reference Centre, Brussels, Belgium
- Department of Pediatric Radiology, Cliniques universitaires Saint-Luc, University of Louvain, Brussels, Belgium
| | - Miikka Vikkula
- Center for Vascular Anomalies, Cliniques universitaires Saint-Luc, University of Louvain, VASCERN VASCA European Reference Centre, Brussels, Belgium
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
- WELBIO department, WEL Research Institute, Wavre, Belgium
| | - Laurence M Boon
- Center for Vascular Anomalies, Cliniques universitaires Saint-Luc, University of Louvain, VASCERN VASCA European Reference Centre, Brussels, Belgium
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
- Division of Plastic Surgery, Cliniques universitaires Saint-Luc, University of Louvain, Brussels, Belgium
| |
Collapse
|
11
|
Chen H, Sun B, Gao W, Jia H, Zhou L, Hua C, Lin X. Facial infiltrating lipomatosis with hemimegalencephaly and lymphatic malformations caused by nonhotspot phosphatidylinositol 3-kinase catalytic subunit alpha mutation. Pediatr Dermatol 2023; 40:1115-1119. [PMID: 37190882 DOI: 10.1111/pde.15346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023]
Abstract
We report an unusual case of facial infiltrating lipomatosis with hemimegalencephaly and lymphatic malformations. In addition to the clinical data and imaging findings, detection of a heterozygous PIK3CA nonhotspot known pathogenic variant C420R in a facial epidermal nevus provided novel insight into the pathogenic effect of somatic PIK3CA mutations.
Collapse
Affiliation(s)
- Hongrui Chen
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Bin Sun
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wei Gao
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hechen Jia
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Lucia Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chen Hua
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoxi Lin
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
12
|
Sasaki Y, Ishikawa K, Hatanaka KC, Oyamada Y, Sakuhara Y, Shimizu T, Saito T, Murao N, Onodera T, Miura T, Maeda T, Funayama E, Hatanaka Y, Yamamoto Y, Sasaki S. Targeted next-generation sequencing for detection of PIK3CA mutations in archival tissues from patients with Klippel-Trenaunay syndrome in an Asian population : List the full names and institutional addresses for all authors. Orphanet J Rare Dis 2023; 18:270. [PMID: 37667289 PMCID: PMC10478188 DOI: 10.1186/s13023-023-02893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Klippel-Trenaunay syndrome (KTS) is a rare slow-flow combined vascular malformation with limb hypertrophy. KTS is thought to lie on the PIK3CA-related overgrowth spectrum, but reports are limited. PIK3CA encodes p110α, a catalytic subunit of phosphatidylinositol 3-kinase (PI3K) that plays an essential role in the PI3K/AKT/mammalian target of rapamycin (mTOR) signaling pathway. We aimed to demonstrate the clinical utility of targeted next-generation sequencing (NGS) in identifying PIK3CA mosaicism in archival formalin-fixed paraffin-embedded (FFPE) tissues from patients with KTS. RESULTS Participants were 9 female and 5 male patients with KTS diagnosed as capillaro-venous malformation (CVM) or capillaro-lymphatico-venous malformation (CLVM). Median age at resection was 14 years (range, 5-57 years). Median archival period before DNA extraction from FFPE tissues was 5.4 years (range, 3-7 years). NGS-based sequencing of PIK3CA achieved an amplicon mean coverage of 119,000x. PIK3CA missense mutations were found in 12 of 14 patients (85.7%; 6/8 CVM and 6/6 CLVM), with 8 patients showing the hotspot variants E542K, E545K, H1047R, and H1047L. The non-hotspot PIK3CA variants C420R, Q546K, and Q546R were identified in 4 patients. Overall, the mean variant allele frequency for identified PIK3CA variants was 6.9% (range, 1.6-17.4%). All patients with geographic capillary malformation, histopathological lymphatic malformation or macrodactyly of the foot had PIK3CA variants. No genotype-phenotype association between hotspot and non-hotspot PIK3CA variants was found. Histologically, the vessels and adipose tissues of the lesions showed phosphorylation of the proteins in the PI3K/AKT/mTOR signaling pathway, including p-AKT, p-mTOR, and p-4EBP1. CONCLUSIONS The PI3K/AKT/mTOR pathway in mesenchymal tissues was activated in patients with KTS. Amplicon-based targeted NGS could identify low-level mosaicism from low-input DNA extracted from FFPE tissues, potentially providing a diagnostic option for personalized medicine with inhibitors of the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yuki Sasaki
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
- Center for Vascular Anomalies, Department of Plastic and Reconstructive Surgery, Tonan Hospital, Hokkaido, Japan
| | - Kosuke Ishikawa
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan.
- Center for Vascular Anomalies, Department of Plastic and Reconstructive Surgery, Tonan Hospital, Hokkaido, Japan.
| | - Kanako C Hatanaka
- Center for Development of Advanced Diagnostics, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Hokkaido, Japan
| | - Yumiko Oyamada
- Department of Diagnostic Pathology, Tonan Hospital, Hokkaido, Japan
| | - Yusuke Sakuhara
- Department of Diagnostic and Interventional Radiology, Tonan Hospital, Hokkaido, Japan
| | - Tadashi Shimizu
- Department of Diagnostic and Interventional Radiology, Tonan Hospital, Hokkaido, Japan
| | - Tatsuro Saito
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Hokkaido, Japan
- Riken Genesis Co., Ltd, Tokyo, Japan
| | - Naoki Murao
- Center for Vascular Anomalies, Department of Plastic and Reconstructive Surgery, Tonan Hospital, Hokkaido, Japan
| | - Tomohiro Onodera
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Takahiro Miura
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Taku Maeda
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Emi Funayama
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Yutaka Hatanaka
- Center for Development of Advanced Diagnostics, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Hokkaido, Japan
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Hokkaido, Japan
| | - Yuhei Yamamoto
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Satoru Sasaki
- Center for Vascular Anomalies, Department of Plastic and Reconstructive Surgery, Tonan Hospital, Hokkaido, Japan
| |
Collapse
|
13
|
Zhang B, He R, Xu Z, Sun Y, Wei L, Li L, Liu Y, Guo W, Song L, Wang H, Lin Z, Ma L. Somatic mutation spectrum of a Chinese cohort of pediatrics with vascular malformations. Orphanet J Rare Dis 2023; 18:261. [PMID: 37658401 PMCID: PMC10474751 DOI: 10.1186/s13023-023-02860-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/20/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Somatic mutations of cancer driver genes are found to be responsible for vascular malformations with clinical manifestations ranging from cutaneous birthmarks to life-threatening systemic anomalies. Till now, only a limited number of cases and mutations were reported in Chinese population. The purpose of this study was to describe the somatic mutation spectrum of a cohort of Chinese pediatrics with vascular malformations. METHODS Pediatrics diagnosed with various vascular malformations were collected between May 2019 and October 2020 from Beijing Children's Hospital. Genomic DNA of skin lesion of each patient was extracted and sequenced by whole-exome sequencing to identify pathogenic somatic mutations. Mutations with variant allele frequency less than 5% were validated by ultra-deep sequencing. RESULTS A total of 67 pediatrics (33 males, 34 females, age range: 0.1-14.8 years) were analyzed. Exome sequencing identified somatic mutations of corresponding genes in 53 patients, yielding a molecular diagnosis rate of 79.1%. Among 29 PIK3CA mutations, 17 were well-known hotspot p.E542K, p.E545K and p.H1047R/L. Non-hotspot mutations were prevalent in patients with PIK3CA-related overgrowth spectrum, accounting for 50.0% (11/22) of detected mutations. The hotspot GNAQ p.R183Q and TEK p.L914F mutations were responsible for the majority of port-wine stain/Sturge-Weber syndrome and venous malformation, respectively. In addition, we identified a novel AKT1 p.Q79K mutation in Proteus syndrome and MAP3K3 p.E387D mutation in verrucous venous malformation. CONCLUSIONS The somatic mutation spectrum of vascular malformations in Chinese population is similar to that reported in other populations, but non-hotspot PIK3CA mutations may also be prevalent. Molecular diagnosis may help the clinical diagnosis, treatment and management of these pediatric patients with vascular malformations.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University (National Center for Children's Health, China), No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China.
- Department of Dermatology, Zhengzhou University, Affiliated Children's Hospital, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450000, Henan, China.
| | - Rui He
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University (National Center for Children's Health, China), No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Zigang Xu
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University (National Center for Children's Health, China), No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Yujuan Sun
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University (National Center for Children's Health, China), No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Li Wei
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University (National Center for Children's Health, China), No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Li Li
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University (National Center for Children's Health, China), No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Yuanxiang Liu
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University (National Center for Children's Health, China), No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Wu Guo
- Department of Dermatology, Zhengzhou University, Affiliated Children's Hospital, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450000, Henan, China
| | - Li Song
- Department of Dermatology, Zhengzhou University, Affiliated Children's Hospital, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450000, Henan, China
| | - Huijun Wang
- Dermatology Hospital, Southern Medical University, No.2 Lujing Road, Guangzhou, 510091, China
| | - Zhimiao Lin
- Dermatology Hospital, Southern Medical University, No.2 Lujing Road, Guangzhou, 510091, China.
| | - Lin Ma
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University (National Center for Children's Health, China), No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China.
| |
Collapse
|
14
|
Tuleja A, Bernhard S, Hamvas G, Andreoti TA, Rössler J, Boon L, Vikkula M, Kammer R, Haupt F, Döring Y, Baumgartner I. Clinical phenotype of adolescent and adult patients with extracranial vascular malformation. J Vasc Surg Venous Lymphat Disord 2023; 11:1034-1044.e3. [PMID: 37030445 DOI: 10.1016/j.jvsv.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 04/10/2023]
Abstract
OBJECTIVE In recent years, genotypic characterization of congenital vascular malformations (CVMs) has gained attention; however, the spectrum of clinical phenotype remains difficult to attribute to a genetic cause and is rarely described in the adult population. The aim of this study is to describe a consecutive series of adolescent and adult patients in a tertiary center, where a multimodal phenotypic approach was used for diagnosis. METHODS We analyzed clinical findings, imaging, and laboratory results at initial presentation, and set a diagnosis according to the International Society for the Study of Vascular Anomalies (ISSVA) classification for all consecutively registered patients older than 14 years of age who were referred to the Center for Vascular Malformations at the University Hospital of Bern between 2008 and 2021. RESULTS A total of 457 patients were included for analysis (mean age, 35 years; females, 56%). Simple CVMs were the most common (n = 361; 79%), followed by CVMs associated with other anomalies (n = 70; 15%), and combined CVMs (n = 26; 6%). Venous malformations (n = 238) were the most common CVMs overall (52%), and the most common simple CVMs (66%). Pain was the most frequently reported symptom in all patients (simple, combined, and vascular malformation with other anomalies). Pain intensity was more pronounced in simple venous and arteriovenous malformations. Clinical problems were related to the type of CVM diagnosed, with bleeding and skin ulceration in arteriovenous malformations, localized intravascular coagulopathy in venous malformations, and infectious complications in lymphatic malformations. Limb length difference occurred more often in patients with CVMs associated with other anomalies as compared with simple or combined CVM (22.9 vs 2.3%; P < .001). Soft tissue overgrowth was seen in one-quarter of all patients independent of the ISSVA group. CONCLUSIONS In our adult and adolescent population with peripheral vascular malformations, simple venous malformations predominated, with pain as the most common clinical symptom. In one-quarter of cases, patients with vascular malformations presented with associated anomalies on tissue growth. The differentiation of clinical presentation with or without accompanying growth abnormalities need to be added to the ISSVA classification. Phenotypic characterization considering vascular and non-vascular features remains the cornerstone of diagnosis in adult as well as pediatric patients.
Collapse
Affiliation(s)
- Aleksandra Tuleja
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University, Hospital, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland.
| | - Sarah Bernhard
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University, Hospital, Bern, Switzerland
| | - Györgyi Hamvas
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University, Hospital, Bern, Switzerland
| | - Themis-Areti Andreoti
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Inselspital - University Hospital of Bern, University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Jochen Rössler
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Inselspital - University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Laurence Boon
- Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Saint Luc University Hospital, Brussels, Belgium
| | - Miikka Vikkula
- Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Saint Luc University Hospital, Brussels, Belgium; Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Rafael Kammer
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University, Hospital, Bern, Switzerland
| | - Fabian Haupt
- Department of Radiology, Inselspital, Bern University, Hospital, Bern, Switzerland
| | - Yvonne Döring
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University, Hospital, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Iris Baumgartner
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University, Hospital, Bern, Switzerland
| |
Collapse
|
15
|
Chen H, Sun B, Gao W, Qiu Y, Hua C, Lin X. Delineation of the phenotypes and genotypes of facial infiltrating lipomatosis associated with PIK3CA mutations. Orphanet J Rare Dis 2023; 18:189. [PMID: 37452404 PMCID: PMC10347770 DOI: 10.1186/s13023-023-02786-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Facial infiltrating lipomatosis (FIL) is a rare congenital disorder characterized by unilateral facial swelling, for which surgery is the prevailing therapeutic option. Several studies have shown that the development of FIL is closely associated with PIK3CA mutations. This study aimed to further identify rare clinical features and underlying molecular variants in patients with FIL. RESULTS Eighteen patients were included in this study, and all patients presented with infiltrating adipose tissues confirmed by magnetic resonance imaging. Macrodactyly, polydactyly, hemimegalencephaly and hemihyperplasia were also observed in patients with FIL. In total, eight different PIK3CA mutations were detected in tissues obtained from sixteen patients, including the missense mutations p.His1047Arg (n = 4), p.Cys420Arg (n = 2), p.Glu453Lys (n = 2), p.Glu542Lys (n = 2), p.Glu418Lys (n = 1), p.Glu545Lys (n = 1), and p.His1047Tyr (n = 1) and the deletion mutation p.Glu110del (n = 3). Furthermore, the GNAQ mutation p.Arg183Gln was detected in the epidermal nevus tissue of one patient. Imaging revealed that several patients carrying hotspot mutations had more severe adipose infiltration and skeletal deformities. CONCLUSIONS The abundant clinical presentations and genetic profiles of FIL make it difficult to treat. PIK3CA mutations drive the pathogenesis of FIL, and PIK3CA hotspot mutations may lead to more extensive infiltration of lipomatosis. Understanding the molecular variant profile of FIL will facilitate the application of novel PI3K-targeted inhibitors.
Collapse
Affiliation(s)
- Hongrui Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Bin Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Wei Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Yajing Qiu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Chen Hua
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| | - Xiaoxi Lin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
16
|
Chen H, Gao W, Liu H, Sun B, Hua C, Lin X. Updates on Diagnosis and Treatment of PIK3CA-Related Overgrowth Spectrum. Ann Plast Surg 2023; 90:S209-S215. [PMID: 36729078 DOI: 10.1097/sap.0000000000003389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ABSTRACT Hyperactivation of the PI3K/AKT/mTOR signaling pathway caused by PIK3CA mutations is associated with a category of overgrowth syndromes that are defined as PIK3CA -related overgrowth spectrum (PROS). The clinical features of PROS are highly heterogeneous and usually present as vascular malformations, bone and soft tissue overgrowth, and neurological and visceral abnormalities. Detection of PIK3CA variants is necessary for diagnosis and provides the basis for targeted therapy for PROS. Drugs that inhibit the PI3K pathway offer alternatives to conventional therapies. This article reviews the current knowledge of PROS and summarizes the latest progress in precise treatment, providing new insights into future therapies and research goals.
Collapse
Affiliation(s)
- Hongrui Chen
- From the Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | | | | | | | | | | |
Collapse
|
17
|
Debelenko L, Mansukhani MM, Remotti F. Papillary Intralymphatic Angioendothelioma in a Child With PIK3CA-Related Overgrowth Spectrum: Implication of PI3K Pathway in the Vascular Tumorigenesis. Pediatr Dev Pathol 2023; 26:166-171. [PMID: 36775953 DOI: 10.1177/10935266231152370] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Papillary intralymphatic angioendothelioma (PILA) is an extremely rare vascular tumor and its pathogenesis is unknown. Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA)-related overgrowth spectrum (PROS) is a heterogeneous group of disorders caused by mosaicism for activating mutations of PIK3CA and characterized by asymmetric overgrowth, skeletal anomalies, skin lesions, and vascular malformations. An association between PILA and PROS has not been known. We report a case of PILA involving the spleen of a young girl with the clinical and molecular diagnosis of PROS. Sequencing of the patient's germ-line DNA detected a pathogenic PIK3CA variant c.1357G>A in 10.6% of alleles. Splenectomy revealed a 4-cm tumor composed of ectatic lymphatics with intraluminal papillary projections, consistent with PILA. The tumor cells showed immunohistochemical expression of CD31, CD34, ERG, FLI-1, PROX1, and caldesmon, while D2-40 was negative. The latter may suggest that the tumor derived from an endothelial precursor arrested in the final steps of lymphothelial differentiation, in keeping with the known role of the PIK3CA-governed molecular pathway in the progression of vascular progenitors to mature endothelial cells. The data implicates PIK3CA in the pathogenesis of PILA and broadens the spectrum of phenotypic expressions of PROS.
Collapse
Affiliation(s)
- Larisa Debelenko
- Department of Pathology and Cell Biology, Columbia University-Irving Medical Center, New York, NY, USA
| | - Mahesh M Mansukhani
- Department of Pathology and Cell Biology, Columbia University-Irving Medical Center, New York, NY, USA
| | - Fabrizio Remotti
- Department of Pathology and Cell Biology, Columbia University-Irving Medical Center, New York, NY, USA
| |
Collapse
|
18
|
Ghaffarpour N, Baselga E, Boon LM, Diociaiuti A, Dompmartin A, Dvorakova V, El Hachem M, Gasparella P, Haxhija E, Kyrklund K, Irvine AD, Kapp FG, Rößler J, Salminen P, van den Bosch C, van der Vleuten C, Kool LS, Vikkula M. The VASCERN-VASCA working group diagnostic and management pathways for lymphatic malformations. Eur J Med Genet 2022; 65:104637. [DOI: 10.1016/j.ejmg.2022.104637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/30/2022] [Accepted: 10/01/2022] [Indexed: 11/03/2022]
|
19
|
Angulo-Urarte A, Graupera M. When, where and which PIK3CA mutations are pathogenic in congenital disorders. NATURE CARDIOVASCULAR RESEARCH 2022; 1:700-714. [PMID: 39196083 DOI: 10.1038/s44161-022-00107-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/22/2022] [Indexed: 08/29/2024]
Abstract
PIK3CA encodes the class I PI3Kα isoform and is frequently mutated in cancer. Activating mutations in PIK3CA also cause a range of congenital disorders featuring asymmetric tissue overgrowth, known as the PIK3CA-related overgrowth spectrum (PROS), with frequent vascular involvement. In PROS, PIK3CA mutations arise postzygotically, during embryonic development, leading to a mosaic body pattern distribution resulting in a variety of phenotypic features. A clear skewed pattern of overgrowth favoring some mesoderm-derived and ectoderm-derived tissues is observed but not understood. Here, we summarize our current knowledge of the determinants of PIK3CA-related pathogenesis in PROS, including intrinsic factors such as cell lineage susceptibility and PIK3CA variant bias, and extrinsic factors, which refers to environmental modifiers. We also include a section on PIK3CA-related vascular malformations given that the vasculature is frequently affected in PROS. Increasing our biological understanding of PIK3CA mutations in PROS will contribute toward unraveling the onset and progression of these conditions and ultimately impact on their treatment. Given that PIK3CA mutations are similar in PROS and cancer, deeper insights into one will also inform about the other.
Collapse
Affiliation(s)
- Ana Angulo-Urarte
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.
| | - Mariona Graupera
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
20
|
Wasilewska K, Gambin T, Rydzanicz M, Szczałuba K, Płoski R. Postzygotic mutations and where to find them - Recent advances and future implications in the field of non-neoplastic somatic mosaicism. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108426. [PMID: 35690331 DOI: 10.1016/j.mrrev.2022.108426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 01/01/2023]
Abstract
The technological progress of massively parallel sequencing (MPS) has triggered a remarkable development in the research on postzygotic mutations. Although the overwhelming majority of studies in the field focus on oncogenesis, non-neoplastic diseases are attracting more and more attention. The aim of this review was to summarize some of the most recent findings in the field of somatic mosaicism in diseases other than neoplastic events. We discuss the abundance and role of postzygotic mutations, with a special emphasis on disorders which occur only in a mosaic form (obligatory mosaic diseases; OMDs). Based on the list of OMDs compiled from the published literature and three databases (OMIM, Orphanet and MosaicBase), we demonstrate the prevalence of cancer-related genes across OMDs and suggest other sources to further explore OMDs and OMD-related genes. Additionally, we comment on some practical aspects related to mosaic diseases, such as approaches to tissue sampling, the MPS coverage required to detect variants at a very low frequency, as well as on bioinformatic and molecular tools dedicated to detect somatic mutations in MPS data.
Collapse
Affiliation(s)
- Krystyna Wasilewska
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Tomasz Gambin
- Institute of Computer Science, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland
| | - Małgorzata Rydzanicz
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Krzysztof Szczałuba
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland.
| |
Collapse
|
21
|
Diociaiuti A, Rotunno R, Pisaneschi E, Cesario C, Carnevale C, Condorelli AG, Rollo M, Di Cecca S, Quintarelli C, Novelli A, Zambruno G, El Hachem M. Clinical and Molecular Spectrum of Sporadic Vascular Malformations: A Single-Center Study. Biomedicines 2022; 10:biomedicines10061460. [PMID: 35740480 PMCID: PMC9220263 DOI: 10.3390/biomedicines10061460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/22/2022] [Accepted: 06/16/2022] [Indexed: 01/04/2023] Open
Abstract
Sporadic vascular malformations (VMs) are a large group of disorders of the blood and lymphatic vessels caused by somatic mutations in several genes—mainly regulating the RAS/MAPK/ERK and PI3K/AKT/mTOR pathways. We performed a cross-sectional study of 43 patients affected with sporadic VMs, who had received molecular diagnosis by high-depth targeted next-generation sequencing in our center. Clinical and imaging features were correlated with the sequence variants identified in lesional tissues. Six of nine patients with capillary malformation and overgrowth (CMO) carried the recurrent GNAQ somatic mutation p.Arg183Gln, while two had PIK3CA mutations. Unexpectedly, 8 of 11 cases of diffuse CM with overgrowth (DCMO) carried known PIK3CA mutations, and the remaining 3 had pathogenic GNA11 variants. Recurrent PIK3CA mutations were identified in the patients with megalencephaly–CM–polymicrogyria (MCAP), CLOVES, and Klippel–Trenaunay syndrome. Interestingly, PIK3CA somatic mutations were associated with hand/foot anomalies not only in MCAP and CLOVES, but also in CMO and DCMO. Two patients with blue rubber bleb nevus syndrome carried double somatic TEK mutations, two of which were previously undescribed. In addition, a novel sporadic case of Parkes Weber syndrome (PWS) due to an RASA1 mosaic pathogenic variant was described. Finally, a girl with a mild PWS and another diagnosed with CMO carried pathogenic KRAS somatic variants, showing the variability of phenotypic features associated with KRAS mutations. Overall, our findings expand the clinical and molecular spectrum of sporadic VMs, and show the relevance of genetic testing for accurate diagnosis and emerging targeted therapies.
Collapse
Affiliation(s)
- Andrea Diociaiuti
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (R.R.); (C.C.); (M.E.H.)
- Correspondence: ; Tel.: +39-0668592509
| | - Roberta Rotunno
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (R.R.); (C.C.); (M.E.H.)
| | - Elisa Pisaneschi
- Translational Cytogenomics Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (E.P.); (C.C.); (A.N.)
| | - Claudia Cesario
- Translational Cytogenomics Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (E.P.); (C.C.); (A.N.)
| | - Claudia Carnevale
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (R.R.); (C.C.); (M.E.H.)
| | - Angelo Giuseppe Condorelli
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.C.); (G.Z.)
| | - Massimo Rollo
- Interventional Radiology Unit, Department of Imaging, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy;
| | - Stefano Di Cecca
- Department Onco-Haematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (S.D.C.); (C.Q.)
| | - Concetta Quintarelli
- Department Onco-Haematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (S.D.C.); (C.Q.)
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Antonio Novelli
- Translational Cytogenomics Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (E.P.); (C.C.); (A.N.)
| | - Giovanna Zambruno
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.C.); (G.Z.)
| | - May El Hachem
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (R.R.); (C.C.); (M.E.H.)
| |
Collapse
|
22
|
Snyder EJ, Sarma A, Borst AJ, Tekes A. Lymphatic Anomalies in Children: Update on Imaging Diagnosis, Genetics, and Treatment. AJR Am J Roentgenol 2022; 218:1089-1101. [PMID: 35043669 DOI: 10.2214/ajr.21.27200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lymphatic anomalies comprise a spectrum of disorders ranging from common localized microcystic and macrocystic lymphatic malformations (LMs) to rare complex lymphatic anomalies, including generalized lymphatic anomaly, Kaposiform lymph-angiomatosis, central conducting lymphatic anomaly, and Gorham-Stout disease. Imaging diagnosis of cystic LMs is generally straightforward, but complex lymphatic anomalies, particularly those with multiorgan involvement or diffuse disease, may be more challenging to diagnose. Complex lymphatic anomalies are rare but associated with high morbidity. Imaging plays an important role in their diagnosis, and radiologists may be the first clinicians to suggest the diagnosis. Furthermore, radiologists are regularly involved in management given the frequent need for image-guided interventions. For these reasons, it is crucial for radiologists to be familiar with the spectrum of entities comprising complex lymphatic anomalies and their typical imaging findings. In this article, we review the imaging findings of lymphatic anomalies, including LMs and complex lymphatic anomalies. We discuss characteristic imaging findings, multimodality imaging techniques used for evaluation, pearls and pitfalls in diagnosis, and potential complications. We also review recently discovered genetic changes underlying lymphatic anomaly development and the advent of new molecularly targeted therapies.
Collapse
Affiliation(s)
- Elizabeth J Snyder
- Department of Radiology, Vanderbilt University Medical Center, Monroe Carell Jr. Children's Hospital at Vanderbilt, 2200 Children's Way, Nashville, TN 37232-9700
| | - Asha Sarma
- Department of Radiology, Vanderbilt University Medical Center, Monroe Carell Jr. Children's Hospital at Vanderbilt, 2200 Children's Way, Nashville, TN 37232-9700
| | - Alexandra J Borst
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Aylin Tekes
- Department of Radiology, Division of Pediatric Radiology and Pediatric Neuroradiology, Johns Hopkins Hospital, Baltimore, MD
| |
Collapse
|
23
|
Coulie J, Boon L, Vikkula M. Molecular Pathways and Possible Therapies for Head and Neck Vascular Anomalies. J Oral Pathol Med 2022; 51:878-887. [PMID: 35610188 DOI: 10.1111/jop.13318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Vascular Anomalies are a heterogenous group of vascular lesions that can be divided, according to the International Society for the Study of Vascular Anomalies Classification, into two main groups : Vascular Tumors and Vascular Malformations. Vascular Malformations can be further subdivided into slow-flow and fast-flow malformations. This clinical and radiological classification allows for a better understanding of vascular anomalies and aims to offer a more precise final diagnosis. Correct diagnosis is essential to propose the best treatment, which traditionally consists of surgery, embolization or sclerotherapy. Since a few years, medical treatment has become an important part of multidisciplinary treatment. Genetic and molecular knowledge of vascular anomalies are increasing rapidly and opens the door for a molecular classification of vascular anomalies according to the underlying pathways involved. The main pathways seem to be: PI3K/AKT/mTOR (PIKopathies) and RAS/RAF/MEK/ERK (RASopathies). Knowing the underlying molecular cascades allows us to use targeted medical therapies. The first part of this article aims to review the vascular anomalies seen in the head and neck region and their underlying molecular causes and involved pathways. The second part will propose an overview of the available targeted therapies based on the affected molecular cascade. This article summarizes theragnostic treatments available in vascular anomalies.
Collapse
Affiliation(s)
- Julien Coulie
- Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Saint Luc University Hospital, Brussels, Belgium.,Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Laurence Boon
- Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Saint Luc University Hospital, Brussels, Belgium.,Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Miikka Vikkula
- Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Saint Luc University Hospital, Brussels, Belgium.,Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| |
Collapse
|
24
|
Gökpınar İli E, Taşdelen E, Durmaz CD, Altıner Ş, Tuncalı T, Martinez-Glez V, Karabulut HG, Vural S, Ceylaner S, Acar MO, Ilgın Ruhi H. Phenotypic and molecular characterization of five patients with PIK3CA-related overgrowth spectrum (PROS). Am J Med Genet A 2022; 188:1792-1800. [PMID: 35238469 DOI: 10.1002/ajmg.a.62709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/18/2021] [Accepted: 01/31/2022] [Indexed: 12/19/2022]
Abstract
Somatic and germline PI3K-AKT-mTOR pathway pathogenic variants are involved in several segmental overgrowth phenotypes such as the PIK3CA-related overgrowth spectrum (PROS), Proteus syndrome, and PTEN hamartoma tumor syndrome. In this study, we describe five patients with PROS. We identified by high-throughput sequencing four different somatic PIK3CA pathogenic variants in five individuals. The Glu726Lys variant, which was previously reported in megalencephaly-capillary malformation-polymicrogyria (MCAP) syndrome, was identified in two patients with unclassified PROS. The Cys420Arg substitution, which was previously reported in CLOVES, was found in a patient with fibroadipose hyperplasia. Additionally, relatively rare pathogenic variants, His1047Tyr and Tyr1021Cys, were detected in two patients with MCAP. Therefore, we suggest performing deep sequencing of PIK3CA in all patients with suspected PROS, instead of targeted polymerase chain reaction for hotspot pathogenic variants.
Collapse
Affiliation(s)
- Ezgi Gökpınar İli
- Department of Medical Genetics, Ankara University School of Medicine, Ankara, Turkey.,Genetic Diseases Center, Başakşehir Çam and Sakura City Hospital, İstanbul, Turkey
| | - Elifcan Taşdelen
- Department of Medical Genetics, Ankara University School of Medicine, Ankara, Turkey.,Genetic Diseases Center, Şanlıurfa Eyyübiye Training and Research Hospital, Şanlıurfa, Turkey
| | - Ceren Damla Durmaz
- Department of Medical Genetics, Ankara University School of Medicine, Ankara, Turkey.,Genetic Diseases Center, Gazi Yaşargil Training and Research Hospital, Diyarbakır, Turkey.,Department of Medical Genetics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Şule Altıner
- Department of Medical Genetics, Ankara University School of Medicine, Ankara, Turkey
| | - Timur Tuncalı
- Department of Medical Genetics, Ankara University School of Medicine, Ankara, Turkey
| | - Victor Martinez-Glez
- Vascular Malformations Section, Institute of Medical and Molecular Genetics (INGEMM-IdiPAZ), Hospital Universitario La Paz, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | | | - Seçil Vural
- Department of Dermatology, Koç University School of Medicine, İstanbul, Turkey
| | - Serdar Ceylaner
- Intergen Genetic Diagnosis and Research Center, Ankara, Turkey
| | - Mustafa Oğuz Acar
- Department of Medical Genetics, Ankara University School of Medicine, Ankara, Turkey
| | - Hatice Ilgın Ruhi
- Department of Medical Genetics, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
25
|
Somatic activating BRAF variants cause isolated lymphatic malformations. HGG ADVANCES 2022; 3:100101. [PMID: 35373151 PMCID: PMC8972000 DOI: 10.1016/j.xhgg.2022.100101] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
Somatic activating variants in PIK3CA, the gene that encodes the p110α catalytic subunit of phosphatidylinositol 3-kinase (PI3K), have been previously detected in ∼80% of lymphatic malformations (LMs).1,2 We report the presence of somatic activating variants in BRAF in individuals with LMs that do not possess pathogenic PIK3CA variants. The BRAF substitution p.Val600Glu (c.1799T>A), one of the most common driver mutations in cancer, was detected in multiple individuals with LMs. Histology revealed abnormal lymphatic channels with immunopositivity for BRAFV600E in endothelial cells that was otherwise indistinguishable from PIK3CA-positive LM. The finding that BRAF variants contribute to low-flow LMs increases the complexity of prior models associating low-flow vascular malformations (LM and venous malformations) with mutations in the PI3K-AKT-MTOR and high-flow vascular malformations (arteriovenous malformations) with mutations in the RAS-mitogen-activated protein kinase (MAPK) pathway.3 In addition, this work highlights the importance of genetic diagnosis prior to initiating medical therapy as more studies examine therapeutics for individuals with vascular malformations.
Collapse
|
26
|
Wang J, Peng H, Timur AA, Pasupuleti V, Yao Y, Zhang T, You SA, Fan C, Yu Y, Jia X, Chen J, Xu C, Chen Q, Wang Q. Receptor and Molecular Mechanism of AGGF1 Signaling in Endothelial Cell Functions and Angiogenesis. Arterioscler Thromb Vasc Biol 2021; 41:2756-2769. [PMID: 34551592 PMCID: PMC8580577 DOI: 10.1161/atvbaha.121.316867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Objective Angiogenic factor AGGF1 (angiogenic factor with G-patch and FHA [Forkhead-associated] domain 1) promotes angiogenesis as potently as VEGFA (vascular endothelial growth factor A) and regulates endothelial cell (EC) proliferation, migration, specification of multipotent hemangioblasts and venous ECs, hematopoiesis, and vascular development and causes vascular disease Klippel-Trenaunay syndrome when mutated. However, the receptor for AGGF1 and the underlying molecular mechanisms remain to be defined. Approach and Results Using functional blocking studies with neutralizing antibodies, we identified [alpha]5[beta]1 as the receptor for AGGF1 on ECs. AGGF1 interacts with [alpha]5[beta]1 and activates FAK (focal adhesion kinase), Src (proto-oncogene tyrosine-protein kinase), and AKT (protein kinase B). Functional analysis of 12 serial N-terminal deletions and 13 C-terminal deletions by every 50 amino acids mapped the angiogenic domain of AGGF1 to a domain between amino acids 604-613 (FQRDDAPAS). The angiogenic domain is required for EC adhesion and migration, capillary tube formation, and AKT activation. The deletion of the angiogenic domain eliminated the effects of AGGF1 on therapeutic angiogenesis and increased blood flow in a mouse model for peripheral artery disease. A 40-mer or 15-mer peptide containing the angiogenic domain blocks AGGF1 function, however, a 15-mer peptide containing a single amino acid mutation from -RDD- to -RGD- (a classical RGD integrin-binding motif) failed to block AGGF1 function. Conclusions We have identified integrin [alpha]5[beta]1 as an EC receptor for AGGF1 and a novel AGGF1-mediated signaling pathway of [alpha]5[beta]1-FAK-Src-AKT for angiogenesis. Our results identify an FQRDDAPAS angiogenic domain of AGGF1 crucial for its interaction with [alpha]5[beta]1 and signaling.
Collapse
Affiliation(s)
- Jingjing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
- Institute of Genetics and Development, Chinese Academy of Sciences, Beijing, China
| | - Huixin Peng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Ayse Anil Timur
- Robert J. Tomsich Pathology & Laboratory Medicine Institute Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Cardiology, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Vinay Pasupuleti
- Department of Molecular Cardiology, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Yufeng Yao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Teng Zhang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sun-Ah You
- Department of Molecular Cardiology, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Chun Fan
- Department of Molecular Cardiology, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Yubing Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Xinzhen Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Jing Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Qiuyun Chen
- Department of Molecular Cardiology, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Present Address, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | - Qing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
- Department of Molecular Cardiology, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| |
Collapse
|
27
|
Brouillard P, Witte MH, Erickson RP, Damstra RJ, Becker C, Quéré I, Vikkula M. Primary lymphoedema. Nat Rev Dis Primers 2021; 7:77. [PMID: 34675250 DOI: 10.1038/s41572-021-00309-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 11/09/2022]
Abstract
Lymphoedema is the swelling of one or several parts of the body owing to lymph accumulation in the extracellular space. It is often chronic, worsens if untreated, predisposes to infections and causes an important reduction in quality of life. Primary lymphoedema (PLE) is thought to result from abnormal development and/or functioning of the lymphatic system, can present in isolation or as part of a syndrome, and can be present at birth or develop later in life. Mutations in numerous genes involved in the initial formation of lymphatic vessels (including valves) as well as in the growth and expansion of the lymphatic system and associated pathways have been identified in syndromic and non-syndromic forms of PLE. Thus, the current hypothesis is that most cases of PLE have a genetic origin, although a causative mutation is identified in only about one-third of affected individuals. Diagnosis relies on clinical presentation, imaging of the structure and functionality of the lymphatics, and in genetic analyses. Management aims at reducing or preventing swelling by compression therapy (with manual drainage, exercise and compressive garments) and, in carefully selected cases, by various surgical techniques. Individuals with PLE often have a reduced quality of life owing to the psychosocial and lifelong management burden associated with their chronic condition. Improved understanding of the underlying genetic origins of PLE will translate into more accurate diagnosis and prognosis and personalized treatment.
Collapse
Affiliation(s)
- Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Marlys H Witte
- Department of Surgery, Neurosurgery, and Pediatrics, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Robert P Erickson
- Department of Pediatrics, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Robert J Damstra
- VASCERN PPL European Reference Centre; Department of Dermatology, Phlebology and Lymphology, Nij Smellinghe Hospital, Drachten, Netherlands
| | | | - Isabelle Quéré
- Department of Vascular Medicine, Centre de référence des Maladies Lymphatiques et Vasculaires Rares, Inserm IDESP, CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium. .,VASCERN VASCA European Reference Centre; Center for Vascular Anomalies, Division of Plastic Surgery, University Clinics Saint-Luc, University of Louvain, Brussels, Belgium. .,Walloon Excellence in Lifesciences and Biotechnology (WELBIO), de Duve Institute, University of Louvain, Brussels, Belgium.
| |
Collapse
|
28
|
|
29
|
Canaud G, Hammill AM, Adams D, Vikkula M, Keppler-Noreuil KM. A review of mechanisms of disease across PIK3CA-related disorders with vascular manifestations. Orphanet J Rare Dis 2021; 16:306. [PMID: 34238334 PMCID: PMC8268514 DOI: 10.1186/s13023-021-01929-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND PIK3CA-related disorders include vascular malformations and overgrowth of various tissues that are caused by postzygotic, somatic variants in the gene encoding phosphatidylinositol-3-kinase (PI3K) catalytic subunit alpha. These mutations result in activation of the PI3K/AKT/mTOR signaling pathway. The goals of this review are to provide education on the underlying mechanism of disease for this group of rare conditions and to summarize recent advancements in the understanding of, as well as current and emerging treatment options for PIK3CA-related disorders. MAIN BODY PIK3CA-related disorders include PIK3CA-related overgrowth spectrum (PROS), PIK3CA-related vascular malformations, and PIK3CA-related nonvascular lesions. Somatic activating mutations (predominantly in hotspots in the helical and kinase domains of PIK3CA, but also in other domains), lead to hyperactivation of the PI3K signaling pathway, which results in abnormal tissue growth. Diagnosis is complicated by the variability and overlap in phenotypes associated with PIK3CA-related disorders and should be performed by clinicians with the required expertise along with coordinated care from a multidisciplinary team. Although tissue mosaicism presents challenges for confirmation of PIK3CA mutations, next-generation sequencing and tissue selection have improved detection. Clinical improvement, radiological response, and patient-reported outcomes are typically used to assess treatment response in clinical studies of patients with PIK3CA-related disorders, but objective assessment of treatment response is difficult using imaging (due to the heterogeneous nature of these disorders, superimposed upon patient growth and development). Despite their limitations, patient-reported outcome tools may be best suited to gauge patient improvement. New therapeutic options are needed to provide an alternative or supplement to standard approaches such as surgery and sclerotherapy. Currently, there are no systemic agents that have regulatory approval for these disorders, but the mTOR inhibitor sirolimus has been used for several years in clinical trials and off label to address symptoms. There are also other agents under investigation for PIK3CA-related disorders that act as inhibitors to target different components of the PI3K signaling pathway including AKT (miransertib) and PI3K alpha (alpelisib). CONCLUSION Management of patients with PIK3CA-related disorders requires a multidisciplinary approach. Further results from ongoing clinical studies of agents targeting the PI3K pathway are highly anticipated.
Collapse
Affiliation(s)
- Guillaume Canaud
- Overgrowth Syndrome and Vascular Anomalies Unit, Hôpital Necker Enfants Malades, INSERM U1151, Assistance Publique-Hôpitaux de Paris, Université de Paris, 149 rue de Sèvres, 75105, Paris, France.
| | - Adrienne M Hammill
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Denise Adams
- Division of Oncology, Comprehensive Vascular Anomalies Program, Children's Hospital of Philadelphia, Perelman School of Medicine and the University of Pennsylvania, Philadelphia, PA, USA
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium.,Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint Luc, University of Louvain, Brussels, Belgium.,VASCERN VASCA European Reference Centre, Bichat-Claude Bernard Hospital, Paris, France.,Walloon Excellence in Lifesciences and Biotechnology (WELBIO), University of Louvain, Brussels, Belgium
| | - Kim M Keppler-Noreuil
- Division of Genetics and Metabolism, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|