1
|
Zhou X, Kortuem KM, Rasche L, Einsele H. Bispecific antibody and chimeric antigen receptor (CAR) modified T-cell in the treatment of multiple myeloma: where do we stand today? Presse Med 2024:104265. [PMID: 39662761 DOI: 10.1016/j.lpm.2024.104265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
Although the prognosis of patients with multiple myeloma (MM) has been significantly improved by the introduction of proteasome inhibitors, immunomodulatory drugs and monoclonal antibodies, MM is still considered an incurable disease in the vast majority of the patients. In recent years, T-cell based immunotherapy represents a novel treatment strategy for relapsed/refractory (RR) MM. So far, chimeric antigen receptor (CAR) modified T-cells and bispecific T-cell engaging antibodies (bsAb) have shown promising anti-MM efficacy and manageable safety profile within clinical trials, and B-cell maturation antigen (BCMA) is the most commonly used immune target for T-cell based immunotherapies in MM. To date, several CAR T-cell and bsAb products have already been approved for the treatment of RRMM, leading to a paradigm shift in the MM therapy and providing a potential curative option. In this review, we provide a summary of mechanisms of action, immune targets, selected clinical data, resistance mechanisms and therapy sequencing of CAR T-cell and bsAb in MM.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - K Martin Kortuem
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
2
|
Xiao W, Xu L, Wang J, Yu K, Xu B, Que Y, Zhao J, Pan Q, Gao C, Zhou P, Zhang X. FGFR4-specific CAR-T cells with inducible caspase-9 suicide gene as an approach to treat rhabdomyosarcoma. Cancer Gene Ther 2024; 31:1571-1584. [PMID: 39183354 PMCID: PMC11489081 DOI: 10.1038/s41417-024-00823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Metastatic rhabdomyosarcoma is associated with poor survival and unsatisfactory treatment outcomes. Therefore, new immunotherapeutic methods are urgently required. Fibroblast growth factor receptor 4 (FGFR4), a new therapeutic target for rhabdomyosarcoma, plays a crucial role in its onset and development. This study aimed to generate FGFR4 single-chain variable fragment-based chimeric antigen receptor (CAR) T cells without causing evident toxicity and incorporating an inducible caspase-9 (iCasp9) suicide gene system to enhance their safety. FGFR4 antigen expression was evaluated in normal murine tissues, normal human tissues, and specimens from patients with rhabdomyosarcoma. Combined with a 4-1BB co-stimulatory domain, a CD3ζ signaling domain, and an iCasp9 suicide gene, CAR-T cells with an FGFR4-specific single-chain variable fragment were developed. The specific cytotoxic effects, T-cell proliferation, cytokine secretion, apoptosis induction by chemical dimerization (AP20187), and toxicity of FGFR4 CAR-T cells were investigated in vitro and in vivo. FGFR4 CAR-T cells generated a variety of immune-promoting cytokines, including tumor necrosis factor α, interleukin 2, and interferon γ, and displayed effective cytotoxic activity against FGFR4-overexpressing rhabdomyosarcoma cells in vitro. FGFR4 CAR-T cells were relatively effective against FGFR4-overexpressing rhabdomyosarcoma, with tumor regression and poor survival in a subcutaneous xenograft model. The iCasp9 gene was incorporated into FGFR4 CAR-T cells and it was demonstrated that effective and reliable suicide gene activity depends on the administration of AP20187. By making use of the cross-reaction of FGFR4 CAR-T cells with murine FGFR4 in a syngeneic tumor model, this study found that FGFR4 CAR-T cells could regulate the growth of tumors without evident toxicity. Our study demonstrates that FGFR4 is a prospective target for CAR-T cell therapy in rhabdomyosarcoma without serious on-target off-tumor toxicity. FGFR4 CAR-T cells with the iCasp9 suicide gene system as a safety switch to limit toxicity may broaden the clinical applications of cellular therapy.
Collapse
MESH Headings
- Rhabdomyosarcoma/therapy
- Rhabdomyosarcoma/genetics
- Animals
- Humans
- Mice
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Genes, Transgenic, Suicide
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Caspase 9/genetics
- Caspase 9/metabolism
- Immunotherapy, Adoptive/methods
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Apoptosis
- Female
Collapse
Affiliation(s)
- Wei Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
- Melanoma and Sarcoma Medical Oncology Unit, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Liping Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
| | - Jinghua Wang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Kuai Yu
- Department of Blood Transfusion, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi, 330209, China
- Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi, 330209, China
| | - Bushu Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
- Melanoma and Sarcoma Medical Oncology Unit, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Yi Que
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
- Melanoma and Sarcoma Medical Oncology Unit, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Jingjing Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
- Melanoma and Sarcoma Medical Oncology Unit, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Qiuzhong Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
- Melanoma and Sarcoma Medical Oncology Unit, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Chengqi Gao
- Department of Blood Transfusion, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi, 330209, China
- Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi, 330209, China
| | - Penghui Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.
| | - Xing Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.
- Melanoma and Sarcoma Medical Oncology Unit, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China.
| |
Collapse
|
3
|
Bartoszewska E, Tota M, Kisielewska M, Skowron I, Sebastianka K, Stefaniak O, Molik K, Rubin J, Kraska K, Choromańska A. Overcoming Antigen Escape and T-Cell Exhaustion in CAR-T Therapy for Leukemia. Cells 2024; 13:1596. [PMID: 39329777 PMCID: PMC11430486 DOI: 10.3390/cells13181596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Leukemia is a prevalent pediatric cancer with significant challenges, particularly in relapsed or refractory cases. Chimeric antigen receptor T-cell (CAR-T) therapy has emerged as a personalized cancer treatment, modifying patients' T cells to target and destroy resistant cancer cells. This study reviews the current therapeutic options of CAR-T therapy for leukemia, addressing the primary obstacles such as antigen escape and T-cell exhaustion. We explore dual-targeting strategies and their potential to improve treatment outcomes by preventing the loss of target antigens. Additionally, we examine the mechanisms of T-cell exhaustion and strategies to enhance CAR-T persistence and effectiveness. Despite remarkable clinical successes, CAR-T therapy poses risks such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Our findings highlight the need for ongoing research to optimize CAR-T applications, reduce toxicities, and extend this innovative therapy to a broader range of hematologic malignancies. This comprehensive review aims to provide valuable insights for improving leukemia treatment and advancing the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Elżbieta Bartoszewska
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Maciej Tota
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Monika Kisielewska
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Izabela Skowron
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Kamil Sebastianka
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Oliwia Stefaniak
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Klaudia Molik
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Jakub Rubin
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Karolina Kraska
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
4
|
Al-Ibraheem A, Abdlkadir AS, Al-Adhami DA, Sathekge M, Bom HHS, Ma’koseh M, Mansour A, Abdel-Razeq H, Al-Rabi K, Estrada-Lobato E, Al-Hussaini M, Matalka I, Abdel Rahman Z, Fanti S. The prognostic utility of 18F-FDG PET parameters in lymphoma patients under CAR-T-cell therapy: a systematic review and meta-analysis. Front Immunol 2024; 15:1424269. [PMID: 39286245 PMCID: PMC11402741 DOI: 10.3389/fimmu.2024.1424269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Background Chimeric antigen receptor (CAR) T-cell therapy has attracted considerable attention since its recent endorsement by the Food and Drug Administration, as it has emerged as a promising immunotherapeutic modality within the landscape of oncology. This study explores the prognostic utility of [18F]Fluorodeoxyglucose positron emission tomography ([18F]FDG PET) in lymphoma patients undergoing CAR T-cell therapy. Through meta-analysis, pooled hazard ratio (HR) values were calculated for specific PET metrics in this context. Methods PubMed, Scopus, and Ovid databases were explored to search for relevant topics. Dataset retrieval from inception until March 12, 2024, was carried out. The primary endpoints were impact of specific PET metrics on overall survival (OS) and progression-free survival (PFS) before and after treatment. Data from the studies were extracted for a meta-analysis using Stata 17.0. Results Out of 27 studies identified for systematic review, 15 met the criteria for meta-analysis. Baseline OS analysis showed that total metabolic tumor volume (TMTV) had the highest HR of 2.66 (95% CI: 1.52-4.66), followed by Total-body total lesion glycolysis (TTLG) at 2.45 (95% CI: 0.98-6.08), and maximum standardized uptake values (SUVmax) at 1.30 (95% CI: 0.77-2.19). TMTV and TTLG were statistically significant (p < 0.0001), whereas SUVmax was not (p = 0.33). For PFS, TMTV again showed the highest HR at 2.65 (95% CI: 1.63-4.30), with TTLG at 2.35 (95% CI: 1.40-3.93), and SUVmax at 1.48 (95% CI: 1.08-2.04), all statistically significant (p ≤ 0.01). The ΔSUVmax was a significant predictor for PFS with an HR of 2.05 (95% CI: 1.13-3.69, p = 0.015). Conclusion [18F]FDG PET parameters are valuable prognostic tools for predicting outcome of lymphoma patients undergoing CAR T-cell therapy.
Collapse
Affiliation(s)
- Akram Al-Ibraheem
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Amman, Jordan
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Ahmed Saad Abdlkadir
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Dhuha Ali Al-Adhami
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Henry Hee-Seung Bom
- Department of Nuclear Medicine, Chonnam National University Medical School (CNUMS) and Hospital, Gwangju, Republic of Korea
| | - Mohammad Ma’koseh
- Department of Medicine, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Asem Mansour
- Department of Diagnostic Radiology, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Hikmat Abdel-Razeq
- Department of Medicine, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Kamal Al-Rabi
- Department of Medicine, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Enrique Estrada-Lobato
- Nuclear Medicine and Diagnostic Section, Division of Human Health, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Maysaa Al-Hussaini
- Department of Pathology, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Ismail Matalka
- Department of Pathology and Microbiology, King Abdullah University Hospital- Jordan University of Science and Technology, Irbid, Jordan
- Department of Pathology, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Zaid Abdel Rahman
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Stephano Fanti
- Nuclear Medicine Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero—Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Choudhery MS, Arif T, Mahmood R, Harris DT. CAR-T-Cell-Based Cancer Immunotherapies: Potentials, Limitations, and Future Prospects. J Clin Med 2024; 13:3202. [PMID: 38892913 PMCID: PMC11172642 DOI: 10.3390/jcm13113202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer encompasses various elements occurring at the cellular and genetic levels, necessitating an immunotherapy capable of efficiently addressing both aspects. T cells can combat cancer cells by specifically recognizing antigens on them. This innate capability of T cells has been used to develop cellular immunotherapies, but most of them can only target antigens through major histocompatibility complexes (MHCs). New gene-editing techniques such as clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (CRISPR-cas9) can precisely edit the DNA sequences. CRISPR-cas9 has made it possible to generate genetically engineered chimeric antigen receptors (CARs) that can overcome the problems associated with old immunotherapies. In chimeric antigen receptor T (CAR-T) cell therapy, the patient's T cells are isolated and genetically modified to exhibit synthetic CAR(s). CAR-T cell treatment has shown remarkably positive clinical outcomes in cancers of various types. Nevertheless, there are various challenges that reduce CAR-T effectiveness in solid tumors. It is required to address these challenges in order to make CAR-T cell therapy a better and safer option. Combining CAR-T treatment with other immunotherapies that target multiple antigens has shown positive outcomes. Moreover, recently generated Boolean logic-gated advanced CARs along with artificial intelligence has expanded its potential to treat solid tumors in addition to blood cancers. This review aims to describe the structure, types, and various methods used to develop CAR-T cells. The clinical applications of CAR-T cells in hematological malignancies and solid tumours have been described in detail. In addition, this discussion has addressed the limitations associated with CAR-T cells, explored potential strategies to mitigate CAR-T-related toxicities, and delved into future perspectives.
Collapse
Affiliation(s)
- Mahmood S. Choudhery
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 54600, Pakistan;
| | - Taqdees Arif
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 54600, Pakistan;
| | - Ruhma Mahmood
- Jinnah Hospital, Allama Iqbal Medical College, Lahore 54700, Pakistan;
| | - David T. Harris
- Department of Immunobiology, College of Medicine, University of Arizona Health Sciences Biorepository, The University of Arizona, Tucson, AZ 85724-5221, USA;
| |
Collapse
|
6
|
Li Z, Xiong W, Liang Z, Wang J, Zeng Z, Kołat D, Li X, Zhou D, Xu X, Zhao L. Critical role of the gut microbiota in immune responses and cancer immunotherapy. J Hematol Oncol 2024; 17:33. [PMID: 38745196 PMCID: PMC11094969 DOI: 10.1186/s13045-024-01541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
The gut microbiota plays a critical role in the progression of human diseases, especially cancer. In recent decades, there has been accumulating evidence of the connections between the gut microbiota and cancer immunotherapy. Therefore, understanding the functional role of the gut microbiota in regulating immune responses to cancer immunotherapy is crucial for developing precision medicine. In this review, we extract insights from state-of-the-art research to decipher the complicated crosstalk among the gut microbiota, the systemic immune system, and immunotherapy in the context of cancer. Additionally, as the gut microbiota can account for immune-related adverse events, we discuss potential interventions to minimize these adverse effects and discuss the clinical application of five microbiota-targeted strategies that precisely increase the efficacy of cancer immunotherapy. Finally, as the gut microbiota holds promising potential as a target for precision cancer immunotherapeutics, we summarize current challenges and provide a general outlook on future directions in this field.
Collapse
Affiliation(s)
- Zehua Li
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
- Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, England
| | - Weixi Xiong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Zhu Liang
- Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, England
- Target Discovery Institute, Center for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, England
| | - Jinyu Wang
- Departments of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Ziyi Zeng
- Department of Neonatology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Xi Li
- Department of Urology, Churchill Hospital, Oxford University Hospitals NHS Foundation, Oxford, UK
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Xuewen Xu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Linyong Zhao
- Department of General Surgery and Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Dhaliwal S, Gill FS, Hamid P. The Unprecedented Success of Chimeric Antigen Receptor T-Cell Therapy in the Treatment of Hematological Malignancies. Cureus 2024; 16:e59951. [PMID: 38854249 PMCID: PMC11162278 DOI: 10.7759/cureus.59951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 05/05/2024] [Indexed: 06/11/2024] Open
Abstract
Chimeric antigen receptor (CAR) therapy is one of the most unprecedented advancements in the treatment of hematological malignancies, especially B-cell malignancies. The fundamental notion behind the success of this therapy is to generate a synthetic protein (CAR) capable of redirecting T lymphocytes to act against cancer cells. New insights into the genetic and molecular base of hematological malignancies have more recently given rise to the development of targeted treatments. CAR T-cell therapy is one of these immunological treatment techniques that has recently received a lot of attention and paved a light of hope for the effective cure of relapsed and refractory hematological malignancies and some solid malignancies. Researchers of today might not know what the future holds for CAR T-cell therapy, but from whatever research has been done so far, this therapy has proven to be a success despite its limitations, and it can be assumed that the spectrum of its application is expanding with each passing day.
Collapse
Affiliation(s)
- Sargam Dhaliwal
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Fatehpal S Gill
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Pousette Hamid
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
8
|
Frazee N, Billlings KR, Mertz B. Gaussian accelerated molecular dynamics simulations facilitate prediction of the permeability of cyclic peptides. PLoS One 2024; 19:e0300688. [PMID: 38652734 PMCID: PMC11037548 DOI: 10.1371/journal.pone.0300688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/02/2024] [Indexed: 04/25/2024] Open
Abstract
Despite their widespread use as therapeutics, clinical development of small molecule drugs remains challenging. Among the many parameters that undergo optimization during the drug development process, increasing passive cell permeability (i.e., log(P)) can have some of the largest impact on potency. Cyclic peptides (CPs) have emerged as a viable alternative to small molecules, as they retain many of the advantages of small molecules (oral availability, target specificity) while being highly effective at traversing the plasma membrane. However, the relationship between the dominant conformations that typify CPs in an aqueous versus a membrane environment and cell permeability remain poorly characterized. In this study, we have used Gaussian accelerated molecular dynamics (GaMD) simulations to characterize the effect of solvent on the free energy landscape of lariat peptides, a subset of CPs that have recently shown potential for drug development (Kelly et al., JACS 2021). Differences in the free energy of lariat peptides as a function of solvent can be used to predict permeability of these molecules, and our results show that permeability is most greatly influenced by N-methylation and exposure to solvent. Our approach lays the groundwork for using GaMD as a way to virtually screen large libraries of CPs and drive forward development of CP-based therapeutics.
Collapse
Affiliation(s)
- Nicolas Frazee
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, United States of America
| | - Kyle R. Billlings
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, United States of America
| | - Blake Mertz
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, United States of America
| |
Collapse
|
9
|
Meksiriporn B, Spangler JB. Directed-evolution approach to empower EGFR targeting for immunotherapy. CELL REPORTS METHODS 2024; 4:100762. [PMID: 38631347 PMCID: PMC11046029 DOI: 10.1016/j.crmeth.2024.100762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
Advances in directed-evolution technologies are enabling new strategies to isolate binding proteins that recognize disease-associated states of a target protein. In this issue of Cell Reports Methods, Dobersberger et al. devised a yeast display-based selection scheme to discover proteins that engage the cancer-associated activated state of a receptor to enable design of safe and effective immunotherapies.
Collapse
Affiliation(s)
- Bunyarit Meksiriporn
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Jamie B Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Molecular Microbiology & Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
10
|
Rojas-Quintero J, Díaz MP, Palmar J, Galan-Freyle NJ, Morillo V, Escalona D, González-Torres HJ, Torres W, Navarro-Quiroz E, Rivera-Porras D, Bermúdez V. Car T Cells in Solid Tumors: Overcoming Obstacles. Int J Mol Sci 2024; 25:4170. [PMID: 38673757 PMCID: PMC11050550 DOI: 10.3390/ijms25084170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
Chimeric antigen receptor T cell (CAR T cell) therapy has emerged as a prominent adoptive cell therapy and a therapeutic approach of great interest in the fight against cancer. This approach has shown notorious efficacy in refractory hematological neoplasm, which has bolstered its exploration in the field of solid cancers. However, successfully managing solid tumors presents considerable intrinsic challenges, which include the necessity of guiding the modified cells toward the tumoral region, assuring their penetration and survival in adverse microenvironments, and addressing the complexity of identifying the specific antigens for each type of cancer. This review focuses on outlining the challenges faced by CAR T cell therapy when used in the treatment of solid tumors, as well as presenting optimizations and emergent approaches directed at improving its efficacy in this particular context. From precise localization to the modulation of the tumoral microenvironment and the adaptation of antigen recognition strategies, diverse pathways will be examined to overcome the current limitations and buttress the therapeutic potential of CAR T cells in the fight against solid tumors.
Collapse
Affiliation(s)
- Joselyn Rojas-Quintero
- Medicine, Pulmonary, Critical Care, and Sleep Medicine Department, Baylor College of Medicine, Houston, TX 77030, USA;
| | - María P. Díaz
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Jim Palmar
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Nataly J. Galan-Freyle
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (N.J.G.-F.); (E.N.-Q.)
| | - Valery Morillo
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Daniel Escalona
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | | | - Wheeler Torres
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Elkin Navarro-Quiroz
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (N.J.G.-F.); (E.N.-Q.)
- Facultad de Ciencias Básicas y Biomédicas, Barranquilla 080002, Colombia
| | - Diego Rivera-Porras
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Cúcuta 540001, Colombia;
| | - Valmore Bermúdez
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (N.J.G.-F.); (E.N.-Q.)
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia;
| |
Collapse
|
11
|
Rathod RJ, Sukumaran RK, Kedia N, Kumar J, Nair R, Chandy M, Gandikota L, Radhakrishnan VS. Chimeric Antigen Receptor T-cell based cellular therapies for cancer: An introduction and Indian perspective. Indian J Cancer 2024; 61:204-214. [PMID: 39152647 DOI: 10.4103/ijc.ijc_433_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/19/2021] [Indexed: 08/19/2024]
Abstract
Using one's own immune system for curing cancer has been an active field of research in cancer biology and therapeutics. One such opportunity in cellular immunotherapy is adoptive cell transfers. With the recent approval of CAR-T therapy as a cancer treatment, a whole new paradigm of cancer treatment has opened-up, with a ray of hope for relapsed/refractory cancer patients. Despite promising clinical outcomes, the therapy is in its early phase and remains out of reach for most patients due to its high cost and logistic challenges. In India, these therapies are unavailable and further confounded by the economic challenges and a large population. In this review, we discuss various aspects of T-cell immunotherapies with a special focus on CAR-T in the Indian scenario. We touch upon the basic scientific aspects, mechanism of action, manufacturing, clinical aspects and commercial aspects of the CAR-Tcell therapies and its future worldwide and in India.
Collapse
Affiliation(s)
- Reena J Rathod
- Cell and Gene Therapy Division, Intas Pharmaceuticals, Ahmedabad, Gujarat, India
| | - Reghu K Sukumaran
- Hematology Oncology and HCT, Tata Medical Center, Kolkata, West Bengal, India
| | - Neelam Kedia
- Cell and Gene Therapy Division, Intas Pharmaceuticals, Ahmedabad, Gujarat, India
| | - Jeevan Kumar
- Hematology Oncology and HCT, Tata Medical Center, Kolkata, West Bengal, India
| | - Reena Nair
- Hematology Oncology and HCT, Tata Medical Center, Kolkata, West Bengal, India
| | - Mammen Chandy
- Hematology Oncology and HCT, Tata Medical Center, Kolkata, West Bengal, India
| | | | | |
Collapse
|
12
|
Bellal M, Malherbe J, Damaj G, Du Cheyron D. Toxicities, intensive care management, and outcome of chimeric antigen receptor T cells in adults: an update. Crit Care 2024; 28:69. [PMID: 38444031 PMCID: PMC10916319 DOI: 10.1186/s13054-024-04851-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor T cells are a promising new immunotherapy for haematological malignancies. Six CAR-T cells products are currently available for adult patients with refractory or relapsed high-grade B cell malignancies, but they are associated with severe life-threatening toxicities and side effects that may require admission to ICU. OBJECTIVE The aim of this short pragmatic review is to synthesize for intensivists the knowledge on CAR-T cell therapy with emphasis on CAR-T cell-induced toxicities and ICU management of complications according to international recommendations, outcomes and future issues.
Collapse
Affiliation(s)
- Mathieu Bellal
- Department of Medical Intensive Care, Caen University Hospital, Avenue de la côte de nacre, 14000, Caen, France.
- UNICAEN, INSERM UMRS U1237 PhIND, Normandie Univ, 14000, Caen, France.
| | - Jolan Malherbe
- Department of Medical Intensive Care, Caen University Hospital, Avenue de la côte de nacre, 14000, Caen, France
| | - Gandhi Damaj
- Hematology Institute, Caen University Hospital, 14000, Caen, France
| | - Damien Du Cheyron
- Department of Medical Intensive Care, Caen University Hospital, Avenue de la côte de nacre, 14000, Caen, France
| |
Collapse
|
13
|
Barisas DAG, Choi K. Extramedullary hematopoiesis in cancer. Exp Mol Med 2024; 56:549-558. [PMID: 38443597 PMCID: PMC10985111 DOI: 10.1038/s12276-024-01192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 03/07/2024] Open
Abstract
Hematopoiesis can occur outside of the bone marrow during inflammatory stress to increase the production of primarily myeloid cells at extramedullary sites; this process is known as extramedullary hematopoiesis (EMH). As observed in a broad range of hematologic and nonhematologic diseases, EMH is now recognized for its important contributions to solid tumor pathology and prognosis. To initiate EMH, hematopoietic stem cells (HSCs) are mobilized from the bone marrow into the circulation and to extramedullary sites such as the spleen and liver. At these sites, HSCs primarily produce a pathological subset of myeloid cells that contributes to tumor pathology. The EMH HSC niche, which is distinct from the bone marrow HSC niche, is beginning to be characterized. The important cytokines that likely contribute to initiating and maintaining the EMH niche are KIT ligands, CXCL12, G-CSF, IL-1 family members, LIF, TNFα, and CXCR2. Further study of the role of EMH may offer valuable insights into emergency hematopoiesis and therapeutic approaches against cancer. Exciting future directions for the study of EMH include identifying common and distinct EMH mechanisms in cancer, infectious diseases, and chronic autoimmune diseases to control these conditions.
Collapse
Affiliation(s)
- Derek A G Barisas
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
14
|
Dey S, Devender M, Rani S, Pandey RK. Recent advances in CAR T-cell engineering using synthetic biology: Paving the way for next-generation cancer treatment. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:91-156. [PMID: 38762281 DOI: 10.1016/bs.apcsb.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
This book chapter highlights a comprehensive exploration of the transformative innovations in the field of cancer immunotherapy. CAR (Chimeric Antigen Receptor) T-cell therapy represents a groundbreaking approach to treat cancer by reprogramming a patient immune cells to recognize and destroy cancer cells. This chapter underscores the critical role of synthetic biology in enhancing the safety and effectiveness of CAR T-cell therapies. It begins by emphasizing the growing importance of personalized medicine in cancer treatment, emphasizing the shift from one-size-fits-all approaches to patient-specific solutions. Synthetic biology, a multidisciplinary field, has been instrumental in customizing CAR T-cell therapies, allowing for fine-tuned precision and minimizing unwanted side effects. The chapter highlights recent advances in gene editing, synthetic gene circuits, and molecular engineering, showcasing how these technologies are optimizing CAR T-cell function. In summary, this book chapter sheds light on the remarkable progress made in the development of CAR T-cell therapies using synthetic biology, providing hope for cancer patients and hinting at a future where highly personalized and effective cancer treatments are the norm.
Collapse
Affiliation(s)
- Sangita Dey
- CSO Department, Cellworks Research India Pvt Ltd, Bengaluru, Karnataka, India
| | - Moodu Devender
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Swati Rani
- ICAR, National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden.
| |
Collapse
|
15
|
Varela ML, Comba A, Faisal SM, Argento A, Peña Aguelo JA, Candolfi M, Castro MG, Lowenstein PR. Cell and gene therapy in neuro-oncology. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:297-315. [PMID: 39341660 PMCID: PMC11441620 DOI: 10.1016/b978-0-323-90120-8.00009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The majority of primary brain tumors are gliomas, among which glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults. GBM has a median survival of 18-24 months, and despite extensive research it remains incurable, thus novel therapies are urgently needed. The current standard of care is a combination of surgery, radiation, and chemotherapy, but still remains ineffective due to the invasive nature and high recurrence of gliomas. Gene therapy is a versatile treatment strategy investigated for multiple tumor types including GBM. In gene therapy, a variety of vectors are employed to deliver genes designed for different antitumoral effects. Also, over the past decades, stem cell biology has provided a new approach to cancer therapies. Stem cells can be used as regenerative medicine, therapeutic carriers, drug targeting, and generation of immune cells. Stem cell-based therapy allows targeted therapy that spares healthy brain tissue as well as establishes a long-term antitumor response by stimulating the immune system and delivering prodrug, metabolizing genes, or even oncolytic viruses. This chapter describes the latest developments and the current trends in gene and cell-based therapy against GBM from both preclinical and clinical perspectives, including different gene therapy delivery systems, molecular targets, and stem cell therapies.
Collapse
Affiliation(s)
- Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Syed M Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anna Argento
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Jorge A Peña Aguelo
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
16
|
Majumder A. Evolving CAR-T-Cell Therapy for Cancer Treatment: From Scientific Discovery to Cures. Cancers (Basel) 2023; 16:39. [PMID: 38201467 PMCID: PMC10777914 DOI: 10.3390/cancers16010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
In recent years, chimeric antigen receptor (CAR)-T-cell therapy has emerged as the most promising immunotherapy for cancer that typically uses patients' T cells and genetically engineered them to target cancer cells. Although recent improvements in CAR-T-cell therapy have shown remarkable success for treating hematological malignancies, the heterogeneity in tumor antigens and the immunosuppressive nature of the tumor microenvironment (TME) limits its efficacy in solid tumors. Despite the enormous efforts that have been made to make CAR-T-cell therapy more effective and have minimal side effects for treating hematological malignancies, more research needs to be conducted regarding its use in the clinic for treating various other types of cancer. The main concern for CAR-T-cell therapy is severe toxicities due to the cytokine release syndrome, whereas the other challenges are associated with complexity and immune-suppressing TME, tumor antigen heterogeneity, the difficulty of cell trafficking, CAR-T-cell exhaustion, and reduced cytotoxicity in the tumor site. This review discussed the latest discoveries in CAR-T-cell therapy strategies and combination therapies, as well as their effectiveness in different cancers. It also encompasses ongoing clinical trials; current challenges regarding the therapeutic use of CAR-T-cell therapy, especially for solid tumors; and evolving treatment strategies to improve the therapeutic application of CAR-T-cell therapy.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
17
|
Lu LL, Xiao SX, Lin ZY, Bai JJ, Li W, Song ZQ, Zhou YH, Lu B, Wu WZ. GPC3-IL7-CCL19-CAR-T primes immune microenvironment reconstitution for hepatocellular carcinoma therapy. Cell Biol Toxicol 2023; 39:3101-3119. [PMID: 37853185 DOI: 10.1007/s10565-023-09821-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/13/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T-cell therapy is a revolutionary treatment that has become a mainstay of advanced cancer treatment. Conventional glypican-3 (GPC3)-CAR-T cells have not produced ideal clinical outcomes in advanced hepatocellular carcinoma (HCC), and the mechanism is unclear. This study aims to investigate the clinical utility of novel GPC3-7-19-CAR-T cells constructed by our team and to explore the mechanisms underlying their antitumor effects. METHODS We engineered a novel GPC3-targeting CAR including an anti-GPC3 scFv, CD3ζ, CD28 and 4-1BB that induces co-expression of IL-7 at a moderate level (500 pg/mL) and CCL19 at a high level (15000 pg /mL) and transduced it into human T cells. In vitro, cell killing efficacy was validated by the xCELLigence RTCA system, LDH nonradioactive cytotoxicity assay and was confirmed in primary HCC organoid models employing a 3D microfluid chip. In vivo, the antitumor capacity was assessed in a humanized NSG mouse xenograft model. Finally, we initiated a phase I clinical trial to evaluate the safety and effect of GPC3-7-19-CAR-T cells in the clinic. RESULTS GPC3-7-19-CAR-T cells had 1.5-2 times higher killing efficiency than GPC3-CAR-T cells. The tumor formation rates in GPC3-7-19-CAR-T cells treated model were reduced (3/5vs.5/5), and the average tumor volumes were 0.74 cm3 ± 1.17 vs. 0.34 cm3 ± 0.25. Of note, increased proportion of CD4+ TEM and CD8+ TCM cells was infiltrated in GPC3-7-19-CAR-T cells group. GPC3-7-19-CAR-T cells obviously reversed the immunosuppressive tumor microenvironment (TME) by reducing polymorphonuclear (PMN)-myeloid-derived suppressor cells (MDSCs) and regulatory T (Treg) cells infiltration and recruiting more dendritic cells (DCs) to HCC xenograft tumor tissues. In one patient with advanced HCC, GPC3-7-19-CAR-T-cell treatment resulted in tumor reduction 56 days after intravenous infusion. CONCLUSIONS In conclusion, GPC3-7-19-CAR-T cells achieved antitumor effects superior to those of conventional GPC3-CAR-T cells by reconstructing the TME induced by the dominant CD4+ TEM and CD8+ TCM cell subsets. Most importantly, GPC3-7-19-CAR-T cells exhibited good safety and antitumor efficacy in HCC patients in the clinic. ► Novel GPC3-7-19-CAR-T cells designed with mediate level of IL-7 secretion and high level of CCL19 secretion, which could recruit more mature DCs to assist killing on GPC3+HCCs. ►DC cells recruited by CCL19 could interact with CD4+ T cells and promote the differentiation of CD4+TEFF cells into CD4+TEM and CD8+TCM subsets, leading a better anti-tumor effect on GPC3+HCCs. ►Compared with conventional GPC3-CAR-T, GPC3-7-CCL19-CAR-T cells could reverse tumor immunosuppressive microenvironment by reducing PMN-MDSC and Treg cell infiltration.
Collapse
Affiliation(s)
- Li-Li Lu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
- Clinical Center for Biotherapy, Zhongshan Hospital, Shanghai, 200032, China
| | - Shu-Xiu Xiao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
- Clinical Center for Biotherapy, Zhongshan Hospital, Shanghai, 200032, China
| | - Zhi-Yuan Lin
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jin-Jin Bai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
- Clinical Center for Biotherapy, Zhongshan Hospital, Shanghai, 200032, China
| | - Wei Li
- Department of Medical Oncology, Fudan University, Shanghai, 200032, China
| | - Zheng-Qing Song
- Department of Medical Oncology, Fudan University, Shanghai, 200032, China
| | - Yu-Hong Zhou
- Department of Medical Oncology, Fudan University, Shanghai, 200032, China
| | - Bin Lu
- Department of Biochemical Pharmacy School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - Wei-Zhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China.
| |
Collapse
|
18
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
19
|
Zhao M, Yan CY, Wei YN, Zhao XH. Breaking the mold: Overcoming resistance to immune checkpoint inhibitors. Antiviral Res 2023; 219:105720. [PMID: 37748652 DOI: 10.1016/j.antiviral.2023.105720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
Immune checkpoint blockade-based therapies are effective against a sorts of cancers. However, drug resistance is a problem that cannot be ignored. This review intends to elucidate the mechanisms underlying drug tolerance induced by PD-1/PD-L1 inhibitors, as well as to outline proposed mechanism-based combination therapies and small molecule drugs that target intrinsic immunity and immune checkpoints. According to the differences of patients and types of cancer, the optimization of individualized combination therapy will help to enhance PD-1/PD-L1-mediated immunoregulation, reduce chemotherapy resistance, and provide new ideas for chemotherapy-resistant cancer.
Collapse
Affiliation(s)
- Menglu Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China
| | - Chun-Yan Yan
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China
| | - Ya-Nan Wei
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China
| | - Xi-He Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China.
| |
Collapse
|
20
|
Wang T, Zhang K, You F, Ma R, Yang N, Tian S, An G, Yang L. Preconditioning of radiotherapy enhances efficacy of B7-H3-CAR-T in treating solid tumor models. Life Sci 2023; 331:122024. [PMID: 37574043 DOI: 10.1016/j.lfs.2023.122024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
AIMS Limited efficacy of chimeric antigen receptor T (CAR-T) cells in treating solid tumors is largely due to the antigen heterogeneity and immunosuppressive tumor microenvironment (TME). B7-H3 is over-expressed in most kind of solid tumors, making it a promising target for cancer treatment. This study aims to explore the effect of B7-H3-CAR-T therapy combined with radiotherapy in treating solid tumor models. METHODS Irradiated tumor cell lines were prepared and tested. A humanized B7-H3-CAR-T was constructed, and it was evaluated that B7-H3-CAR-T cytotoxicity against solid tumor models with preconditioning of radiotherapy in vitro and vivo. RESULTS Irradiation was found to increase expression level of B7-H3 in pancreatic cancer (PANC-1), colorectal cancer (HCT-15, SW620), acute myelocytic leukemia (AML-5), epidermoid carcinoma (KB) and glioma (U87-MG) human cell lines significantly. 6Gy irradiation was also found to up-regulate tumor-infiltration molecule like intracellular adhesion molecule-1 ICAM-1 or FAS in HCT-15 cells, supporting a possible synergistic enhancement effect of radiotherapy. In vitro and in vivo experiments demonstrated that irradiation indeed significantly enhanced the ability of B7-H3-CAR-T to infiltrate and kill tumors. Interestingly in dual-tumor mouse model study, not only tumor cells on irradiation side were eradicated completely, irradiation also enhanced CAR-T tumor-killing ability on non-irradiated side, confirming the abscopal effect of irradiation existed with CAR-T therapy. CONCLUSIONS Our results suggest that B7-H3-CAR-T therapy combined with radiotherapy may be a promising modality in treating solid tumors.
Collapse
Affiliation(s)
- Tian Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; PersonGen BioTherapeutics Co., Ltd., Suzhou, PR China
| | - Kailu Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Fengtao You
- PersonGen BioTherapeutics Co., Ltd., Suzhou, PR China
| | - Renyuxue Ma
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Nan Yang
- PersonGen BioTherapeutics Co., Ltd., Suzhou, PR China
| | - Shuaiyu Tian
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Gangli An
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Lin Yang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; PersonGen BioTherapeutics Co., Ltd., Suzhou, PR China.
| |
Collapse
|
21
|
Huo Q, Lv J, Zhang J, Huang H, Hu H, Zhao Y, Zhang X, Wang Y, Zhou Y, Qiu J, Ye Y, Huang A, Chen Y, Qin L, Qin D, Li P, Cai G. c-Met is a chimeric antigen receptor T-cell target for treating recurrent nasopharyngeal carcinoma. Cytotherapy 2023; 25:1037-1047. [PMID: 37436338 DOI: 10.1016/j.jcyt.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/15/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND AIMS Radiation therapy is the standard treatment for patients with nasopharyngeal carcinoma (NPC), but relapse occurs in 10% to 20% of patients. The treatment of recurrent nasopharyngeal carcinoma (rNPC) remains challenging. Chimeric antigen receptors (CAR)-T-cell therapy has achieved good outcomes in the treatment of leukemia and seems to be a promising therapeutic strategy for solid tumors. c-Met has been found to be highly expressed in multiple cancer types, and the activation of c-Met leads to the proliferation and metastasis of cancer cells. However, the expression of c-Met in rNPC tissues and whether it can be used as a target for CAR-T therapy in rNPC remain to be investigated. METHODS We detected the expression of c-Met in 24 primary human rNPC tissues and three NPC cell lines and constructed two different antibody-derived anti-c-Met CARs, namely, Ab928z and Ab1028z. To estimate the function of these two different c-Met-targeted CAR-T cells, CD69 expression, cytotoxicity and cytokine secretion of CAR-T cells were assessed after coculture with target cells. A cell line-derived xenograft mouse model also was used to evaluate these two anti-c-Met CAR-T cells. Furthermore, we determined whether combination with an anti-EGFR antibody could promote the antitumor effect of CAR-T cells in a patient-derived xenograft mouse model. RESULTS High c-Met expression was detected in 23 of 24 primary human rNPC tissues by immunohistochemistry staining and in three NPC cell lines by flow cytometry. Ab928z-T cells and Ab1028z-T cells showed significantly upregulated expression of CD69 after coculture with targeted cells. However, Ab1028z-T cells showed superior cytokine secretion and antitumor activity. Furthermore, Ab1028z-T cells effectively suppressed tumor growth compared with control CAR-T cells, and the combination with nimotuzumab further enhanced the tumor-clearing ability of Ab1028z-T cells. CONCLUSIONS We found that c-Met is highly expressed in rNPC tissues and confirmed its potential as a CAR-T target for rNPC. Our study provides a new idea for the clinical treatment of rNPC.
Collapse
Affiliation(s)
- Qingyi Huo
- Otolaryngology Department, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou City, China; Graduate School of Guangzhou Medical University, Guangzhou, China
| | - Jiang Lv
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH)-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Center, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jianzhong Zhang
- Otolaryngology Department, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou City, China
| | - Haiqiong Huang
- Otolaryngology Department, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou City, China
| | - Huayong Hu
- Otolaryngology Department, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou City, China
| | - Yaoxin Zhao
- Otolaryngology Department, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou City, China
| | - Xinrui Zhang
- Otolaryngology Department, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou City, China
| | - Yingqi Wang
- Otolaryngology Department, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou City, China
| | - Yiyi Zhou
- Otolaryngology Department, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou City, China
| | - Junchao Qiu
- Obstetrics Department, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou City, China
| | - Yanmei Ye
- Obstetrics Department, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou City, China
| | - Aiqun Huang
- Blood Transfusion Department, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou City, China
| | - Yanhong Chen
- Medical Quality Management Evaluation Section, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou City, China
| | - Le Qin
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH)-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Center, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Dajiang Qin
- Innovation Center for Translational Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou City, China.
| | - Peng Li
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH)-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Center, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Gang Cai
- Otolaryngology Department, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou City, China.
| |
Collapse
|
22
|
Zhang X, Guo H, Chen J, Xu C, Wang L, Ke Y, Gao Y, Zhang B, Zhu J. Highly proliferative and hypodifferentiated CAR-T cells targeting B7-H3 enhance antitumor activity against ovarian and triple-negative breast cancers. Cancer Lett 2023; 572:216355. [PMID: 37597651 DOI: 10.1016/j.canlet.2023.216355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023]
Abstract
Chimeric antigen receptor (CAR)-T cell immunotherapy is highly effective against hematological neoplasms. However, owing to tumor variability, low antigen specificity, and impermanent viability of CAR-T cells, their use in the treatment of solid tumors is limited. Here, a novel CAR-T cell targeting B7-H3 and incorporating a 4-1BB costimulatory molecule with STAT3-and STAT5-related activation motifs was constructed using lentivirus transduction. B7-H3, a tumor-associated antigen, and its scFv antibody endowed CAR-T cells with tumor-specific targeting capabilities. Moreover, the integration of the trIL2RB and YRHQ motifs stimulated STAT5 and STAT3 in an antigen-dependent manner, inducing a remarkable increase in the proliferation and survival of CAR-T cells via the activation of the JAK-STAT signaling pathway. Besides, the proportion of less-differentiated T cells increased among BB-trIL2RB-z(YRHQ) CAR-T cells. Moreover, BB-trIL2RB-z(YRHQ) effectively inhibited ovarian cancer (OC) and triple-negative breast cancer (TNBC) in vivo at low doses, without high serum levels of inflammatory cytokines and organ toxicity. Therefore, our study proposes a combination of elements for the construction of superior pluripotent CAR-T cells to provide an effective strategy for the treatment of intractable solid tumors.
Collapse
Affiliation(s)
- Xiaoshuai Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiyan Guo
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Chen
- Jecho Biopharmaceutical Institute, Shanghai, 200240, China
| | - Chenxiao Xu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Ke
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Gao
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China; Jecho Biopharmaceutical Institute, Shanghai, 200240, China
| |
Collapse
|
23
|
Zhao H, Wu L, Dai J, Sun K, Zi Z, Guan J, Zhang L. Ligand-based adoptive T cell targeting CA125 in ovarian cancer. J Transl Med 2023; 21:596. [PMID: 37670338 PMCID: PMC10481596 DOI: 10.1186/s12967-023-04271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/13/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) is a highly aggressive gynecological malignancy prevalent worldwide. Most OC cases are typically diagnosed at advanced stages, which has led to a 5-year overall survival rate of less than 35% following conventional treatment. Furthermore, immune checkpoint inhibitor therapy has shown limited efficacy in the treatment of patients with OC, and CAR-T therapy has also demonstrated modest results owing to inadequate T cell infiltration. Therefore, novel strategies must be developed to enhance T cell persistence and trafficking within the OC tumor microenvironment. METHODS In this study, we developed a novel adoptive T-cell therapy for ovarian cancer based on a chimeric antigen receptor structure. We used a ligand-receptor binding motif to enhance the therapeutic effect of targeting CA125. Since mesothelin can naturally bind to CA125 with high affinity, we concatenated the core-binding fragment of mesothelin with the 4-1BB and CD3ζ signal fragments to assemble a novel CA125-targeting chimeric receptor (CR). The CAR structure targeting CA125 derived from the 4H11 antibody was also constructed. CR- and CAR-encoding RNA were electroporated into T cells to evaluate their antitumor activity both in vitro and in vivo. RESULTS While CR-T or CAR-T cells exhibited moderate activity against two ovarian cancer cell lines, T cells co-expressing CR and CAR exhibited a superior killing effect compared to T cells expressing either CR or CAR alone. Furthermore, upon interaction with ovarian tumors, the ability of CR and CAR T cells to release activation markers and functional cytokines increased significantly. Similarly, CR and CAR co-expressing T cells persistently controlled the growth of transplanted ovarian cancer tumors in NSG mice and significantly prolonged the overall survival of tumor-challenged mice. Transcriptome sequencing revealed that the survival and cytotoxicity of T cells co-expressing CR and CAR were significantly altered compared with those of T cells expressing either CR or CAR. CONCLUSION Our findings demonstrate that CA125 targeting CR and CAR can synergistically kill ovarian cancer cells, indicating that CA125 targeting by the two binding motifs simultaneously in tumors may improve the therapeutic outcomes of ovarian cancer treatment.
Collapse
Affiliation(s)
- Haihong Zhao
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Lina Wu
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Jiemin Dai
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Ke Sun
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Zhenguo Zi
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junhua Guan
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.
| | - Liwen Zhang
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
24
|
Dabas P, Danda A. Revolutionizing cancer treatment: a comprehensive review of CAR-T cell therapy. Med Oncol 2023; 40:275. [PMID: 37608202 DOI: 10.1007/s12032-023-02146-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a promising new treatment for cancer that involves genetically modifying a patient's T-cells to recognize and attack cancer cells. This review provides an overview of the latest discoveries and clinical trials related to CAR-T cell therapy, as well as the concept and applications of the therapy. The review also discusses the limitations and potential side effects of CAR-T cell therapy, including the high cost and the risk of cytokine release syndrome and neurotoxicity. While CAR-T cell therapy has shown promising results in the treatment of hematologic malignancies, ongoing research is needed to improve the efficacy and safety of the therapy and expand its use to solid tumors. With continued research and development, CAR-T cell therapy has the potential to revolutionize cancer treatment and improve outcomes for patients with cancer.
Collapse
Affiliation(s)
- Preeti Dabas
- St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Adithi Danda
- St Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
25
|
Zhang Y, Zhao Z, Huang LA, Liu Y, Yao J, Sun C, Li Y, Zhang Z, Ye Y, Yuan F, Nguyen TK, Garlapati NR, Wu A, Egranov SD, Caudle AS, Sahin AA, Lim B, Beretta L, Calin GA, Yu D, Hung MC, Curran MA, Rezvani K, Gan B, Tan Z, Han L, Lin C, Yang L. Molecular mechanisms of snoRNA-IL-15 crosstalk in adipocyte lipolysis and NK cell rejuvenation. Cell Metab 2023; 35:1457-1473.e13. [PMID: 37329887 PMCID: PMC10712687 DOI: 10.1016/j.cmet.2023.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/03/2023] [Accepted: 05/18/2023] [Indexed: 06/19/2023]
Abstract
Obesity, in which the functional importance of small nucleolar RNAs (snoRNAs) remains elusive, correlates with risk for many cancer types. Here, we identify that the serum copies of adipocyte-expressed SNORD46 correlate with body mass index (BMI), and serum SNORD46 antagonizes interleukin-15 (IL-15) signaling. Mechanically, SNORD46 binds IL-15 via G11, and G11A (a mutation that significantly enhances binding affinity) knockin drives obesity in mice. Functionally, SNORD46 blocks IL-15-induced, FER kinase-dependent phosphorylation of platelet glycoprotein 4 (CD36) and monoglyceride lipase (MGLL) in adipocytes, leading to inhibited lipolysis and browning. In natural killer (NK) cells, SNORD46 suppresses the IL-15-dependent autophagy, leading to reduced viability of obese NK. SNORD46 power inhibitors exhibit anti-obesity effects, concurring with improved viability of obese NK and anti-tumor immunity of CAR-NK cell therapy. Hence, our findings demonstrate the functional importance of snoRNAs in obesity and the utility of snoRNA power inhibitors for antagonizing obesity-associated immune resistance.
Collapse
Affiliation(s)
- Yaohua Zhang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zilong Zhao
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lisa A Huang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuan Liu
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chengcao Sun
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yajuan Li
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Fei Yuan
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tina K Nguyen
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nikhil Reddy Garlapati
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Wu
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sergey D Egranov
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Abigail S Caudle
- Department of Breast Surgical Oncology, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aysegul A Sahin
- Department of Pathology, Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bora Lim
- Oncology/Medicine, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George A Calin
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung 406, Taiwan
| | - Michael A Curran
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katayoun Rezvani
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boyi Gan
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Experimental Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhi Tan
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Leng Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA; Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Cai L, Wang Y, Chen Y, Chen H, Yang T, Zhang S, Guo Z, Wang X. Manganese(ii) complexes stimulate antitumor immunity via aggravating DNA damage and activating the cGAS-STING pathway. Chem Sci 2023; 14:4375-4389. [PMID: 37123182 PMCID: PMC10132258 DOI: 10.1039/d2sc06036a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Activating the cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) pathway is a promising immunotherapeutic strategy for cancer treatment. Manganese(ii) complexes MnPC and MnPVA (P = 1,10-phenanthroline, C = chlorine, and VA = valproic acid) were found to activate the cGAS-STING pathway. The complexes not only damaged DNA, but also inhibited histone deacetylases (HDACs) and poly adenosine diphosphate-ribose polymerase (PARP) to impede the repair of DNA damage, thereby promoting the leakage of DNA fragments into cytoplasm. The DNA fragments activated the cGAS-STING pathway, which initiated an innate immune response and a two-way communication between tumor cells and neighboring immune cells. The activated cGAS-STING further increased the production of type I interferons and secretion of pro-inflammatory cytokines (TNF-α and IL-6), boosting the tumor infiltration of dendritic cells and macrophages, as well as stimulating cytotoxic T cells to kill cancer cells in vitro and in vivo. Owing to the enhanced DNA-damaging ability, MnPC and MnPVA showed more potent immunocompetence and antitumor activity than Mn2+ ions, thus demonstrating great potential as chemoimmunotherapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Linxiang Cai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 2589684549
| | - Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 2589684549
| | - Yayu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 2589684549
| | - Hanhua Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 2589684549
| | - Tao Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Shuren Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 2589684549
| |
Collapse
|
27
|
Khalil R, Diab-Assaf M, Lemaitre JM. Emerging Therapeutic Approaches to Target the Dark Side of Senescent Cells: New Hopes to Treat Aging as a Disease and to Delay Age-Related Pathologies. Cells 2023; 12:915. [PMID: 36980256 PMCID: PMC10047596 DOI: 10.3390/cells12060915] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Life expectancy has drastically increased over the last few decades worldwide, with important social and medical burdens and costs. To stay healthy longer and to avoid chronic disease have become essential issues. Organismal aging is a complex process that involves progressive destruction of tissue functionality and loss of regenerative capacity. One of the most important aging hallmarks is cellular senescence, which is a stable state of cell cycle arrest that occurs in response to cumulated cell stresses and damages. Cellular senescence is a physiological mechanism that has both beneficial and detrimental consequences. Senescence limits tumorigenesis, lifelong tissue damage, and is involved in different biological processes, such as morphogenesis, regeneration, and wound healing. However, in the elderly, senescent cells increasingly accumulate in several organs and secrete a combination of senescence associated factors, contributing to the development of various age-related diseases, including cancer. Several studies have revealed major molecular pathways controlling the senescent phenotype, as well as the ones regulating its interactions with the immune system. Attenuating the senescence-associated secretory phenotype (SASP) or eliminating senescent cells have emerged as attractive strategies aiming to reverse or delay the onset of aging diseases. Here, we review current senotherapies designed to suppress the deleterious effect of SASP by senomorphics or to selectively kill senescent cells by "senolytics" or by immune system-based approaches. These recent investigations are promising as radical new controls of aging pathologies and associated multimorbidities.
Collapse
Affiliation(s)
- Roula Khalil
- IRMB, University Montpellier, INSERM, 34090 Montpellier, France;
| | - Mona Diab-Assaf
- Fanar Faculty of Sciences II, Lebanese University, Beirut P.O. Box 90656, Lebanon;
| | | |
Collapse
|
28
|
Zhai X, Mao L, Wu M, Liu J, Yu S. Challenges of Anti-Mesothelin CAR-T-Cell Therapy. Cancers (Basel) 2023; 15:cancers15051357. [PMID: 36900151 PMCID: PMC10000068 DOI: 10.3390/cancers15051357] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/10/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy is a kind of adoptive T-cell therapy (ACT) that has developed rapidly in recent years. Mesothelin (MSLN) is a tumor-associated antigen (TAA) that is highly expressed in various solid tumors and is an important target antigen for the development of new immunotherapies for solid tumors. This article reviews the clinical research status, obstacles, advancements and challenges of anti-MSLN CAR-T-cell therapy. Clinical trials on anti-MSLN CAR-T cells show that they have a high safety profile but limited efficacy. At present, local administration and introduction of new modifications are being used to enhance proliferation and persistence and to improve the efficacy and safety of anti-MSLN CAR-T cells. A number of clinical and basic studies have shown that the curative effect of combining this therapy with standard therapy is significantly better than that of monotherapy.
Collapse
Affiliation(s)
- Xuejia Zhai
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China
| | - Ling Mao
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China
| | - Min Wu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China
| | - Jie Liu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China
| | - Shicang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China
- Jinfeng Laboratory, Chongqing 401329, China
- Correspondence:
| |
Collapse
|
29
|
Jantz-Naeem N, Böttcher-Loschinski R, Borucki K, Mitchell-Flack M, Böttcher M, Schraven B, Mougiakakos D, Kahlfuss S. TIGIT signaling and its influence on T cell metabolism and immune cell function in the tumor microenvironment. Front Oncol 2023; 13:1060112. [PMID: 36874131 PMCID: PMC9982004 DOI: 10.3389/fonc.2023.1060112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/11/2023] [Indexed: 02/19/2023] Open
Abstract
One of the key challenges for successful cancer therapy is the capacity of tumors to evade immune surveillance. Tumor immune evasion can be accomplished through the induction of T cell exhaustion via the activation of various immune checkpoint molecules. The most prominent examples of immune checkpoints are PD-1 and CTLA-4. Meanwhile, several other immune checkpoint molecules have since been identified. One of these is the T cell immunoglobulin and ITIM domain (TIGIT), which was first described in 2009. Interestingly, many studies have established a synergistic reciprocity between TIGIT and PD-1. TIGIT has also been described to interfere with the energy metabolism of T cells and thereby affect adaptive anti-tumor immunity. In this context, recent studies have reported a link between TIGIT and the hypoxia-inducible factor 1-α (HIF1-α), a master transcription factor sensing hypoxia in several tissues including tumors that among others regulates the expression of metabolically relevant genes. Furthermore, distinct cancer types were shown to inhibit glucose uptake and effector function by inducing TIGIT expression in CD8+ T cells, resulting in an impaired anti-tumor immunity. In addition, TIGIT was associated with adenosine receptor signaling in T cells and the kynurenine pathway in tumor cells, both altering the tumor microenvironment and T cell-mediated immunity against tumors. Here, we review the most recent literature on the reciprocal interaction of TIGIT and T cell metabolism and specifically how TIGIT affects anti-tumor immunity. We believe understanding this interaction may pave the way for improved immunotherapy to treat cancer.
Collapse
Affiliation(s)
- Nouria Jantz-Naeem
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Romy Böttcher-Loschinski
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Katrin Borucki
- Institute of Clinical Chemistry, Department of Pathobiochemistry, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Marisa Mitchell-Flack
- Department of Oncology, The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Martin Böttcher
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dimitrios Mougiakakos
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
30
|
Varela ML, Comba A, Faisal SM, Argento A, Franson A, Barissi MN, Sachdev S, Castro MG, Lowenstein PR. Gene Therapy for High Grade Glioma: The Clinical Experience. Expert Opin Biol Ther 2023; 23:145-161. [PMID: 36510843 PMCID: PMC9998375 DOI: 10.1080/14712598.2022.2157718] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION High-grade gliomas (HGG) are the most common malignant primary brain tumors in adults, with a median survival of ~18 months. The standard of care (SOC) is maximal safe surgical resection, and radiation therapy with concurrent and adjuvant temozolomide. This protocol remains unchanged since 2005, even though HGG median survival has marginally improved. AREAS COVERED Gene therapy was developed as a promising approach to treat HGG. Here, we review completed and ongoing clinical trials employing viral and non-viral vectors for adult and pediatric HGG, as well as the key supporting preclinical data. EXPERT OPINION These therapies have proven safe, and pre- and post-treatment tissue analyses demonstrated tumor cell lysis, increased immune cell infiltration, and increased systemic immune function. Although viral therapy in clinical trials has not yet significantly extended the survival of HGG, promising strategies are being tested. Oncolytic HSV vectors have shown promising results for both adult and pediatric HGG. A recently published study demonstrated that HG47Δ improved survival in recurrent HGG. Likewise, PVSRIPO has shown survival improvement compared to historical controls. It is likely that further analysis of these trials will stimulate the development of new administration protocols, and new therapeutic combinations that will improve HGG prognosis.
Collapse
Affiliation(s)
- Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Syed M Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anna Argento
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Franson
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Marcus N Barissi
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Sean Sachdev
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
31
|
Liu Y, Li N, Jiang W, Geng Q. [Recent Progress of Nano-drug Combined with Chimeric Antigen Receptor T Cell
Therapy in the Treatment of Soild Tumors]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:59-65. [PMID: 36792082 PMCID: PMC9987048 DOI: 10.3779/j.issn.1009-3419.2023.102.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has shown remarkable success in treating hematological malignancies. However, CAR-T therapy for solid tumors is still limited due to the unique solid-tumor microenvironment and heterogeneous target antigen expression, which leads to an urgent need of combining other therapies. At present, nano delivery system has become one of the most promising directions for the development of anti-tumor drugs. Based on the background of CAR-T and tumor treatment, we focus on the research progress of nanomedicine combined with CAR-T therapy, and systematically review the strategies and examples in recent years in the aspects of in vivo delivery of mRNA, regulation of tumor microenvironment, combination with photothermal therapy. And we also look forward to the future direction of this filed.
.
Collapse
Affiliation(s)
- Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenyang Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
32
|
Frigault M, Rotte A, Ansari A, Gliner B, Heery C, Shah B. Dose fractionation of CAR-T cells. A systematic review of clinical outcomes. J Exp Clin Cancer Res 2023; 42:11. [PMID: 36627710 PMCID: PMC9830795 DOI: 10.1186/s13046-022-02540-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/18/2022] [Indexed: 01/12/2023] Open
Abstract
CAR-T cells are widely recognized for their potential to successfully treat hematologic cancers and provide durable response. However, severe adverse events such as cytokine release syndrome (CRS) and neurotoxicity are concerning. Our goal is to assess CAR-T cell clinical trial publications to address the question of whether administration of CAR-T cells as dose fractions reduces toxicity without adversely affecting efficacy. Systematic literature review of studies published between January 2010 and May 2022 was performed on PubMed and Embase to search clinical studies that evaluated CAR-T cells for hematologic cancers. Studies published in English were considered. Studies in children (age < 18), solid tumors, bispecific CAR-T cells, and CAR-T cell cocktails were excluded. Data was extracted from the studies that met inclusion and exclusion criteria. Review identified a total of 18 studies that used dose fractionation. Six studies used 2-day dosing schemes and 12 studies used 3-day schemes to administer CAR-T cells. Three studies had both single dose and fractionated dose cohorts. Lower incidence of Grade ≥ 3 CRS and neurotoxicity was seen in fractionated dose cohorts in 2 studies, whereas 1 study reported no difference between single and fractionated dose cohorts. Dose fractionation was mainly recommended for high tumor burden patients. Efficacy of CAR-T cells in fractionated dose was comparable to single dose regimen within the same or historical trial of the same agent in all the studies. The findings suggest that administering dose fractions of CAR-T cells over 2-3 days instead of single dose infusion may mitigate the toxicity of CAR-T cell therapy including CRS and neurotoxicity, especially in patients with high tumor burden. However, controlled studies are likely needed to confirm the benefits of dose fractionation.
Collapse
Affiliation(s)
- Matthew Frigault
- Massachusetts General Hospital Cancer Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Daei Sorkhabi A, Mohamed Khosroshahi L, Sarkesh A, Mardi A, Aghebati-Maleki A, Aghebati-Maleki L, Baradaran B. The current landscape of CAR T-cell therapy for solid tumors: Mechanisms, research progress, challenges, and counterstrategies. Front Immunol 2023; 14:1113882. [PMID: 37020537 PMCID: PMC10067596 DOI: 10.3389/fimmu.2023.1113882] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/28/2023] [Indexed: 04/07/2023] Open
Abstract
The successful outcomes of chimeric antigen receptor (CAR) T-cell therapy in treating hematologic cancers have increased the previously unprecedented excitement to use this innovative approach in treating various forms of human cancers. Although researchers have put a lot of work into maximizing the effectiveness of these cells in the context of solid tumors, few studies have discussed challenges and potential strategies to overcome them. Restricted trafficking and infiltration into the tumor site, hypoxic and immunosuppressive tumor microenvironment (TME), antigen escape and heterogeneity, CAR T-cell exhaustion, and severe life-threatening toxicities are a few of the major obstacles facing CAR T-cells. CAR designs will need to go beyond the traditional architectures in order to get over these limitations and broaden their applicability to a larger range of malignancies. To enhance the safety, effectiveness, and applicability of this treatment modality, researchers are addressing the present challenges with a wide variety of engineering strategies as well as integrating several therapeutic tactics. In this study, we reviewed the antigens that CAR T-cells have been clinically trained to recognize, as well as counterstrategies to overcome the limitations of CAR T-cell therapy, such as recent advances in CAR T-cell engineering and the use of several therapies in combination to optimize their clinical efficacy in solid tumors.
Collapse
Affiliation(s)
- Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Leili Aghebati-Maleki, ; Behzad Baradaran,
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Leili Aghebati-Maleki, ; Behzad Baradaran,
| |
Collapse
|
34
|
Wang H, Xu Y, Zuo F, Liu J, Yang J. Immune-based combination therapy for esophageal cancer. Front Immunol 2022; 13:1020290. [PMID: 36591219 PMCID: PMC9797857 DOI: 10.3389/fimmu.2022.1020290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Esophageal cancer (EC) is an aggressive malignancy raising a healthcare concern worldwide. Standard treatment options include surgical resection, chemotherapy, radiation therapy, and targeted molecular therapy. The five-year survival rate for all stages of EC is approximately 20%, ranging from 5% to 47%, with a high recurrence rate and poor prognosis after treatment. Immunotherapy has shown better efficacy and tolerance than conventional therapies for several malignancies. Immunotherapy of EC, including immune checkpoint inhibitors, cancer vaccines, and adoptive cell therapy, has shown clinical advantages. In particular, monoclonal antibodies against PD-1 have a satisfactory role in combination therapy and are recommended for first- or second-line treatments. Here, we present a systematic summary and analysis of immunotherapy-based combination therapies for EC.
Collapse
Affiliation(s)
- Huiling Wang
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yufei Xu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Fengli Zuo
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Junzhi Liu
- West China School of Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Jiqiao Yang
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China,Breast Center, West China Hospital of Sichuan University, Chengdu, China,*Correspondence: Jiqiao Yang,
| |
Collapse
|
35
|
Najafi S, Majidpoor J, Mortezaee K. The impact of microbiota on PD-1/PD-L1 inhibitor therapy outcomes: A focus on solid tumors. Life Sci 2022; 310:121138. [DOI: 10.1016/j.lfs.2022.121138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/02/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
36
|
Keshavarz A, Salehi A, Khosravi S, Shariati Y, Nasrabadi N, Kahrizi MS, Maghsoodi S, Mardi A, Azizi R, Jamali S, Fotovat F. Recent findings on chimeric antigen receptor (CAR)-engineered immune cell therapy in solid tumors and hematological malignancies. Stem Cell Res Ther 2022; 13:482. [PMID: 36153626 PMCID: PMC9509604 DOI: 10.1186/s13287-022-03163-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/12/2022] [Indexed: 11/10/2022] Open
Abstract
Advancements in adoptive cell therapy over the last four decades have revealed various new therapeutic strategies, such as chimeric antigen receptors (CARs), which are dedicated immune cells that are engineered and administered to eliminate cancer cells. In this context, CAR T-cells have shown significant promise in the treatment of hematological malignancies. However, many obstacles limit the efficacy of CAR T-cell therapy in both solid tumors and hematological malignancies. Consequently, CAR-NK and CAR-M cell therapies have recently emerged as novel therapeutic options for addressing the challenges associated with CAR T-cell therapies. Currently, many CAR immune cell trials are underway in various human malignancies around the world to improve antitumor activity and reduce the toxicity of CAR immune cell therapy. This review will describe the comprehensive literature of recent findings on CAR immune cell therapy in a wide range of human malignancies, as well as the challenges that have emerged in recent years.
Collapse
Affiliation(s)
- Ali Keshavarz
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Salehi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Islamic Azad University,, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Setareh Khosravi
- Department of Orthodontics, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Yasaman Shariati
- Department of General Surgery, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Navid Nasrabadi
- Department of Endodontics, School of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Sairan Maghsoodi
- Department of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amirhossein Mardi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramyar Azizi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Jamali
- Department of Endodontics, College of Stomatology, Stomatological Hospital, Xi’an Jiaotong University, Shaanxi, People’s Republic of China
| | - Farnoush Fotovat
- Department of Prosthodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
37
|
Hintzen G, Dulat HJ, Rajkovic E. Engaging innate immunity for targeting the epidermal growth factor receptor: Therapeutic options leveraging innate immunity versus adaptive immunity versus inhibition of signaling. Front Oncol 2022; 12:892212. [PMID: 36185288 PMCID: PMC9518002 DOI: 10.3389/fonc.2022.892212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a key player in the normal tissue physiology and the pathology of cancer. Therapeutic approaches have now been developed to target oncogenic genetic aberrations of EGFR, found in a subset of tumors, and to take advantage of overexpression of EGFR in tumors. The development of small-molecule inhibitors and anti-EGFR antibodies targeting EGFR activation have resulted in effective but limited treatment options for patients with mutated or wild-type EGFR-expressing cancers, while therapeutic approaches that deploy effectors of the adaptive or innate immune system are still undergoing development. This review discusses EGFR-targeting therapies acting through distinct molecular mechanisms to destroy EGFR-expressing cancer cells. The focus is on the successes and limitations of therapies targeting the activation of EGFR versus those that exploit the cytotoxic T cells and innate immune cells to target EGFR-expressing cancer cells. Moreover, we discuss alternative approaches that may have the potential to overcome limitations of current therapies; in particular the innate cell engagers are discussed. Furthermore, this review highlights the potential to combine innate cell engagers with immunotherapies, to maximize their effectiveness, or with unspecific cell therapies, to convert them into tumor-specific agents.
Collapse
|
38
|
Rendo MJ, Joseph JJ, Phan LM, DeStefano CB. CAR T-Cell Therapy for Patients with Multiple Myeloma: Current Evidence and Challenges. Blood Lymphat Cancer 2022; 12:119-136. [PMID: 36060553 PMCID: PMC9439649 DOI: 10.2147/blctt.s327016] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022]
Abstract
The therapeutic landscape of multiple myeloma (MM) has benefited from an emergence of novel therapies over the last decade. By inducing T-cell kill of target cancer cells, chimeric antigen receptor (CAR) T-cell therapies have improved outcomes of patients with hematologic malignancies. B-cell maturation antigen (BCMA) is the current target antigen of choice for most CAR T-cell products under investigation for MM. However, their shortcomings deal with logistical and clinical challenges, including limited availability, manufacturing times, and toxicities. This article provides an overview of recently developed and investigational CAR T-cell therapies for MM, highlighting current evidence and challenges.
Collapse
Affiliation(s)
- Matthew J Rendo
- Department of Hematology/Oncology, Brooke Army Medical Center, San Antonio, TX, USA
| | - Jacinth J Joseph
- Blood and Marrow Transplant Center, Methodist Le Bonheur Healthcare, Memphis, TN, USA
| | - Liem Minh Phan
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis Air Force Base, CA, USA
| | - Christin B DeStefano
- Department of Hematology/Oncology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| |
Collapse
|
39
|
Functionalized chitosan as a promising platform for cancer immunotherapy: A review. Carbohydr Polym 2022; 290:119452. [DOI: 10.1016/j.carbpol.2022.119452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/20/2022]
|
40
|
McCue AC, Yao Z, Kuhlman B. Advances in modular control of CAR-T therapy with adapter-mediated CARs. Adv Drug Deliv Rev 2022; 187:114358. [PMID: 35618140 PMCID: PMC9939278 DOI: 10.1016/j.addr.2022.114358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 11/01/2022]
Abstract
Protein engineering has contributed to successes in the field of T cell-based immunotherapy, including chimeric antigen receptor (CAR) T cell therapy. CAR T cell therapy has become a pillar of cancer immunotherapy, demonstrating clinical effectiveness against B cell malignancies by targeting the B cell antigen CD19. Current gene editing techniques have limited safety controls over CAR T cell activity, which presents a hurdle for control of CAR T cells in patients. Alternatively, CAR T cell activity can be controlled by engineering CARs to bind soluble adapter molecules that direct the interaction between the CAR T cell and target cell. The flexibility in this adapter-mediated approach overcomes the rigid specificity of traditional CAR T cells to allow targeting of multiple cell types. Here we describe adapter CAR T technologies and how these methods emphasize the growing role of protein engineering in the design of programmable tools for T cell therapies.
Collapse
Affiliation(s)
- Amelia C McCue
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Zhiyuan Yao
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27514, USA.
| |
Collapse
|
41
|
Sun J, Li X, Chen P, Gao Y. From Anti-HER-2 to Anti-HER-2-CAR-T Cells: An Evolutionary Immunotherapy Approach for Gastric Cancer. J Inflamm Res 2022; 15:4061-4085. [PMID: 35873388 PMCID: PMC9304417 DOI: 10.2147/jir.s368138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Current Therapeutic modalities provide no survival advantage to gastric cancer (GC) patients. Targeting the human epidermal growth factor receptor-2 (HER-2) is a viable therapeutic strategy against advanced HER-2 positive GC. Antibody-drug conjugates, small-molecule tyrosine kinase inhibitors (TKIs), and bispecific antibodies are emerging as novel drug forms that may abrogate the resistance to HER-2-specific drugs and monoclonal antibodies. Chimeric antigen receptor-modified T cells (CAR-T) targeting HER-2 have shown considerable therapeutic potential in GC and other solid tumors. However, due to the high heterogeneity along with the complex tumor microenvironment (TME) of GC that often leads to immune escape, the immunological treatment of GC still faces many challenges. Here, we reviewed and discussed the current progress in the research of anti-HER-2-CAR-T cell immunotherapy against GC.
Collapse
Affiliation(s)
- Jiangang Sun
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Xiaojing Li
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Peng Chen
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yongshun Gao
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| |
Collapse
|
42
|
Sun J, Li L, Chen H, Gan L, Guo X, Sun J. Identification and Validation of an m7G-Related lncRNAs Signature for Prognostic Prediction and Immune Function Analysis in Endometrial Cancer. Genes (Basel) 2022; 13:genes13081301. [PMID: 35893039 PMCID: PMC9330151 DOI: 10.3390/genes13081301] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Background: N7-methylguanosine is a novel kind of internal modification that is widespread in human mRNA. The relationship between m7G-related lncRNAs (MRL) and endometrial cancer remains unknown. The aim of our study is to explore a predictive prognosis MRL signature in endometrial cancer and identify the underlying biological mechanism. Methods: We obtained RNA-seq profiles, clinical data, and information on somatic mutations from the TCGA database and obtained m7G-related genes from a previous study. MRLs were identified through a co-expression network. The prognostic model was constructed based on 10 m7G-related lncRNAs. Differentially expressed genes between low- and high-risk groups were identified for further analysis, consisting of functional enrichment analysis, immune function analysis, somatic mutation analysis, and potential drugs exploration. Results: We constructed a 10-MRLs signature. According to the risk score, the signature was classified into high- and low-risk groups. The signature had a reliable capacity for predicting the prognosis of endometrial cancer patients. The findings about differentially expressed genes were also of great significance for therapeutic treatments for endometrial cancer and gave novel insights into exploring the underlying molecular mechanism. Conclusion: The prognostic model based on 10 MRLs is a reliable and promising approach for predicting clinical outcomes and suggesting therapeutic methods for endometrial cancer patients.
Collapse
|
43
|
Khan I, Baig MH, Mahfooz S, Imran MA, Khan MI, Dong JJ, Cho JY, Hatiboglu MA. Nanomedicine for Glioblastoma: Progress and Future Prospects. Semin Cancer Biol 2022; 86:172-186. [PMID: 35760272 DOI: 10.1016/j.semcancer.2022.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
Glioblastoma is the most aggressive form of brain tumor, accounting for the highest mortality and morbidity rates. Current treatment for patients with glioblastoma includes maximal safe tumor resection followed by radiation therapy with concomitant temozolomide (TMZ) chemotherapy. The addition of TMZ to the conformal radiation therapy has improved the median survival time only from 12 months to 16 months in patients with glioblastoma. Despite these aggressive treatment strategies, patients' prognosis remains poor. This therapeutic failure is primarily attributed to the blood-brain barrier (BBB) that restricts the transport of TMZ from reaching the tumor site. In recent years, nanomedicine has gained considerable attention among researchers and shown promising developments in clinical applications, including the diagnosis, prognosis, and treatment of glioblastoma tumors. This review sheds light on the morphological and physiological complexity of the BBB. It also explains the development of nanomedicine strategies to enhance the permeability of drug molecules across the BBB.
Collapse
Affiliation(s)
- Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, Istanbul, Turkey
| | - Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, Istanbul, Turkey
| | - Mohammad Azhar Imran
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Mohd Imran Khan
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Jae Yong Cho
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea.
| | - Mustafa Aziz Hatiboglu
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, Istanbul, Turkey; Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey.
| |
Collapse
|
44
|
Small-molecule enhancers of CRISPR-induced homology-directed repair in gene therapy: A medicinal chemist's perspective. Drug Discov Today 2022; 27:2510-2525. [PMID: 35738528 DOI: 10.1016/j.drudis.2022.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/19/2022] [Accepted: 06/16/2022] [Indexed: 11/20/2022]
Abstract
CRISPR technologies are increasingly being investigated and utilized for the treatment of human genetic diseases via genome editing. CRISPR-Cas9 first generates a targeted DNA double-stranded break, and a functional gene can then be introduced to replace the defective copy in a precise manner by templated repair via the homology-directed repair (HDR) pathway. However, this is challenging owing to the relatively low efficiency of the HDR pathway compared with a rival random repair pathway known as non-homologous end joining (NHEJ). Small molecules can be employed to increase the efficiency of HDR and decrease that of NHEJ to improve the efficiency of precise knock-in genome editing. This review discusses the potential usage of such small molecules in the context of gene therapy and their drug-likeness, from a medicinal chemist's perspective.
Collapse
|
45
|
Inci N, Kamali D, Akyildiz EO, Tahir Turanli E, Bozaykut P. Translation of Cellular Senescence to Novel Therapeutics: Insights From Alternative Tools and Models. FRONTIERS IN AGING 2022; 3:828058. [PMID: 35821852 PMCID: PMC9261353 DOI: 10.3389/fragi.2022.828058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/12/2022] [Indexed: 01/10/2023]
Abstract
Increasing chronological age is the greatest risk factor for human diseases. Cellular senescence (CS), which is characterized by permanent cell-cycle arrest, has recently emerged as a fundamental mechanism in developing aging-related pathologies. During the aging process, senescent cell accumulation results in senescence-associated secretory phenotype (SASP) which plays an essential role in tissue dysfunction. Although discovered very recently, senotherapeutic drugs have been already involved in clinical studies. This review gives a summary of the molecular mechanisms of CS and its role particularly in the development of cardiovascular diseases (CVD) as the leading cause of death. In addition, it addresses alternative research tools including the nonhuman and human models as well as computational techniques for the discovery of novel therapies. Finally, senotherapeutic approaches that are mainly classified as senolytics and senomorphics are discussed.
Collapse
Affiliation(s)
- Nurcan Inci
- Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Dilanur Kamali
- Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Erdogan Oguzhan Akyildiz
- Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Eda Tahir Turanli
- Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Perinur Bozaykut
- Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
46
|
Abstract
Genetic modification of T cells to express chimeric antigen receptors (CARs) has yielded remarkable clinical outcomes and initiated a novel era for cancer immunotherapy. The impressive clinical responses seen in hematologic malignancies have led to the investigation of CAR T cells in solid tumors but attaining similar results has been challenging to date. Glioblastoma (GBM) presents a particularly challenging malignancy for treatment and despite some progress in treatments over the past decade, prognosis remains poor for the vast majority of patients. However, recent data support the clinical efficacy and safety of CAR T cell therapy in GBM. In this review, common challenges associated with treating GBM will be discussed in addition to how CAR T cells can overcome such barriers. Additionally, emerging techniques of optimizing CAR T cell therapy for GBM will be emphasized, highlighting the prospective promise of cellular immunotherapy.
Collapse
|
47
|
Xu H, Jiao D, Liu A, Wu K. Tumor organoids: applications in cancer modeling and potentials in precision medicine. J Hematol Oncol 2022; 15:58. [PMID: 35551634 PMCID: PMC9103066 DOI: 10.1186/s13045-022-01278-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a top-ranked life-threatening disease with intratumor heterogeneity. Tumor heterogeneity is associated with metastasis, relapse, and therapy resistance. These factors contribute to treatment failure and an unfavorable prognosis. Personalized tumor models faithfully capturing the tumor heterogeneity of individual patients are urgently needed for precision medicine. Advances in stem cell culture have given rise to powerful organoid technology for the generation of in vitro three-dimensional tissues that have been shown to more accurately recapitulate the structures, specific functions, molecular characteristics, genomic alterations, expression profiles, and tumor microenvironment of primary tumors. Tumoroids in vitro serve as an important component of the pipeline for the discovery of potential therapeutic targets and the identification of novel compounds. In this review, we will summarize recent advances in tumoroid cultures as an excellent tool for accurate cancer modeling. Additionally, vascularization and immune microenvironment modeling based on organoid technology will also be described. Furthermore, we will summarize the great potential of tumor organoids in predicting the therapeutic response, investigating resistance-related mechanisms, optimizing treatment strategies, and exploring potential therapies. In addition, the bottlenecks and challenges of current tumoroids will also be discussed in this review.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Aiguo Liu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kongming Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
48
|
Li J, Wu Z, Wang J, Wu T, Shen Z, Zhang L, Lv J, Bai J, Feng Y. Necdin, one of the important pathway proteins in the regulation of osteosarcoma progression by microRNA-200c. Bioengineered 2022; 13:8915-8925. [PMID: 35333696 PMCID: PMC9161937 DOI: 10.1080/21655979.2022.2056693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
MicroRNA-200c (miR-200c) generally acts as a tumor suppressor in multiple cancer types and a promising therapeutic target in tumorigenesis. However, only a few studies have explained the role of miR-200c in the development of osteosarcoma (OS). In this study, we investigated the role of miR-200c in OS progression and identified the regulatory pathway protein NDN involved in inhibiting the occurrence and development of OS. Firstly, we found that miR-200c is downregulated in OS cells and tissues. As well, in vitro and in vivo experiments showed that upregulating miR-200c inhibits the proliferation, invasion, metastasis of Saos-2 cells, promotes the apoptosis of Saos-2 cells and suppresses tumor growth in mice, indicating miR-200c plays a major role in regulating the OS progression. Furthermore, bioinformatics analysis showed that an anti-tumor protein, necdin (NDN), might be a potential target by miR-200c. To verify this hypothesis, we measured the expression level of NDN in OS cells and tissues and found NDN is downregulated, suggesting NDN is functional in OS progression. Moreover, we found that the expression levels of NDN and miR-200c in in vivo and in vitro experiments were positively correlated. However, the results of dual-luciferase reporter gene experiment showed miR-200c does not directly act on the 3ʹ untranslated region (UTR) of NDN gene, indicating that NDN might be an important pathway protein which regulates OS progression in the presence of miR-200c. Therefore, miR-200c/NDN could be potential targets for developing effective treatment against OS.
Collapse
Affiliation(s)
- Jian Li
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, ShanXi, China
| | - Zhuangzhuang Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiani Wang
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, ShanXi, China
| | - Taiyong Wu
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, ShanXi, China
| | - Zhen Shen
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, ShanXi, China
| | - Long Zhang
- Second Clinical Medical College, Xiamen University, Xiamen, Fujian, China
| | - Jia Lv
- Department of Orthopaedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junjun Bai
- Department of Orthopaedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yi Feng
- Department of Orthopaedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
49
|
Abstract
CAR-T cell therapy has been heralded as a breakthrough in the field of immunotherapy, but to date, this success has been limited to hematological malignancies. By harnessing the chemokine system and taking into consideration the chemokine expression profile in the tumor microenvironment, CAR-T cells may be homed into tumors to facilitate direct tumor cell cytolysis and overcome a major hurdle in generating effective CAR-T cell responses to solid cancers.
Collapse
Affiliation(s)
- Jade Foeng
- Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Carina Biotech, Innovation and Collaboration Centre, The University of South Australia, Adelaide, SA 5000, Australia
| | - Iain Comerford
- Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shaun R. McColl
- Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Carina Biotech, Innovation and Collaboration Centre, The University of South Australia, Adelaide, SA 5000, Australia
- Corresponding author
| |
Collapse
|
50
|
Luo Q, Napoleon JV, Liu X, Zhang B, Zheng S, Low PS. Targeted Rejuvenation of Exhausted Chimeric Antigen Receptor T-cells Regresses Refractory Solid Tumors. Mol Cancer Res 2022; 20:823-833. [DOI: 10.1158/1541-7786.mcr-21-0711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/20/2021] [Accepted: 01/27/2022] [Indexed: 11/16/2022]
|