1
|
Spinelli M, Fusco S, Grassi C. Therapeutic potential of stem cell-derived extracellular vesicles in neurodegenerative diseases associated with cognitive decline. Stem Cells 2025; 43:sxae074. [PMID: 39541178 DOI: 10.1093/stmcls/sxae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
In the central nervous system, cell-to-cell interaction is essential for brain plassticity and repair, and its alteration is critically involved in the development of neurodegenerative diseases. Neural stem cells are a plentiful source of biological signals promoting neuroplasticity and the maintenance of cognitive functions. Extracellular vesicles (EVs) represent an additional strategy for cells to release signals in the surrounding cellular environment or to exchange information among both neighboring and distant cells. In the last years, rising attention has been devoted to the ability of stem cell (SC)-derived EVs to counteract inflammatory and degenerative brain disorders taking advantage of their immunomodulatory capacities and regenerative potential. Here, we review the role of adult neurogenesis impairment in the cognitive decline associated with neurodegenerative diseases and describe the beneficial effects of SC-derived EVs on brain plasticity and repair also discussing the advantages of SC-derived EV administration vs SC transplantation in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Matteo Spinelli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
2
|
Alsiraey N, Dewald HD. Nitroxidative stress in human neural progenitor cells: In situ measurement of nitric oxide/peroxynitrite imbalance using metalloporphyrin nanosensors. J Inorg Biochem 2025; 263:112785. [PMID: 39603147 DOI: 10.1016/j.jinorgbio.2024.112785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Nitric oxide (NO) is an essential inorganic signaling molecule produced by constitutive NO synthase (cNOS) in the neurological system. Under pathological conditions, NO rapidly reacts with superoxide (O2•-) to generate peroxynitrite (ONOO¯). Elevated ONOO¯ concentrations induce nitroxidative stress, potentially contributing to numerous pathological processes as observed in neurodegenerative diseases including Alzheimer's disease (AD). Metalloporphyrin nanosensors, (200-300 nm diameter), were applied to quantify the NO/ONOO¯ balance produced by a single human neural progenitor cell (hNPC), in situ. These nanosensors, positioned in proximity of 4-5 ± 1 μm from the hNPCs membrane, enabled real-time measurement of NO and ONOO¯ concentrations following calcium ionophore (CaI) stimulation. The ratio of NO to ONOO¯ concentration ([NO]/[ONOO¯]) was established for the purpose of quantifying nitroxidative stress levels. Normal hNPCs produced a maximum of 107 ± 1 nmol/L of NO and 451 ± 7 nmol/L of ONOO¯, yielding a [NO]/[ONOO¯] ratio of 0.25 ± 0.005. In contrast, the model of the dysfunctional hNPCs, for long-term (48 h) amyloid-beta 42 (Aβ42) exposure significantly altered NO/ONOO¯ production. The NO level decreased to 14 ± 0.1 nmol/L, while ONOO¯ increased to 843 ± 0.8 nmol/L, resulting in a 94 % reduction of the [NO]/[ONOO¯] ratio to 0.016 ± 0.0001. The [NO]/[ONOO¯] ratio is determined by this work as a possible biomarker of nNOS efficiency and hNPC dysfunction, with implications for neurodegenerative disorders such as AD. Promising applications in the early medical diagnosis of neurological illnesses, electrochemical metalloporphyrin nanosensors demonstrate efficacy in real-time nitroxidative stress monitoring.
Collapse
Affiliation(s)
- Nouf Alsiraey
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA; Department of Chemistry, College of Science, Northern Border University, Arar 91431, Saudi Arabia
| | - Howard D Dewald
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
3
|
Park JJ, Rim YA, Sohn Y, Nam Y, Ju JH. Prospects of induced pluripotent stem cells in treating advancing Alzheimer's disease: A review. Histol Histopathol 2025; 40:157-170. [PMID: 38847077 DOI: 10.14670/hh-18-766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The World Health Organization has identified Alzheimer's disease (AD), the leading cause of dementia globally, as a public health priority. However, the complex multifactorial pathology of AD means that its etiology remains incompletely understood. Despite being recognized a century ago, incomplete knowledge has hindered the development of effective treatments for AD. Recent scientific advancements, particularly in induced pluripotent stem cell (iPSC) technology, show great promise in elucidating the fundamental mechanisms of AD. iPSCs play a dual role in regenerating damaged cells for therapeutic purposes and creating disease models to understand AD pathology and aid in drug screening. Nevertheless, as an emerging field, iPSC technology requires further technological advancement to develop effective AD treatments in the future. Thus, this review summarizes recent advances in stem cell therapies, specifically iPSCs, aimed at understanding AD pathology and developing treatments.
Collapse
Affiliation(s)
- Juyoun Janis Park
- YiPSCELL Inc, Seocho-gu, Seoul, South Korea
- Johns Hopkins University, Baltimore, Maryland, USA
| | - Yeri Alice Rim
- YiPSCELL Inc, Seocho-gu, Seoul, South Korea
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yeowon Sohn
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea
| | - Yoojun Nam
- YiPSCELL Inc, Seocho-gu, Seoul, South Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea.
| | - Ji Hyeon Ju
- YiPSCELL Inc, Seocho-gu, Seoul, South Korea
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- Department of Biomedicine and Health Sciences, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
4
|
Atef F, Abdelkawy MA, Eltanany BM, Pont L, Fayez AM, Abdelhameed MF, Benavente F, Younis IY, Otify AM. A comprehensive investigation of Clerodendrum Infortunatum Linn. using LC-QTOF-MS/MS metabolomics as a promising anti-alzheimer candidate. Sci Rep 2025; 15:859. [PMID: 39757300 DOI: 10.1038/s41598-024-82265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Alzheimer's disease (AD) poses a global health challenge, demanding innovative approaches for effective treatments. Clerodendrum infortunatum Linn. (Lamiaceae) is a shrub traditionally used as a medicinal plant to treat inflammation, skin diseases, and bronchitis. This study aims to identify the main bioactive metabolites in C. infortunatum using LC-QTOF-MS/MS and investigate its potential in protecting against cognitive decline in rats with scopolamine-induced AD disease. Metabolite profiling was performed on the methanol extract of the plant's aerial parts using LC-QTOF-MS/MS. The inhibitory activity of the acetylcholinesterase enzyme was measured in vitro. To evaluate the cognitive effects, the methanol extract was orally administered at three doses (100, 200, and 400 mg/kg) to scopolamine-induced AD rats, and their cognitive functions were assessed using the novel object recognition test. Additionally, acetylcholinesterase enzyme activity, as well as the levels of acetylcholine, dopamine, noradrenaline, glutathione, malondialdehyde, tumor necrosis factor-α, interleukin-1β, and amyloid-β in the rat hippocampus, were measured using ELISA, followed by histopathological evaluation. A total of 79 metabolites, spanning various chemical classes, such as organic acids, phenolic acids, phenylpropanoids and phenylethanoids, flavonoids, coumarins, other phenolics, and fatty acids and their derivatives, were identified. The results showed that the extract promoted enhanced cognitive functions in the novel object recognition test. Scopolamine administration significantly altered the acetylcholinesterase enzyme activity and biomarker levels in the rat's hippocampus. However, treatment with C. infortunatum at 200 and 400 mg/kg almost restored these neurotransmitter levels to normal, which was further confirmed by histopathological analysis. This study demonstrates the therapeutic potential of C. infortunatum in mitigating cognitive decline in AD, with its first metabolite profiling revealing a range of bioactive compounds. The extract improved cognitive function in scopolamine-induced AD rats, restored acetylcholinesterase activity, normalized neurotransmitter levels, and reduced oxidative stress and inflammation. These findings suggest that C. infortunatum is a promising candidate for the development of natural therapies targeting AD.
Collapse
Affiliation(s)
- Fatma Atef
- Boulaq El-dakrour general hospital, Giza, 12617, Egypt
| | - Mostafa A Abdelkawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Basma M Eltanany
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, 08028, Barcelona, Spain
- Serra Húnter Program, Generalitat de Catalunya, 08007, Barcelona, Spain
| | - Ahmed M Fayez
- Department of Pharmacology, Faculty of Pharmacy, Hertfordshire University, Cairo, 11835, Egypt
| | | | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, 08028, Barcelona, Spain.
| | - Inas Y Younis
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Asmaa M Otify
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
5
|
Venkataraman A, Kordic I, Li J, Zhang N, Bharadwaj NS, Fang Z, Das S, Coskun AF. Decoding senescence of aging single cells at the nexus of biomaterials, microfluidics, and spatial omics. NPJ AGING 2024; 10:57. [PMID: 39592596 PMCID: PMC11599402 DOI: 10.1038/s41514-024-00178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Aging has profound effects on the body, most notably an increase in the prevalence of several diseases. An important aging hallmark is the presence of senescent cells that no longer multiply nor die off properly. Another characteristic is an altered immune system that fails to properly self-surveil. In this multi-player aging process, cellular senescence induces a change in the secretory phenotype, known as senescence-associated secretory phenotype (SASP), of many cells with the intention of recruiting immune cells to accelerate the clearance of these damaged senescent cells. However, the SASP phenotype results in inducing secondary senescence of nearby cells, resulting in those cells becoming senescent, and improper immune activation resulting in a state of chronic inflammation, called inflammaging, in many diseases. Senescence in immune cells, termed immunosenescence, results in further dysregulation of the immune system. An interdisciplinary approach is needed to physiologically assess aging changes of the immune system at the cellular and tissue level. Thus, the intersection of biomaterials, microfluidics, and spatial omics has great potential to collectively model aging and immunosenescence. Each of these approaches mimics unique aspects of the body undergoes as a part of aging. This perspective highlights the key aspects of how biomaterials provide non-cellular cues to cell aging, microfluidics recapitulate flow-induced and multi-cellular dynamics, and spatial omics analyses dissect the coordination of several biomarkers of senescence as a function of cell interactions in distinct tissue environments. An overview of how senescence and immune dysregulation play a role in organ aging, cancer, wound healing, Alzheimer's, and osteoporosis is included. To illuminate the societal impact of aging, an increasing trend in anti-senescence and anti-aging interventions, including pharmacological interventions, medical procedures, and lifestyle changes is discussed, including further context of senescence.
Collapse
Affiliation(s)
- Abhijeet Venkataraman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Ivan Kordic
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - JiaXun Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nivik Sanjay Bharadwaj
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Machine Learning Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sandip Das
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
6
|
Ou CM, Xue WW, Liu D, Ma L, Xie HT, Ning K. Stem cell therapy in Alzheimer's disease: current status and perspectives. Front Neurosci 2024; 18:1440334. [PMID: 39640295 PMCID: PMC11618239 DOI: 10.3389/fnins.2024.1440334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
An incurable neurogenerative illness, Alzheimer's disease, is the cause of most global health, medical, and social disasters. The two main symptoms are cognitive impairment and neuronal loss. Current medications that target tau protein tangles and Aβ plaques are not very effective because they only slow the symptoms of AD and do not repair damaged cells. Stem cell-based treatments, however, present an alternative strategy in the treatment of AD. They have the capacity to divide into specialized adult cells, have self-renewal abilities, and multiplication. Stem cells can now be employed as a donor source for cell therapy due to developments in stem cell technology. This review covers preclinical and clinical updates on studies based on targeting the tau protein tangles and Aβ plaque, as well as four types of stem cells employed in AD treatment. The review also outlines the two basic pathologic aspects, tau protein tangles and Aβ plaques, of AD.
Collapse
Affiliation(s)
- Chu-Min Ou
- Guangdong Celconta Biotechnology Co., Ltd., Dongguan, Guangdong, China
| | - Wei-Wei Xue
- Guangdong Celconta Biotechnology Co., Ltd., Dongguan, Guangdong, China
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Dong Liu
- Guangdong Celconta Biotechnology Co., Ltd., Dongguan, Guangdong, China
| | - Liya Ma
- Guangdong Celconta Biotechnology Co., Ltd., Dongguan, Guangdong, China
| | - Hai-Tao Xie
- Guangdong Celconta Biotechnology Co., Ltd., Dongguan, Guangdong, China
| | - Ke Ning
- Guangdong Celconta Biotechnology Co., Ltd., Dongguan, Guangdong, China
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
7
|
Belousova E, Salikhova D, Maksimov Y, Nebogatikov V, Sudina A, Goldshtein D, Ustyugov A. Proposed Mechanisms of Cell Therapy for Alzheimer's Disease. Int J Mol Sci 2024; 25:12378. [PMID: 39596443 PMCID: PMC11595163 DOI: 10.3390/ijms252212378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder characterized by mitochondria dysfunction, accumulation of beta-amyloid plaques, and hyperphosphorylated tau tangles in the brain leading to memory loss and cognitive deficits. There is currently no cure for this condition, but the potential of stem cells for the therapy of neurodegenerative pathologies is actively being researched. This review discusses preclinical and clinical studies that have used mouse models and human patients to investigate the use of novel types of stem cell treatment approaches. The findings provide valuable insights into the applications of stem cell-based therapies and include the use of neural, glial, mesenchymal, embryonic, and induced pluripotent stem cells. We cover current studies on stem cell replacement therapy where cells can functionally integrate into neural networks, replace damaged neurons, and strengthen impaired synaptic circuits in the brain. We address the paracrine action of stem cells acting via secreted factors to induce neuroregeneration and modify inflammatory responses. We focus on the neuroprotective functions of exosomes as well as their neurogenic and synaptogenic effects. We look into the shuttling of mitochondria through tunneling nanotubes that enables the transfer of healthy mitochondria by restoring the normal functioning of damaged cells, improving their metabolism, and reducing the level of apoptosis.
Collapse
Affiliation(s)
- Ekaterina Belousova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
| | - Diana Salikhova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Yaroslav Maksimov
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Vladimir Nebogatikov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia;
| | - Anastasiya Sudina
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
| | - Aleksey Ustyugov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia;
| |
Collapse
|
8
|
James EC, Tomaskovic‐Crook E, Crook JM. Engineering 3D Scaffold-Free Nanoparticle-Laden Stem Cell Constructs for Piezoelectric Enhancement of Human Neural Tissue Formation and Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310010. [PMID: 39049737 PMCID: PMC11516115 DOI: 10.1002/advs.202310010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/04/2024] [Indexed: 07/27/2024]
Abstract
Electrical stimulation (ES) of cellular systems can be utilized for biotechnological applications and electroceuticals (bioelectric medicine). Neural cell stimulation especially has a long history in neuroscience research and is increasingly applied for clinical therapies. Application of ES via conventional electrodes requires external connectors and power sources, hindering scientific and therapeutic applications. Here engineering novel 3D scaffold-free human neural stem cell constructs with integrated piezoelectric nanoparticles for enhanced neural tissue induction and function is described. Tetragonal barium titanate (BaTi03) nanoparticles are employed as piezoelectric stimulators prepared as cytocompatible dispersions, incorporated into 3D self-organizing neural spheroids, and activated wirelessly by ultrasound. Ultrasound delivery (low frequency; 40 kHz) is optimized for cell survival, and nanoparticle activation enabled ES throughout the spheroids during differentiation, tissue formation, and maturation. The resultant human neural tissues represent the first example of direct tissue loading with piezoelectric particles for ensuing 3D ultrasound-mediated piezoelectric enhancement of human neuronal induction from stem cells, including augmented neuritogenesis and synaptogenesis. It is anticipated that the platform described will facilitate advanced tissue engineering and in vitro modeling of human neural (and potentially non-neural) tissues, with modeling including tissue development and pathology, and applicable to preclinical testing and prototyping of both electroceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Emma Claire James
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAIIM FacilityUniversity of WollongongFairy MeadowNSW2519Australia
- Arto Hardy Family Biomedical Innovation HubChris O'Brien LifehouseCamperdownNSW2050Australia
| | - Eva Tomaskovic‐Crook
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAIIM FacilityUniversity of WollongongFairy MeadowNSW2519Australia
- Arto Hardy Family Biomedical Innovation HubChris O'Brien LifehouseCamperdownNSW2050Australia
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneyCamperdownNSW2006Australia
| | - Jeremy Micah Crook
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAIIM FacilityUniversity of WollongongFairy MeadowNSW2519Australia
- Arto Hardy Family Biomedical Innovation HubChris O'Brien LifehouseCamperdownNSW2050Australia
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneyCamperdownNSW2006Australia
- Institute of Innovative MaterialsAIIM FacilityInnovation CampusFaculty of Engineering and Information SystemsUniversity of WollongongFairy MeadowNSW2519Australia
| |
Collapse
|
9
|
Bhatt A, Bhardwaj H, Srivastava P. Mesenchymal stem cell therapy for Alzheimer's disease: A novel therapeutic approach for neurodegenerative diseases. Neuroscience 2024; 555:52-68. [PMID: 39032806 DOI: 10.1016/j.neuroscience.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) is one of the most progressive and prevalent types of neurodegenerative diseases in the aging population (aged >65 years) and is considered a major factor for dementia, affecting 55 million people worldwide. In the current scenario, drug-based therapies have been employed for the treatment of Alzheimer's disease but are only able to provide symptomatic relief to patients rather than a permanent solution from Alzheimer's. Recent advancements in stem cell research unlock new horizons for developing effective and highly potential therapeutic approaches due to their self-renewal, self-replicating, regenerative, and high differentiation capabilities. Stem cells come in multiple lineages such as embryonic, neural, and induced pluripotent, among others. Among different kinds of stem cells, mesenchymal stem cells are the most investigated for Alzheimer's treatment due to their multipotent nature, low immunogenicity, ability to penetrate the blood-brain barrier, and low risk of tumorigenesis, immune & inflammatory modulation, etc. They have been seen to substantially promote neurogenesis, synaptogenesis by secreting neurotrophic growth factors, as well as in ameliorating the Aβ and tau-mediated toxicity. This review covers the pathophysiology of AD, new medications, and therapies. Further, it will focus on the advancements and benefits of Mesenchymal Stem Cell therapies, their administration methods, clinical trials concerning AD progression, along with their future prospective.
Collapse
Affiliation(s)
- Aditya Bhatt
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Harshita Bhardwaj
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Priyanka Srivastava
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
10
|
Zhao J, Wei M, Guo M, Wang M, Niu H, Xu T, Zhou Y. GSK3: A potential target and pending issues for treatment of Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14818. [PMID: 38946682 PMCID: PMC11215492 DOI: 10.1111/cns.14818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Glycogen synthase kinase-3 (GSK3), consisting of GSK3α and GSK3β subtypes, is a complex protein kinase that regulates numerous substrates. Research has observed increased GSK3 expression in the brains of Alzheimer's disease (AD) patients and models. AD is a neurodegenerative disorder with diverse pathogenesis and notable cognitive impairments, characterized by Aβ aggregation and excessive tau phosphorylation. This article provides an overview of GSK3's structure and regulation, extensively analyzing its relationship with AD factors. GSK3 overactivation disrupts neural growth, development, and function. It directly promotes tau phosphorylation, regulates amyloid precursor protein (APP) cleavage, leading to Aβ formation, and directly or indirectly triggers neuroinflammation and oxidative damage. We also summarize preclinical research highlighting the inhibition of GSK3 activity as a primary therapeutic approach for AD. Finally, pending issues like the lack of highly specific and affinity-driven GSK3 inhibitors, are raised and expected to be addressed in future research. In conclusion, GSK3 represents a target in AD treatment, filled with hope, challenges, opportunities, and obstacles.
Collapse
Affiliation(s)
- Jiahui Zhao
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Mengying Wei
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Future Health Laboratory, Innovation Center of Yangtze River DeltaZhejiang UniversityJiaxingChina
| | - Minsong Guo
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Cangnan County Qiushi Innovation Research Institute of Traditional Chinese MedicineWenzhouChina
| | - Mengyao Wang
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Hongxia Niu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Laboratory of Blood‐stasis‐toxin Syndrome of Zhejiang ProvinceHangzhouChina
| | - Tengfei Xu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Cangnan County Qiushi Innovation Research Institute of Traditional Chinese MedicineWenzhouChina
| | - Yuan Zhou
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Laboratory of Blood‐stasis‐toxin Syndrome of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
11
|
Si Y, Hayat MA, Hu J. NSPCs-ES: mechanisms and functional impact on central nervous system diseases. Biomed Mater 2024; 19:042011. [PMID: 38916246 DOI: 10.1088/1748-605x/ad5819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
Patients with central neuronal damage may suffer severe consequences, but effective therapies remain unclear. Previous research has established the transplantation of neural stem cells that generate new neurons to replace damaged ones. In a new field of scientific research, the extracellular secretion of NPSCs (NSPCs-ES) has been identified as an alternative to current chemical drugs. Many preclinical studies have shown that NSPCs-ES are effective in models of various central nervous system diseases (CNS) injuries, from maintaining functional structures at the cellular level to providing anti-inflammatory functions at the molecular level, as well as improving memory and motor functions, reducing apoptosis in neurons, and mediating multiple signaling pathways. The NSPC-ES can travel to the damaged tissue and exert a broad range of therapeutic effects by supporting and nourishing damaged neurons. However, gene editing and cell engineering techniques have recently improved therapeutic efficacy by modifying NSPCs-ES. Consequently, future research and application of NSPCs-ES may provide a novel strategy for the treatment of CNS diseases in the future. In this review, we summarize the current progress on these aspects.
Collapse
Affiliation(s)
- Yu Si
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, People's Republic of China
| | - Muhammad Abid Hayat
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, People's Republic of China
| | - Jiabo Hu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, People's Republic of China
- Zhenjiang Blood Center, Zhenjiang, Jiangsu 212013, People's Republic of China
| |
Collapse
|
12
|
Glotzbach K, Stamm N, Weberskirch R, Faissner A. Cationic Hydrogels Modulate Neural Stem and Progenitor Cell Proliferation and Differentiation Behavior in Dependence of Cationic Moiety Concentration in 2D Cell Culture. ACS Biomater Sci Eng 2024; 10:3148-3163. [PMID: 38227432 DOI: 10.1021/acsbiomaterials.3c01668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The central nervous system (CNS) has a limited regenerative capacity because a hostile environment prevents tissue regeneration after damage or injury. Neural stem/progenitor cells (NSPCs) are considered a potential resource for CNS repair, which raises the issue of adequate cultivation and expansion procedures. Cationic charge supports the survival and adhesion of NSPCs. Typically, tissue culture plates with cationic coatings, such as poly-l-ornithine (PLO), have been used to culture these cell types (NSPCs). Yet presently, little is known about the impact of cationic charge concentration on the viability, proliferation, and differentiation capacity of NSPCs. Therefore, we have recently developed well-defined, fully synthetic hydrogel systems G1 (gel 1) to G6 (gel 6) that allow for the precise control of the concentration of the cationic trimethylaminoethyl acrylate (TMAEA) molecule associated with the polymer in a range from 0.06 to 0.91 μmol/mg. When murine NSPCs were cultured on these gels under differentiation conditions, we observed a strong correlation of cationic charge concentration with NSPC survival. In particular, neurons were preferentially formed on gels with a higher cationic charge concentration, whereas astrocytes and oligodendrocytes favored weakly charged or even neutral gel surfaces. To test the properties of the gels under proliferative conditions, the NSPCs were cultivated in the presence of fibroblast growth factor 2 (FGF2). The cytokine significantly increased the number of NSPCs but delayed the differentiation toward neurons and glia cells. Thus, the hydrogels are compatible with the survival, expansion, and differentiation of NSPCs and may be useful to create supportive environments in transplantation approaches.
Collapse
Affiliation(s)
- Kristin Glotzbach
- Department of Cell Morphology and Molecular Neurobiology, Ruhr Universität Bochum, Bochum 44801, Germany
| | - Nils Stamm
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund 44227, Germany
| | - Ralf Weberskirch
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund 44227, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr Universität Bochum, Bochum 44801, Germany
| |
Collapse
|
13
|
Wu L, Lu J, Lan T, Zhang D, Xu H, Kang Z, Peng F, Wang J. Stem cell therapies: a new era in the treatment of multiple sclerosis. Front Neurol 2024; 15:1389697. [PMID: 38784908 PMCID: PMC11111935 DOI: 10.3389/fneur.2024.1389697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Multiple Sclerosis (MS) is an immune-mediated condition that persistently harms the central nervous system. While existing treatments can slow its course, a cure remains elusive. Stem cell therapy has gained attention as a promising approach, offering new perspectives with its regenerative and immunomodulatory properties. This article reviews the application of stem cells in MS, encompassing various stem cell types, therapeutic potential mechanisms, preclinical explorations, clinical research advancements, safety profiles of clinical applications, as well as limitations and challenges, aiming to provide new insights into the treatment research for MS.
Collapse
Affiliation(s)
- Lei Wu
- Changchun University of Chinese Medicine, Changchun, China
| | - Jing Lu
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Tianye Lan
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Dongmei Zhang
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Hanying Xu
- Changchun University of Chinese Medicine, Changchun, China
| | - Zezheng Kang
- Changchun University of Chinese Medicine, Changchun, China
| | - Fang Peng
- Hunan Provincial People's Hospital, Changsha, China
| | - Jian Wang
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
14
|
Yang L, Liu SC, Liu YY, Zhu FQ, Xiong MJ, Hu DX, Zhang WJ. Therapeutic role of neural stem cells in neurological diseases. Front Bioeng Biotechnol 2024; 12:1329712. [PMID: 38515621 PMCID: PMC10955145 DOI: 10.3389/fbioe.2024.1329712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
The failure of endogenous repair is the main feature of neurological diseases that cannot recover the damaged tissue and the resulting dysfunction. Currently, the range of treatment options for neurological diseases is limited, and the approved drugs are used to treat neurological diseases, but the therapeutic effect is still not ideal. In recent years, different studies have revealed that neural stem cells (NSCs) have made exciting achievements in the treatment of neurological diseases. NSCs have the potential of self-renewal and differentiation, which shows great foreground as the replacement therapy of endogenous cells in neurological diseases, which broadens a new way of cell therapy. The biological functions of NSCs in the repair of nerve injury include neuroprotection, promoting axonal regeneration and remyelination, secretion of neurotrophic factors, immune regulation, and improve the inflammatory microenvironment of nerve injury. All these reveal that NSCs play an important role in improving the progression of neurological diseases. Therefore, it is of great significance to better understand the functional role of NSCs in the treatment of neurological diseases. In view of this, we comprehensively discussed the application and value of NSCs in neurological diseases as well as the existing problems and challenges.
Collapse
Affiliation(s)
- Ling Yang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Department of Physical Examination, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Si-Cheng Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Yi-Yi Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Fu-Qi Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Mei-Juan Xiong
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
15
|
Chang J, Li Y, Shan X, Chen X, Yan X, Liu J, Zhao L. Neural stem cells promote neuroplasticity: a promising therapeutic strategy for the treatment of Alzheimer's disease. Neural Regen Res 2024; 19:619-628. [PMID: 37721293 PMCID: PMC10581561 DOI: 10.4103/1673-5374.380874] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/04/2023] [Accepted: 06/10/2023] [Indexed: 09/19/2023] Open
Abstract
Recent studies have demonstrated that neuroplasticity, such as synaptic plasticity and neurogenesis, exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheimer's disease. Hence, promoting neuroplasticity may represent an effective strategy with which Alzheimer's disease can be alleviated. Due to their significant ability to self-renew, differentiate, and migrate, neural stem cells play an essential role in reversing synaptic and neuronal damage, reducing the pathology of Alzheimer's disease, including amyloid-β, tau protein, and neuroinflammation, and secreting neurotrophic factors and growth factors that are related to plasticity. These events can promote synaptic plasticity and neurogenesis to repair the microenvironment of the mammalian brain. Consequently, neural stem cells are considered to represent a potential regenerative therapy with which to improve Alzheimer's disease and other neurodegenerative diseases. In this review, we discuss how neural stem cells regulate neuroplasticity and optimize their effects to enhance their potential for treating Alzheimer's disease in the clinic.
Collapse
Affiliation(s)
- Jun Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yujiao Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaoqian Shan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xi Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xuhe Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jianwei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
16
|
Engert J, Spahn B, Sommerer S, Ehret Kasemo T, Hackenberg S, Rak K, Voelker J. Adult Neurogenesis of the Medial Geniculate Body: In Vitro and Molecular Genetic Analyses Reflect the Neural Stem Cell Capacity of the Rat Auditory Thalamus over Time. Int J Mol Sci 2024; 25:2623. [PMID: 38473870 DOI: 10.3390/ijms25052623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Neural stem cells (NSCs) have been recently identified in the neonatal rat medial geniculate body (MGB). NSCs are characterized by three cardinal features: mitotic self-renewal, formation of progenitors, and differentiation into all neuroectodermal cell lineages. NSCs and the molecular factors affecting them are particularly interesting, as they present a potential target for treating neurologically based hearing disorders. It is unclear whether an NSC niche exists in the rat MGB up to the adult stage and which neurogenic factors are essential during maturation. The rat MGB was examined on postnatal days 8, 12, and 16, and at the adult stadium. The cardinal features of NSCs were detected in MGB cells of all age groups examined by neurosphere, passage, and differentiation assays. In addition, real-time quantitative polymerase chain reaction arrays were used to compare the mRNA levels of 84 genes relevant to NSCs and neurogenesis. In summary, cells of the MGB display the cardinal features of NSCs up to the adult stage with a decreasing NSC potential over time. Neurogenic factors with high importance for MGB neurogenesis were identified on the mRNA level. These findings should contribute to a better understanding of MGB neurogenesis and its regenerative capacity.
Collapse
Affiliation(s)
- Jonas Engert
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Wuerzburg, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany
| | - Bjoern Spahn
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Wuerzburg, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany
| | - Sabine Sommerer
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Wuerzburg, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany
| | - Totta Ehret Kasemo
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Wuerzburg, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany
| | - Stephan Hackenberg
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Wuerzburg, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany
| | - Kristen Rak
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Wuerzburg, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany
| | - Johannes Voelker
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Wuerzburg, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany
| |
Collapse
|
17
|
Chapla R, Katz RR, West JL. Neurogenic Cell Behavior in 3D Culture Enhanced Within a Highly Compliant Synthetic Hydrogel Platform Formed via Competitive Crosslinking. Cell Mol Bioeng 2024; 17:35-48. [PMID: 38435792 PMCID: PMC10901766 DOI: 10.1007/s12195-024-00794-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/09/2024] [Indexed: 03/05/2024] Open
Abstract
Purpose Scaffold materials that better support neurogenesis are still needed to improve cell therapy outcomes for neural tissue damage. We have used a modularly tunable, highly compliant, degradable hydrogel to explore the impacts of hydrogel compliance stiffness on neural differentiation. Here we implemented competitive matrix crosslinking mechanics to finely tune synthetic hydrogel moduli within soft tissue stiffnesses, a range much softer than typically achievable in synthetic crosslinked hydrogels, providing a modularly controlled and ultrasoft 3D culture model which supports and enhances neurogenic cell behavior. Methods Soluble competitive allyl monomers were mixed with proteolytically-degradable poly(ethylene glycol) diacrylate derivatives and crosslinked to form a matrix, and resultant hydrogel stiffness and diffusive properties were evaluated. Neural PC12 cells or primary rat fetal neural stem cells (NSCs) were encapsulated within the hydrogels, and cell morphology and phenotype were investigated to understand cell-matrix interactions and the effects of environmental stiffness on neural cell behavior within this model. Results Addition of allyl monomers caused a concentration-dependent decrease in hydrogel compressive modulus from 4.40 kPa to 0.26 kPa (natural neural tissue stiffness) without influencing soluble protein diffusion kinetics through the gel matrix. PC12 cells encapsulated in the softest hydrogels showed significantly enhanced neurite extension in comparison to PC12s in all other hydrogel stiffnesses tested. Encapsulated neural stem cells demonstrated significantly greater spreading and elongation in 0.26 kPa alloc hydrogels than in 4.4 kPa hydrogels. When soluble growth factor deprivation (for promotion of neural differentiation) was evaluated within the neural stiffness gels (0.26 kPa), NSCs showed increased neuronal marker expression, indicating early enhancement of neurogenic differentiation. Conclusions Implementing allyl-acrylate crosslinking competition reduced synthetic hydrogel stiffness to provide a supportive environment for 3D neural tissue culture, resulting in enhanced neurogenic behavior of encapsulated cells. These results indicate the potential suitability of this ultrasoft hydrogel system as a model platform for further investigating environmental factors on neural cell behavior. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00794-2.
Collapse
Affiliation(s)
- Rachel Chapla
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Rachel R. Katz
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Jennifer L. West
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904 USA
| |
Collapse
|
18
|
Chen KS, Noureldein MH, McGinley LM, Hayes JM, Rigan DM, Kwentus JF, Mason SN, Mendelson FE, Savelieff MG, Feldman EL. Human neural stem cells restore spatial memory in a transgenic Alzheimer's disease mouse model by an immunomodulating mechanism. Front Aging Neurosci 2023; 15:1306004. [PMID: 38155736 PMCID: PMC10753006 DOI: 10.3389/fnagi.2023.1306004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction Stem cells are a promising therapeutic in Alzheimer's disease (AD) given the complex pathophysiologic pathways involved. However, the therapeutic mechanisms of stem cells remain unclear. Here, we used spatial transcriptomics to elucidate therapeutic mechanisms of human neural stem cells (hNSCs) in an animal model of AD. Methods hNSCs were transplanted into the fimbria fornix of the hippocampus using the 5XFAD mouse model. Spatial memory was assessed by Morris water maze. Amyloid plaque burden was quantified. Spatial transcriptomics was performed and differentially expressed genes (DEGs) identified both globally and within the hippocampus. Subsequent pathway enrichment and ligand-receptor network analysis was performed. Results hNSC transplantation restored learning curves of 5XFAD mice. However, there were no changes in amyloid plaque burden. Spatial transcriptomics showed 1,061 DEGs normalized in hippocampal subregions. Plaque induced genes in microglia, along with populations of stage 1 and stage 2 disease associated microglia (DAM), were normalized upon hNSC transplantation. Pathologic signaling between hippocampus and DAM was also restored. Discussion hNSCs normalized many dysregulated genes, although this was not mediated by a change in amyloid plaque levels. Rather, hNSCs appear to exert beneficial effects in part by modulating microglia-mediated neuroinflammation and signaling in AD.
Collapse
Affiliation(s)
- Kevin S. Chen
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Mohamed H. Noureldein
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Lisa M. McGinley
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Diana M. Rigan
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Jacquelin F. Kwentus
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Shayna N. Mason
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Faye E. Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Masha G. Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
19
|
Khan T, Waseem R, Shahid M, Ansari J, Ahanger IA, Hassan I, Islam A. Recent advancement in therapeutic strategies for Alzheimer's disease: Insights from clinical trials. Ageing Res Rev 2023; 92:102113. [PMID: 37918760 DOI: 10.1016/j.arr.2023.102113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, characterized by the presence of plaques of amyloid beta and Tau proteins. There is currently no permanent cure for AD; the only medications approved by the FDA for mild to moderate AD are cholinesterase inhibitors, NMDA receptor antagonists, and immunotherapies against core pathophysiology, that provide temporary relief only. Researchers worldwide have made significant attempts to find new targets and develop innovative therapeutic molecules to treat AD. The FDA-approved drugs are palliative and couldn't restore the damaged neuron cells of AD. Stem cells have self-differentiation properties, making them prospective therapeutics to treat AD. The promising results in pre-clinical studies of stem cell therapy for AD seek attention worldwide. Various stem cells, mainly mesenchymal stem cells, are currently in different phases of clinical trials and need more advancements to take this therapy to the translational level. Here, we review research from the past decade that has identified several hypotheses related to AD pathology. Moreover, this article also focuses on the recent advancement in therapeutic strategies for AD treatment including immunotherapy and stem cell therapy detailing the clinical trials that are currently undergoing development.
Collapse
Affiliation(s)
- Tanzeel Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Rashid Waseem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Jaoud Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ishfaq Ahmad Ahanger
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Clinical Biochemistry, University of Kashmir,190006, India
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
20
|
Chen KS, Noureldein MH, McGinley LM, Hayes JM, Rigan DM, Kwentus JF, Mason SN, Mendelson FE, Savelieffd MG, Feldman EL. Human neural stem cells restore spatial memory in a transgenic Alzheimer's disease mouse model by an immunomodulating mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565161. [PMID: 37961246 PMCID: PMC10635057 DOI: 10.1101/2023.11.01.565161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
INTRODUCTION Stem cells are a promising therapeutic in Alzheimer's disease (AD) given the complex pathophysiologic pathways involved. However, the therapeutic mechanisms of stem cells remain unclear. Here, we used spatial transcriptomics to elucidate therapeutic mechanisms of human neural stem cells (hNSCs) in an animal model of AD. METHODS hNSCs were transplanted into the fimbria fornix of the hippocampus using the 5XFAD mouse model. Spatial memory was assessed by Morris water maze. Amyloid plaque burden was quantified. Spatial transcriptomics was performed and differentially expressed genes (DEGs) identified both globally and within the hippocampus. Subsequent pathway enrichment and ligand-receptor network analysis was performed. RESULTS hNSC transplantation restored learning curves of 5XFAD mice. However, there were no changes in amyloid plaque burden. Spatial transcriptomics showed 1061 DEGs normalized in hippocampal subregions. Plaque induced genes in microglia, along with populations of stage 1 and stage 2 disease associated microglia (DAM), were normalized upon hNSC transplantation. Pathologic signaling between hippocampus and DAM was also restored. DISCUSSION hNSCs normalized many dysregulated genes, although this was not mediated by a change in amyloid plaque levels. Rather, hNSCs appear to exert beneficial effects in part by modulating microglia-mediated neuroinflammation and signaling in AD.
Collapse
|
21
|
Dave BP, Shah YB, Maheshwari KG, Mansuri KA, Prajapati BS, Postwala HI, Chorawala MR. Pathophysiological Aspects and Therapeutic Armamentarium of Alzheimer's Disease: Recent Trends and Future Development. Cell Mol Neurobiol 2023; 43:3847-3884. [PMID: 37725199 DOI: 10.1007/s10571-023-01408-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
Alzheimer's disease (AD) is the primary cause of dementia and is characterized by the death of brain cells due to the accumulation of insoluble amyloid plaques, hyperphosphorylation of tau protein, and the formation of neurofibrillary tangles within the cells. AD is also associated with other pathologies such as neuroinflammation, dysfunction of synaptic connections and circuits, disorders in mitochondrial function and energy production, epigenetic changes, and abnormalities in the vascular system. Despite extensive research conducted over the last hundred years, little is established about what causes AD or how to effectively treat it. Given the severity of the disease and the increasing number of affected individuals, there is a critical need to discover effective medications for AD. The US Food and Drug Administration (FDA) has approved several new drug molecules for AD management since 2003, but these drugs only provide temporary relief of symptoms and do not address the underlying causes of the disease. Currently, available medications focus on correcting the neurotransmitter disruption observed in AD, including cholinesterase inhibitors and an antagonist of the N-methyl-D-aspartate (NMDA) receptor, which temporarily alleviates the signs of dementia but does not prevent or reverse the course of AD. Research towards disease-modifying AD treatments is currently underway, including gene therapy, lipid nanoparticles, and dendrimer-based therapy. These innovative approaches aim to target the underlying pathological processes of AD rather than just managing the symptoms. This review discusses the novel aspects of pathogenesis involved in the causation of AD of AD and in recent developments in the therapeutic armamentarium for the treatment of AD such as gene therapy, lipid nanoparticles, and dendrimer-based therapy, and many more.
Collapse
Affiliation(s)
- Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Yesha B Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Kunal G Maheshwari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Kaif A Mansuri
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Bhadrawati S Prajapati
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Humzah I Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
22
|
Ji T, Pang Y, Cheng M, Wang R, Chen X, Zhang C, Liu M, Zhang J, Zhong C. mNSCs overexpressing Rimkla transplantation facilitates cognitive recovery in a mouse model of traumatic brain injury. iScience 2023; 26:107913. [PMID: 37810220 PMCID: PMC10550729 DOI: 10.1016/j.isci.2023.107913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/22/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
N-acetyl aspartyl-glutamate (NAAG) is easily inactivated for the hydrolysis of NAAG peptidase on the surface of glial cells, thereby losing its endogenous neuroprotective effect after traumatic brain injury. In this study, lentiviral vectors were used to over express/knock out NAAG synthetase II (Rimkla) in mouse embryonic neural stem cells (mNSCs) in vitro and these mNSCs were transplanted at the lesion site in a mouse model of controlled cortical impact (CCI). In vivo experiments showed that transplantation of mNSCs overexpressing Rimkla regulated glutamate-glutamine cycling between adjacent astrocytes and neurons in the subacute phase of CCI, thereby enhancing support for neuronal metabolism and promoting neuronal synaptic repair in the hippocampal CA3 region. Taken together, these findings demonstrate that transplantation of neural stem cells overexpressing Rimkla can effectively increase the NAAG concentration in local brain regions, which opens up new ideas for the maintenance of NAAG neuroprotective effects after TBI.
Collapse
Affiliation(s)
- Tongjie Ji
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ying Pang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Meng Cheng
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rui Wang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xu Chen
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunyu Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Min Liu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute for Advanced Study, Tongji University, Shanghai, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
23
|
Murayama MA. The past and present of therapeutic strategy for Alzheimer's diseases: potential for stem cell therapy. Exp Anim 2023; 72:285-293. [PMID: 36878603 PMCID: PMC10435354 DOI: 10.1538/expanim.22-0164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disease characterized by cognitive dysfunction and neuropsychiatric symptoms, is the most prevalent form of dementia among the elderly. Amyloid aggregation, tau hyperphosphorylation, and neural cell loss are the main pathological features. Various hypotheses have been proposed to explain the development of AD. Some therapeutic agents have shown clinical benefits in patients with AD; however, many of these agents have failed. The degree of neural cell loss is associated with the severity of AD. Adult neurogenesis, which governs cognitive and emotional behaviors, occurs in the hippocampus, and some research groups have reported that neural cell transplantation into the hippocampus improves cognitive dysfunction in AD model mice. Based on these clinical findings, stem cell therapy for patients with AD has recently attracted attention. This review provides past and present therapeutic strategies for the management and treatment of AD.
Collapse
Affiliation(s)
- Masanori A Murayama
- Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
24
|
Poorgholam P, Yaghmaei P, Noureddini M, Hajebrahimi Z. Artemisin and human endometrial-derived stem cells improve cognitive function and synaptic plasticity in a rat model of Alzheimer disease and diabetes. Metab Brain Dis 2023; 38:1925-1936. [PMID: 37043150 DOI: 10.1007/s11011-023-01200-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/10/2023] [Indexed: 04/13/2023]
Abstract
Alzheimer disease (AD) is a common form of dementia associated with loss of memory and disruption of synaptic plasticity. There is a strong correlation between the pathophysiological features of AD and diabetes, including induction of oxidative stress, inflammation, and abnormality in blood vessels. Considering the brain's limited capacity to repair damage and the potential of stem cell-derived neural cells in the repair of neurodegenerative disease, we investigated the effects of artemisinin and TSP‑1‑human endometrial-derived-derived stem cells (TSP‑1‑hEDSCs) on the cognitive function and synaptic plasticity in AD-diabetes rats. The authors previously showed that artemisinin and TSP‑1‑hEDSCs suppressed oxidative stress and inflammation in AD-diabetes rats. Thrombospondins-1 (TSPs-1) is a glycoprotein that inhibits angiogenesis. AD and diabetes were induced using streptozotocin. Synaptic plasticity and learning and memory function were studied using the Morris water maze and electrophysiological test, respectively. Streptozotocin increased traveled swimming distance and escape latency in the morris water maze test, decreased the percent time spent in the target quadrant, inhibited the long-term potentiation (LTP), and increased the blood glucose levels. Simultaneous or separate administration of artemisinin and TSP‑1‑hEDSCs decreased the blood levels of glucose and improved cognitive tasks and synaptic plasticity by considerably reducing traveled swimming distance and escape latency, increasing the percent time spent in the target quadrant, and retrieval of the LTP; therefore, they could be utilized as an adjunct treatment for AD treatment. These results may be due to a decrease in oxidative stress and inflammation.
Collapse
Affiliation(s)
- Parvin Poorgholam
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mehdi Noureddini
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Hajebrahimi
- A&S Research Institute, Ministry of Science Research and Technology, Tehran, Iran
| |
Collapse
|
25
|
Li H, Ye T, Liu X, Guo R, Yang X, Li Y, Qi D, Wei Y, Zhu Y, Wen L, Cheng X. The role of signaling crosstalk of microglia in hippocampus on progression of ageing and Alzheimer's disease. J Pharm Anal 2023; 13:788-805. [PMID: 37577391 PMCID: PMC10422165 DOI: 10.1016/j.jpha.2023.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 08/15/2023] Open
Abstract
Based on single-cell sequencing of the hippocampi of 5× familiar Alzheimer's disease (5× FAD) and wild type mice at 2-, 12-, and 24-month of age, we found an increased percentage of microglia in aging and Alzheimer's disease (AD) mice. Blood brain barrier injury may also have contributed to this increase. Immune regulation by microglia plays a major role in the progression of aging and AD, according to the functions of 41 intersecting differentially expressed genes in microglia. Signaling crosstalk between C-C motif chemokine ligand (CCL) and major histocompatibility complex-1 bridges intercellular communication in the hippocampus during aging and AD. The amyloid precursor protein (APP) and colony stimulating factor (CSF) signals drive 5× FAD to deviate from aging track to AD occurrence among intercellular communication in hippocampus. Microglia are involved in the progression of aging and AD can be divided into 10 functional types. The strength of the interaction among microglial subtypes weakened with aging, and the CCL and CSF signaling pathways were the fundamental bridge of communication among microglial subtypes.
Collapse
Affiliation(s)
- He Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Tianyuan Ye
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xingyang Liu
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Rui Guo
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiuzhao Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yangyi Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Dongmei Qi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yihua Wei
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yifan Zhu
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lei Wen
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaorui Cheng
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| |
Collapse
|
26
|
Babaei H, Kheirollah A, Ranjbaran M, Cheraghzadeh M, Sarkaki A, Adelipour M. Preconditioning adipose-derived mesenchymal stem cells with dimethyl fumarate promotes their therapeutic efficacy in the brain tissues of rats with Alzheimer's disease. Biochem Biophys Res Commun 2023; 672:120-127. [PMID: 37348174 DOI: 10.1016/j.bbrc.2023.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
AIM Transplantation of mesenchymal stem cell (MSC) has been suggested to be a promising method for treating neurodegenerative conditions, including Alzheimer's disease (AD). However, the poor survival rate of transplanted MSCs has limited their therapeutic application. This study aimed to evaluate whether preconditioning MSCs with dimethyl fumarate (DMF), a Nrf2 inducer, could enhance MSC therapeutic efficacy in an amyloid-β (Aβ1-42)-induced AD rat model. METHODS The survival and antioxidant capacity of MSCs treated with DMF were assessed in vitro. Aβ1-42 intrahippocampal injection was used to create a rat model of AD. Following the transplantation of MSCs preconditioned with DMF and using the Morris blue maze test, spatial learning and memory were assessed. Using RT-qPCR, we evaluated the gene expression related to apoptosis and neurotrophins in the hippocampus region. RESULTS Treatment with DMF enhanced cell survival and Nrf2 protein expression in MSCs in vitro. Preconditioning with DMF also enhanced the efficacy of transplanted MSCs in rescuing learning and spatial memory deficits in Aβ-AD rats. Besides, DMF preconditioning enhanced the neuroprotective effect of transplanted MSCs in the hippocampus of rats treated with Aβ1-42 by decreasing the expression of apoptotic markers (Bax, caspase 3, and cytochrome c), and elevating the expression of the anti-apoptotic marker Bcl2 and neurotrophins, including BDNF and NGF. CONCLUSION Preconditioning MSCs with DMF boosted the therapeutic efficacy of these cells; therefore, it could serve as a targeted strategy for increasing the therapeutic efficacy of MSCs in treating neurodegenerative disorders, including AD.
Collapse
Affiliation(s)
- Hossein Babaei
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mina Ranjbaran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Cheraghzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Medical Plant Research Center, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran; Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Adelipour
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
27
|
Bhatti JS, Khullar N, Mishra J, Kaur S, Sehrawat A, Sharma E, Bhatti GK, Selman A, Reddy PH. Stem cells in the treatment of Alzheimer's disease - Promises and pitfalls. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166712. [PMID: 37030521 DOI: 10.1016/j.bbadis.2023.166712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/31/2023] [Indexed: 04/10/2023]
Abstract
Alzheimer's disease (AD) is the most widespread form of neurodegenerative disorder that causes memory loss and multiple cognitive issues. The underlying mechanisms of AD include the build-up of amyloid-β and phosphorylated tau, synaptic damage, elevated levels of microglia and astrocytes, abnormal microRNAs, mitochondrial dysfunction, hormonal imbalance, and age-related neuronal loss. However, the etiology of AD is complex and involves a multitude of environmental and genetic factors. Currently, available AD medications only alleviate symptoms and do not provide a permanent cure. Therefore, there is a need for therapies that can prevent or reverse cognitive decline, brain tissue loss, and neural instability. Stem cell therapy is a promising treatment for AD because stem cells possess the unique ability to differentiate into any type of cell and maintain their self-renewal. This article provides an overview of the pathophysiology of AD and existing pharmacological treatments. This review article focuses on the role of various types of stem cells in neuroregeneration, the potential challenges, and the future of stem cell-based therapies for AD, including nano delivery and gaps in stem cell technology.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Jayapriya Mishra
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Satinder Kaur
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Abhishek Sehrawat
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Eva Sharma
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Ashley Selman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA.
| |
Collapse
|
28
|
Synthesis and neuroprotective activity of a (–)-cytisine-isoflavone conjugate. Chem Heterocycl Compd (N Y) 2023. [DOI: 10.1007/s10593-023-03160-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
29
|
Stem Cell Therapy in Diabetic Polyneuropathy: Recent Advancements and Future Directions. Brain Sci 2023; 13:brainsci13020255. [PMID: 36831798 PMCID: PMC9954679 DOI: 10.3390/brainsci13020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Diabetic polyneuropathy (DPN) is the most frequent, although neglected, complication of long-term diabetes. Nearly 30% of hospitalized and 20% of community-dwelling patients with diabetes suffer from DPN; the incidence rate is approximately 2% annually. To date, there has been no curable therapy for DPN. Under these circumstances, cell therapy may be a vital candidate for the treatment of DPN. The epidemiology, classification, and treatment options for DPN are disclosed in the current review. Cell-based therapies using bone marrow-derived cells, embryonic stem cells, pluripotent stem cells, endothelial progenitor cells, mesenchymal stem cells, or dental pulp stem cells are our primary concern, which may be a useful treatment option to ease or to stop the progression of DPN. The importance of cryotherapies for treating DPN has been observed in several studies. These findings may help for the future researchers to establish more focused, accurate, effective, alternative, and safe therapy to reduce DPN. Cell-based therapy might be a permanent solution in the treatment and management of diabetes-induced neuropathy.
Collapse
|
30
|
Ni W, Ramalingam M, Li Y, Park JH, Dashnyam K, Lee JH, Bloise N, Fassina L, Visai L, De Angelis MGC, Pedraz JL, Kim HW, Hu J. Immunomodulatory and Anti-inflammatory effect of Neural Stem/Progenitor Cells in the Central Nervous System. Stem Cell Rev Rep 2023; 19:866-885. [PMID: 36650367 DOI: 10.1007/s12015-022-10501-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
Neuroinflammation is a critical event that responds to disturbed homeostasis and governs various neurological diseases in the central nervous system (CNS). The excessive inflammatory microenvironment in the CNS can adversely affect endogenous neural stem cells, thereby impeding neural self-repair. Therapies with neural stem/progenitor cells (NSPCs) have shown significant inhibitory effects on inflammation, which is mainly achieved through intercellular contact and paracrine signalings. The intercellular contact between NSPCs and immune cells, the activated CNS- resident microglia, and astrocyte plays a critical role in the therapeutic NSPCs homing and immunomodulatory effects. Moreover, the paracrine effect mainly regulates infiltrating innate and adaptive immune cells, activated microglia, and astrocyte through the secretion of bioactive molecules and extracellular vesicles. However, the molecular mechanism involved in the immunomodulatory effect of NSPCs is not well discussed. This article provides a systematic analysis of the immunomodulatory mechanism of NSPCs, discusses efficient ways to enhance its immunomodulatory ability, and gives suggestions on clinical therapy.
Collapse
Affiliation(s)
- Wei Ni
- Department of Clinical Laboratory, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu, China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Murugan Ramalingam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea. .,Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea. .,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea. .,School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, People's Republic of China.
| | - Yumeng Li
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100, Pavia, Italy.,Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100, Pavia, Italy
| | - Lorenzo Fassina
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100, Pavia, Italy
| | - Livia Visai
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100, Pavia, Italy.,Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100, Pavia, Italy
| | | | - Jose Luis Pedraz
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006, Vitoria-Gasteiz, Spain.,Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, 28029, Madrid, Spain
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea. .,Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea. .,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Jiabo Hu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
31
|
Zhou Z, Shi B, Xu Y, Zhang J, liu X, Zhou X, Feng B, Ma J, Cui H. Neural stem/progenitor cell therapy for Alzheimer disease in preclinical rodent models: a systematic review and meta-analysis. Stem Cell Res Ther 2023; 14:3. [PMID: 36600321 PMCID: PMC9814315 DOI: 10.1186/s13287-022-03231-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a common progressive neurodegenerative disease characterized by memory impairments, and there is no effective therapy. Neural stem/progenitor cell (NSPC) has emerged as potential novel therapy for AD, and we aim to explore whether neural stem/progenitor cell therapy was effective for rodent models of AD. METHODS We searched PubMed, Embase, Cochrane Library and Web of Science up to December 6, 2022. The outcomes included cognitive function, pathological features and BDNF. The GetData Graph Digitizer software (version 2.26) was applied to extract numerical values, and RevMan 5.3 and Stata 16 were used to analyze data. The SYRCLE risk of bias tool was used to assess study quality. RESULTS We evaluated 22 mice studies and 8 rat studies. Compared to control groups, cognitive function of NSPC groups of both mice studies (SMD = - 1.96, 95% CI - 2.47 to - 1.45, I2 = 75%, P < 0.00001) and rat studies (SMD = - 1.35, 95% CI - 2.11 to - 0.59, I2 = 77%, P = 0.0005) was apparently improved. In mice studies, NSPC group has lower Aβ deposition (SMD = - 0.96, 95% CI - 1.40 to - 0.52, P < 0.0001) and p-tau level (SMD = - 4.94, 95% CI - 7.29 to - 2.95, P < 0.0001), higher synaptic density (SMD = 2.02, 95% CI 0.50-3.55, P = 0.009) and BDNF (SMD = 1.69, 95% CI 0.61-2.77, P = 0.002). Combined with nanoformulation (SMD = - 1.29, 95% CI - 2.26 to - 0.32, I2 = 65%, P = 0.009) and genetically modified (SMD = - 1.29, 95% CI - 1.92 to - 0.66, I2 = 60%, P < 0.0001) could improve the effect of NSPC. In addition, both xenogeneic and allogeneic transplant of NSPC could reverse the cognitive impairment of AD animal models. CONCLUSIONS Our results suggested that NSPC therapy could improve the cognitive function and slow down the progression of AD. Due to the limitations of models, more animal trials and clinical trials are needed.
Collapse
Affiliation(s)
- Zijing Zhou
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Ben Shi
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Yaxing Xu
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Jinyu Zhang
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Xin liu
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Xinghong Zhou
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Baofeng Feng
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Jun Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China. .,Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China. .,Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| | - Huixian Cui
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| |
Collapse
|
32
|
Zeng XX, Zeng JB. Systems Medicine as a Strategy to Deal with Alzheimer's Disease. J Alzheimers Dis 2023; 96:1411-1426. [PMID: 37980671 DOI: 10.3233/jad-230739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The traits of Alzheimer's disease (AD) include amyloid plaques made of Aβ1-40 and Aβ1-42, and neurofibrillary tangles by the hyperphosphorylation of tau protein. AD is a complex disorder that is heterogenous in genetical, neuropathological, and clinical contexts. Current available therapeutics are unable to cure AD. Systems medicine is a strategy by viewing the body as a whole system, taking into account each individual's unique health profile, provide treatment and associated nursing care clinically for the patient, aiming for precision. Since the onset of AD can lead towards cognitive impairment, it is vital to intervene and diagnose early and prevent further progressive loss of neurons. Moreover, as the individual's brain functions are impaired due to neurodegeneration in AD, it is essential to reconstruct the neurons or brain cells to enable normal brain functions. Although there are different subtypes of AD due to varied pathological lesions, in the majority cases of AD, neurodegeneration and severe brain atrophy develop at the chronic stage. Novel approaches including RNA based gene therapy, stem cell based technology, bioprinting technology, synthetic biology for brain tissue reconstruction are researched in recent decades in the hope to decrease neuroinflammation and restore normal brain function in individuals of AD. Systems medicine include the prevention of disease, diagnosis and treatment by viewing the individual's body as a whole system, along with systems medicine based nursing as a strategy against AD that should be researched further.
Collapse
Affiliation(s)
- Xiao Xue Zeng
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Lishui Town, Nanhai District, Foshan City, Guangdong Province, P.R. China
| | - Jie Bangzhe Zeng
- Benjoe Institute of Systems Bio-Engineering, High Technology Park, Xinbei District, Changzhou City, Jiangsu Province, P.R. China
| |
Collapse
|
33
|
Umeda R, Hibino T. Synthesis and Photophysical Properties of Diethynylated Bibenzofuran and Benzodifuran Derivatives. HETEROCYCLES 2023. [DOI: 10.3987/com-23-14818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
34
|
Elzayat EM, Shahien SA, El-Sherif AA, Hosney M. miRNAs and Stem Cells as Promising Diagnostic and Therapeutic Targets for Alzheimer's Disease. J Alzheimers Dis 2023; 94:S203-S225. [PMID: 37212107 PMCID: PMC10473110 DOI: 10.3233/jad-221298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/23/2023]
Abstract
Alzheimer's disease (AD) is a cumulative progressive neurodegenerative disease characterized mainly by impairment in cognitive functions accompanied by memory loss, disturbance in behavior and personality, and difficulties in learning. Although the main causes of AD pathogenesis are not fully understood yet, amyloid-β peptides and tau proteins are supposed to be responsible for AD onset and pathogenesis. Various demographic, genetic, and environmental risk factors are involved in AD onset and pathogenesis such as age, gender, several genes, lipids, malnutrition, and poor diet. Significant changes were observed in microRNA (miRNA) levels between normal and AD cases giving hope for a diagnostic procedure for AD through a simple blood test. As yet, only two classes of AD therapeutic drugs are approved by FDA. They are classified as acetylcholinesterase inhibitors and N-methyl-D-aspartate antagonists (NMDA). Unfortunately, they can only treat the symptoms but cannot cure AD or stop its progression. New therapeutic approaches were developed for AD treatment including acitretin due to its ability to cross blood-brain barrier in the brain of rats and mice and induce the expression of ADAM 10 gene, the α-secretase of human amyloid-β protein precursor, stimulating the non-amyloidogenic pathway for amyloid-β protein precursor processing resulting in amyloid-β reduction. Also stem cells may have a crucial role in AD treatment as they can improve cognitive functions and memory in AD rats through regeneration of damaged neurons. This review spotlights on promising diagnostic techniques such as miRNAs and therapeutic approaches such as acitretin and/or stem cells keeping in consideration AD pathogenesis, stages, symptoms, and risk factors.
Collapse
Affiliation(s)
- Emad M. Elzayat
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Sherif A. Shahien
- Biotechnology/Bimolecular Chemistry Program, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed A. El-Sherif
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed Hosney
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
35
|
Chen X, Jiang S, Wang R, Bao X, Li Y. Neural Stem Cells in the Treatment of Alzheimer's Disease: Current Status, Challenges, and Future Prospects. J Alzheimers Dis 2023; 94:S173-S186. [PMID: 36336934 PMCID: PMC10473082 DOI: 10.3233/jad-220721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Alzheimer's disease (AD), a progressive dementia, is one of the world's most dangerous and debilitating diseases. Clinical trial results of amyloid-β (Aβ) and tau regulators based on the pretext of straightforward amyloid and tau immunotherapy were disappointing. There are currently no effective strategies for slowing the progression of AD. Further understanding of the mechanisms underlying AD and the development of novel therapeutic options are critical. Neurogenesis is impaired in AD, which contributes to memory deficits. Transplanted neural stem cells (NSCs) can regenerate degraded cholinergic neurons, and new neurons derived from NSCs can form synaptic connections with neighboring neurons. In theory, employing NSCs to replace and restore damaged cholinergic neurons and brain connections may offer new treatment options for AD. However there remain barriers to surmount before NSC-based therapy can be used clinically. The objective of this article is to describe recent advances in the treatment of AD models and clinical trials involving NSCs. In addition, we discuss the challenges and prospects associated with cell transplant therapy for AD.
Collapse
Affiliation(s)
- Xiaokun Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shenzhong Jiang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yongning Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
de Almeida MMA, Goodkey K, Voronova A. Regulation of microglia function by neural stem cells. Front Cell Neurosci 2023; 17:1130205. [PMID: 36937181 PMCID: PMC10014810 DOI: 10.3389/fncel.2023.1130205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Neural stem and precursor cells (NPCs) build and regenerate the central nervous system (CNS) by maintaining their pool (self-renewal) and differentiating into neurons, astrocytes, and oligodendrocytes (multipotency) throughout life. This has inspired research into pro-regenerative therapies that utilize transplantation of exogenous NPCs or recruitment of endogenous adult NPCs for CNS regeneration and repair. Recent advances in single-cell RNA sequencing and other "omics" have revealed that NPCs express not just traditional progenitor-related genes, but also genes involved in immune function. Here, we review how NPCs exert immunomodulatory function by regulating the biology of microglia, immune cells that are present in NPC niches and throughout the CNS. We discuss the role of transplanted and endogenous NPCs in regulating microglia fates, such as survival, proliferation, migration, phagocytosis and activation, in the developing, injured and degenerating CNS. We also provide a literature review on NPC-specific mediators that are responsible for modulating microglia biology. Our review highlights the immunomodulatory properties of NPCs and the significance of these findings in the context of designing pro-regenerative therapies for degenerating and diseased CNS.
Collapse
Affiliation(s)
- Monique M. A. de Almeida
- Department of Medical Genetics, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, Edmonton, AB, Canada
| | - Kara Goodkey
- Department of Medical Genetics, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB, Canada
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB, Canada
- Department of Cell Biology, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Multiple Sclerosis Centre and Department of Cell Biology, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
| |
Collapse
|
37
|
Al‐kharboosh R, Perera JJ, Bechtle A, Bu G, Quinones‐Hinojosa A. Emerging point-of-care autologous cellular therapy using adipose-derived stromal vascular fraction for neurodegenerative diseases. Clin Transl Med 2022; 12:e1093. [PMID: 36495120 PMCID: PMC9736801 DOI: 10.1002/ctm2.1093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative disorders are characterized by the gradual decline and irreversible loss of cognitive functions and CNS structures. As therapeutic recourse stagnates, neurodegenerative diseases will cost over a trillion dollars by 2050. A dearth of preventive and regenerative measures to hinder regression and enhance recovery has forced patients to settle for traditional therapeutics designed to manage symptoms, leaving little hope for a cure. In the last decade, pre-clinical animal models and clinical investigations in humans have demonstrated the safety and promise of an emerging cellular product from subcutaneous fat. The adipose-derived stromal vascular fraction (SVF) is an early intervention and late-stage novel 'at point' of care cellular treatment, demonstrating improvements in clinical applications for Multiple Sclerosis, Alzheimer's disease, and Parkinson's disease. SVF is a heterogeneous fraction of cells forming a robust cellular ecosystem and serving as a novel and valuable source of point-of-care autologous cell therapy, providing an easy-to-access population that we hypothesize can mediate repair through 'bi-directional' communication in response to pathological cues. We provide the first comprehensive review of all pre-clinical and clinical findings available to date and highlight major challenges and future directions. There is a greater medical and economic urgency to innovate and develop novel cellular therapy solutions that enable the repair and regeneration of neuronal tissue that has undergone irreversible and permanent damage.
Collapse
Affiliation(s)
- Rawan Al‐kharboosh
- Department of NeuroscienceMayo ClinicJacksonvilleFlorida,Department of Regenerative SciencesMayo Clinic Graduate SchoolRochesterMinnesota,Department of NeurosurgeryMayo ClinicJacksonvilleFlorida
| | | | | | - Guojun Bu
- Department of NeuroscienceMayo ClinicJacksonvilleFlorida
| | | |
Collapse
|
38
|
Cai Y, Ji Z, Wang S, Zhang W, Qu J, Belmonte JCI, Liu GH. Genetic enhancement: an avenue to combat aging-related diseases. LIFE MEDICINE 2022; 1:307-318. [PMID: 39872744 PMCID: PMC11749557 DOI: 10.1093/lifemedi/lnac054] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/14/2022] [Indexed: 01/30/2025]
Abstract
Aging is a major risk factor for multiple diseases, including cardiovascular diseases, neurodegenerative disorders, osteoarthritis, and cancer. It is accompanied by the dysregulation of stem cells and other differentiated cells, and the impairment of their microenvironment. Cell therapies to replenish the abovementioned cells provide a promising approach to restore tissue homeostasis and alleviate aging and aging-related chronic diseases. Importantly, by leveraging gene editing technologies, genetic enhancement, an enhanced strategy for cell therapy, can be developed to improve the safety and efficacy of transplanted therapeutic cells. In this review, we provide an overview and discussion of the current progress in the genetic enhancement field, including genetic modifications of mesenchymal stem cells, neural stem cells, hematopoietic stem cells, vascular cells, and T cells to target aging and aging-associated diseases. We also outline questions regarding safety and current limitations that need to be addressed for the continued development of genetic enhancement strategies for cell therapy to enable its further applications in clinical trials to combat aging-related diseases.
Collapse
Affiliation(s)
- Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zhejun Ji
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| |
Collapse
|
39
|
Zayed MA, Sultan S, Alsaab HO, Yousof SM, Alrefaei GI, Alsubhi NH, Alkarim S, Al Ghamdi KS, Bagabir SA, Jana A, Alghamdi BS, Atta HM, Ashraf GM. Stem-Cell-Based Therapy: The Celestial Weapon against Neurological Disorders. Cells 2022; 11:3476. [PMID: 36359871 PMCID: PMC9655836 DOI: 10.3390/cells11213476] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Stem cells are a versatile source for cell therapy. Their use is particularly significant for the treatment of neurological disorders for which no definitive conventional medical treatment is available. Neurological disorders are of diverse etiology and pathogenesis. Alzheimer's disease (AD) is caused by abnormal protein deposits, leading to progressive dementia. Parkinson's disease (PD) is due to the specific degeneration of the dopaminergic neurons causing motor and sensory impairment. Huntington's disease (HD) includes a transmittable gene mutation, and any treatment should involve gene modulation of the transplanted cells. Multiple sclerosis (MS) is an autoimmune disorder affecting multiple neurons sporadically but induces progressive neuronal dysfunction. Amyotrophic lateral sclerosis (ALS) impacts upper and lower motor neurons, leading to progressive muscle degeneration. This shows the need to try to tailor different types of cells to repair the specific defect characteristic of each disease. In recent years, several types of stem cells were used in different animal models, including transgenic animals of various neurologic disorders. Based on some of the successful animal studies, some clinical trials were designed and approved. Some studies were successful, others were terminated and, still, a few are ongoing. In this manuscript, we aim to review the current information on both the experimental and clinical trials of stem cell therapy in neurological disorders of various disease mechanisms. The different types of cells used, their mode of transplantation and the molecular and physiologic effects are discussed. Recommendations for future use and hopes are highlighted.
Collapse
Affiliation(s)
- Mohamed A. Zayed
- Physiology Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Physiology Department, Faculty of Medicine, Menoufia University, Menoufia 32511, Egypt
| | - Samar Sultan
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Shimaa Mohammad Yousof
- Physiology Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghadeer I. Alrefaei
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Nouf H. Alsubhi
- Department of Biological Sciences, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Saleh Alkarim
- Embryonic and Cancer Stem Cell Research Group, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Embryonic Stem Cells Research Unit, Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kholoud S. Al Ghamdi
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sali Abubaker Bagabir
- Genetic Unit, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Ankit Jana
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Campus-11, Patia, Bhubaneswar 751024, Odisha, India
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hazem M. Atta
- Clinical Biochemistry Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| |
Collapse
|
40
|
Lilienberg J, Apáti Á, Réthelyi JM, Homolya L. Microglia modulate proliferation, neurite generation and differentiation of human neural progenitor cells. Front Cell Dev Biol 2022; 10:997028. [PMID: 36313581 PMCID: PMC9606406 DOI: 10.3389/fcell.2022.997028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/16/2022] [Indexed: 10/10/2024] Open
Abstract
Microglia, the primary immune cells of the brain, significantly influence the fate of neurons after neural damage. Depending on the local environment, they exhibit a wide range of phenotypes, including patrolling (naïve), proinflammatory, and anti-inflammatory characteristics, which greatly affects neurotoxicity. Despite the fact that neural progenitor cells (NPCs) and hippocampal neurons represent cell populations, which play pivotal role in neural regeneration, interaction between microglia and these cell types is poorly studied. In the present work, we investigated how microglial cells affect the proliferation and neurite outgrowth of human stem cell-derived NPCs, and how microglia stimulation with proinflammatory or anti-inflammatory agents modulates this interaction. We found that naïve microglia slightly diminish NPC proliferation and have no effect on neurite outgrowth. In contrast, proinflammatory stimulated microglia promote both proliferation and neurite generation, whereas microglia stimulated with anti-inflammatory cytokines augment neurite outgrowth leaving NPC proliferation unaffected. We also studied how microglia influence neurite development and differentiation of hippocampal dentate gyrus granule cells differentiated from NPCs. We found that proinflammatory stimulated microglia inhibit axonal development but facilitate dendrite generation in these differentiating neurons. Our results elucidate a fine-tuned modulatory effect of microglial cells on cell types crucial for neural regeneration, opening perspectives for novel regenerative therapeutic interventions.
Collapse
Affiliation(s)
- Julianna Lilienberg
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ágota Apáti
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - János M. Réthelyi
- Molecular Psychiatry and in vitro Disease Modelling Research Group, National Brain Research Project, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
41
|
McGinley LM, Chen KS, Mason SN, Rigan DM, Kwentus JF, Hayes JM, Glass ED, Reynolds EL, Murphy GG, Feldman EL. Monoclonal antibody-mediated immunosuppression enables long-term survival of transplanted human neural stem cells in mouse brain. Clin Transl Med 2022; 12:e1046. [PMID: 36101963 PMCID: PMC9471059 DOI: 10.1002/ctm2.1046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As the field of stem cell therapy advances, it is important to develop reliable methods to overcome host immune responses in animal models. This ensures survival of transplanted human stem cell grafts and enables predictive efficacy testing. Immunosuppressive drugs derived from clinical protocols are frequently used but are often inconsistent and associated with toxic side effects. Here, using a molecular imaging approach, we show that immunosuppression targeting costimulatory molecules CD4 and CD40L enables robust survival of human xenografts in mouse brain, as compared to conventional tacrolimus and mycophenolate mofetil. METHODS Human neural stem cells were modified to express green fluorescent protein and firefly luciferase. Cells were implanted in the fimbria fornix of the hippocampus and viability assessed by non-invasive bioluminescent imaging. Cell survival was assessed using traditional pharmacologic immunosuppression as compared to monoclonal antibodies directed against CD4 and CD40L. This paradigm was also implemented in a transgenic Alzheimer's disease mouse model. RESULTS Graft rejection occurs within 7 days in non-immunosuppressed mice and within 14 days in mice on a traditional regimen. The addition of dual monoclonal antibody immunosuppression extends graft survival past 7 weeks (p < .001) on initial studies. We confirm dual monoclonal antibody treatment is superior to either antibody alone (p < .001). Finally, we demonstrate robust xenograft survival at multiple cell doses up to 6 months in both C57BL/6J mice and a transgenic Alzheimer's disease model (p < .001). The dual monoclonal antibody protocol demonstrated no significant adverse effects, as determined by complete blood counts and toxicity screen. CONCLUSIONS This study demonstrates an effective immunosuppression protocol for preclinical testing of stem cell therapies. A transition towards antibody-based strategies may be advantageous by enabling stem cell survival in preclinical studies that could inform future clinical trials.
Collapse
Affiliation(s)
- Lisa M. McGinley
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Kevin S. Chen
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Shayna N. Mason
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Diana M. Rigan
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - John M. Hayes
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Emily D. Glass
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
- Michigan Neuroscience InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Evan L. Reynolds
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Geoffrey G. Murphy
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
- Michigan Neuroscience InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Eva L. Feldman
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
42
|
Drugs and Endogenous Factors as Protagonists in Neurogenic Stimulation. Stem Cell Rev Rep 2022; 18:2852-2871. [PMID: 35962176 DOI: 10.1007/s12015-022-10423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 10/15/2022]
Abstract
Neurogenesis is a biological process characterized by new neurons formation from stem cells. For decades, it was believed that neurons only multiplied during development and in the postnatal period but the discovery of neural stem cells (NSCs) in mature brain promoted a revolution in neuroscience field. In mammals, neurogenesis consists of migration, differentiation, maturation, as well as functional integration of newborn cells into the pre-existing neuronal circuit. Actually, NSC density drops significantly after the first stages of development, however in specific places in the brain, called neurogenic niches, some of these cells retain their ability to generate new neurons and glial cells in adulthood. The subgranular (SGZ), and the subventricular zones (SVZ) are examples of regions where the neurogenesis process occurs in the mature brain. There, the potential of NSCs to produce new neurons has been explored by new advanced methodologies and in neuroscience for the treatment of brain damage and/or degeneration. Based on that, this review highlights endogenous factors and drugs capable of stimulating neurogenesis, as well as the perspectives for the use of NSCs for neurological and neurodegenerative diseases.
Collapse
|
43
|
Targeting Microglia in Alzheimer’s Disease: From Molecular Mechanisms to Potential Therapeutic Targets for Small Molecules. Molecules 2022; 27:molecules27134124. [PMID: 35807370 PMCID: PMC9268715 DOI: 10.3390/molecules27134124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a common, progressive, and devastating neurodegenerative disorder that mainly affects the elderly. Microglial dysregulation, amyloid-beta (Aβ) plaques, and intracellular neurofibrillary tangles play crucial roles in the pathogenesis of AD. In the brain, microglia play roles as immune cells to provide protection against virus injuries and diseases. They have significant contributions in the development of the brain, cognition, homeostasis of the brain, and plasticity. Multiple studies have confirmed that uncontrolled microglial function can result in impaired microglial mitophagy, induced Aβ accumulation and tau pathology, and a chronic neuroinflammatory environment. In the brain, most of the genes that are associated with AD risk are highly expressed by microglia. Although it was initially regarded that microglia reaction is incidental and induced by dystrophic neurites and Aβ plaques. Nonetheless, it has been reported by genome-wide association studies that most of the risk loci for AD are located in genes that are occasionally uniquely and highly expressed in microglia. This finding further suggests that microglia play significant roles in early AD stages and they be targeted for the development of novel therapeutics. In this review, we have summarized the molecular pathogenesis of AD, microglial activities in the adult brain, the role of microglia in the aging brain, and the role of microglia in AD. We have also particularly focused on the significance of targeting microglia for the treatment of AD.
Collapse
|
44
|
The neural stem cell secretome across neurodevelopment. Exp Neurol 2022; 355:114142. [PMID: 35709983 DOI: 10.1016/j.expneurol.2022.114142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022]
Abstract
Neural stem cell (NSC) based therapies are at the forefront of regenerative medicine strategies to combat illness and injury of the central nervous system (CNS). In addition to their ability to produce new cells, NSCs secrete a variety of products, known collectively as the NSC secretome, that have been shown to ameliorate CNS disease pathology and promote recovery. As pre-clinical and clinical research to harness the NSC secretome for therapeutic purposes advances, a more thorough understanding of the endogenous NSC secretome can provide useful insight into the functional capabilities of NSCs. In this review, we focus on research investigating the autocrine and paracrine functions of the endogenous NSC secretome across life. Throughout development and adulthood, we find evidence that the NSC secretome is a critical component of how endogenous NSCs regulate themselves and their niche. We also find gaps in current literature, most notably in the clinically-relevant domain of endogenous NSC paracrine function in the injured CNS. Future investigations to further define the endogenous NSC secretome and its role in CNS tissue regulation are necessary to bolster our understanding of NSC-niche interactions and to aid in the generation of safe and effective NSC-based therapies.
Collapse
|
45
|
Neural stem cell secretome exerts a protective effect on damaged neuron mitochondria in Parkinson's disease model. Brain Res 2022; 1790:147978. [PMID: 35690143 DOI: 10.1016/j.brainres.2022.147978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease. The main pathological changes are the loss of dopaminergic neurons and the formation of Lewy bodies. There is still no effective cure for PD, and cell replacement therapy has entered a bottleneck period due to tumorigenicity and rejection. Therefore, stem cell secretome has received widespread attention. However, the exploration of the secretome components of neural stem cells (NSCs) is still in its infancy. In this study, 6-hydroxydopamine (6-OHDA) was used to establish a PD rat model in vito and the PC12 cell-damaged model in vitro. The results indicated that the injection of neural stem cell-conditioned medium (NSC-CM) into the striatum and substantia nigra could improve the motor and non-motor deficits of PD rats and rescue the loss of dopaminergic neurons. In addition, NSC-CM alleviated 6-OHDA-induced apoptosis of PC12 cells, reduced the level of oxidative stress, and improved mitochondrial dysfunction in vitro. Parkinson disease protein 7 (Park7) was found in NSC-CM by Liquid chromatography-tandem mass spectrometry (LC-MS/MS), and it may be related to the protective effect of NSC-CM on 6-OHDA-injured neurons through Sirt1 pathway. In conclusion, NSC secretome might provide new ideas for the treatment of PD.
Collapse
|
46
|
Willis CM, Nicaise AM, Krzak G, Ionescu RB, Pappa V, D'Angelo A, Agarwal R, Repollés-de-Dalmau M, Peruzzotti-Jametti L, Pluchino S. Soluble factors influencing the neural stem cell niche in brain physiology, inflammation, and aging. Exp Neurol 2022; 355:114124. [DOI: 10.1016/j.expneurol.2022.114124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 11/27/2022]
|
47
|
Zhao H, Wei J, Du Y, Chen P, Liu X, Liu H. Improved cognitive impairments by silencing DMP1 via enhancing the proliferation of neural progenitor cell in Alzheimer-like mice. Aging Cell 2022; 21:e13601. [PMID: 35366382 PMCID: PMC9124312 DOI: 10.1111/acel.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022] Open
Abstract
Alzheimer's disease (AD) is age-related progressive neurological dysfunction. Limited clinical benefits for current treatments indicate an urgent need for novel therapeutic strategies. Previous transcriptomic analysis showed that DMP1 expression level was increased in AD model animals whereas it can induce cell-cycle arrest in several cell lines. However, whether the cell-cycle arrest of neural progenitor cell induced by DMP1 affects cognitive function in Alzheimer-like mice still remains unknown. The objective of our study is to explore the issue. We found that DMP1 is correlated with cognitive function based on the clinical genomic analysis of ADNI database. The negative role of DMP1 on neural progenitor cell (NPC) proliferation was revealed by silencing and overexpressing DMP1 in vitro. Furthermore, silencing DMP1 could increase the number of NPCs and improve cognitive function in Alzheimer-like mice, through decreasing P53 and P21 levels, which suggested that DMP1-induced cell-cycle arrest could influence cognitive function.
Collapse
Affiliation(s)
- Huimin Zhao
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Jie Wei
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Yanan Du
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Peipei Chen
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Xiaoquan Liu
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Haochen Liu
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | | |
Collapse
|
48
|
Cellular senescence in the Aging Brain: A promising target for neurodegenerative diseases. Mech Ageing Dev 2022; 204:111675. [DOI: 10.1016/j.mad.2022.111675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 01/10/2023]
|
49
|
Lim JY, Lee JE, Park SA, Park SI, Yon JM, Park JA, Jeun SS, Kim SJ, Lee HJ, Kim SW, Yang SH. Protective Effect of Human-Neural-Crest-Derived Nasal Turbinate Stem Cells against Amyloid-β Neurotoxicity through Inhibition of Osteopontin in a Human Cerebral Organoid Model of Alzheimer’s Disease. Cells 2022; 11:cells11061029. [PMID: 35326480 PMCID: PMC8947560 DOI: 10.3390/cells11061029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to validate the use of human brain organoids (hBOs) to investigate the therapeutic potential and mechanism of human-neural-crest-derived nasal turbinate stem cells (hNTSCs) in models of Alzheimer’s disease (AD). We generated hBOs from human induced pluripotent stem cells, investigated their characteristics according to neuronal markers and electrophysiological features, and then evaluated the protective effect of hNTSCs against amyloid-β peptide (Aβ1–42) neurotoxic activity in vitro in hBOs and in vivo in a mouse model of AD. Treatment of hBOs with Aβ1–42 induced neuronal cell death concomitant with decreased expression of neuronal markers, which was suppressed by hNTSCs cocultured under Aβ1–42 exposure. Cytokine array showed a significantly decreased level of osteopontin (OPN) in hBOs with hNTSC coculture compared with hBOs only in the presence of Aβ1–42. Silencing OPN via siRNA suppressed Aβ-induced neuronal cell death in cell culture. Notably, compared with PBS, hNTSC transplantation significantly enhanced performance on the Morris water maze, with reduced levels of OPN after transplantation in a mouse model of AD. These findings reveal that hBO models are useful to evaluate the therapeutic effect and mechanism of stem cells for application in treating AD.
Collapse
Affiliation(s)
- Jung Yeon Lim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jung Eun Lee
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, Kyonggi-do, Korea
| | - Soon A Park
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sang In Park
- Institute of Catholic Integrative Medicine (ICIM), Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Korea
| | - Jung-Min Yon
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jeong-Ah Park
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seung Joon Kim
- Division of Pulmonology, Critical Care and Allergy, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Hong Jun Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seung Ho Yang
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, Kyonggi-do, Korea
| |
Collapse
|
50
|
The functional mechanism of bone marrow-derived mesenchymal stem cells in the treatment of animal models with Alzheimer's disease: crosstalk between autophagy and apoptosis. Stem Cell Res Ther 2022; 13:90. [PMID: 35241159 PMCID: PMC8895531 DOI: 10.1186/s13287-022-02765-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022] Open
Abstract
The transplantation of bone marrow-derived mesenchymal stem cells (BMMSCs) alleviates neuropathology and improves cognitive deficits in animal models with Alzheimer's disease. However, the underlying mechanism remains undefined. Based on meta-analysis and comprehensive review, high-profile studies support the theory that transplanted BMMSCs activate autophagy, as evidenced by the expression levels of signal molecules such as Beclin-1, Atg5, LC3-II, and mTOR. Functional autophagy mitigates neuronal apoptosis, which is reflected by the alterations of IAPs, Bcl-2, caspase-3, and so forth. Moreover, the transplantation of BMMSCs can decrease aberrant amyloid-beta peptides as well as tau aggregates, inhibit neuroinflammation, and stimulate synaptogenesis. There is a signal crosstalk between autophagy and apoptosis, which may be regulated to produce synergistic effect on the preconditioning of stem cells. Forasmuch, the therapeutic effect of transplanted BMMSCs can be enhanced by autophagy and/or apoptosis modulators.
Collapse
|