1
|
Yi E, Lee E, Park HJ, Lee HH, Yun SH, Kim HS. A chimeric antigen receptor tailored to integrate complementary activation signals potentiates the antitumor activity of NK cells. J Exp Clin Cancer Res 2025; 44:86. [PMID: 40045373 PMCID: PMC11884141 DOI: 10.1186/s13046-025-03351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Chimeric antigen receptors (CARs) are synthetic receptors that reprogram the target specificity and functions of CAR-expressing effector cells. The design of CAR constructs typically includes an extracellular antigen-binding moiety, hinge (H), transmembrane (TM), and intracellular signaling domains. Conventional CAR constructs are primarily designed for T cells but have been directly adopted for other effector cells, including natural killer (NK) cells, without tailored optimization. Given the benefits of CAR-NK cells over CAR-T cells in terms of safety, off-the-shelf utility, and antigen escape, there is an increasing emphasis on tailoring them to NK cell activation mechanisms. METHODS We first have taken a stepwise approach to modifying CAR components such as the combination and order of the H, TM, and signaling domains to achieve such tailoring in NK cells. Functionality of NK-tailored CARs were evaluated in vitro and in vivo in a model of CD19-expressing lymphoma, along with their expression and signaling properties in NK cells. RESULTS We found that NK-CAR driven by the synergistic combination of NK receptors NKG2D and 2B4 rather than DNAM-1 and 2B4 induces potent activation in NK cells. Further, more effective CAR-mediated cytotoxicity was observed following the sequential combination of DAP10, but not NKG2D TM, with 2B4 signaling domain despite the capacity of NKG2D TM to recruit endogenous DAP10 for signaling. Accordingly, an NK-CAR incorporating DAP10, 2B4, and CD3ζ signaling domains coupled to CD8α H and CD28 TM domains was identified as the most promising candidate to improve CAR-mediated cytotoxicity. This NK-tailored CAR provided more potent antitumor activity than a conventional T-CAR when delivered to NK cells both in vitro and in vivo. CONCLUSIONS Hence, NK receptor-based domains hold great promise for the future of NK-CAR design with potentially significant therapeutic benefits.
Collapse
Affiliation(s)
- Eunbi Yi
- Department of Microbiology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eunbi Lee
- Department of Microbiology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyo Jin Park
- Department of Microbiology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyeon Ho Lee
- Department of Microbiology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - So Hyeon Yun
- Department of Microbiology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hun Sik Kim
- Department of Microbiology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Cho S, Choi SH, Maeng E, Park H, Ryu KS, Park KS. Boosting tumor homing of endogenous natural killer cells via therapeutic secretomes of chemically primed natural killer cells. J Immunother Cancer 2025; 13:e010371. [PMID: 40044578 PMCID: PMC11883546 DOI: 10.1136/jitc-2024-010371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/14/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Natural killer (NK) cells play a critical role in modulating immune responses by secreting soluble factors, including chemotactic cytokines. Our previous study demonstrated the potent antitumor activity of Chem_NK, referring to NK cells chemically primed with 25 kDa branched polyethyleneimine. However, the potential of Chem_NK secretomes to educate other NK cells and enhance their tumor-homing ability remains unexplored. METHODS The effects of Chem_NK conditioned media (Chem CM) on NK cells were evaluated in vitro by examining chemokine receptor expression and migration toward cancer cells. In vivo, the impact of Chem_NK and Chem CM on endogenous NK cell populations was assessed using xenograft and syngeneic mouse tumor models. Cytokine array and signaling analyses were performed to identify factors secreted by Chem_NK and their role in activating recipient NK cells. RESULTS Chem CM effectively educated NK cells in vitro, enhancing chemokine receptor expression and improving their migration toward cancer cells. In vivo, adoptively transferred Chem_NK increased endogenous NK cell populations within xenograft tumors. Furthermore, direct injection of Chem CM into a syngeneic mouse tumor model significantly promoted endogenous NK cell infiltration into tumors and suppressed lung metastasis. Cytokine analysis revealed that Chem_NK secreted high levels of cytokines, which activated ERK1/2 signaling in recipient NK cells, leading to upregulation of chemokine receptors. CONCLUSIONS Chem_NK secretomes effectively enhance the tumor-homing ability of NK cells and amplify antitumor efficacy by educating other NK cells. These findings offer novel insights into activated NK cell-mediated immune communication and highlight the therapeutic potential of NK cell-derived secretomes in cancer therapy.
Collapse
Affiliation(s)
- Seohyun Cho
- Division of life science, Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Seung Hee Choi
- Division of life science, Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Eunchong Maeng
- Division of life science, Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Hail Park
- Division of life science, Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Ki Seo Ryu
- Division of life science, Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Kyung-Soon Park
- Division of life science, Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| |
Collapse
|
3
|
Nakamura K, Ida N, Hirasawa A, Okamoto K, Vu TH, Hai Ly DT, Masuyama H. CD63 as a potential biomarker for patients with ovarian cancer. Eur J Obstet Gynecol Reprod Biol 2025; 306:87-93. [PMID: 39799740 DOI: 10.1016/j.ejogrb.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/12/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
INTRODUCTION Exosomes play an important role in regulating physiological processes and mediating the systemic dissemination of various types of cancer. We investigated the association of exosomal tetraspanins CD9, CD63, and CD81 in patients with ovarian cancer (OC). MATERIAL AND METHODS We measured the plasma tetraspanins CD9, CD63, and CD81 by enzyme-linked immunosorbent assay in 91 patients who underwent treatment for OC between April 2018 and March 2024. Additionally, we analyzed clinical pathologic factors, chemotherapy response, and prognosis. RESULTS In terms of stages, CD63 expression was significantly higher in patients with stage IV compared to those with stage I OC (p = 0.003). In terms of histological type, CD63 expression was significantly higher in high-grade serous carcinoma (HGSC) than in clear cell carcinoma (CCC) with OC (p = 0.009). Furthermore, CD63 levels were significantly higher in advanced-stage, HGSC than in patients with early-stage, non-HGSC and early-stage, HGSC OC (p = 0.045 and p = 0.002, respectively). In the Neoadjuvant chemotherapy (NAC) of 12 patients with OC assessed as having either a partial response (PR) or complete response (CR), CD63 was significantly decreased (p = 0.043), whereas perforin was significantly increased (p = 0.001). In the NAC of 16 patients with OC, CD63 of the response rate to chemotherapy tended to differ between the progressive disease (PD) and PR/CR groups (p = 0.056). A moderate inverse correlation was observed between CD63 and perforin levels (R = 0.638, R2 = 0.428, p = 0.008). CONCLUSIONS CD63 could be a potential biomarker for all types of OC patients.
Collapse
Affiliation(s)
- Keiichiro Nakamura
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho kitaku, Okayama 700-8558, Japan.
| | - Naoyuki Ida
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho kitaku, Okayama 700-8558, Japan
| | - Akira Hirasawa
- Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho kitaku, Okayama 700-8558, Japan.
| | - Kazuhiro Okamoto
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho kitaku, Okayama 700-8558, Japan
| | - Thuy Ha Vu
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho kitaku, Okayama 700-8558, Japan
| | - Dao Thi Hai Ly
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho kitaku, Okayama 700-8558, Japan.
| | - Hisashi Masuyama
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho kitaku, Okayama 700-8558, Japan.
| |
Collapse
|
4
|
Zhu L, Zhao C. Identify key genes and biological processes participated in obesity-related cancer based on studying 12 cancers. Int J Biochem Cell Biol 2025; 182-183:106764. [PMID: 40023314 DOI: 10.1016/j.biocel.2025.106764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/11/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Obesity significantly increases the risk of various diseases, particularly cancers, which present a serious threat to public health. Therefore, identifying cancers related to obesity and exploring their pathological pathways and key genes are highly significant for the prevention and treatment of these cancers. In this study, we propose the obesity and cancer edge connectivity based on expanded modular disease genes and expanded modular networks (OCEC_eDMN) algorithm, which based on the disease-related genes, Biological Process (BP) genes, and Protein-Potein Interaction (PPI) network. The algorithm utilizes Random Walk with Restart (RWR) to expand BP genes and disease genes to generate the expanded modular networks (eMNs) and disease genes (eMDs). Finally, this algorithm calculates the average interaction number between eMDs on eMNs. We utilize OCEC_eDMN to predict the ranking of 12 cancers related to obesity/morbid obesity and obtain an AUC of 0.93/0.84. Additionally, OCEC_eDMN reveals the significant BPs associated with obesity-cancer connections. For instance, "gluconeogenesis" plays a critical role in the connections between obesity and cancers. Through key driver analysis (KDA) on eMDs, we identify the key connectors in obesity-cancer connections. Genes such as GRB2 are instrumental in linking morbid obesity to colorectal cancer in the eMNs of "response to molecule of bacterial origin". The significant eMNs and key genes provide valuable references for the prevention and treatment of obesity-related cancers and carry important theoretical implications.
Collapse
Affiliation(s)
- Lijuan Zhu
- Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China.
| | - Cuicui Zhao
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
In H, Park M, Lee H, Han KH. Immune Cell Engagers: Advancing Precision Immunotherapy for Cancer Treatment. Antibodies (Basel) 2025; 14:16. [PMID: 39982231 PMCID: PMC11843982 DOI: 10.3390/antib14010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
Immune cell engagers (ICEs) are an emerging class of immunotherapies designed to harness the immune system's anti-tumor potential through precise targeting and activation of immune effector cells. By engaging T cells, natural killer (NK) cells, and phagocytes, ICEs overcome challenges such as immune evasion and MHC downregulation, addressing critical barriers in cancer treatment. T-cell engagers (TCEs), led by bispecific T-cell engagers (BiTEs), dominate the field, with innovations such as half-life-extended BiTEs, trispecific antibodies, and checkpoint inhibitory T-cell engagers driving their application in hematologic and solid malignancies. NK cell engagers (NKCEs) and phagocyte cell engagers (PCEs) are rapidly progressing, drawing on NK cells' innate cytotoxicity and macrophages' phagocytic abilities to target tumors, particularly in immunosuppressive microenvironments. Since the FDA approval of Blinatumomab in 2014, ICEs have transformed the oncology landscape, with nine FDA-approved products and numerous candidates in clinical trials. Despite challenges such as toxicity, resistance, and limited efficacy in solid tumors, ongoing research into advanced platforms and combination therapies highlights the growing potential of ICEs to provide personalized, scalable, and effective cancer treatments. This review investigates the mechanisms, platforms, research trends, and clinical progress of ICEs, emphasizing their pivotal role in advancing precision immunotherapy and their promise as a cornerstone of next-generation cancer therapies.
Collapse
Affiliation(s)
| | | | | | - Kyung Ho Han
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea
| |
Collapse
|
6
|
Koam D, Park HY, Kim DS, Kwon HJ, Lee Y, Kim K, Naito M, Kim HJ. Amphiphilic Polyaspartamide Derivatives with Cholesterol Introduction Enhanced Ex Vivo mRNA Transfection Efficiency to Natural Killer Cells. Biomacromolecules 2025; 26:1086-1097. [PMID: 39847497 DOI: 10.1021/acs.biomac.4c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Engineered natural killer (NK) cells eliminate cancer cells by overexpressing a chimeric antigen receptor, producing highly efficient and safe NK cell therapies. This study investigated the polyplex formulation for the fusion protein GreenLantern-natural killer group 2D (NKG2D) mRNA to evaluate its ex vivo delivery efficacy into NK cells, wherein NKG2D on the surface of NK cells recognized its counterpart NKG2D ligands on cancer cells. Amphiphilic polyaspartamide derivatives Chol-PAsp(DET/CHE) were prepared by adding cyclohexylethylamine (CHE) and diethylenetriamine (DET) in the side chains and cholesterol (Chol) at the α-terminus to enhance endosomal escapability and optimize hydrophobicity. Chol-PAsp(DET/CHE) significantly improved mRNA delivery efficacy into NK-92mi cells, explained by increased polyplex stability and improved cellular uptake of mRNA. The NKG2D-overexpressing NK-92mi cells exhibited high anticancer efficacy against human colon cancer cells without affecting the viability of fibroblasts. Therefore, Chol-PAsp(DET/CHE) could be a promising mRNA delivery carrier for the ex vivo engineering of NK cells.
Collapse
Affiliation(s)
- David Koam
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Ha Yeon Park
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Dong Sun Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeong Jin Kwon
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Yan Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, College of Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Mitsuru Naito
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hyun Jin Kim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Biohybrid Systems Research Center, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
7
|
Luo D, Liu Y, Lu Z, Huang L. Targeted therapy and immunotherapy for gastric cancer: rational strategies, novel advancements, challenges, and future perspectives. Mol Med 2025; 31:52. [PMID: 39923010 PMCID: PMC11806620 DOI: 10.1186/s10020-025-01075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/10/2025] [Indexed: 02/10/2025] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors worldwide, and its treatment has been a focus of medical research. Herein we systematically review the current status of and advancements in targeted therapy and immunotherapy for GC, which have emerged as important treatment strategies in recent years with great potential, and summarize the efficacy and safety of such treatments. Targeted therapies against key targets in GC, including epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), and vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR), have shown remarkable therapeutic efficacies by inhibiting tumor progression and/or blood supply. In particular, markable breakthroughs have been made in HER2-targeting drugs for HER2-positive GC patients. To address intrinsic and acquired resistances to HER2-targeting drugs, novel therapeutic agents including bispecific antibodies and antibody-drug conjugates (ADC) targeting HER2 have been developed. Immunotherapy enhances the recognition and elimination of cancer cells by activating body anticancer immune system. Programmed cell death protein 1 (PD-1) and programmed cell death-ligand 1 (PD-L1) antibodies are the most commonly used immunotherapeutic agents and have been used with some success in GC treatment. Innovative immunotherapy modalities, including adoptive immune cell therapy, tumor vaccines, and non-specific immunomodulators therapy, and oncolytic viruses have shown promise in early-stage clinical trials for GC. Clinical trials have supported that targeted therapy and immunotherapy can significantly improve the survival and quality of life of GC patients. However, the effects of such therapies need to be further improved and more personalized, with advancement in researches on tumor immune microenvironment. Further studies remain needed to address the issues of drug resistance and adverse events pertaining to such therapies for GC. The combined application of such therapies and individualized treatment strategies should be further explored with novel drugs developed, to provide more effective treatments for GC patients.
Collapse
Affiliation(s)
- Dong Luo
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, The First Affiliated Hospital of Naval Medical University/Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
- Center of Structural Heart Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunmei Liu
- School of Cultural Heritage and Information Management, Shanghai University, Shanghai, 200444, China.
| | - Zhengmao Lu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Lei Huang
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, The First Affiliated Hospital of Naval Medical University/Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
- National Key Laboratory of Immunity and Inflammation, Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University/Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
8
|
Ren Y, Xue M, Hui X, Liu X, Farooq MA, Chen Y, Ji Y, Duan Y, Ajmal I, Yao J, Jiang W. Chimeric cytokine receptor TGF-β RⅡ/IL-21R improves CAR-NK cell function by reversing the immunosuppressive tumor microenvironment of gastric cancer. Pharmacol Res 2025; 212:107637. [PMID: 39884449 DOI: 10.1016/j.phrs.2025.107637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
Gastric cancer remains a significant global health burden, characterized by regional variations in incidence and poor survival prospects in advanced stages. Natural killer (NK) cells play a crucial role in the body's anti-cancer defense, and chimeric antigen receptor (CAR)-NK cell therapy is gaining attention as a cutting-edge and promising treatment method. This study aims to tackle the challenge of TGF-β-mediated tumor immune evasion within the immunosuppressive tumor microenvironment by designing a novel chimeric cytokine receptor TRII/21 R, which consists of extracellular domains of TGF-β receptor II (TRII) and transmembrane and intracellular domains of IL-21 receptor (21 R) and can convert the immunosuppressive signal from TGF-β in the tumor microenvironment (TME) into an NK cell activation signal through the IL-21R-STAT3 pathway. We successfully constructed NKG2D-CAR-NK cells expressing TRII/21 R and demonstrated strong anti-tumor activity against cancer cells both in vitro and in vivo. The co-expression of TRII/21 R in CAR-NK cells enhanced the cytotoxicity, promoted proliferation and survival capabilities, and reduced the expression of exhaustion markers. In the xenograft mouse model, TRII/21R-CAR-NK cells significantly inhibited tumor growth and improved the survival rate of tumor-bearing mice compared to the mice receiving control CAR-NK cells. Additionally, TRII/21 R co-expression enhanced NK cells' infiltration, activation, and persistence within the tumor, indicating a robust anti-tumor response mediated by the JAK-STAT3 signaling pathway. This study underscores the therapeutic potential of TRII/21R-modified CAR-NK cells as a breakthrough strategy for combating cancer.
Collapse
MESH Headings
- Killer Cells, Natural/immunology
- Animals
- Tumor Microenvironment/immunology
- Humans
- Stomach Neoplasms/immunology
- Stomach Neoplasms/therapy
- Stomach Neoplasms/pathology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Cell Line, Tumor
- Receptor, Transforming Growth Factor-beta Type II/genetics
- Receptor, Transforming Growth Factor-beta Type II/metabolism
- Receptor, Transforming Growth Factor-beta Type II/immunology
- Mice
- Immunotherapy, Adoptive/methods
- NK Cell Lectin-Like Receptor Subfamily K/metabolism
- NK Cell Lectin-Like Receptor Subfamily K/immunology
- STAT3 Transcription Factor/metabolism
- STAT3 Transcription Factor/immunology
- Receptors, Interleukin-21/metabolism
- Receptors, Interleukin-21/genetics
- Mice, Inbred BALB C
- Signal Transduction
- Mice, Nude
Collapse
Affiliation(s)
- Yaojun Ren
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Min Xue
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xinhui Hui
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiuyu Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Muhammad Asad Farooq
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yiran Chen
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuzhou Ji
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yixin Duan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Iqra Ajmal
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jie Yao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
9
|
Sehl OC, Yang Y, Anjier AR, Nevozhay D, Cheng D, Guo K, Fellows B, Mohtasebzadeh AR, Mason EE, Sanders T, Kim P, Trease D, Koul D, Goodwill PW, Sokolov K, Wintermark M, Gordon N, Greve JM, Gopalakrishnan V. Preclinical and Clinical-Scale Magnetic Particle Imaging of Natural Killer Cells: in vitro and ex vivo Demonstration of Cellular Sensitivity, Resolution, and Quantification. Mol Imaging Biol 2025; 27:78-88. [PMID: 39653984 DOI: 10.1007/s11307-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/23/2024] [Accepted: 11/20/2024] [Indexed: 02/08/2025]
Abstract
PURPOSE Clinical adoption of NK cell immunotherapy is underway for medulloblastoma and osteosarcoma, however there is currently little feedback on cell fate after administration. We propose magnetic particle imaging (MPI) may have applications for the quantitative detection of NK cells. PROCEDURES Human-derived NK-92 cells were labeled by co-incubation with iron oxide nanoparticles (VivoTrax™) for 24 h then excess nanoparticles were washed with centrifugation. Cytolytic activity of labeled versus unlabeled NK-92 cells was assessed after 4 h of co-incubation with medulloblastoma cells (DAOY) or osteosarcoma cells (LM7 or OS17). Labeled NK-92 cells at two different doses (0.5 or 1 × 106) were administered to excised mouse brains (cerebellum), fibulas, and lungs then imaged by 3D preclinical MPI (MOMENTUM™) for detection relative to fiducial markers. NK-92 cells were also imaged by clinical-scale MPI under development at Magnetic Insight Inc. RESULTS NK-92 cells were labeled with an average of 3.17 pg Fe/cell with no measurable effects on cell viability or cytolytic activity against 3 tumor cell lines. MPI signal was directly quantitative with the number of labeled NK-92 cells, with preclinical limit of detection of 3.1 × 104 cells on MOMENTUM imager. Labeled NK-92 cells could be accurately localized in mouse brains, fibulas, and lungs within < 1 mm of stereotactic injection coordinates with preclinical scanner. Feasibility for detection on a clinical-scale MPI scanner was demonstrated using 4 × 107 labeled NK-92 cells, which is in the range of NK cell doses administered in our previous clinical trial. CONCLUSION MPI can provide sensitive, quantitative, and accurate spatial information on NK cells soon after delivery, showing initial promise to address a significant unmet clinical need to track NK cell fate in patients.
Collapse
Affiliation(s)
- Olivia C Sehl
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA.
| | - Yanwen Yang
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Ariana R Anjier
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Dmitry Nevozhay
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Donghang Cheng
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Kelvin Guo
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | | | | | - Erica E Mason
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | - Toby Sanders
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | - Petrina Kim
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | - David Trease
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | - Dimpy Koul
- Department of Neuroradiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Konstantin Sokolov
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Max Wintermark
- Department of Neuroradiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nancy Gordon
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Joan M Greve
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | - Vidya Gopalakrishnan
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA.
- Brain Tumor Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson- UT Health Graduate School of Biomedical Science, Houston, TX, USA.
| |
Collapse
|
10
|
Lin H, Ye S, Zhang S, Ge T, Li D, Huang L, Zhu L, Mu W. Optimizing the procedure for manufacturing clinical-grade genetically manipulated natural killer cells for adoptive immunotherapy. Cytotherapy 2025; 27:247-257. [PMID: 39570247 DOI: 10.1016/j.jcyt.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/23/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND AIMS Ex vivo-expanded natural killer (NK) cells hold significant potential as antitumor effector cells for adoptive immunotherapy. However, producing clinical-grade, genetically modified NK cells in sufficient quantities presents a considerable challenge. METHODS We tested RPMI 1640, KBM581, SCGM, NK MACS, X-VIVO 15 and AIM-V, each supplemented with fetal bovine serum, human AB serum, human platelet lysate or Immune Cell Serum Replacement (SR) combined with feeder cells, to produce cytotoxic NK cells. Subsequent analyses were conducted to assess cell viability, expansion folds, cytotoxicity, immunophenotype and transcriptome profile of NK cells under certain conditions. Furthermore, transfer plasmids varying in transgene size, promoter elements, backbones and packaging plasmids with different envelopes were used to transduce NK cells, and differences in transduction efficiency were compared. Nucleofection was performed every 2 days from day 0 to day 12 to determine the optimal time window for gene editing. RESULTS NK cells cultured in KBM581 medium supplemented with serum replacement exhibited the best expansion, achieving greater than 5000-fold increase within 2 weeks and exceeding 25 000-fold expansion within 3 weeks. In addition, NK cells cultured in KBM581 medium with human AB serum demonstrated the greatest cytolytic activities and exhibited greater expression of NKp30, 2B4, PRF1, granzyme B and IL2RG. Baboon envelope pseudotyped lentivirus outperformed baboon envelope-vesicular stomatitis virus type G hybrid envelope lentivirus, achieving robust NK-cell transduction. In addition, efficient gene knockout efficiency was achieved in NK cells on day 4 to day 6 post feeder cell activation using the LONZA DN-100 program, which can strike a balance between editing efficiency and cell expansion. CONCLUSIONS This research presents a Good Manufacturing Practice-compliant protocol using a feeder cell expansion system for the large-scale production of highly cytotoxic NK cells. The protocol facilitates genetic modification of these cells, positioning them as promising candidates for universal therapeutic applications in immunotherapy.
Collapse
Affiliation(s)
- Haolong Lin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China; Key Laboratory of Hematology, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Shanwei Ye
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Shujia Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Tong Ge
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Dengju Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Li Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China.
| | - Wei Mu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Song JH, Lim KM, Yoo SH, Kim GD, Shin HS, Park S, Lim MY, Lee SY. Effects of Limosilactobacillus fermentum KBL375 on Immune Enhancement and Gut Microbiota Composition in Cyclophosphamide-Induced Immunosuppressed Mice. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10463-z. [PMID: 39885060 DOI: 10.1007/s12602-025-10463-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2025] [Indexed: 02/01/2025]
Abstract
This study evaluated the immune-enhancing efficacy of Limosilactobacillus fermentum KBL375 isolated from the feces of healthy Koreans. KBL375-treated splenocytes showed enhancement of cytotoxicity against YAC-1 cells, the target of natural killer (NK) cells, with an increase in CD335, granzyme B, perforin, and interferon-gamma (IFN-γ). Oral administration of KBL375 in mice with cyclophosphamide (CP)-induced immunosuppression improved body weight and immune functions, including immune organ indices, lymphocyte proliferations, and immunoglobulin (Ig) A levels. Notably, KBL375 increased NK cell cytotoxicity and proportion in immunosuppressed mice. Perforin/IFN-γ expression levels, which indicated NK cell activation, were also increased in KBL375-treated mice. Furthermore, KBL375 led to an increase in beneficial microbes, such as Bifidobacterium, in the gut microbiome of immunosuppressed mice, fostering a favorable intestinal microbial environment. These comprehensive results suggest that KBL375 exhibits potent immune regulatory functions and positively influences the gut microbiota, implying its potential as a probiotic agent for immune enhancement.
Collapse
Affiliation(s)
- Ju Hye Song
- Division of Food Functionality Research, Korea Food Research Institute, 245, Nongsaengmyeong-Ro, Iseo-Myeon, Wanju-Gun, 55365, Jeollabuk-Do, Republic of Korea
- Department of Food Biotechnology, Korea, University of Science and Technology, Daejeon, Republic of Korea
| | - Kyung Min Lim
- Division of Food Functionality Research, Korea Food Research Institute, 245, Nongsaengmyeong-Ro, Iseo-Myeon, Wanju-Gun, 55365, Jeollabuk-Do, Republic of Korea
- Department of Food Biotechnology, Korea, University of Science and Technology, Daejeon, Republic of Korea
| | - Sang Hyuk Yoo
- Division of Food Functionality Research, Korea Food Research Institute, 245, Nongsaengmyeong-Ro, Iseo-Myeon, Wanju-Gun, 55365, Jeollabuk-Do, Republic of Korea
- Department of Food Biotechnology, Korea, University of Science and Technology, Daejeon, Republic of Korea
| | - Gun-Dong Kim
- Division of Food Functionality Research, Korea Food Research Institute, 245, Nongsaengmyeong-Ro, Iseo-Myeon, Wanju-Gun, 55365, Jeollabuk-Do, Republic of Korea
| | - Hee Soon Shin
- Division of Food Functionality Research, Korea Food Research Institute, 245, Nongsaengmyeong-Ro, Iseo-Myeon, Wanju-Gun, 55365, Jeollabuk-Do, Republic of Korea
- Department of Food Biotechnology, Korea, University of Science and Technology, Daejeon, Republic of Korea
| | | | - Mi Young Lim
- Division of Food Functionality Research, Korea Food Research Institute, 245, Nongsaengmyeong-Ro, Iseo-Myeon, Wanju-Gun, 55365, Jeollabuk-Do, Republic of Korea.
| | - So-Young Lee
- Division of Food Functionality Research, Korea Food Research Institute, 245, Nongsaengmyeong-Ro, Iseo-Myeon, Wanju-Gun, 55365, Jeollabuk-Do, Republic of Korea.
- Department of Food Biotechnology, Korea, University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
12
|
Huang Z, Wei C, Yi C, Jiang Q, Wang YQ, Wang Y, Xu T, Lu N, Huang Z, Xu X. Nanoparticle-mediated efficient up-regulation of GSDMD-N to induce pyroptosis and enhance NK cell-based cancer immunotherapy. Acta Biomater 2025; 193:429-439. [PMID: 39742906 DOI: 10.1016/j.actbio.2024.12.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/07/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Natural killer (NK) cell-based immunotherapy has emerged as a safe and effective therapeutic modality for cancer treatment. However, therapeutic benefits can be only seen in hematological tumors (e.g., leukemia) and the treatment of solid tumors is still less effective due to the immunosuppressive tumor microenvironment (TME)-induced poor infiltration and dysfunction of NK cells in tumor tissues. We herein developed a robust nucleus-targeted nanoparticle (NP) platform for systemic delivery of plasmid expressing the N-terminal domain of GSDMD (i.e., pGSDMD-N) and augment of NK cell-based immunotherapy for oral squamous cell carcinoma (OSCC). This nanoplatform is made of a PEGylated poly(2-(diisopropylamino) ethyl methacrylate) (PDPA) polymer and a nucleus-targeting peptide amphiphile (NTPA) that can complex pGSDMD-N. After intravenous administration, this nanoplatform could specifically deliver pGSDMD-N into the nuclei of OSCC cells, leading to their pyroptosis via up-regulating GSDMD-N expression. More importantly, this pyroptosis could boost NK cell-based immunotherapy via promoting the recruitment of NK cells into tumor tissues and enhancing their activation to further enhance the anticancer effect of the pGSDMD-N delivery system. STATEMENT OF SIGNIFICANCE: : NK cell-based immunotherapy has made a significant breakthrough in the treatment of hematological tumors (e.g., leukemia), but it is still less effective for solid tumors due to immunosuppressive tumor microenvironment (TME)-induced dysfunction of NK cells. We herein developed a nucleus-targeted nanoplatform for systemic delivery of plasmid expressing the N-terminal domain of gasdermin D (denoted pGSDMD-N) and augment of NK cell-based immunotherapy for oral squamous cell carcinoma (OSCC). This delivery system could not only induce the pyroptosis of OSCC cells, but also promote the secretion of functional chemokines (e.g., CCL3) and cytokines (e.g., IL-18) to boost NK cell-based immunotherapy. The strategy demonstrated herein could be a promising strategy to enhance the NK cell-based immunotherapy for solid tumors.
Collapse
Affiliation(s)
- Zixian Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China
| | - Chunfang Wei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China
| | - Chen Yi
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Qiming Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China
| | - Yong-Qiang Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China
| | - Yan Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China
| | - Tianshu Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China
| | - Nan Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China
| | - Zhiquan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China.
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China.
| |
Collapse
|
13
|
Nguyen TTT, Jang B, Kim SR, Kang SK, Kim KY, Kim YH, Koh YH. Enhanced Immune Functions of In Vitro Human Natural Killer Cells and Splenocytes in Immunosuppressed Mice Supplemented with Mature Silkworm Products. Nutrients 2025; 17:417. [PMID: 39940275 PMCID: PMC11820884 DOI: 10.3390/nu17030417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/12/2025] [Accepted: 01/22/2025] [Indexed: 02/14/2025] Open
Abstract
OBJECTIVES The immune-enhancing properties of steamed mature silkworm, known as HongJam (HJ), were investigated using human interleukin-2-independent Natural Killer 92 (NK92-MI) cells and a cyclophosphamide intraperitoneal injection-induced immunosuppressed mice model (CPA-IP). White Jade variety mature silkworm HJ (WJ-HJ) was used to prepare WJ-HJ supercritical fluid extracts (WJ-SCE) and WJ-HJ-supplemented feeds. RESULTS Treatment with WJ-SCE significantly enhanced proliferation, migration, and cytotoxicity of NK92-MI cells against various cancer cells while improving mitochondrial function and ATP production (p < 0.05). In CPA-IP mice, consumption of WJ-HJ-supplemented feeds restored immune function by improving body weight, immune organ indices, immunoglobulin levels, and blood cytokines. Splenocyte proliferation and cytotoxicity were significantly elevated in both saline intraperitoneal injection (Sal-IP) and CPA-IP groups with WJ-HJ supplementation, independent of mitogen activation (p < 0.05). CONCLUSIONS These results suggest that WJ-HJ enhances immune modulation and immune surveillance functions of NK cells by improving mitochondrial and cytotoxic functions. WJ-HJ holds promise as a functional food for immune enhancement, pending clinical validation.
Collapse
Affiliation(s)
- Thanh Thi Tam Nguyen
- Department of Biomedical Gerontology, Hallym University Graduate School, Chuncheon 24252, Republic of Korea;
| | - Byungki Jang
- Ilsong Institute of Life Science, Hallym University, Seoul 07441, Republic of Korea; (B.J.); (Y.H.K.)
| | - Seong-Ruyl Kim
- Division of Industrial Insects and Sericulture, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea; (S.-R.K.); (S.-K.K.); (K.-Y.K.)
| | - Sang-Kuk Kang
- Division of Industrial Insects and Sericulture, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea; (S.-R.K.); (S.-K.K.); (K.-Y.K.)
| | - Kee-Young Kim
- Division of Industrial Insects and Sericulture, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea; (S.-R.K.); (S.-K.K.); (K.-Y.K.)
| | - Yoo Hee Kim
- Ilsong Institute of Life Science, Hallym University, Seoul 07441, Republic of Korea; (B.J.); (Y.H.K.)
| | - Young Ho Koh
- Department of Biomedical Gerontology, Hallym University Graduate School, Chuncheon 24252, Republic of Korea;
- Ilsong Institute of Life Science, Hallym University, Seoul 07441, Republic of Korea; (B.J.); (Y.H.K.)
| |
Collapse
|
14
|
Fanijavadi S, Thomassen M, Jensen LH. Targeting Triple NK Cell Suppression Mechanisms: A Comprehensive Review of Biomarkers in Pancreatic Cancer Therapy. Int J Mol Sci 2025; 26:515. [PMID: 39859231 PMCID: PMC11765000 DOI: 10.3390/ijms26020515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor outcomes due to frequent recurrence, metastasis, and resistance to treatment. A major contributor to this resistance is the tumor's ability to suppress natural killer (NK) cells, which are key players in the immune system's fight against cancer. In PDAC, the tumor microenvironment (TME) creates conditions that impair NK cell function, including reduced proliferation, weakened cytotoxicity, and limited tumor infiltration. This review examines how interactions between tumor-derived factors, NK cells, and the TME contribute to tumor progression and treatment resistance. To address these challenges, we propose a new "Triple NK Cell Biomarker Approach". This strategy focuses on identifying biomarkers from three critical areas: tumor characteristics, TME factors, and NK cell suppression mechanisms. This approach could guide personalized treatments to enhance NK cell activity. Additionally, we highlight the potential of combining NK cell-based therapies with conventional treatments and repurposed drugs to improve outcomes for PDAC patients. While progress has been made, more research is needed to better understand NK cell dysfunction and develop effective therapies to overcome these barriers.
Collapse
Affiliation(s)
- Sara Fanijavadi
- Cancer Polyclinic, Levanger Hospital, 7601 Levanger, Norway
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, 5000 Odense, Denmark;
- Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Lars Henrik Jensen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
- Department of Oncology, Institute of Regional Health Research, University of Southern Denmark, 7100 Vejle, Denmark
| |
Collapse
|
15
|
Yang Z, Yang Z, Wang D, Li Y, Hao M, Tao B, Feng Q, Wu H, Li Q, Wu J, Lin Q, Wang G, Liu W. Iron Knights with Nanosword Induced Ferroptosis in the Battle Against Oral Carcinoma. NANO LETTERS 2025; 25:327-335. [PMID: 39703040 DOI: 10.1021/acs.nanolett.4c05070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is a tumor characterized by cellular redox imbalance, rendering it particularly sensitive to ferroptosis treatment. However, traditional ferroptosis inducers have a few drawbacks. In this study, ultrasmall AuMn nanoclusters (AMNCs) with a bovine serum albumin (BSA) ligand were synthesized and encapsulated in natural killer (NK) cell-derived exosomes to form an Exo-AMNCs composite for targeted ferroptosis therapy of OSCC. Unlike previously reported alloyed metal nanoclusters, not only do AMNCs react with intracellular H2O2 to produce reactive oxygen species (ROS) and induce ferroptosis but also the BSA ligand improves biocompatibility and water solubility. These properties render AMNCs ideal for fluorescence imaging in vivo. When combined with NK cell exosomes, the Exo-AMNCs composite exhibited strong targeted imaging and therapeutic effects on OSCC. Further investigation into the mechanistic details demonstrated that Exo-AMNCs downregulate the overexpression of fat mass and obesity-associated (FTO) in OSCC and regulate the key ferroptosis-related protein glutathione peroxidase 4 (GPX4).
Collapse
Affiliation(s)
- Zhijing Yang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, China
- Department of Restorative Dental Science, Faculty of Dentisry, University of Hong Kong, Pokfulam 999077, Hong Kong
| | - Zhe Yang
- Department of Chemistry, Jilin University, Changchun 130012, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun 130062, China
| | - Yuyang Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Boqiang Tao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun 130062, China
| | - Han Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun 130062, China
| | - Jianing Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Quan Lin
- Department of Chemistry, Jilin University, Changchun 130012, China
| | - Guoqing Wang
- Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, China
| |
Collapse
|
16
|
Kowash RR, Sabnani M, Gray LT, Deng Q, Saleh NUA, Girard L, Naito Y, Masahiro K, Minna JD, Gerber DE, Koyama S, Liu ZL, Baruah H, Akbay EA. Novel and potent MICA/B antibody is therapeutically effective in KRAS LKB1 mutant lung cancer models. J Immunother Cancer 2025; 13:e009867. [PMID: 39762078 PMCID: PMC11749492 DOI: 10.1136/jitc-2024-009867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Concurrent KRAS LKB1 (STK11, KL) mutant non-small cell lung cancers (NSCLC) do not respond well to current immune checkpoint blockade therapies, however targeting major histocompatibility complex class I-related chain A or B (MICA/B), could pose an alternative therapeutic strategy through activation of natural killer (NK) cells. METHODS Expression of NK cell activating ligands in NSCLC cell line and patient data were analyzed. Cell surface expression of MICA/B in NSCLC cell lines was determined through flow cytometry while ligand shedding in both patient blood and cell lines was determined through ELISA. We engineered an antibody-dependent cellular cytotoxicity (ADCC) enhanced MICA/B monoclonal antibody, AHA-1031, which prevents ligand shedding without interfering with binding to natural killer group 2D while targeting cancer cells via superior ADCC. We performed in vitro assays using ELISA and flow cytometry-based assays to confirm that our antibody potently binds to and stabilizes MICA/B expression across lung cancer and other solid tumor cell lines. Additionally, we used two KL mutant NSCLC cell lines and a KL mutant patient-derived xenograft (PDX) model to demonstrate in vivo antitumor efficacy and flow cytometry analysis for immune cell activation profiling. RESULTS NSCLC cell lines exhibit high MICA/B expression and secrete soluble MICA/B in vitro. Soluble MICA/B is also detected in patient blood samples. AHA-1031 binds to the α3 domain of MICA/B, preventing shedding and targeting tumor cells to ADCC. AHA-1031 exhibits high affinity and specificity to MICA/B, preventing MICA/B shedding in tumor lines and inducing ADCC in vitro. Our antibody also effectively binds and stabilizes MICA/B expression in additional tumor types and demonstrates broad specificity. We show that in two KL mutant NSCLC xenograft models and a KL mutant PDX model, treatment with AHA-1031 monotherapy significantly inhibits tumor growth compared with vehicle-treated animals with no observable toxicity. Tumor tissues from treated mice exhibit significantly increased immune cell infiltrates and activated NK cell populations. CONCLUSIONS Activating NK cells through MICA/B stabilization and inducing ADCC offers an alternative and potent therapy option in KL tumors. MICA/B are shed across different tumors making this therapeutic strategy universally applicable.
Collapse
Affiliation(s)
- Ryan R Kowash
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | - Qing Deng
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nusrat U A Saleh
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Luc Girard
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Osaka University, Suita, Japan
| | - Kentaro Masahiro
- Department of Respiratory Medicine and Clinical Immunology, Osaka University, Suita, Japan
| | - John D Minna
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pharmacology, UT Southwestern Medical School, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David E Gerber
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shohei Koyama
- Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Kashiwa, Japan
| | - Zhiqian Lucy Liu
- Alloy Therapeutics Inc, Lexington, Massachusetts, USA
- Alloy Therapeutics, Lexington, Massachusetts, USA
| | | | - Esra A Akbay
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
17
|
Zhang R, Dai F, Deng S, Zeng Y, Wang J, Liu G. Reprogramming of Glucose Metabolism for Revisiting Hepatocellular Carcinoma Resistance to Transcatheter Hepatic Arterial Chemoembolization. Chembiochem 2025; 26:e202400719. [PMID: 39501124 DOI: 10.1002/cbic.202400719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/04/2024] [Indexed: 11/24/2024]
Abstract
Hepatocellular carcinoma (HCC) is recognized globally as one of the most lethal tumors, presenting a significant menace to patients' lives owing to its exceptional aggressiveness and tendency to recur. Transcatheter hepatic arterial chemoembolization (TACE) therapy, as a first-line treatment option for patients with advanced HCC, has been proven effective. However, it is disheartening that nearly 40 % of patients exhibit resistance to this therapy. Consequently, this review delves into the metabolic aspects of glucose metabolism to explore the underlying mechanisms behind TACE treatment resistance and to propose potentially fruitful therapeutic strategies. The ultimate objective is to present novel insights for the development of personalized treatment methods targeting HCC.
Collapse
Affiliation(s)
- Ruijie Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Fan Dai
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Songhan Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yun Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jinyang Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
18
|
Ge X, Zhang K, Zhu J, Chen Y, Wang Z, Wang P, Xu P, Yao J. Targeting protein modification: a new direction for immunotherapy of pancreatic cancer. Int J Biol Sci 2025; 21:63-74. [PMID: 39744438 PMCID: PMC11667816 DOI: 10.7150/ijbs.101861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
Post-translational modifications (PTMs) alter protein conformation by covalently attaching functional groups to substrates, influencing their biological activity, mechanisms of action, and functional performance. PTMs and their interactions are essential to many critical signal transduction processes, including tumor transformation, cancer progression, and metastasis in pancreatic cancer. Additionally, advancements in tumor immunotherapy indicate that PTMs are essential in immune cell activation, transport, and energy metabolism. This study aimed to investigate the effects of different PTMs on immunotherapy for pancreatic cancer, providing new perspectives and suggesting directions for future research.
Collapse
Affiliation(s)
- Xinyu Ge
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Ke Zhang
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Jiangsu 225000, China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Yuan Chen
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Zhengwang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Peng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Peng Xu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Jie Yao
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| |
Collapse
|
19
|
Kumbhojkar N, Mitragotri S. Activated neutrophils: A next generation cellular immunotherapy. Bioeng Transl Med 2025; 10:e10704. [PMID: 39801751 PMCID: PMC11711228 DOI: 10.1002/btm2.10704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 01/16/2025] Open
Abstract
Cell therapies are at the forefront of novel therapeutics. Neutrophils, despite being the most populous immune cells in human blood circulation, are not considered a viable option for cellular therapies because of their short lifespan and poor understanding of their role in the pathophysiology of various diseases. In inflammatory conditions, neutrophils exhibit an activated phenotype. Activation brings about significant changes to neutrophil biology such as increased lifespan, inflammatory cytokine secretion, and enhanced effector functions. Activated neutrophils also possess the potential to stimulate the downstream immune response and are described as essential effectors in the immune response to tumors. This makes activated neutrophils an interesting candidate for cell therapies. Here, we review the biology of activated neutrophils in detail. We discuss the different ways neutrophils can be activated and the effect they have on other immune cells for stimulation of downstream immune response. We review the conditions where activated neutrophil therapy can be therapeutically beneficial and discuss the challenges associated with their eventual translation. Overall, this review summarizes the current state of understanding of neutrophil-based immunotherapies and their clinical potential.
Collapse
Affiliation(s)
- Ninad Kumbhojkar
- Harvard John A. Paulson School of Engineering and Applied SciencesAllstonMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Samir Mitragotri
- Harvard John A. Paulson School of Engineering and Applied SciencesAllstonMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| |
Collapse
|
20
|
Liu F, Mei B, Xu J, Zou Y, Luo G, Liu H. Machine learning identification of NK cell immune characteristics in hepatocellular carcinoma based on single-cell sequencing and bulk RNA sequencing. Genes Genomics 2025; 47:19-35. [PMID: 39433650 DOI: 10.1007/s13258-024-01581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly malignant tumor; however, its immune microenvironment and mechanisms remain elusive. Single-cell sequencing allows for the exploration of immune characteristics within tumor at the cellular level. However, current knowledge regarding the roles of different immune cell populations in liver cancer progression is limited. OBJECTIVE The main objective of this study is to identify molecular markers with NK cell immune characteristics in hepatocellular carcinoma using various machine learning methods based on Single-Cell Sequencing and Bulk RNA Sequencing. METHODS We collected samples from eight normal liver tissues and eight HCC tumor tissues and performed single-cell RNA sequencing for immune cell clustering and expression profile analysis. Using various bioinformatic approaches, we investigated the immune phenotype associated with natural killer (NK) cells expressing high CD7 level. In addition, we verified the role of CD7 in the growth of HCC after NK cell and HCC cells cocultured by RT-qPCR, MTS and Flow cytometer experiments. Finally, we constructed a machine learning model to develop a prognostic prediction system for HCC based on NK cell-related genes. RESULTS Through single-cell typing, we found that the proportions of hepatocytes and NK cells were significantly elevated in the tumor samples. Moreover, we found that the expression of CD7 was high in HCC and correlated with prognosis. More importantly, Overexpression of CD7 in NK cells significantly inhibited the activity of MHCC97 cells and increased the number of apoptosis of HCC cells (p < 0.05). Furthermore, we observed that NK cells with high CD7 expression were associated with an activated immune phenotype. CONCLUSION Our study found that CD7 is an important biomarker for assessing immune status and predicting survival of HCC patients; hence, it is a potential target for immune therapy against HCC.
Collapse
Affiliation(s)
- Fang Liu
- Department of Hepatobiliary Surgery, Jiujiang First People's Hospital, 48 Taling South Road, Jiujiang City, 332000, Jiangxi Province, China.
| | - Baohua Mei
- Department of Hepatobiliary Surgery, Jiujiang First People's Hospital, 48 Taling South Road, Jiujiang City, 332000, Jiangxi Province, China
| | - Jianfeng Xu
- Department of Hepatobiliary Surgery, Jiujiang First People's Hospital, 48 Taling South Road, Jiujiang City, 332000, Jiangxi Province, China
| | - Yong Zou
- Department of Hepatobiliary Surgery, Jiujiang First People's Hospital, 48 Taling South Road, Jiujiang City, 332000, Jiangxi Province, China
| | - Gang Luo
- Department of Hepatobiliary Surgery, Jiujiang First People's Hospital, 48 Taling South Road, Jiujiang City, 332000, Jiangxi Province, China
| | - Haiyu Liu
- College of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| |
Collapse
|
21
|
Alkhayer R, Ponath V, Pogge von Strandmann E. Cell type-specific upregulation of NKG2D ligand MICA in response to APTO253. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:113. [PMID: 39817244 PMCID: PMC11729809 DOI: 10.21037/atm-24-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/18/2024] [Indexed: 01/18/2025]
Abstract
One of the most important targets for natural killer (NK) cell-mediated therapy is the induction of natural killer group 2D ligand (NKG2D-L) expression. APTO253 is a small molecule that selectively kills acute myeloid leukemia (AML) cells, and it has been reported that APTO253 can induce Krüppel-like factor 4 (KLF4) expression and downregulate c-MYC expression. Recently, we discovered a novel role of APTO253 in modulating the NK cell response by inducing surface expression of NKG2D-Ls, especially MHC class I polypeptide-related sequence A (MICA), in AML cells. In this study, we extended the research to validate the effect of APTO253 in other cancer cell lines and found that the enhanced expression of NKG2D-Ls in response to APTO253 is limited in a tumor cell-specific manner. Here, we show that MICA induction upon treatment with APTO253 not only varies between ovarian and pancreatic cancer cell lines but also differs in two ovarian cancer cell lines for an unknown reason. Additionally, our data suggest a link between the induced expression of MICA and the regulation of both, KLF4 and c-MYC, which might represent a mechanism underlying the induction of NKG2D-L expression upon treatment with APTO253. These results may contribute to the potential use of APTO253 as a treatment to improve tumor cell-mediated NK cell cytotoxicity in various cancers.
Collapse
Affiliation(s)
- Reem Alkhayer
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps-University Marburg, Marburg, Germany
| | - Viviane Ponath
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps-University Marburg, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
22
|
Liu C, Mou S, Zhang B, Pang Y, Chan L, Li J, He Q, Zheng Z, Zhao Z, Sun W, Shi X, Qiu H, Deng X, Wang W, Ge P, Zhao J. Innate Immune Cell Profiling in Peripheral Blood Mononuclear Cells of Patients with Moyamoya Disease. Inflammation 2024:10.1007/s10753-024-02201-4. [PMID: 39671077 DOI: 10.1007/s10753-024-02201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
Moyamoya disease (MMD) is a rare cerebrovascular disease characterized by stenosis or occlusion of the internal carotid artery, thus leading to ischaemic and haemorrhagic strokes. Although genetic studies have identified ring finger protein 213 (RNF213) as a susceptibility gene, the low disease penetrance suggests that a secondary trigger, such as infection, may initiate disease onset. This study aimed to characterize the innate immune cell profile of peripheral blood mononuclear cells (PBMCs) of MMD patients via mass cytometry (CyTOF). Blood samples from 10 MMD patients and 10 healthy controls were analysed, with a focus on natural killer (NK) cells, monocytes, and dendritic cells (DCs). The results revealed significant changes in the NK and monocyte subpopulations in MMD patients; specifically, there was a decrease in the CD56dimCD16- NK03 subset and an increase in CD163high classical monocytes, thus indicating compromised microbial defences and heightened inflammation. Additionally, significant changes were observed in DC subpopulations, including an increase in CCR7+ mature DCs and a decrease in CD141+ and CD1c+ DCs. Overactivation of the TLR/MyD88/NF-κB pathway was observed in most innate immune cells, thus indicating its potential role in disease progression. These findings provide novel insights into immune dysfunction in MMD and highlight potential therapeutic targets.
Collapse
Affiliation(s)
- Chenglong Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Siqi Mou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Bojian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yuheng Pang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Liujia Chan
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Zhiyao Zheng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors (No.2019RU011), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhikang Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Wei Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xiangjun Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Department of Rheumatology and Immunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Hancheng Qiu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xiaofeng Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China.
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
23
|
Chen H, Lin Y, Chen J, Luo X, Kan Y, He Y, Zhu R, Jin J, Li D, Wang Y, Han Z. Targeting caspase-8: a new strategy for combating hepatocellular carcinoma. Front Immunol 2024; 15:1501659. [PMID: 39726605 PMCID: PMC11669555 DOI: 10.3389/fimmu.2024.1501659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents the most prevalent form of primary liver cancer and has a high mortality rate. Caspase-8 plays a pivotal role in an array of cellular signaling pathways and is essential for the governance of programmed cell death mechanisms, inflammatory responses, and the dynamics of the tumor microenvironment. Dysregulation of caspase-8 is intricately linked to the complex biological underpinnings of HCC. In this manuscript, we provide a comprehensive review of the regulatory roles of caspase-8 in apoptosis, necroptosis, pyroptosis, and PANoptosis, as well as its impact on inflammatory reactions and the intricate interplay with critical immune cells within the tumor microenvironment, such as tumor-associated macrophages, T cells, natural killer cells, and dendritic cells. Furthermore, we emphasize how caspase-8 plays pivotal roles in the development, progression, and drug resistance observed in HCC, and explore the potential of targeting caspase-8 as a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- Haoran Chen
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jie Chen
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Xuemei Luo
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Yubo Kan
- Sichuan Provincial Woman’s and Children’s Hospital/The Affiliated Women’s and Children’s Hospital of Chengdu Medical College, Chengdu, China
| | - Yuqi He
- Department of Blood Transfusion, Lu’an People’s Hospital, the Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Renhe Zhu
- Department of Blood Transfusion, Lu’an People’s Hospital, the Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Jiahui Jin
- Department of gastroenterology, Baoji Central Hospital, Baoji, China
| | - Dongxuan Li
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Yi Wang
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zhongyu Han
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
24
|
Yao P, Liu YG, Huang G, Hao L, Wang R. The development and application of chimeric antigen receptor natural killer (CAR-NK) cells for cancer therapy: current state, challenges and emerging therapeutic advances. Exp Hematol Oncol 2024; 13:118. [PMID: 39633491 PMCID: PMC11616395 DOI: 10.1186/s40164-024-00583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Immunotherapy has transformed the landscape of cancer treatment, with chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy emerging as a front runner in addressing some hematological malignancies. Despite its considerable efficacy, the occurrence of severe adverse effects associated with CAR-T cell therapy has limited their scope and prompted the exploration of alternative therapeutic strategies. Natural killer (NK) cells, characterized by both their innate cytotoxicity and ability to lyse target cells without the constraint of peptide specificity conferred by a major histocompatibility complex (MHC), have similarly garnered attention as a viable immunotherapy. As such, another therapeutic approach has recently emerged that seeks to combine the continued success of CAR-T cell therapy with the flexibility of NK cells. Clinical trials involving CAR-engineered NK (CAR-NK) cell therapy have exhibited promising efficacy with fewer deleterious side effects. This review aims to provide a concise overview of the cellular and molecular basis of NK cell biology, facilitating a better understanding of advancements in CAR design and manufacturing. The focus is on current approaches and strategies employed in CAR-NK cell development, exploring at both preclinical and clinical settings. We will reflect upon the achievements, advantages, and challenges intrinsic to CAR-NK cell therapy. Anticipating the maturation of CAR-NK cell therapy technology, we foresee its encouraging prospects for a broader range of cancer patients and other conditions. It is our belief that this CAR-NK progress will bring us closer to making significant strides in the treatment of refractory and recurrent cancers, as well as other immune-mediated disorders.
Collapse
Affiliation(s)
- Pin Yao
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Ya-Guang Liu
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Gang Huang
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Liangchun Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Runan Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
25
|
Ali A, Alamri A, Hajar A. NK/DC crosstalk-modulating antitumor activity via Sema3E/PlexinD1 axis for enhanced cancer immunotherapy. Immunol Res 2024; 72:1217-1228. [DOI: https:/doi.org/10.1007/s12026-024-09536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/29/2024] [Indexed: 01/06/2025]
|
26
|
Ali A, Alamri A, Hajar A. NK/DC crosstalk-modulating antitumor activity via Sema3E/PlexinD1 axis for enhanced cancer immunotherapy. Immunol Res 2024; 72:1217-1228. [PMID: 39235526 DOI: 10.1007/s12026-024-09536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
The complex relationship between natural killer (NK) cells and dendritic cells (DCs) within the tumor microenvironment significantly impacts the success of cancer immunotherapy. Recent advancements in cancer treatment have sought to bolster innate and adaptive immune responses through diverse modalities, aiming to tilt the immune equilibrium toward tumor elimination. Optimal antitumor immunity entails a multifaceted interplay involving NK cells, T cells and DCs, orchestrating immune effector functions. Although DC-based vaccines and NK cells' cytotoxic capabilities hold substantial therapeutic potential, their interaction is frequently hindered by immunosuppressive elements such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells. Chemokines and cytokines, such as CXCL12, CCL2, interferons, and interleukins, play crucial roles in modulating NK/DC interactions and enhancing immune responses. This review elucidates the mechanisms underlying NK/DC interaction, emphasizing their pivotal roles in augmenting antitumor immune responses and the impediments posed by tumor-induced immunosuppression. Furthermore, it explores the therapeutic prospects of restoring NK/DC crosstalk, highlighting the significance of molecules like Sema3E/PlexinD1 in this context, offering potential avenues for enhancing the effectiveness of current immunotherapeutic strategies and advancing cancer treatment paradigms. Harnessing the dynamic interplay between NK and DC cells, including the modulation of Sema3E/PlexinD1 signaling, holds promise for developing more potent therapies that harness the immune system's full potential in combating cancer.
Collapse
Affiliation(s)
- Awais Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23200, Pakistan.
| | - Abdulaziz Alamri
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Azraida Hajar
- Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
27
|
Qiao W, Dong P, Chen H, Zhang J. Advances in Induced Pluripotent Stem Cell-Derived Natural Killer Cell Therapy. Cells 2024; 13:1976. [PMID: 39682724 PMCID: PMC11640743 DOI: 10.3390/cells13231976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes of the innate immune system capable of killing virus-infected cells and/or cancer cells. The commonly used NK cells for therapeutic applications include primary NK cells and immortalized NK cell lines. However, primary NK cell therapy faces limitations due to its restricted proliferation capacity and challenges in stable storage. Meanwhile, the immortalized NK-92 cell line requires irradiation prior to infusion, which reduces its cytotoxic activity, providing a ready-made alternative and overcoming these bottlenecks. Recent improvements in differentiation protocols for iPSC-derived NK cells have facilitated the clinical production of iPSC-NK cells. Moreover, iPSC-NK cells can be genetically modified to enhance tumor targeting and improve the expansion and persistence of iPSC-NK cells, thereby achieving more robust antitumor efficacy. This paper focuses on the differentiation-protocols efforts of iPSC-derived NK cells and the latest progress in iPSC-NK cell therapy. Additionally, we discuss the current challenges faced by iPSC-NK cells and provide an outlook on future applications and developments.
Collapse
Affiliation(s)
- Wenhua Qiao
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China;
| | - Peng Dong
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China;
| | - Hui Chen
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China;
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China;
| | - Jianmin Zhang
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China;
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China;
| |
Collapse
|
28
|
Hayes AJ, Pingen M, Wilson G, Hansell C, Love S, Burgoyne P, McElroy D, Bartolini R, Vidler F, Schuette F, Gamble A, Campbell J, Galatis D, Campbell JDM, Graham GJ. Enhanced CCR2 expression by ACKR2-deficient NK cells increases tumoricidal cell therapy efficacy. J Leukoc Biol 2024; 116:1544-1553. [PMID: 39052923 DOI: 10.1093/jleuko/qiae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Chemokines regulate leukocyte navigation to inflamed sites and specific tissue locales and may therefore be useful for ensuring accurate homing of cell therapeutic products. We, and others, have shown that atypical chemokine receptor 2 (ACKR2)-deficient mice (ACKR2-/-) are protected from metastasis development in cell line and spontaneous mouse models. We have shown that this relates to enhanced CCR2 expression on ACKR2-/- natural killer cells, allowing them to home more effectively to CCR2 ligand-expressing metastatic deposits. Here we demonstrate that the metastatic-suppression phenotype in ACKR2-/- mice is not a direct effect of the absence of ACKR2. Instead, enhanced natural killer cell CCR2 expression is caused by passenger mutations that originate from the creation of the ACKR2-/- mouse strain in 129 embryonic stem cells. We further demonstrate that simple selection of CCR2+ natural killer cells enriches for a population of cells with enhanced antimetastatic capabilities. Given the widespread expression of CCR2 ligands by tumors, our study highlights CCR2 as a potentially important contributor to natural killer cell tumoricidal cell therapy.
Collapse
MESH Headings
- Animals
- Receptors, CCR2/genetics
- Receptors, CCR2/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Mice
- Mice, Knockout
- Receptors, Chemokine/metabolism
- Receptors, Chemokine/genetics
- Neoplasm Metastasis
- Cytotoxicity, Immunologic
- Cell Line, Tumor
- Mice, Inbred C57BL
- Chemokine Receptor D6
Collapse
Affiliation(s)
- Alan J Hayes
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Marieke Pingen
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Gillian Wilson
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Chris Hansell
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Samantha Love
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Paul Burgoyne
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Daniel McElroy
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Robin Bartolini
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Francesca Vidler
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Fabian Schuette
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Alistair Gamble
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Jordan Campbell
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Dimitrios Galatis
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - John D M Campbell
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Gerard J Graham
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| |
Collapse
|
29
|
Song M, Cheon J, Kwon S. Enhanced cytotoxicity of natural killer cells with Zn-alginate hydrogel microspheres. BIOTECHNOL BIOPROC E 2024. [DOI: 10.1007/s12257-024-00167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/09/2024] [Accepted: 11/17/2024] [Indexed: 01/06/2025]
|
30
|
Kos M, Bojarski K, Mertowska P, Mertowski S, Tomaka P, Zaborek-Łyczba M, Łyczba J, Dziki Ł, Grywalska E. Can the Analysis of Toll-like Receptors (TLR) on NK and NKT-like Cells Improve Gastric Cancer Diagnostics and Treatment? Cancers (Basel) 2024; 16:3854. [PMID: 39594809 PMCID: PMC11592653 DOI: 10.3390/cancers16223854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: The aim of this study was to determine the assessment of the percentage of NK and NKT-like cells expressing Toll-like receptors (TLR-2, TLR-3, TLR-4, and TLR-9) in patients with gastric cancer (GC) compared with healthy volunteers (HV) and to investigate differences according to cancer subtype. We also assessed TLR gene expression by RT-qPCR to assess whether TLRs could be diagnostic and prognostic biomarkers. Methods: The study included 86 patients with histologically confirmed gastric cancer and 30 healthy volunteers. Peripheral blood samples were collected from the participants, and TLR expression on NK and NKT-like cells was assessed by flow cytometry and RT-qPCR. The expression of TLR2, TLR3, TLR4, and TLR9 genes was assessed using genetic material derived from NK and NKT-like cells sourced from PBMC. The obtained results were statistically analyzed using Mann-Whitney U and Kruskal-Wallis tests, and the predictive ability of variables was assessed using ROC curve analysis. Results: A significantly higher expression of TLR receptors (TLR-2, TLR-3, TLR-4, and TLR-9) was found in patients with gastric cancer compared to healthy volunteers (p < 0.05). TLR expression also differed depending on the cancer subtype, and higher expression was observed in more advanced GC subtypes. RT-qPCR analysis showed significantly increased expression of TLR genes in the group of GC patients. ROC curves indicate a high ability of TLRs to differentiate between GC patients and healthy individuals. Conclusions: The expression of TLRs on NK and NKT-like cells is clearly increased in patients with gastric cancer, especially in more advanced subtypes of the tumor. The results suggest that TLRs could potentially be used as diagnostic and prognostic biomarkers and represent potential targets for immune therapies in GC. However, further studies are needed to determine the functional role of TLRs in disease progression and the possibility of their use in personalized treatment.
Collapse
Affiliation(s)
- Marek Kos
- Department of Public Health, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Krzysztof Bojarski
- General Surgery Department, Independent Public Health Care Center in Łęczna (SP ZOZ in Leczna), 52 Krasnystawska Street, 21-010 Leczna, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Piotr Tomaka
- Department of Anesthesiology and Intensive Care, Independent Public Health Care Center in Łęczna (SP ZOZ in Leczna), 52 Krasnystawska Street, 21-010 Leczna, Poland
| | - Monika Zaborek-Łyczba
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Jakub Łyczba
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Łukasz Dziki
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, 251 Street, 92-213 Lodz, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (S.M.); (E.G.)
| |
Collapse
|
31
|
Gao J, Liu Y, Tao L, Zeng P, Ye G, Zheng Y, Zhang N. Single-cell data revealed the regulatory mechanism of TNK cell heterogeneity in liver metastasis from gastric cancer. Discov Oncol 2024; 15:664. [PMID: 39549183 PMCID: PMC11569111 DOI: 10.1007/s12672-024-01528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
AIM The present work set out to classify cell subpopulations related to liver metastasis from gastric cancer (GC) and the mechanisms of their interactions with other immune cell subpopulations. BACKGROUND GC is characterized by a high degree of heterogeneity and liver metastasis. Exploring the mechanism of liver metastasis of GC from the perspective of heterogeneity of the tumor microenvironment (TME) might help improve the efficacy of GC treatment. OBJECTIVE Based on the cellular subpopulation characteristics of GC with liver metastasis, the regulatory mechanisms contributing to GC progression were analyzed, with special focuses on the roles of signaling pathways, transcription factors (TFs) and ligand-receptor pairs. METHODS The GSE163558 dataset was downloaded from the Gene Expression Omnibus (GEO) database to collect single-cell transcriptomic data of GC patients and their metastasis groups for cell clustering and relevant analyses. Differentially expressed genes (DEGs) in the GC and GC liver metastasis groups were screened and subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. SCENIC analysis was used to mine TFs that affected cellular subpopulations during liver metastasis from GC. The relative expression levels of TFs in GC were determined using qRT-PCR. Transwell and wound healing assays were utilized to verify the regulation of the TFs on the migration and invasion of GC cells. Interaction network between the cellular subpopulations was developed applying CellChat. RESULTS Single-cell clustering was performed to group six major cell subpopulations, namely, Myeloid cells, B cells, Mast cells, Epithelial cells, Fibroblasts, and TNK cells, among which the number of TNK cells was significantly increased in the GC liver metastasis group. Differentially enriched pathways of TNK cells between GC and GC liver metastasis groups mainly included IL-17 and Pi3k-Akt signaling pathways. TNK cell subsets could be further categorized into CD8 T cells, Exhausted T cells, NK cells, NKT cells, and Treg cells, with the GC liver metastasis group showing significantly more CD8 T cells and NKT cells. FOS and JUNB were the TFs of TNK cell marker genes that contributed to liver metastasis from GC and the invasion and migration of GC cell lines. Significant differences in immune cell communication ligand-receptor pairs existed between the GC and GC liver metastasis groups. CONCLUSION This study revealed the critical role of TNK cell subsets in GC with liver metastasis applying single-cell transcriptomics analysis. The findings provided an important theoretical basis for developing novel therapies to inhibit liver metastasis from GC.
Collapse
Affiliation(s)
- Jun Gao
- Department of Gastrointestinal Surgery, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Yujuan Liu
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Lu Tao
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Peng Zeng
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Guiying Ye
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Ying Zheng
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Nai Zhang
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China.
| |
Collapse
|
32
|
Kennedy PR, Arvindam US, Phung SK, Ettestad B, Feng X, Li Y, Kile QM, Hinderlie P, Khaw M, Huang RS, Kaufman M, Puchalska P, Russell A, Butler J, Abbott L, McClure P, Luo X, Lu QT, Blazar BR, Crawford PA, Lim J, Miller JS, Felices M. Metabolic programs drive function of therapeutic NK cells in hypoxic tumor environments. SCIENCE ADVANCES 2024; 10:eadn1849. [PMID: 39475618 PMCID: PMC11524192 DOI: 10.1126/sciadv.adn1849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/24/2024] [Indexed: 11/02/2024]
Abstract
Limited oxygen (hypoxia) in solid tumors poses a challenge to successful immunotherapy with natural killer (NK) cells. NK cells have impaired cytotoxicity when cultured in hypoxia (1% oxygen) but not physiologic (>5%) or atmospheric oxygen (20%). We found that changes to cytotoxicity were regulated at the transcriptional level and accompanied by metabolic dysregulation. Dosing with interleukin-15 (IL-15) enhanced NK cell cytotoxicity in hypoxia, but preactivation with feeder cells bearing IL-21 and 4-1BBL was even better. Preactivation resulted in less perturbed metabolism in hypoxia; greater resistance to oxidative stress; and no hypoxia-induced loss of transcription factors (T-bet and Eomes), activating receptors, adhesion molecules (CD2), and cytotoxic proteins (TRAIL and FasL). There remained a deficit in CD122/IL-2Rβ when exposed to hypoxia, which affected IL-15 signaling. However, tri-specific killer engager molecules that deliver IL-15 in the context of anti-CD16/FcγRIII were able to bypass this deficit, enhancing cytotoxicity of both fresh and preactivated NK cells in hypoxia.
Collapse
Affiliation(s)
- Philippa R. Kennedy
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Upasana Sunil Arvindam
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Shee Kwan Phung
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Brianna Ettestad
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | - Yunmin Li
- Xcell Biosciences, San Francisco, CA, USA
| | - Quinlan M. Kile
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Peter Hinderlie
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Melissa Khaw
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rih-Sheng Huang
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Marissa Kaufman
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Patrycja Puchalska
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Amanda Russell
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Jonah Butler
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Lucas Abbott
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Paul McClure
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Xianghua Luo
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | | | - Bruce R. Blazar
- Division of Pediatric Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Peter A. Crawford
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - James Lim
- Xcell Biosciences, San Francisco, CA, USA
| | - Jeffrey S. Miller
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Martin Felices
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
33
|
Watanabe CM, Suzuki CI, Dos Santos AM, Aloia TPA, Lee G, Wald D, Okamoto OK, de Azevedo JTC, de Godoy JAP, Santos FPS, Weinlich R, Kerbauy LN, Kutner JM, Paiva RDMA, Hamerschlak N. An Extended Flow Cytometry Evaluation of ex Vivo Expanded NK Cells Using K562.Clone1, a Feeder Cell Line Manufactured in Brazil. Transplant Cell Ther 2024; 30:1063.e1-1063.e19. [PMID: 38986739 DOI: 10.1016/j.jtct.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Natural killer (NK) cells play a crucial role in the immune system's response against cancer. However, the challenge of obtaining the required quantity of NK cells for effective therapeutic response necessitates the development of strategies for their ex vivo expansion. This study aimed to develop a novel feeder cell line, K562.Clone1, capable of promoting the ex vivo expansion of NK cells while preserving their cytotoxic potential. he K562 leukemic cell line was transduced with mbIL-21 and 4-1BBL proteins to generate K562.Clone1 cells. NK cells were then co-cultured with these feeder cells, and their expansion rate was monitored over 14 days. The cytotoxic potential of the expanded NK cells was evaluated against acute myeloid leukemia blasts and tumor cell lines of leukemia and glial origin. Statistical analysis was performed to determine the significance of the results. The K562.Clone1 co-cultured with peripheral NK showed a significant increase in cell count, with an approximate 94-fold expansion over 14 days. Expanded NK cells demonstrated cytotoxicity against the tested tumor cell lines, indicating preservation of their cytotoxic characteristics. Additionally, the CD56, CD16, inhibitory KIRs, and activation receptors were conserved and present in a well-balanced manner. The study successfully developed a feeder cell line, K562.Clone1, that effectively promotes the expansion of NK cells ex vivo while maintaining their cytotoxic potential. This development could significantly contribute to the advancement of NK cell therapy, especially in Brazil.
Collapse
Affiliation(s)
| | | | | | | | - Grace Lee
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - David Wald
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Oswaldo Keith Okamoto
- Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil; Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Julia T Cottas de Azevedo
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Juliana Aparecida Preto de Godoy
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Fabio P S Santos
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Oncology and Hematology Center, Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Ricardo Weinlich
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Lucila N Kerbauy
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil; Oncology and Hematology Center, Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Jose Mauro Kutner
- Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil; Oncology and Hematology Center, Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Raquel de Melo Alves Paiva
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil.
| | - Nelson Hamerschlak
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Wang Y, Shi J, Xin M, Kahkoska AR, Wang J, Gu Z. Cell-drug conjugates. Nat Biomed Eng 2024; 8:1347-1365. [PMID: 38951139 PMCID: PMC11646559 DOI: 10.1038/s41551-024-01230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/01/2024] [Indexed: 07/03/2024]
Abstract
By combining living cells with therapeutics, cell-drug conjugates can potentiate the functions of both components, particularly for applications in drug delivery and therapy. The conjugates can be designed to persist in the bloodstream, undergo chemotaxis, evade surveillance by the immune system, proliferate, or maintain or transform their cellular phenotypes. In this Review, we discuss strategies for the design of cell-drug conjugates with specific functions, the techniques for their preparation, and their applications in the treatment of cancers, autoimmune diseases and other pathologies. We also discuss the translational challenges and opportunities of this class of drug-delivery systems and therapeutics.
Collapse
Affiliation(s)
- Yanfang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Jiaqi Shi
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Minhang Xin
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Anna R Kahkoska
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, Hangzhou, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
35
|
Xu C. CRISPR/Cas9-mediated knockout strategies for enhancing immunotherapy in breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8561-8601. [PMID: 38907847 DOI: 10.1007/s00210-024-03208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/31/2024] [Indexed: 06/24/2024]
Abstract
Breast cancer, a prevalent disease with significant mortality rates, often presents treatment challenges due to its complex genetic makeup. This review explores the potential of combining Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene knockout strategies with immunotherapeutic approaches to enhance breast cancer treatment. The CRISPR/Cas9 system, renowned for its precision in inducing genetic alterations, can target and eliminate specific cancer cells, thereby minimizing off-target effects. Concurrently, immunotherapy, which leverages the immune system's power to combat cancer, has shown promise in treating breast cancer. By integrating these two strategies, we can potentially augment the effectiveness of immunotherapies by knocking out genes that enable cancer cells to evade the immune system. However, safety considerations, such as off-target effects and immune responses, necessitate careful evaluation. Current research endeavors aim to optimize these strategies and ascertain the most effective methods to stimulate the immune response. This review provides novel insights into the integration of CRISPR/Cas9-mediated knockout strategies and immunotherapy, a promising avenue that could revolutionize breast cancer treatment as our understanding of the immune system's interplay with cancer deepens.
Collapse
Affiliation(s)
- Chenchen Xu
- Department of Gynecology and Obstetrics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
36
|
Zhang H, Grippin A, Sun M, Ma Y, Kim BYS, Teng L, Jiang W, Yang Z. New avenues for cancer immunotherapy: Cell-mediated drug delivery systems. J Control Release 2024; 375:712-732. [PMID: 39326499 DOI: 10.1016/j.jconrel.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/15/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Cancer research has become increasingly complex over the past few decades as knowledge of the heterogeneity of cancer cells, their proliferative ability, and their tumor microenvironments has become available. Although conventional therapies remain the most compelling option for cancer treatment to date, immunotherapy is a promising way to harness natural immune defenses to target and kill cancer cells. Cell-mediated drug delivery systems (CDDSs) have been an active line of research for enhancing the therapeutic efficacy and specificity of cancer immunotherapy. These systems can be tailored to different types of immune cells, allowing immune evasion and accumulation in the tumor microenvironment. By enabling the targeted delivery of therapeutic agents such as immune stimulants, cytokines, antibodies, and antigens, CDDSs have improved the survival of some patients with cancer. This review summarizes the research status of CDDSs, with a focus on their underlying mechanisms of action, biology, and clinical applications. We also discuss opportunities and challenges for implementation of CDDSs into mainstream cancer immunotherapy.
Collapse
Affiliation(s)
- Huan Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Adam Grippin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Man Sun
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yifan Ma
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Zhaogang Yang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
37
|
Wang S, Gao S, Lin S, Fang X, Zhang H, Qiu M, Zheng K, Ji Y, Xiao B, Zhang X. Integrated analysis of bulk and single-cell RNA sequencing reveals the impact of nicotinamide and tryptophan metabolism on glioma prognosis and immunotherapy sensitivity. BMC Neurol 2024; 24:419. [PMID: 39468708 PMCID: PMC11514892 DOI: 10.1186/s12883-024-03924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Nicotinamide and tryptophan metabolism play important roles in regulating tumor synthesis metabolism and signal transduction functions. However, their comprehensive impact on the prognosis and the tumor immune microenvironment of glioma is still unclear. The purpose of this study was to investigate the association of nicotinamide and tryptophan metabolism with prognosis and immune status of gliomas and to develop relevant models for predicting prognosis and sensitivity to immunotherapy in gliomas. METHODS Bulk and single-cell transcriptome data from TCGA, CGGA and GSE159416 were obtained for this study. Gliomas were classified based on nicotinamide and tryptophan metabolism, and PPI network associated with differentially expressed genes was established. The core genes were identified and the risk model was established by machine learning techniques, including univariate Cox regression and LASSO regression. Then the risk model was validated with data from the CGGA. Finally, the effects of genes in the risk model on the biological behavior of gliomas were verified by in vitro experiments. RESULTS The high nicotinamide and tryptophan metabolism is associated with poor prognosis and high levels of immune cell infiltration in glioma. Seven of the core genes related to nicotinamide and tryptophan metabolism were used to construct a risk model, and the model has good predictive ability for prognosis, immune microenvironment, and response to immune checkpoint therapy of glioma. We also confirmed that high expression of TGFBI can lead to an increased level of migration, invasion, and EMT of glioma cells, and the aforementioned effect of TGFBI can be reduced by FAK inhibitor PF-573,228. CONCLUSIONS Our study evaluated the effects of nicotinamide and tryptophan metabolism on the prognosis and tumor immune microenvironment of glioma, which can help predict the prognosis and sensitivity to immunotherapy of glioma.
Collapse
Affiliation(s)
- Sen Wang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Shen Gao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shaochong Lin
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaofeng Fang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Haopeng Zhang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Man Qiu
- Department of Neurosurgery, Xinyang Central Hospital, Xinyang, 464000, China
| | - Kai Zheng
- Department of Neurosurgery, Xianyang First People's Hospital, Xianyang, 712000, China
| | - Yupeng Ji
- Department of Cardiovascular Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Baijun Xiao
- Department of Neurosurgery, Pingshan People's Hospital, Shenzhen, 518118, China
| | - Xiangtong Zhang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
38
|
Choi EW, Jeong Y, Ahn JO. Diagnosis of canine B-cell chronic lymphoid leukemia with a CD21 negative phenotype using the LT21 clone CD21 antibody in flow cytometry: a case report. BMC Vet Res 2024; 20:490. [PMID: 39462364 PMCID: PMC11515120 DOI: 10.1186/s12917-024-04335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Chronic lymphoid leukemia (CLL) is a hematological disorder characterized by the clonal expansion of small mature lymphocytes that accumulate in the blood and bone marrow. CLL can arise from B-, T-, or natural killer cell clones. The cytological evaluation of blood smears is often the simplest and least invasive method for diagnosing lymphoid leukemia. Immunophenotyping is used to further subclassify the type of lymphoid leukemia. CASE PRESENTATION A 15-year-old, 4.4-kg spayed female Shih Tzu was presented to the veterinary medical teaching hospital of Kangwon National University. Despite having a normal appetite and activity level, cervical and inguinal lymph node enlargement was noted on physical examination. Complete blood count revealed severe leukocytosis, severe lymphocytosis, and monocytosis. Splenomegaly, hepatomegaly, and lymph node enlargement were detected on radiographic and ultrasonographic examination. Immunophenotyping was performed using peripheral blood mononuclear cells (PBMCs). The majority of lymphocytes exhibited the following profiles: CD3-CD79a- (97.5%), CD4-CD8- (98.6%), CD21-CD79a- (98.4%), CD34- (0.1%), CD45+ (99.6%), major histocompatibility complex class II+ (99.5%), and CD14- (0.5%). Based on the immunophenotyping results, possible differentials considered included the following: the majority of lymphocytes may be natural killer (NK) cell clones, plasma cell clones, or show aberrant expression or loss of CD21 marker due to the neoplastic nature of the cells. Further flow cytometry was performed using antibodies against CD3, CD5, CD94, and granzyme B. The combined results indicated that the predominant lymphocyte subset in the PBMCs was CD3-CD5-CD21-CD94-granzyme B-. To confirm monoclonality and exclude the aberrant loss of CD markers, a polymerase chain reaction for antigen receptor rearrangement (PARR) assay was conducted. The PARR assay, using DNA from blood and lymph node samples, showed B-cell monoclonality. Immunocytochemistry using PBMCs showed that the plasma cell marker Multiple Myeloma Oncogene 1 (MUM1) was not expressed. Therefore, the diagnosis was confirmed to be B-cell CLL. CONCLUSION Immunophenotyping can help subclassify the type of lymphoid leukemia; however, as tumor cells can show aberrant expression or loss of the CD21 marker, combining immunophenotyping with the PARR assay could yield a more accurate diagnosis.
Collapse
MESH Headings
- Female
- Animals
- Flow Cytometry/veterinary
- Immunophenotyping/veterinary
- Dogs
- Dog Diseases/diagnosis
- Dog Diseases/immunology
- Dog Diseases/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/veterinary
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Receptors, Complement 3d
- Phenotype
Collapse
Affiliation(s)
- Eun Wha Choi
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| | - Yunho Jeong
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do, 24341, Republic of Korea
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Jin-Ok Ahn
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do, 24341, Republic of Korea
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do, 24341, Republic of Korea
| |
Collapse
|
39
|
Chen H, Bao Y, Li X, Chen F, Sugimura R, Zeng X, Xia J. Cell Surface Engineering by Phase-Separated Coacervates for Antibody Display and Targeted Cancer Cell Therapy. Angew Chem Int Ed Engl 2024; 63:e202410566. [PMID: 39103291 DOI: 10.1002/anie.202410566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/07/2024]
Abstract
Cell therapies such as CAR-T have demonstrated significant clinical successes, driving the investigation of immune cell surface engineering using natural and synthetic materials to enhance their therapeutic performance. However, many of these materials do not fully replicate the dynamic nature of the extracellular matrix (ECM). This study presents a cell surface engineering strategy that utilizes phase-separated peptide coacervates to decorate the surface of immune cells. We meticulously designed a tripeptide, Fmoc-Lys-Gly-Dopa-OH (KGdelta; Fmoc=fluorenylmethyloxycarbonyl; delta=Dopa, dihydroxyphenylalanine), that forms coacervates in aqueous solution via phase separation. These coacervates, mirroring the phase separation properties of ECM proteins, coat the natural killer (NK) cell surface with the assistance of Fe3+ ions and create an outer layer capable of encapsulating monoclonal antibodies (mAb), such as Trastuzumab. The antibody-embedded coacervate layer equips the NK cells with the ability to recognize cancer cells and eliminate them through enhanced antibody-dependent cellular cytotoxicity (ADCC). This work thus presents a unique strategy of cell surface functionalization and demonstrates its use in displaying cancer-targeting mAb for cancer therapies, highlighting its potential application in the field of cancer therapy.
Collapse
Affiliation(s)
- Hongfei Chen
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, 99999, Hong Kong SAR, China
| | - Yishu Bao
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, 99999, Hong Kong SAR, China
| | - Xiaojing Li
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, 99999, Hong Kong SAR, China
| | - Fangke Chen
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, 99999, Hong Kong SAR, China
| | - Ryohichi Sugimura
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, 99999, Hong Kong SAR, China
| | - Xiangze Zeng
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, 99999, Hong Kong SAR, China
| | - Jiang Xia
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, 99999, Hong Kong SAR, China
| |
Collapse
|
40
|
Park H, Kim G, Kim N, Ha S, Yim H. Efficacy and safety of natural killer cell therapy in patients with solid tumors: a systematic review and meta-analysis. Front Immunol 2024; 15:1454427. [PMID: 39478866 PMCID: PMC11522797 DOI: 10.3389/fimmu.2024.1454427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction In 2020, global cancer statistics reported 19.3 million new cases and 10 million deaths annually, highlighting the urgent need for effective treatments. Current therapies, such as surgery, radiation, and chemotherapy, have limitations in comprehensively addressing solid tumor. Recent advances in cancer biology and immuno-oncology, including CAR-T cell therapy, show promise but face efficacy challenges against solid tumors. Methods This meta-analysis systematically reviewed studies from PubMed, Embase, Cochrane, and ClinicalTrials.gov databases up to May 2024 to evaluate the clinical efficacy and safety of unmodified NK cell therapies in solid tumors. The included trials focused on reporting objective response rates (ORR). Results Thirty-one trials involving 600 patients across various cancers (e.g., NSCLC, HCC, breast, ovarian) were analyzed. NK cell therapies demonstrated promising ORRs, particularly 72.3% in hepatocellular carcinoma, often in combination with local therapies. Safety profiles were favorable, with fatigue being the most common adverse event. Discussion NK cell therapies represent a promising treatment option for solid tumors, offering a viable alternative to genetically modified cell therapies like CAR-T. Further research is needed to optimize the clinical utility of NK cell therapy and integrate it effectively into standard cancer treatment regimens. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023438410, identifier CRD42023438410.
Collapse
Affiliation(s)
- Heesook Park
- Department of Public Health, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gyurin Kim
- Department of Public Health, The Catholic University of Korea, Seoul, Republic of Korea
| | - Najin Kim
- Medical Library, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sungyoen Ha
- Department of Statistics, Sungkyunkwan University of Korea, Seoul, Republic of Korea
| | - Hyeonwoo Yim
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
41
|
Lin W, Cai X, Lin Y, Su W, Weng G, Chen L, Ding J, Cai Y. Identification of Immune-Related Gene Signature Model for Predicting Lung Cancer Survival and Response to Immunotherapy. Oncology 2024:1-19. [PMID: 39413743 DOI: 10.1159/000541990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
INTRODUCTION Studies have shown that immune-related genes play a crucial role in tumor development and treatment. However, the specific roles and potential value of these genes in lung cancer patients are still not fully understood. Therefore, this study aims to establish a novel risk model based on immune-related genes for evaluating the prognostic risk and response to immune therapy in lung cancer patients. METHODS Gene expression and clinical data of lung cancer patients were retrieved from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, while immune-related genes were obtained from the ImmPort database. A risk signature model was developed using univariate Cox analysis and LASSO regression analysis. The prognostic value of the model and its response to immunotherapy were analyzed by survival analysis, immune infiltration analysis, and immunotherapy response analysis. RESULTS We have developed a risk signature model based on eight key immune-related genes, which can classify patients into high-risk and low-risk groups. The prognosis of the high-risk group was significantly lower than that of the low-risk group and was validated in multiple GEO datasets. The mutation frequency was lower in the low-risk group compared to the high-risk group (TP53: 55% vs. 65%; TTN: 52% vs. 60%; CSMD3: 34% vs. 45%). Futhermore, CD274 expression was lower in the low-risk patients, and the high-risk patients in the IMvigor210 cohort had lower survival. Immune infiltration analyses showed that the high-risk group was negatively correlated with the infiltration level of B cells, CD4+ T cells, and NK cells. Importantly, patients in the low-risk group exhibit significantly lower TIDE scores, suggesting that they are more responsive to immunotherapy. CONCLUSION Our study has established a novel and robust immune-related gene risk model that can assist in evaluating the prognostic risk and immune therapy response of lung cancer patients.
Collapse
Affiliation(s)
- Wenrong Lin
- Department of Ultrasound, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - XiaoJun Cai
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - YiJin Lin
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Weikun Su
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Guibin Weng
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Lin Chen
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jianming Ding
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yibin Cai
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
42
|
Yang J, Ding Z, Yu Y, Liu J, Song S, Zheng Z, Yu H. Sequential Autologous CIK/NK Cells Combined with Chemotherapy to Induce Long-Term Tumor Control in Advanced Rectal Cancer: A Case Report. Cancer Manag Res 2024; 16:1425-1433. [PMID: 39430003 PMCID: PMC11490250 DOI: 10.2147/cmar.s482306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024] Open
Abstract
Objective Colorectal carcinoma (CRC) is the third most common malignancy. In addition to comprehensive cancer treatments, such as surgery, chemotherapy, and radiotherapy, the adoptive immune cell therapy (ACT) has played an increasingly important role in recent years, and the adaptive transfusion of autologous NK cells and CIK cells is a brand-new approach to cellular therapy for solid tumors. Case Presentation A 57-year-old man underwent a radical resection of microsatellite stable (MSS) rectal cancer with synchronous liver metastases. After surgery of the primary lesion surgery, he was treated with autologous CIK/NK cells combined with XELOX translational therapy. Each cycle can obtain over 10 × 109 CIK cells or over 6 × 109 NK cells combined chemotherapy of XELOX every 3 weeks. After 2 cycles of therapy, he achieved partial response (PR). He immediately underwent a hepatic metastasis resection. After surgery, the patient continued to receive autologous CIK/NK cells in combined with 4 cycles of XELOX. To date, he has achieved and maintained no evidence of disease (NED) for over 40 months. Conclusion This is a case of successful treatment of rectal cancer with liver metastasis using ACT in conjunction with first-line chemotherapy. The advantage of this treatment plan is that it has few side effects and achieves long-term control of tumor recurrence by improving the patient's immune function. However, its responsiveness and benefit rate still need further investigation.
Collapse
Affiliation(s)
- Ji Yang
- Basic Medicine Laboratory, General Hospital of Northern Theater Command, Shenyang, 110016, People’s Republic of China
| | - Zhenyu Ding
- Department of Clinical Oncology, General Hospital of Northern Theater Command, Shenyang, 110016, People’s Republic of China
| | - Ying Yu
- Basic Medicine Laboratory, General Hospital of Northern Theater Command, Shenyang, 110016, People’s Republic of China
| | - Junde Liu
- Basic Medicine Laboratory, General Hospital of Northern Theater Command, Shenyang, 110016, People’s Republic of China
| | - Shuang Song
- Basic Medicine Laboratory, General Hospital of Northern Theater Command, Shenyang, 110016, People’s Republic of China
| | - Zhendong Zheng
- Department of Clinical Oncology, General Hospital of Northern Theater Command, Shenyang, 110016, People’s Republic of China
| | - Huiying Yu
- Basic Medicine Laboratory, General Hospital of Northern Theater Command, Shenyang, 110016, People’s Republic of China
| |
Collapse
|
43
|
Zhang B, Chen X, Song H, Gao X, Ma S, Ji H, Qu H, Xia S, Shang D. Identification of basement membrane-related prognostic model associated with the immune microenvironment and synthetic therapy response in pancreatic cancer: integrated bioinformatics analysis and clinical validation. J Cancer 2024; 15:6273-6298. [PMID: 39513120 PMCID: PMC11540510 DOI: 10.7150/jca.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/28/2024] [Indexed: 11/15/2024] Open
Abstract
Pancreatic cancer (PC) is a common and highly malignant tumor. Basement membrane (BM) is formed by the crosslinking of extracellular matrix macromolecules and acts as a barrier against tumor cell metastasis. However, the role of BM in PC prognosis, immune infiltration, and treatment remains unclear. This study collected transcriptome and clinical survival data of PC via TCGA, GEO, and ICGC databases. PC patients (PCs) from the First Affiliated Hospital of Dalian Medical University were obtained as the clinical validation cohort. BM-related genes (BMRGs) were acquired from GeneCards and basement membraneBASE databases. A total of 46 differential-expressed BMRGs were identified. Then the BM-related prognostic model (including DSG3, MET, and PLAU) was built and validated. PCs with a low BM-related score had a better outcome and were more likely to benefit from oxaliplatin, irinotecan, and KRAS(G12C) inhibitor-12, and immunotherapy. Immune analysis revealed that BM-related score was positively correlated with neutrophils, cancer-associated fibroblasts, and macrophages infiltration, but negatively correlated with CD8+ T cells, NK cells, and B cells infiltration. PCs from the clinical cohort further verified that BM-related model could accurately predict PCs' outcomes. DSG3, MET, and PLAU were notably up-regulated within PC tissues and linked to a poor prognosis. In vitro experiments showed that DSG3 knockdown markedly suppressed the proliferation, migration, and invasion of PC cells. Molecular docking indicated that epigallocatechin gallate had a strong binding activity with DSG3, MET, and PLAU and may be used as a potential therapeutic agent for PC. In conclusion, this study developed a BM-related model associated with PC prognosis, immune infiltration, and treatment, which provided new insights into PC stratification and drug intervention.
Collapse
Affiliation(s)
- Biao Zhang
- Pancreas & Biliary Center, Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xu Chen
- Pancreas & Biliary Center, Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huiyi Song
- Pancreas & Biliary Center, Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xue Gao
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shurong Ma
- Pancreas & Biliary Center, Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hongying Ji
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huixian Qu
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shilin Xia
- Pancreas & Biliary Center, Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Dong Shang
- Pancreas & Biliary Center, Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
44
|
Sabit H, Arneth B, Abdel-Ghany S, Madyan EF, Ghaleb AH, Selvaraj P, Shin DM, Bommireddy R, Elhashash A. Beyond Cancer Cells: How the Tumor Microenvironment Drives Cancer Progression. Cells 2024; 13:1666. [PMID: 39404428 PMCID: PMC11475877 DOI: 10.3390/cells13191666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
Liver cancer represents a substantial global health challenge, contributing significantly to worldwide morbidity and mortality. It has long been understood that tumors are not composed solely of cancerous cells, but also include a variety of normal cells within their structure. These tumor-associated normal cells encompass vascular endothelial cells, fibroblasts, and various inflammatory cells, including neutrophils, monocytes, macrophages, mast cells, eosinophils, and lymphocytes. Additionally, tumor cells engage in complex interactions with stromal cells and elements of the extracellular matrix (ECM). Initially, the components of what is now known as the tumor microenvironment (TME) were thought to be passive bystanders in the processes of tumor proliferation and local invasion. However, recent research has significantly advanced our understanding of the TME's active role in tumor growth and metastasis. Tumor progression is now known to be driven by an intricate imbalance of positive and negative regulatory signals, primarily influenced by specific growth factors produced by both inflammatory and neoplastic cells. This review article explores the latest developments and future directions in understanding how the TME modulates liver cancer, with the aim of informing the design of novel therapies that target critical components of the TME.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt; (H.S.); (E.F.M.)
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldinger Str., 35043 Marburg, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt;
| | - Engy F. Madyan
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt; (H.S.); (E.F.M.)
| | - Ashraf H. Ghaleb
- Department of Surgery, College of Medicine, Misr University for Science and Technology, Giza P.O. Box 77, Egypt;
- Department of Surgery, College of Medicine, Cairo University, Giza 12613, Egypt
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.S.); (R.B.)
| | - Dong M. Shin
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Ramireddy Bommireddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.S.); (R.B.)
| | - Ahmed Elhashash
- Department of Biology, Texas A&M University, 3258 TAMU I, College Station, TX 77843-3258, USA
| |
Collapse
|
45
|
Chen Z, Zhang R, Zhao Z, Zhao B, Zhang F, Chen G, Chen X, Wei C, Lin J, Lin F, Zheng Z, Jiang K, Nie R, Chen Y. Multiple cell-death patterns predict the prognosis and drug sensitivity of melanoma patients. Front Pharmacol 2024; 15:1295687. [PMID: 39439891 PMCID: PMC11493598 DOI: 10.3389/fphar.2024.1295687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 09/12/2024] [Indexed: 10/25/2024] Open
Abstract
Background Melanoma, a malignant tumor of the skin, presents challenges in its treatment process involving modalities such as surgery, chemotherapy, and targeted therapy. However, there is a need for an ideal model to assess prognosis and drug sensitivity. Programmed cell death (PCD) modes play a crucial role in tumor progression and has the potential to serve as prognostic and drug sensitivity indicators for melanoma. Methods We analyzed 13 PCD modes including apoptosis, necroptosis, ferroptosis, pyroptosis, netotic cell death, entotic cell death, lysosome-dependent cell death, parthanatos, autophagy-dependent cell death, oxeiptosis, disulfidptosis, and alkaliptosis. These modes were used to construct a model that incorporated genes related to these 13 PCD modes to establish a cell death index (CDI) to conduct prognosis analysis. Transcriptomic, genomic, and clinical data were collected from cohorts including TCGA-SKCM, GSE19234, and GSE65904 to validate this model. Results A CDI consisting of ten gene signatures was established using machine learning algorithms and divided into two groups based on CDI values. The high CDI group exhibited relatively lower numbers of immune-infiltrating cells and showed resistance to commonly used drugs such as docetaxel and axitinib. Our validation results demonstrated good discrimination in PCA analysis between CDI groups, and melanoma patients with higher CDI values had worse postoperative prognoses (all p < 0.01). Conclusion The CDI model, incorporating multiple PCD modes, accurately predicts the clinical prognosis and drug sensitivity of melanoma patients.
Collapse
Affiliation(s)
- Zewei Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat‐Sen University Cancer Center, Guangzhou, China
| | - Ruopeng Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat‐Sen University Cancer Center, Guangzhou, China
| | - Zhoukai Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat‐Sen University Cancer Center, Guangzhou, China
| | - Baiwei Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat‐Sen University Cancer Center, Guangzhou, China
| | - Feiyang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat‐Sen University Cancer Center, Guangzhou, China
| | - Guoming Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat‐Sen University Cancer Center, Guangzhou, China
| | - Xiaojiang Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat‐Sen University Cancer Center, Guangzhou, China
| | - Chengzhi Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat‐Sen University Cancer Center, Guangzhou, China
| | - Jun Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat‐Sen University Cancer Center, Guangzhou, China
| | - Feizhi Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat‐Sen University Cancer Center, Guangzhou, China
| | - Ziqi Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat‐Sen University Cancer Center, Guangzhou, China
| | - Kaiming Jiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat‐Sen University Cancer Center, Guangzhou, China
| | - Runcong Nie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat‐Sen University Cancer Center, Guangzhou, China
| | - Yingbo Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Gastric Surgery and Melanoma Surgical Section, Sun Yat‐Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
46
|
Shin MH, Oh E, Minn D. Current Developments in NK Cell Engagers for Cancer Immunotherapy: Focus on CD16A and NKp46. Immune Netw 2024; 24:e34. [PMID: 39513028 PMCID: PMC11538608 DOI: 10.4110/in.2024.24.e34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 11/15/2024] Open
Abstract
NK cells are specialized immune effector cells crucial for triggering immune responses against aberrant cells. Although recent advancements have concentrated on creating or releasing T-cell responses specific to tumor Ags, the clinical advantages of this approach have been limited to certain groups of patients and tumor types. This emphasizes the need for alternative strategies. One pioneering approach involves broadening and enhancing anti-tumor immune responses by targeting innate immunity. Consequently, the advent of bi-, tri-, and multi-specific Abs has facilitated the advancement of targeted cancer immunotherapies by redirecting immune effector cells to eradicate tumor cells. These Abs enable the simultaneous binding of surface Ags on tumor cells and the activation of receptors on innate immune cells, such as NK cells, with the ability to facilitate Ab-dependent cellular cytotoxicity to enhance their immunotherapeutic effectiveness in patients with solid tumors. Here, we review the recent advances in NK cell engagers (NKCEs) focusing on NK cell-activating receptors CD16A and NKp46. In addition, we provide an overview of the ongoing clinical trials investigating the safety, efficacy, and potential of NKCEs.
Collapse
Affiliation(s)
- Min Hwa Shin
- Immune Research Institute, Seegene Medical Foundation, Seoul 04805, Korea
| | - Eunha Oh
- Immune Research Institute, Seegene Medical Foundation, Seoul 04805, Korea
| | - Dohsik Minn
- Immune Research Institute, Seegene Medical Foundation, Seoul 04805, Korea
- Department of Diagnostic Immunology, Seegene Medical Foundation, Seoul 04805, Korea
| |
Collapse
|
47
|
Lee I, Lee A, Shin S, Kumar S, Nam MH, Kang KW, Kim BS, Cho SD, Kim H, Han S, Park SH, Seo S, Jun HS. Use of a platform with lens-free shadow imaging technology to monitor natural killer cell activity. Biosens Bioelectron 2024; 261:116512. [PMID: 38908292 DOI: 10.1016/j.bios.2024.116512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Natural killer (NK) cells are a crucial component of the innate immune system. This study introduces Cellytics NK, a novel platform for rapid and precise measurement of NK cell activity. This platform combines an NK-specific activation stimulator cocktail (ASC) and lens-free shadow imaging technology (LSIT), using optoelectronic components. LSIT captures digital hologram images of resting and ASC-activated NK cells, while an algorithm evaluates cell size and cytoplasmic complexity using shadow parameters. The combined shadow parameter derived from the peak-to-peak distance and width standard deviation rapidly distinguishes active NK cells from inactive NK cells at the single-cell level within 30 s. Here, the feasibility of the system was demonstrated by assessing NK cells from healthy donors and immunocompromised cancer patients, demonstrating a significant difference in the innate immunity index (I3). Cancer patients showed a lower I3 value (161%) than healthy donors (326%). I3 was strongly correlated with NK cell activity measured using various markers such as interferon-gamma, tumor necrosis factor-alpha, perforin, granzyme B, and CD107a. This technology holds promise for advancing immune functional assays, offering rapid and accurate on-site analysis of NK cells, a crucial innate immune cell, with its compact and cost-effective optoelectronic setup, especially in the post-COVID-19 era.
Collapse
Affiliation(s)
- Inha Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea
| | - Ahyeon Lee
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea
| | - Sanghoon Shin
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea
| | - Samir Kumar
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea
| | - Myung-Hyun Nam
- Department of Laboratory Medicine, Anam Hospital, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Ka-Won Kang
- Department of Hematology, Anam Hospital, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Byung Soo Kim
- Department of Hematology, Anam Hospital, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Sung-Dong Cho
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hawon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sunmi Han
- Metaimmunetech Inc., Sejong, 30019, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sungkyu Seo
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea; Metaimmunetech Inc., Sejong, 30019, Republic of Korea.
| | - Hyun Sik Jun
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea; Metaimmunetech Inc., Sejong, 30019, Republic of Korea.
| |
Collapse
|
48
|
Liu YT, Wu HL, Su YD, Wang Y, Li Y. Development in the Study of Natural Killer Cells for Malignant Peritoneal Mesothelioma Treatment. Cancer Biother Radiopharm 2024; 39:551-561. [PMID: 39093850 DOI: 10.1089/cbr.2024.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Malignant peritoneal mesothelioma (MPeM) is a rare primary malignant tumor originating from peritoneal mesothelial cells. Insufficient specificity of the symptoms and their frequent reappearance following surgery make it challenging to diagnose, creating a need for more efficient treatment options. Natural killer cells (NK cells) are part of the innate immune system and are classified as lymphoid cells. Under the regulation of activating and inhibiting receptors, NK cells secrete various cytokines to exert cytotoxic effects and participate in antiforeign body, antiviral, and antitumor activities. This review provides a comprehensive summary of the specific alterations observed in NK cells following MPeM treatment, including changes in cell number, subpopulation distribution, active receptors, and cytotoxicity. In addition, we summarize the impact of various therapeutic interventions, such as chemotherapy, immunotherapy, and targeted therapy, on NK cell function post-MPeM treatment.
Collapse
Affiliation(s)
- Yi-Tong Liu
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - He-Liang Wu
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Yan-Dong Su
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yi Wang
- Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Li
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Surgical Oncology, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
49
|
Wang D, Zhou F, He L, Wang X, Song L, Wang H, Sun S, Guo Z, Ma K, Xu J, Cui C. AML cell-derived exosomes suppress the activation and cytotoxicity of NK cells in AML via PD-1/PD-L1 pathway. Cell Biol Int 2024; 48:1588-1598. [PMID: 39030886 DOI: 10.1002/cbin.12225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/22/2024]
Abstract
Exosomes are bilayer lipid bodies and contain a variety of bioactive molecules such as proteins, lipids, and nucleic acids, and so forth. Exosomes derived from solid tumors may play critical roles in tumor development and immune evasion. However, the underlying effects of tumor-derived exosomes on immune function in modulating intercellular crosstalk within the bone marrow niche during acute myeloid leukemia (AML) development and immune evasion remain largely elusive. In this study, we aimed to explore the role of AML-exos in AML immune evasion. First, we isolated tumor-derived exosomes from AML cells (AML-exos) and revealed the presence of programmed cell death ligand-1 (PD-L1) protein in AML-exos. Next, we demonstrated that AML-exos can directly suppress the activation of natural killer (NK) cells and inhibit the cytotoxicity of NK cells, probably through activating the programmed cell death-1 (PD-1)/PD-L1 pathway. Furthermore, the inhibitory effect of AML-exos on NK cells could be alleviated by either PD-L1 inhibitor or antagonist. In summary, we demonstrated that AML-exos possess a PD-L1-dependent tumor-promoting effect which may contribute to immune tolerance in antitumor therapy, but blocking the PD-1/PD-L1 pathway may alleviate the tumor immunosuppression induced by AML-exos. Our findings in this study may offer a new immunotherapy strategy to cure AML.
Collapse
Affiliation(s)
- Dandan Wang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning Province, China
| | - Fanchen Zhou
- Department of Gynecology, Central Hospital of Dalian University of Technology, Dalian, Liaoning Province, China
| | - Leiyu He
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning Province, China
| | - Xiaohong Wang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning Province, China
| | - Lingrui Song
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning Province, China
| | - Haoyu Wang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning Province, China
| | - Shibo Sun
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning Province, China
| | - Zhaoming Guo
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning Province, China
| | - Kun Ma
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning Province, China
| | - Jianqiang Xu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning Province, China
| | - Changhao Cui
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning Province, China
| |
Collapse
|
50
|
Zhang Y, Deng Y, Zhai Y, Li Y, Li Y, Li J, Gu Y, Li S. A bispecific nanosystem activates endogenous natural killer cells in the bone marrow for haematologic malignancies therapy. NATURE NANOTECHNOLOGY 2024; 19:1558-1568. [PMID: 39043825 DOI: 10.1038/s41565-024-01736-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 05/20/2024] [Indexed: 07/25/2024]
Abstract
Haematologic malignancies commonly arise from the bone marrow lesion, yet there are currently no effective targeted therapies against tumour cells in this location. Here we constructed a bone-marrow-targeting nanosystem, CSF@E-Hn, which is based on haematopoietic-stem-cell-derived nanovesicles adorned with gripper ligands (aPD-L1 and aNKG2D) and encapsulated with colony-stimulating factor (CSF) for the treatment of haematologic malignancies. CSF@E-Hn targets the bone marrow and, thanks to the gripper ligands, pulls together tumour cells and natural killer cells, activating the latter for specific tumour cell targeting and elimination. The therapeutic efficacy was validated in mice bearing acute myeloid leukaemia and multiple myeloma. The comprehensive assessment of the post-treatment bone marrow microenvironment revealed that the integration of CSF into a bone-marrow-targeted nanosystem promoted haematopoietic stem cell differentiation, boosted memory T cell generation and maintained bone homoeostasis, with long-term prevention of relapse. Our nanosystem represents a promising strategy for the treatment of haematologic malignancies.
Collapse
MESH Headings
- Animals
- Mice
- Killer Cells, Natural/immunology
- Killer Cells, Natural/drug effects
- Bone Marrow/drug effects
- Bone Marrow/pathology
- Humans
- Hematologic Neoplasms/therapy
- Hematologic Neoplasms/drug therapy
- Hematologic Neoplasms/pathology
- Cell Line, Tumor
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Nanoparticles/chemistry
- Hematopoietic Stem Cells/drug effects
- Multiple Myeloma/drug therapy
- Multiple Myeloma/pathology
- Multiple Myeloma/immunology
- Female
Collapse
Affiliation(s)
- Yanqin Zhang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yanfang Deng
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yuewen Zhai
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yu Li
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yuting Li
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Juequan Li
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China.
| | - Siwen Li
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|