1
|
Wu H, Luo H, Wang M, Du Y, Li J. NAP1L5 promotes epithelial-mesenchymal transition by regulating PEG10 expression in acute myeloid leukaemia. Leuk Res 2025; 148:107623. [PMID: 39579659 DOI: 10.1016/j.leukres.2024.107623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Acute myeloid leukaemia (AML) is a haematological malignancy that poses a serious threat to human health. Studies have shown that the expression of NAP1L5 is elevated in patients with AML; however, the specific molecular mechanism remains unknown. Therefore, in this study, we aimed to investigate the pathogenic mechanisms of NAP1L5 in AML. The expression level of NAP1L5 was increased in AML, and the upregulation of NAP1L5 was related to tumour growth and epithelial-mesenchymal transition. Furthermore, PEG10 is a downstream regulatory factor of NAP1L5, and its overexpression promotes tumour growth and epithelial-mesenchymal transition. More importantly, the loss of PEG10 inhibited the negative effects induced by NAP1L5 overexpression. Our results suggest that NAP1L5 is a novel therapeutic target for AML treatment.
Collapse
Affiliation(s)
- Huan Wu
- School of Mental Health, Bengbu Medical University, Bengbu, Anhui 233000, China; Department of Hematology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, China
| | - Hang Luo
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, China; Department of Clinical Medicine, Bengbu Medical University, Bengbu, Anhui 233000, China
| | - Meng Wang
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, China
| | - YuQing Du
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, China
| | - Jiajia Li
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, China.
| |
Collapse
|
2
|
Mohan HM, Fernandez MG, Huang C, Lin R, Ryou JH, Seyfried D, Grotewold N, Whiteley AM, Barmada SJ, Basrur V, Mosalaganti S, Paulson HL, Sharkey LM. Endogenous retrovirus-like proteins recruit UBQLN2 to stress granules and alter their functional properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620053. [PMID: 39484508 PMCID: PMC11527177 DOI: 10.1101/2024.10.24.620053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The human genome is replete with sequences derived from foreign elements including endogenous retrovirus-like proteins of unknown function. Here we show that UBQLN2, a ubiquitin-proteasome shuttle factor implicated in neurodegenerative diseases, is regulated by the linked actions of two retrovirus-like proteins, RTL8 and PEG10. RTL8 confers on UBQLN2 the ability to complex with and regulate PEG10. PEG10, a core component of stress granules, drives the recruitment of UBQLN2 to stress granules under various stress conditions, but can only do so when RTL8 is present. Changes in PEG10 levels further remodel the kinetics of stress granule disassembly and overall composition by incorporating select extracellular vesicle proteins. Within stress granules, PEG10 forms virus-like particles, underscoring the structural heterogeneity of this class of biomolecular condensates. Together, these results reveal an unexpected link between pathways of cellular proteostasis and endogenous retrovirus-like proteins.
Collapse
|
3
|
Kwak Y, Nam SK, Park Y, Suh YS, Ahn SH, Kong SH, Park DJ, Lee HJ, Kim HH, Yang HK, Lee HS. Distinctive Phenotypic and Microenvironmental Characteristics of Neuroendocrine Carcinoma and Adenocarcinoma Components in Gastric Mixed Adenoneuroendocrine Carcinoma. Mod Pathol 2024; 37:100568. [PMID: 39029904 DOI: 10.1016/j.modpat.2024.100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
This study aimed to conduct an in-depth examination of gene expression and microenvironmental profiles of gastric neuroendocrine carcinoma (NEC) and mixed adeno-NEC (MANEC). Tissue microarrays from 55 patients with gastric MANEC (N = 32) or NEC (N = 23) were analyzed using digital spatial profiling (GeoMx DSP, NanoString Technologies). Representative regions of interest were selected from the adenocarcinoma (ADC) portion (ADC-MANEC) and the NEC portion (NEC-MANEC) of the MANEC cores, and pure NEC (pNEC) cores. All regions of interest were separated into epithelial components and stromal components using the masking procedure in the GeoMx platform, followed by transcriptome analysis. Comparison of gene expression between ADC-MANEC and NEC-MANEC/pNEC identified several differentially expressed genes in the epithelial (including PEG10, MAP1B, STMN3, and AKT3) and stromal (FN1, COL1A1, SPARC, and BGN) components. Gene set enrichment analysis revealed that pathways related to the E2F target and G2M checkpoint were more enriched in NEC-MANEC and pNEC than in ADC-MANEC. Deconvolution analysis showed that the microenvironmental profile varied according to histologic differentiation. In ADC-MANEC, intraepithelial infiltrating immune cells were relatively more numerous, whereas fibroblasts in the stroma were more abundant in NEC-MANEC and pNEC. This study confirmed the distinct expression profile of each histologic component of MANEC according to its tumor vs stromal compartment using the DSP platform. Although each component of MANEC shares the same genetic origin, distinctive phenotypes should not be overlooked when managing patients with MANEC. This study provides a useful validation data set for future studies.
Collapse
Affiliation(s)
- Yoonjin Kwak
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Soo Kyung Nam
- Department of Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Yujun Park
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Yun-Suhk Suh
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Sang-Hoon Ahn
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Do Joong Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyuk-Joon Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyung-Ho Kim
- Department of Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Wang Z, Tang P, Xiao H, Peng S, Chen J, Wang Y, Xu J, Yan Q, Zhang J, Deng J, Ma Q, Zhu H, Luo W, Zhang D, Wang L, Qin J, Lan W, Jiang J, Liu Q. Histone demethylase PHF8 promotes prostate cancer metastasis via the E2F1-SNAI1 axis. J Pathol 2024; 264:68-79. [PMID: 39022843 DOI: 10.1002/path.6325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/21/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
Metastasis is the primary culprit behind cancer-related fatalities in multiple cancer types, including prostate cancer. Despite great advances, the precise mechanisms underlying prostate cancer metastasis are far from complete. By using a transgenic mouse prostate cancer model (TRAMP) with and without Phf8 knockout, we have identified a crucial role of PHF8 in prostate cancer metastasis. By complexing with E2F1, PHF8 transcriptionally upregulates SNAI1 in a demethylation-dependent manner. The upregulated SNAI1 subsequently enhances epithelial-to-mesenchymal transition (EMT) and metastasis. Given the role of the abnormally activated PHF8/E2F1-SNAI1 axis in prostate cancer metastasis and poor prognosis, the levels of PHF8 or the activity of this axis could serve as biomarkers for prostate cancer metastasis. Moreover, targeting this axis could become a potential therapeutic strategy for prostate cancer treatment. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ze Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Peng Tang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Haiyang Xiao
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Song Peng
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jian Chen
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Yapeng Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jing Xu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Qian Yan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Junying Zhang
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, PR China
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Jie Deng
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Qiang Ma
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Hailin Zhu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Weiming Luo
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Luofu Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, PR China
| | - Weihua Lan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| |
Collapse
|
5
|
Suman M, Löfgren M, Fransson S, Yousuf JI, Svensson J, Djos A, Martinsson T, Kogner P, Kling T, Carén H. Altered methylation of imprinted genes in neuroblastoma: implications for prognostic refinement. J Transl Med 2024; 22:808. [PMID: 39217334 PMCID: PMC11366169 DOI: 10.1186/s12967-024-05634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Neuroblastoma (NB) is a complex disease, and the current understanding of NB biology is limited. Deregulation in genomic imprinting is a common event in malignancy. Since imprinted genes play crucial roles in early fetal growth and development, their role in NB pathogenesis could be suggested. METHODS We examined alterations in DNA methylation patterns of 369 NB tumours at 49 imprinted differentially methylated regions (DMRs) and assessed its association with overall survival probabilities and selected clinical and genomic features of the tumours. In addition, an integrated analysis of DNA methylation and allele-specific copy number alterations (CNAs) was performed, to understand the correlation between the two molecular events. RESULTS Several imprinted regions with aberrant methylation patterns in NB were identified. Regions that underwent loss of methylation in > 30% of NB samples were DMRs annotated to the genes NDN, SNRPN, IGF2, MAGEL2 and HTR5A and regions with gain of methylation were NNAT, RB1 and GPR1. Methylation alterations at six of the 49 imprinted DMRs were statistically significantly associated with reduced overall survival: MIR886, RB1, NNAT/BLCAP, MAGEL2, MKRN3 and INPP5F. RB1, NNAT/BLCAP and MKRN3 were further able to stratify low-risk NB tumours i.e. tumours that lacked MYCN amplification and 11q deletion into risk groups. Methylation alterations at NNAT/BLCAP, MAGEL2 and MIR886 predicted risk independently of MYCN amplification or 11q deletion and age at diagnosis. Investigation of the allele-specific CNAs demonstrated that the imprinted regions that displayed most alterations in NB tumours harbor true epigenetic changes and are not result of the underlying CNAs. CONCLUSIONS Aberrant methylation in imprinted regions is frequently occurring in NB tumours and several of these regions have independent prognostic value. Thus, these could serve as potentially important clinical epigenetic markers to identify individuals with adverse prognosis. Incorporation of methylation status of these regions together with the established risk predictors may further refine the prognostication of NB patients.
Collapse
Affiliation(s)
- Medha Suman
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden
| | - Maja Löfgren
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jewahri Idris Yousuf
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden
| | - Johanna Svensson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Women's, and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Teresia Kling
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden.
| |
Collapse
|
6
|
Sato H, Meng S, Sasaki K, Kobayashi S, Kido K, Tsuji Y, Arao Y, Saito Y, Iwagami Y, Yamada D, Tomimaru Y, Noda T, Takahashi H, Motooka D, Uchida S, Ofusa K, Satoh T, Doki Y, Eguchi H, Hara T, Ishii H. Significance of signal recognition particle 9 nuclear translocation: Implications for pancreatic cancer prognosis and functionality. Int J Oncol 2024; 65:74. [PMID: 38847231 PMCID: PMC11173368 DOI: 10.3892/ijo.2024.5662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/28/2024] [Indexed: 06/15/2024] Open
Abstract
Signal recognition particles (SRPs) are essential for regulating intracellular protein transport and secretion. Patients with tumors with high SRP9 expression tend to have a poorer overall survival. However, to the best of our knowledge, no reports have described the relationship between SRP9 localization and prognosis in pancreatic cancer. Thus, the present study aimed to investigate this relationship. Immunohistochemical staining for SRP9 using excised specimens from pancreatic cancer surgery cases without preoperative chemotherapy or radiotherapy showed that SRP9 was preferentially expressed in the nucleus of the cancerous regions in some cases, which was hardly detected in other cases, indicating that SRP9 was transported to the nucleus in the former cases. To compare the prognosis of patients with SRP9 nuclear translocation, patients were divided into two groups: Those with a nuclear translocation rate of >50% and those with a nuclear translocation rate of ≤50%. The nuclear translocation rate of >50% group had a significantly better recurrence‑free survival than the nuclear translocation rate of ≤50% group (P=0.037). Subsequent in vitro experiments were conducted; notably, the nuclear translocation rate of SRP9 was reduced under amino acid‑deficient conditions, suggesting that multiple factors are involved in this phenomenon. To further study the function of SRP9 nuclear translocation, in vitro experiments were performed by introducing SRP9 splicing variants (v1 and v2) and their deletion mutants lacking C‑terminal regions into MiaPaCa pancreatic cancer cells. The results demonstrated that both splicing variants showed nuclear translocation regardless of the C‑terminal deletions, suggesting the role of the N‑terminal regions. Given that SRP9 is an RNA‑binding protein, the study of RNA immunoprecipitation revealed that signaling pathways involved in cancer progression and protein translation were downregulated in nuclear‑translocated v1 and v2. Undoubtedly, further studies of the nuclear translocation of SRP9 will open an avenue to optimize the precise evaluation and therapeutic control of pancreatic cancer.
Collapse
Affiliation(s)
- Hiromichi Sato
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Kazuki Sasaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Kansuke Kido
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Pathology, Osaka University Hospital, Osaka 565-0871, Japan
| | - Yoshiko Tsuji
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yasuko Arao
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yoshiko Saito
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark
| | - Ken Ofusa
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Prophoenix Division, Food and Life-Science Laboratory, IDEA Consultants, Inc., Osaka 559-8519, Japan
| | - Taroh Satoh
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Liu Q, Zhang X, Song Y, Si J, Li Z, Dong Q. Construction and analysis of a reliable five-gene prognostic signature for colon adenocarcinoma associated with the wild-type allelic state of the COL6A6 gene. Transl Cancer Res 2024; 13:2475-2496. [PMID: 38881933 PMCID: PMC11170513 DOI: 10.21037/tcr-23-463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 11/29/2023] [Indexed: 06/18/2024]
Abstract
Background Tumors emerge by acquiring a number of mutations over time. The first mutation provides a selective growth advantage compared to adjacent epithelial cells, allowing the cell to create a clone that can outgrow the cells that surround it. Subsequent mutations determine the risk of the tumor progressing to metastatic cancer. Some secondary mutations may inhibit the aggressiveness of the tumor while still increasing the survival of the clone. Meaningful mutations in genes may provide a strong molecular foundation for developing novel therapeutic strategies for cancer. Methods The somatic mutation and prognosis in colon adenocarcinoma (COAD) were analyzed. The copy number variation (CNV) and differentially expressed genes (DEGs) between the collagen type VI alpha 6 chain (COL6A6) mutation (COL6A6-MUT) and the COL6A6 wild-type (COL6A6-WT) subgroups were evaluated. The independent prognostic signatures based on COL6A6-allelic state were determined to construct a Cox model. The biological characteristics and the immune microenvironment between the two risk groups were compared. Results COL6A6 was found to be highly mutated in COAD at a frequency of 9%. Patients with COL6A6-MUT had a good overall survival (OS) compared to those with COL6A6-WT, who had a different CNV pattern. Significant differences in gene expression were established for 593 genes between the COL6A6-MUT and COL6A6-WT samples. Among them, MUC16, ASNSP1, PRR18, PEG10, and RPL26P8 were determined to be independent prognostic factors. The internally validated prognostic risk model, constructed using these five genes, demonstrated its value by revealing a significant difference in patient prognosis between the high-risk and low-risk groups. Specifically, patients in the high-risk group exhibited a considerably worse prognosis than did those in the low-risk group. The high-risk group had a significantly higher proportion of patients over 60 years of age and patients in stage III. Moreover, the tumor immune dysfunction and exclusion (TIDE) score and the expression of human leukocyte antigen (HLA) family genes were all higher in the high-risk group than that in the low-risk group. Conclusions The allelic state of COL6A6 and the five associated DEGs were identified as novel biomarkers for the diagnosis and prognosis of COAD and may be therapeutic targets in COAD.
Collapse
Affiliation(s)
- Qun Liu
- Second Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
| | - Xiaohua Zhang
- Gastroenterology Center, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, China
| | - Yan Song
- Outpatient Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, China
| | - Junli Si
- Second Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
| | - Zhaoshui Li
- Qingdao University, Qingdao Medical College, Qingdao, China
| | - Quanjiang Dong
- Central Laboratories, Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
| |
Collapse
|
8
|
Jung SY, Yu H, Tan X, Pellegrini M. Novel DNA methylation-based epigenetic signatures in colorectal cancer from peripheral blood leukocytes. Am J Cancer Res 2024; 14:2253-2271. [PMID: 38859857 PMCID: PMC11162685 DOI: 10.62347/mxwj1398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/21/2024] [Indexed: 06/12/2024] Open
Abstract
Colorectal cancer (CRC) is a multifactorial disease characterized by accumulation of multiple genetic and epigenetic alterations, transforming colonic epithelial cells into adenocarcinomas. Alteration of DNA methylation (DNAm) is a promising biomarker for predicting cancer risk and prognosis, but its role in CRC tumorigenesis is inconclusive. Notably, few DNAm studies have used pre-diagnostic peripheral blood (PB) DNA, causing difficulty in postulating the underlying biologic mechanism of CRC initiation. We conducted epigenome-wide association (EWA) scans in postmenopausal women from Women's Health Initiative (WHI) with their pre-diagnostic DNAm in PB leukocytes (PBLs) to prospectively evaluate CRC development. Our site-specific DNAm analyses across the genome adjusted for DNAm-age, leukocyte heterogeneities, as well as body mass index, diabetes, and insulin resistance. We validated 20 top EWA-CpGs in 2 independent CRC tissue datasets. Also, we detected differentially methylated regions (DMRs) associated with CRC, further mapped to transcriptomic profile, and finally conducted a Gene Set Enrichment Analysis. We detected multiple novel CpGs validated across WHI and tissue datasets. In particular, 2 CpGs (B4GALNT4cg10321339, SV2Bcg18144285) had the strongest effect on CRC risk. Results from our DMR scans contained MIR663cg06007966, which was also validated in EWA analyses. Also, we detected 1 methylome region in PEG10 of Chr7 shared across datasets. Our findings reflect both novel and well-established epigenomic and transcriptomic sites in CRC, warranting further functional validations. Our study contributes to better understanding of the complex interrelated mechanisms on the methylome underlying CRC tumorigenesis and suggests novel preventive DNAm-targets in PBLs for detecting at-risk individuals for CRC development.
Collapse
Affiliation(s)
- Su Yon Jung
- Translational Sciences Section, School of Nursing, University of CaliforniaLos Angeles, CA 90095, USA
- Department of Epidemiology, Fielding School of Public Health, University of CaliforniaLos Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of CaliforniaLos Angeles, CA 90095, USA
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer CenterHonolulu, HI 96813, USA
| | - Xianglong Tan
- Department of Biological Chemistry, University of CaliforniaLos Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, Life Sciences Division, University of CaliforniaLos Angeles, CA 90095, USA
| |
Collapse
|
9
|
Xiong S, Liu F, Sun J, Gao S, Wong CCL, Tu P, Wang Y. Abrogation of USP9X Is a Potential Strategy to Decrease PEG10 Levels and Impede Tumor Progression in Cutaneous T-Cell Lymphoma. J Invest Dermatol 2024:S0022-202X(24)00307-5. [PMID: 38677662 DOI: 10.1016/j.jid.2024.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 04/29/2024]
Abstract
Advanced-stage cutaneous T-cell lymphomas (CTCLs) are notorious for their highly aggressive behavior, resistance to conventional treatments, and poor prognosis, particularly when large-cell transformation occurs. PEG10 has been recently proposed as a potent driver for large-cell transformation in CTCL. However, the targeting of PEG10 continues to present a formidable clinical challenge that has yet to be addressed. In this study, we report an important post-translational regulatory mechanism of PEG10 in CTCL. USP9X, a deubiquitinase, interacted with and deubiquitinated PEG10, thereby stabilizing PEG10. Knockdown of USP9X or pharmacological targeting of USP9X resulted in a prominent downregulation of PEG10 and its downstream pathway in CTCL. Moreover, USP9X inhibition conferred tumor cell growth disadvantage and enhanced apoptosis in vitro, an effect that occurred in part through its regulation on PEG10. Furthermore, we demonstrated that inhibition of USP9X obviously restrained CTCL tumor growth in vivo and that high expression of USP9X is associated with poor survival in patients with CTCL. Collectively, our findings uncover USP9X as a key post-translational regulator in the stabilization of PEG10 and suggest that targeting PEG10 stabilization through USP9X inhibition may represent a promising therapeutic strategy for advanced-stage CTCL.
Collapse
Affiliation(s)
- Shan Xiong
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Fengjie Liu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Jingru Sun
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Shuaixin Gao
- Department of Human Sciences & James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Ping Tu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China.
| |
Collapse
|
10
|
Shi Q, Xu G, Jiang Y, Yang J, Han X, Wang Q, Li Y, Zhang Z, Wang K, Peng H, Chen F, Ma Y, Zhao L, Chen Y, Liu Z, Yang L, Jia X, Wen T, Tong Z, Cui X, Li F. Phospholipase PLCE1 Promotes Transcription and Phosphorylation of MCM7 to Drive Tumor Progression in Esophageal Cancer. Cancer Res 2024; 84:560-576. [PMID: 38117512 DOI: 10.1158/0008-5472.can-23-1633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
Phospholipase C epsilon 1 (PLCE1) is a well-established susceptibility gene for esophageal squamous cell carcinoma (ESCC). Identification of the underlying mechanism(s) regulated by PLCE1 could lead to a better understanding of ESCC tumorigenesis. In this study, we found that PLCE1 enhances tumor progression by regulating the replicative helicase MCM7 via two pathways. PLCE1 activated PKCα-mediated phosphorylation of E2F1, which led to the transcriptional activation of MCM7 and miR-106b-5p. The increased expression of miR-106b-5p, located in intron 13 of MCM7, suppressed autophagy and apoptosis by targeting Beclin-1 and RBL2, respectively. Moreover, MCM7 cooperated with the miR-106b-25 cluster to promote PLCE1-dependent cell-cycle progression both in vivo and in vitro. In addition, PLCE1 potentiated the phosphorylation of MCM7 at six threonine residues by the atypical kinase RIOK2, which promoted MCM complex assembly, chromatin loading, and cell-cycle progression. Inhibition of PLCE1 or RIOK2 hampered MCM7-mediated DNA replication, resulting in G1-S arrest. Furthermore, MCM7 overexpression in ESCC correlated with poor patient survival. Overall, these findings provide insights into the role of PLCE1 as an oncogenic regulator, a promising prognostic biomarker, and a potential therapeutic target in ESCC. SIGNIFICANCE PLCE1 promotes tumor progression in ESCC by activating PKCα-mediated phosphorylation of E2F1 to upregulate MCM7 and miR-106b-5p expression and by potentiating MCM7 phosphorylation by RIOK2.
Collapse
Affiliation(s)
- Qi Shi
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Guixuan Xu
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Yuliang Jiang
- Department of Oncology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Ju Yang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, P.R. China
| | - Xueping Han
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Qian Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Ya Li
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Zhiyu Zhang
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Kaige Wang
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Hao Peng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Fangfang Chen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Yandi Ma
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Linyue Zhao
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, P.R. China
| | - Yunzhao Chen
- Department of Pathology, The people's Hospital of Suzhou National Hi-Tech District, Suzhou, P.R. China
| | - Zheng Liu
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Lan Yang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Xingyuan Jia
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Tao Wen
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Xiaobin Cui
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, P.R. China
| | - Feng Li
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| |
Collapse
|
11
|
Zhou F, Deng Z, Shen D, Lu M, Li M, Yu J, Xiao Y, Wang G, Qian K, Ju L, Wang X. DLGAP5 triggers proliferation and metastasis of bladder cancer by stabilizing E2F1 via USP11. Oncogene 2024; 43:594-607. [PMID: 38182895 DOI: 10.1038/s41388-023-02932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
Bladder cancer (BLCA) is one of the most widespread malignancies worldwide, and displays significant tumor heterogeneity. Understanding the molecular mechanisms exploitable for treating aggressive BLCA represents a crucial objective. Despite the involvement of DLGAP5 in tumors, its precise molecular role in BLCA remains unclear. BLCA tissues exhibit a substantial increase in DLGAP5 expression compared with normal bladder tissues. This heightened DLGAP5 expression positively correlated with the tumor's clinical stage and significantly affected prognosis negatively. Additionally, experiments conducted in vitro and in vivo revealed that alterations in DLGAP5 expression notably influence cell proliferation and migration. Mechanistically, the findings demonstrated that DLGAP5 was a direct binding partner of E2F1 and that DLGAP5 stabilized E2F1 by preventing the ubiquitination of E2F1 through USP11. Furthermore, as a pivotal transcription factor, E2F1 fosters the transcription of DLGAP5, establishing a positive feedback loop between DLGAP5 and E2F1 that accelerates BLCA development. In summary, this study identified DLGAP5 as an oncogene in BLCA. Our research unveils a novel oncogenic mechanism in BLCA and offers a potential target for both diagnosing and treating BLCA.
Collapse
Affiliation(s)
- Fenfang Zhou
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhao Deng
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dexin Shen
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mengxin Lu
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingxing Li
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingtian Yu
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinghuan Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Yang Q, Yang B, Chen M. Partner of NOB1 homolog transcriptionally activated by E2F transcription factor 1 promotes the malignant progression and inhibits ferroptosis of pancreatic cancer. CHINESE J PHYSIOL 2023; 66:388-399. [PMID: 37929351 DOI: 10.4103/cjop.cjop-d-23-00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest malignancies. Partner of NOB1 homolog (PNO1) has been reported to be involved in tumorigenesis. However, the role of PNO1 in PC remains to be elucidated. The purpose of this study was to examine the effects of PNO1 on the progression of PC and the possible mechanism related to E2F transcription factor 1 (E2F1), a transcription factor predicted by the JASPAR database to bind to the PNO1 promoter region and promoted the proliferation of pancreatic ductal adenocarcinoma. First, PNO1 expression in PC tissues and its association with survival rate were analyzed by the Gene Expression Profiling Interactive Analysis database. Western blot and reverse transcription-quantitative polymerase chain reaction were used to evaluate PNO1 expression in several PC cell lines. After PNO1 silencing, cell proliferation, migration, and invasion were measured by colony formation assay, 5-ethynyl-2'-deoxyuridine staining, wound healing, and transwell assays. Then, the lipid reactive oxygen species in PANC-1 cells was estimated by using C11-BODIPY581/591 probe. The levels of glutathione, malondialdehyde, and iron were measured. The binding between PNO1 and E2F1 was confirmed by luciferase and chromatin immunoprecipitation (ChIP) assays. Subsequently, E2F1 was overexpressed in PANC-1 cells with PNO1 knockdown to perform the rescue experiments. Results revealed that PNO1 was highly expressed in PC tissues and PNO1 expression was positively correlated with overall survival rate and disease-free survival rate. Significantly elevated PNO1 expression was also observed in PC cell lines. PNO1 knockdown inhibited the proliferation, migration, and invasion of PANC-1 cells. Moreover, ferroptosis was promoted in PNO1-silenced PANC-1 cells. Results of luciferase and ChIP assays indicated that E2F1 could bind to PNO1 promoter region. Rescue experiments suggested that E2F1 overexpression reversed the impacts of PNO1 depletion on the malignant behaviors and ferroptosis in PANC-1 cells. Summing up, PNO1 transcriptionally activated by E2F1 promotes the malignant progression and inhibits the ferroptosis of PC.
Collapse
Affiliation(s)
- Qin Yang
- Department of Laboratory Medicine, General Hospital of Central Theatre Command, Wuhan, Hubei, China
| | - Bin Yang
- Department of Burn and Plastic Surgery, General Hospital of Central Theatre Command, Wuhan, Hubei, China
| | - Min Chen
- Department of Laboratory Medicine, General Hospital of Central Theatre Command, Wuhan, Hubei, China
| |
Collapse
|
13
|
Baird L, Cannon P, Kandel M, Nguyen TV, Nguyen A, Wong G, Murphy C, Brownfoot FC, Kadife E, Hannan NJ, Tong S, Bartho LA, Kaitu'u-Lino TJ. Paternal Expressed Gene 10 (PEG10) is decreased in early-onset preeclampsia. Reprod Biol Endocrinol 2023; 21:65. [PMID: 37464405 DOI: 10.1186/s12958-023-01116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Preeclampsia is a severe complication of pregnancy which is attributed to placental dysfunction. The retrotransposon, Paternal Expressed Gene 10 (PEG10) harbours critical placental functions pertaining to placental trophoblast cells. Limited evidence exists on whether PEG10 is involved in preeclampsia pathogenesis. This study characterised the expression and regulation of PEG10 in placentas from patients with early-onset preeclampsia compared to gestation-matched controls. METHODS PEG10 expression was measured in plasma and placentas collected from patients with early-onset preeclampsia (< 34 weeks') and gestation-matched controls using ELISA (protein) and RT-qPCR (mRNA). First-trimester human trophoblast stem cells (hTSCs) were used for in vitro studies. PEG10 expression was measured during hTSC differentiation and hTSC exposure to hypoxia (1% O2) and inflammatory cytokines (IL-6 and TNFα) using RT-qPCR. Functional studies used PEG10 siRNA to measure the effect of reduced PEG10 on canonical TGF-[Formula: see text] signalling and proliferation using luciferase and xCELLigence assays, respectively. RESULTS PEG10 mRNA expression was significantly reduced in placentas from patients with early-onset preeclampsia (< 34 weeks' gestation) relative to controls (p = 0.04, n = 78 vs n = 18 controls). PEG10 protein expression was also reduced in preeclamptic placentas (p = 0.03, n = 5 vs n = 5 controls, blinded assessment of immunohistochemical staining), but neither PEG10 mRNA nor protein could be detected in maternal circulation. PEG10 was most highly expressed in hTSCs, and its expression was reduced as hTSCs differentiated into syncytiotrophoblasts (p < 0.0001) and extravillous trophoblasts (p < 0.001). Trophoblast differentiation was not altered when hTSCs were treated with PEG10 siRNA (n = 5 vs n = 5 controls). PEG10 was significantly reduced in hTSCs exposed to hypoxia (p < 0.01). PEG10 was also reduced in hTSCs treated with the inflammatory cytokine TNF [Formula: see text] (p < 0.01), but not IL-6. PEG10 knocked down (siRNA) in hTSCs showed reduced activation of the canonical TGF-β signalling effector, the SMAD binding element (p < 0.05) relative to controls. PEG10 knockdown in hTSCs however was not associated with any significant alterations in proliferation. CONCLUSIONS Placental PEG10 is reduced in patients with early-onset preeclampsia. In vitro studies suggest that hypoxia and inflammation may contribute to PEG10 downregulation. Reduced PEG10 alters canonical TGF-[Formula: see text] signalling, and thus may be involved in trophoblast dysfunction associated with this pathway.
Collapse
Affiliation(s)
- Lydia Baird
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Ping Cannon
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Manju Kandel
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Tuong-Vi Nguyen
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Anna Nguyen
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Georgia Wong
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Cíara Murphy
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Fiona C Brownfoot
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Elif Kadife
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Natalie J Hannan
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Stephen Tong
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Lucy A Bartho
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia.
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia.
| |
Collapse
|
14
|
Nong S, Han X, Xiang Y, Qian Y, Wei Y, Zhang T, Tian K, Shen K, Yang J, Ma X. Metabolic reprogramming in cancer: Mechanisms and therapeutics. MedComm (Beijing) 2023; 4:e218. [PMID: 36994237 PMCID: PMC10041388 DOI: 10.1002/mco2.218] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer cells characterized by uncontrolled growth and proliferation require altered metabolic processes to maintain this characteristic. Metabolic reprogramming is a process mediated by various factors, including oncogenes, tumor suppressor genes, changes in growth factors, and tumor-host cell interactions, which help to meet the needs of cancer cell anabolism and promote tumor development. Metabolic reprogramming in tumor cells is dynamically variable, depending on the tumor type and microenvironment, and reprogramming involves multiple metabolic pathways. These metabolic pathways have complex mechanisms and involve the coordination of various signaling molecules, proteins, and enzymes, which increases the resistance of tumor cells to traditional antitumor therapies. With the development of cancer therapies, metabolic reprogramming has been recognized as a new therapeutic target for metabolic changes in tumor cells. Therefore, understanding how multiple metabolic pathways in cancer cells change can provide a reference for the development of new therapies for tumor treatment. Here, we systemically reviewed the metabolic changes and their alteration factors, together with the current tumor regulation treatments and other possible treatments that are still under investigation. Continuous efforts are needed to further explore the mechanism of cancer metabolism reprogramming and corresponding metabolic treatments.
Collapse
Affiliation(s)
- Shiqi Nong
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Xiaoyue Han
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Yu Xiang
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yuran Qian
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Yuhao Wei
- Department of Clinical MedicineWest China School of MedicineWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tingyue Zhang
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Keyue Tian
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Kai Shen
- Department of OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jing Yang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xuelei Ma
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
- Department of Biotherapy and Cancer CenterState Key Laboratory of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
15
|
Li F, Yin YK, Zhang JT, Gong HP, Hao XD. Role of circular RNAs in retinoblastoma. Funct Integr Genomics 2022; 23:13. [PMID: 36547723 DOI: 10.1007/s10142-022-00942-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Retinoblastoma (RB), the most common malignant retinal tumor among children under 3 years old, is lethal if left untreated. Early diagnosis, together with timely and effective treatment, is important to improve retinoblastoma-related outcomes. Circular RNAs (circRNAs), a new class of non-coding RNAs with the capacity to regulate cellular activities, have great potential in retinoblastoma diagnosis and treatment. Recent studies have identified circular RNAs that regulate multiple cellular processes involved in retinoblastoma, including cell viability, proliferation, apoptosis, autophagy, migration, and invasion. Six circular RNAs (circ-FAM158A, circ-DHDDS, circ-E2F3, circ-TRHDE, circ-E2F5, and circ-RNF20) promote disease progression and metastasis in retinoblastoma and function as oncogenic factors. Other circular RNAs, such as circ-TET1, circ-SHPRH, circ-MKLN1, and circ-CUL2, play tumor suppressive roles in retinoblastoma. At present, the studies on the regulatory mechanism of circular RNAs in retinoblastoma are not very clear. The purpose of this review is to summarize recent studies on the functional roles and molecular mechanisms of circular RNAs in retinoblastoma and highlight novel strategies for retinoblastoma diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Fei Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yi-Ke Yin
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Ji-Tao Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Hai-Pai Gong
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xiao-Dan Hao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
16
|
Lu X, Yang S, Jie M, Wang S, Sun C, Wu L, Chang S, Pei P, Wang S, Zhang T, Wang L. Folate deficiency disturbs PEG10 methylation modifications in human spina bifida. Pediatr Res 2022; 92:987-994. [PMID: 34934172 DOI: 10.1038/s41390-021-01908-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Paternally expressed gene 10 (PEG10) is believed to be a key imprinted gene involved in placenta formation. However, its role in human folate-related spina bifida (SB) remains unclear. METHODS The methylation status of the germline differentially methylated region (gDMR) in the PEG10/sarcoglycan epsilon (SGCE) imprinted cluster was compared between SB patients and control samples. Moreover, the influence of ectopic PEG10 expression on apoptosis was assessed to explore the underlying mechanisms related to folate deficiency-induced aberrant gDMR methylation in SB. RESULTS The case group exhibited a significant increase in the methylation level of the gDMR and a marked reduction in the mRNA and protein expression of PEG10 compared with the control group. A prominent negative correlation was found between the folate level in brain tissue and gDMR methylation status (r = -0.62, P = 0.001). A cell model treated with a demethylating agent showed a significant elevation of PEG10 transcription level, as well as other imprinted genes in this cluster. In addition, the inhibition of PEG10 was found to be accompanied by aberrant activation of apoptosis in SB. CONCLUSIONS Our findings suggest that disturbed gDMR methylation of the PEG10/SGCE cluster due to folate deficiency is involved in SB through aberrant activation of apoptosis. IMPACT Disturbed genomic imprinting has been verified to be involved in neural tube defects (NTDs). However, little is known about the effect of ectopic expression of imprinted gene PEG10 on human NTDs. Aberrant methylation status of the germline differentially methylated region (gDMR) of PEG10/SGCE cluster due to folate deficiency has been found to result in the inhibition of PEG10 and has a marked association with an increased occurrence of spina bifida. Inhibited expression of PEG10 partly is found to be related to the abnormal activation of apoptosis in spina bifida.
Collapse
Affiliation(s)
- Xiaolin Lu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China.,Institute of Basic Medicine, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 100005, Beijing, China
| | - Shuyan Yang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Min Jie
- Department of Medical Genetics, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Chunrong Sun
- Laboratory of Institute, Capital Institute of Pediatrics, Beijing, China
| | - Lihua Wu
- Department of Medical Genetics, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Shaoyan Chang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Pei Pei
- Laboratory of Institute, Capital Institute of Pediatrics, Beijing, China
| | - Shuowen Wang
- Institute of Basic Medicine, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 100005, Beijing, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Li Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China. .,Institute of Basic Medicine, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 100005, Beijing, China.
| |
Collapse
|
17
|
Regan JL, Schumacher D, Staudte S, Steffen A, Lesche R, Toedling J, Jourdan T, Haybaeck J, Golob-Schwarzl N, Mumberg D, Henderson D, Győrffy B, Regenbrecht CR, Keilholz U, Schäfer R, Lange M. Identification of a neural development gene expression signature in colon cancer stem cells reveals a role for EGR2 in tumorigenesis. iScience 2022; 25:104498. [PMID: 35720265 PMCID: PMC9204726 DOI: 10.1016/j.isci.2022.104498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/28/2022] [Accepted: 05/26/2022] [Indexed: 11/12/2022] Open
Abstract
Recent evidence demonstrates that colon cancer stem cells (CSCs) can generate neurons that synapse with tumor innervating fibers required for tumorigenesis and disease progression. Greater understanding of the mechanisms that regulate CSC driven tumor neurogenesis may therefore lead to more effective treatments. RNA-sequencing analyses of ALDHPositive CSCs from colon cancer patient-derived organoids (PDOs) and xenografts (PDXs) showed CSCs to be enriched for neural development genes. Functional analyses of genes differentially expressed in CSCs from PDO and PDX models demonstrated the neural crest stem cell (NCSC) regulator EGR2 to be required for tumor growth and to control expression of homebox superfamily embryonic master transcriptional regulator HOX genes and the neural stem cell and master cell fate regulator SOX2. These data support CSCs as the source of tumor neurogenesis and suggest that targeting EGR2 may provide a therapeutic differentiation strategy to eliminate CSCs and block nervous system driven disease progression.
Collapse
Affiliation(s)
- Joseph L. Regan
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Dirk Schumacher
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Stephanie Staudte
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Andreas Steffen
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Ralf Lesche
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Joern Toedling
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Thibaud Jourdan
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Nicole Golob-Schwarzl
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Dermatology and Venereology, Medical University of Graz, 8036 Graz, Austria
| | - Dominik Mumberg
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - David Henderson
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Bayer AG, Business Development and Licensing and Open Innovation, Pharmaceuticals, 13342 Berlin, Germany
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary
- TTK Cancer Biomarker Research Group, Institute of Enzymology, 1117 Budapest, Hungary
| | - Christian R.A. Regenbrecht
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- CELLphenomics GmbH, 13125 Berlin, Germany
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Reinhold Schäfer
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Martin Lange
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| |
Collapse
|
18
|
Han Z, Mo R, Cai S, Feng Y, Tang Z, Ye J, Liu R, Cai Z, Zhu X, Deng Y, Zou Z, Wu Y, Cai Z, Liang Y, Zhong W. Differential Expression of E2F Transcription Factors and Their Functional and Prognostic Roles in Human Prostate Cancer. Front Cell Dev Biol 2022; 10:831329. [PMID: 35531101 PMCID: PMC9068940 DOI: 10.3389/fcell.2022.831329] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Given the tumor heterogeneity, most of the current prognostic indicators cannot accurately evaluate the prognosis of patients with prostate cancer, and thus, the best opportunity to intervene in the progression of this disease is missed. E2F transcription factors (E2Fs) have been reported to be involved in the growth of various cancers. Accumulating studies indicate that prostate cancer (PCa) carcinogenesis is attributed to aberrant E2F expression or E2F alteration. However, the expression patterns and prognostic value of the eight E2Fs in prostate cancer have yet to be explored. In this study, The Cancer Genome Atlas (TCGA), Kaplan–Meier Plotter, Metascape, the Kyoto Encyclopedia of Genes and Genomes (KEGG), CIBERSORT, and cBioPortal and bioinformatic analysis were used to investigate E2Fs in patients with PCa. Our results showed that the expression of E2F1–3, E2F5, and E2F6 was higher in prostate cancer tissues than in benign tissues. Furthermore, elevated E2F1–3 and E2F5 expression levels were associated with a higher Gleason score (GS), advanced tumor stage, and metastasis. Survival analysis suggested that high transcription levels of E2F1–3, E2F5, E2F6, and E2F8 were associated with a higher risk of biochemical recurrence. In addition, we developed a prognostic model combining E2F1, E2F6, Gleason score, and the clinical stage that may accurately predict a biochemical recurrence-free survival. Functional enrichment analysis revealed that the E2F family members and their neighboring genes were mainly enriched in cell cycle-related pathways. Somatic mutations in different subgroups were also investigated, and immune components were predicted. Further experiments are warranted to clarify the biological associations between Pca-related E2F family genes, which may influence prognosis via the cell cycle pathway.
Collapse
Affiliation(s)
- Zhaodong Han
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Rujun Mo
- Department of Urology, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Shanghua Cai
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yuanfa Feng
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhenfeng Tang
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jianheng Ye
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ren Liu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhiduan Cai
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuejin Zhu
- Department of Urology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yulin Deng
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhihao Zou
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yongding Wu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhouda Cai
- Department of Andrology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuxiang Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Yuxiang Liang, ; Weide Zhong,
| | - Weide Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Yuxiang Liang, ; Weide Zhong,
| |
Collapse
|
19
|
Pinson MR, Chung DD, Mahnke AH, Salem NA, Osorio D, Nair V, Payne EA, Del Real JJ, Cai JJ, Miranda RC. Gag-like proteins: Novel mediators of prenatal alcohol exposure in neural development. Alcohol Clin Exp Res 2022; 46:556-569. [PMID: 35187673 PMCID: PMC9018584 DOI: 10.1111/acer.14796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 01/08/2023]
Abstract
Background We previously showed that ethanol did not kill fetal neural stem cells (NSCs), but that their numbers nevertheless are decreased due to aberrant maturation and loss of self‐renewal. To identify mechanisms that mediate this loss of NSCs, we focused on a family of Gag‐like proteins (GLPs), derived from retroviral gene remnants within mammalian genomes. GLPs are important for fetal development, though their role in brain development is virtually unexplored. Moreover, GLPs may be transferred between cells in extracellular vesicles (EVs) and thereby transfer environmental adaptations between cells. We hypothesized that GLPs may mediate some effects of ethanol in NSCs. Methods Sex‐segregated male and female fetal murine cortical NSCs, cultured ex vivo as nonadherent neurospheres, were exposed to a dose range of ethanol and to mitogen‐withdrawal‐induced differentiation. We used siRNAs to assess the effects of NSC‐expressed GLP knockdown on growth, survival, and maturation and in silico GLP knockout, in an in vivo single‐cell RNA‐sequencing dataset, to identify GLP‐mediated developmental pathways that were also ethanol‐sensitive. Results PEG10 isoform‐1, isoform‐2, and PNMA2 were identified as dominant GLP species in both NSCs and their EVs. Ethanol‐exposed NSCs exhibited significantly elevated PEG10 isoform‐2 and PNMA2 protein during differentiation. Both PEG10 and PNMA2 were mediated apoptosis resistance and additionally, PEG10 promoted neuronal and astrocyte lineage maturation. Neither GLP influenced metabolism nor cell cycle in NSCs. Virtual PEG10 and PNMA2 knockout identified gene transcription regulation and ubiquitin‐ligation processes as candidate mediators of GLP‐linked prenatal alcohol effects. Conclusions Collectively, GLPs present in NSCs and their EVs may confer apoptosis resistance within the NSC niche and contribute to the abnormal maturation induced by ethanol.
Collapse
Affiliation(s)
- Marisa R Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Dae D Chung
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Amanda H Mahnke
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA.,Women's Health in Neuroscience Program, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Nihal A Salem
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Daniel Osorio
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Vijay Nair
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Elizabeth A Payne
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Jonathan J Del Real
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - James J Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA.,Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA.,Interdisciplinary Program of Genetics, Texas A&M University, College Station, Texas, USA.,Center for Statistical Bioinformatics, Texas A&M University, College Station, Texas, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA.,Women's Health in Neuroscience Program, Texas A&M University Health Science Center, Bryan, Texas, USA.,Interdisciplinary Program of Genetics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
20
|
Sinha A, Zou Y, Patel AS, Yoo S, Jiang F, Sato T, Kong R, Watanabe H, Zhu J, Massion PP, Borczuk AC, Powell CA. Early-Stage Lung Adenocarcinoma MDM2 Genomic Amplification Predicts Clinical Outcome and Response to Targeted Therapy. Cancers (Basel) 2022; 14:cancers14030708. [PMID: 35158979 PMCID: PMC8833784 DOI: 10.3390/cancers14030708] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Invasive subtypes of lung adenocarcinoma (LUAD) show MDM2 amplification that is associated with poor survival. Mouse double minute 2 (MDM2) is frequently amplified in lung adenocarcinoma (LUAD) and is a negative regulator of p53, which binds to p53 and regulates its activity and stability. Genomic amplification and overexpression of MDM2, together with genetic alterations in p53, leads to genomic and genetic heterogeneity in LUAD that represents a therapeutic target. In vitro assays in a panel of LUAD cell lines showed that tumor cell response to MDM2-targeted therapy is associated with MDM2 amplification. Abstract Lung cancer is the most common cause of cancer-related deaths in both men and women, accounting for one-quarter of total cancer-related mortality globally. Lung adenocarcinoma is the major subtype of non-small cell lung cancer (NSCLC) and accounts for around 40% of lung cancer cases. Lung adenocarcinoma is a highly heterogeneous disease and patients often display variable histopathological morphology, genetic alterations, and genomic aberrations. Recent advances in transcriptomic and genetic profiling of lung adenocarcinoma by investigators, including our group, has provided better stratification of this heterogeneous disease, which can facilitate devising better treatment strategies suitable for targeted patient cohorts. In a recent study we have shown gene expression profiling identified novel clustering of early stage LUAD patients and correlated with tumor invasiveness and patient survival. In this study, we focused on copy number alterations in LUAD patients. SNP array data identified amplification at chromosome 12q15 on MDM2 locus and protein overexpression in a subclass of LUAD patients with an invasive subtype of the disease. High copy number amplification and protein expression in this subclass correlated with poor overall survival. We hypothesized that MDM2 copy number and overexpression predict response to MDM2-targeted therapy. In vitro functional data on a panel of LUAD cells showed that MDM2-targeted therapy effectively suppresses cell proliferation, migration, and invasion in cells with MDM2 amplification/overexpression but not in cells without MDM2 amplification, independent of p53 status. To determine the key signaling mechanisms, we used RNA sequencing (RNA seq) to examine the response to therapy in MDM2-amplified/overexpressing p53 mutant and wild-type LUAD cells. RNA seq data shows that in MDM2-amplified/overexpression with p53 wild-type condition, the E2F → PEG10 → MMPs pathway is operative, while in p53 mutant genetic background, MDM2-targeted therapy abrogates tumor progression in LUAD cells by suppressing epithelial to mesenchymal transition (EMT) signaling. Our study provides a potentially clinically relevant strategy of selecting LUAD patients for MDM2-targeted therapy that may provide for increased response rates and, thus, better survival.
Collapse
Affiliation(s)
- Abhilasha Sinha
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.S.); (A.S.P.); (F.J.); (T.S.); (R.K.); (H.W.)
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Yong Zou
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (Y.Z.); (P.P.M.)
| | - Ayushi S. Patel
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.S.); (A.S.P.); (F.J.); (T.S.); (R.K.); (H.W.)
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | | | - Feng Jiang
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.S.); (A.S.P.); (F.J.); (T.S.); (R.K.); (H.W.)
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Takashi Sato
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.S.); (A.S.P.); (F.J.); (T.S.); (R.K.); (H.W.)
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| | - Ranran Kong
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.S.); (A.S.P.); (F.J.); (T.S.); (R.K.); (H.W.)
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Thoracic Surgery, The Second Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an 710004, China
| | - Hideo Watanabe
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.S.); (A.S.P.); (F.J.); (T.S.); (R.K.); (H.W.)
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jun Zhu
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Sema4, 333 Ludlow St., Stamford, CT 06902, USA;
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, New York, NY 10029, USA
| | - Pierre P. Massion
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (Y.Z.); (P.P.M.)
| | - Alain C. Borczuk
- Department of Pathology, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Charles A. Powell
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.S.); (A.S.P.); (F.J.); (T.S.); (R.K.); (H.W.)
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Correspondence: ; Tel.: +1-212-241-5656
| |
Collapse
|
21
|
Zhang B, Liu ZY, Wu R, Zhang CM, Cao K, Shan WG, Liu Z, Ji M, Tian ZL, Sethi G, Shi HL, Wang RH. Transcriptional regulator CTR9 promotes hepatocellular carcinoma progression and metastasis via increasing PEG10 transcriptional activity. Acta Pharmacol Sin 2021; 43:2109-2118. [PMID: 34876700 PMCID: PMC9343652 DOI: 10.1038/s41401-021-00812-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/31/2021] [Indexed: 11/09/2022] Open
Abstract
Cln Three Requiring 9 (CTR9), a scaffold protein of the polymerase-associated factor-1 (PAF1) complex (PAF1c), is primarily localized in the nucleus of cells. Recent studies show that CTR9 plays essential roles in the development of various human cancers and their occurrence; however, its regulatory roles and precise mechanisms in hepatocellular carcinoma (HCC) remain unclear. In this study, we investigated the roles of CTR9 using in vitro assays and a xenograft mouse model. We found that CTR9 protein is upregulated in tumor tissues from HCC patients. Knockdown of CTR9 substantially reduced HCC cell proliferation, invasion, and migration, whereas its overexpression promoted these activities. In addition, in vitro results revealed that CTR9 silencing dramatically increased cell cycle regulators, p21 and p27, but markedly decreased matrix metalloproteinases, MMP2 and MMP9, with these outcomes reversed upon CTR9 overexpression. Furthermore, the underlying molecular mechanism suggests that CTR9 promoted the oncogene paternally expressed gene 10 (PEG10) transcription via its promoter region. Finally, the oncogenic roles of CTR9 were confirmed in a xenograft mouse model. This study confirms that CTR9, an oncoprotein that promotes HCC cell proliferation, invasion, and migration, increases tumor growth in a xenograft mouse model. CTR9 could be a novel therapeutic target. Further investigation is warranted to verify CTR9 potential in novel therapies for HCC.
Collapse
|
22
|
Zhang Y, Dou X, Kong Q, Li Y, Zhou X. Circ_0075804 promotes the malignant behaviors of retinoblastoma cells by binding to miR-138-5p to induce PEG10 expression. Int Ophthalmol 2021; 42:509-523. [PMID: 34633608 DOI: 10.1007/s10792-021-02067-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND It has been gradually recognized that circular RNAs (circRNAs) are important modulators in multiple malignancies. Here, we analyzed the function of circ_0075804 and explored its associated mechanism in regulating retinoblastoma (RB) progression. METHODS Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot assay were utilized to measure RNA and protein expression, respectively. Cell proliferation was analyzed by Cell counting kit-8 (CCK8) assay and 5-Ethynyl-2'-deoxyuridine (EdU) assay. Cell apoptosis was assessed by flow cytometry. Cell migration and invasion abilities were analyzed by wound healing assay and transwell invasion assay. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were applied to verify intermolecular target relations. Xenograft tumor model was used to analyze the role of circ_0075804 in tumor growth in vivo. RESULTS Circ_0075804 expression was markedly up-regulated in RB tissues and cell lines. Circ_0075804 knockdown restrained the proliferation, migration and invasion whereas promoted the apoptosis of RB cells. Circ_0075804 acted as a molecular sponge for microRNA-138-5p (miR-138-5p), and circ_0075804 silencing-induced effects were partly reversed by miR-138-5p knockdown in RB cells. MiR-138-5p interacted with the 3' untranslated region (3'UTR) of paternally expressed 10 (PEG10). Circ_0075804 positively regulated PEG10 level by sponging miR-138-5p in RB cells. PEG10 overexpression largely overturned miR-138-5p overexpression-mediated effects in RB cells. Circ_0075804 knockdown blocked xenograft tumor growth in vivo. CONCLUSION Circ_0075804 promoted RB progression via miR-138-5p-dependent regulation of PEG10, which provided new insight in RB therapy.
Collapse
Affiliation(s)
- Yanling Zhang
- Department of Ophthalmology, Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, No. 18 Zetian Road, Futian District, Shenzhen, 518040, Guangdong Province, China.
| | - Xiaoyan Dou
- Department of Ophthalmology, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong Province, China
| | - Qinghui Kong
- Department of Ophthalmology, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong Province, China
| | - Yuying Li
- Department of Ophthalmology, School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen, Guangdong Province, China
| | - Xing Zhou
- Department of Ophthalmology, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
23
|
Hu W, Li M, Wu J, Chen H, Zhao T, Zhang C, Wang Z. Inhibition of Dishevelled-2 suppresses the biological behavior of pancreatic cancer by downregulating Wnt/β-catenin signaling. Oncol Lett 2021; 22:769. [PMID: 34589148 PMCID: PMC8442142 DOI: 10.3892/ol.2021.13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 05/26/2021] [Indexed: 12/04/2022] Open
Abstract
Dishevelled-2 (DVL2) has been proven to be involved in the tumorigenesis of several human cancers, such as colorectal cancer, lung cancer, prostate cancer, etc. However, its role in pancreatic ductal adenocarcinoma (PDAC) remains unclear. The present study investigated the effects of aberrantly expressed DVL2 on PDAC. A total of 97 pancreatic cancer (PC) samples and 85 adjacent normal samples were obtained from patients who were histopathologically diagnosed with primary PDAC. The present study demonstrated that DVL2 expression was upregulated in PDAC tissues and was positively associated with advanced clinical stage and lymph node metastasis in patients with PDAC. In addition, patients with high expression of DVL2 had a shorter overall survival rate compared with those with low expression. To elucidate the role of DVL2 in PDAC, lentivirus-mediated short hairpin RNA was used to silence DVL2 and its physiological function was analyzed in CFPAC-1 and PANC-1 cells. The results indicated that DVL2 downregulation significantly impaired its oncogenic functions including cell proliferation, migration, invasion and epithelial-mesenchymal transition. Furthermore, DVL2 knockdown inhibits the proliferation and invasion of PC cells in vivo. In addition, co-immunoprecipitation assays revealed that DVL2 interacted with β-catenin; knockdown of DVL2 reduced the expression level of β-catenin and inhibited β-catenin translocation into the nucleus. In conclusion the findings of the present study suggested that DVL2 may be a potential therapeutic target in the treatment of PDAC.
Collapse
Affiliation(s)
- Wei Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222001, P.R. China.,Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222001, P.R. China
| | - Mingxu Li
- Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222001, P.R. China
| | - Junyi Wu
- Department of Hepatobiliary and Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Hong Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222001, P.R. China.,Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222001, P.R. China
| | - Ting Zhao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222001, P.R. China.,Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222001, P.R. China
| | - Chunjie Zhang
- Department of Pathology, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu 222001, P.R. China
| | - Zhong Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222001, P.R. China.,Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222001, P.R. China
| |
Collapse
|
24
|
Batra J, Mori H, Small GI, Anantpadma M, Shtanko O, Mishra N, Zhang M, Liu D, Williams CG, Biedenkopf N, Becker S, Gross ML, Leung DW, Davey RA, Amarasinghe GK, Krogan NJ, Basler CF. Non-canonical proline-tyrosine interactions with multiple host proteins regulate Ebola virus infection. EMBO J 2021; 40:e105658. [PMID: 34260076 DOI: 10.15252/embj.2020105658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/23/2021] [Accepted: 07/09/2021] [Indexed: 01/08/2023] Open
Abstract
The Ebola virus VP30 protein interacts with the viral nucleoprotein and with host protein RBBP6 via PPxPxY motifs that adopt non-canonical orientations, as compared to other proline-rich motifs. An affinity tag-purification mass spectrometry approach identified additional PPxPxY-containing host proteins hnRNP L, hnRNPUL1, and PEG10, as VP30 interactors. hnRNP L and PEG10, like RBBP6, inhibit viral RNA synthesis and EBOV infection, whereas hnRNPUL1 enhances. RBBP6 and hnRNP L modulate VP30 phosphorylation, increase viral transcription, and exert additive effects on viral RNA synthesis. PEG10 has more modest inhibitory effects on EBOV replication. hnRNPUL1 positively affects viral RNA synthesis but in a VP30-independent manner. Binding studies demonstrate variable capacity of the PPxPxY motifs from these proteins to bind VP30, define PxPPPPxY as an optimal binding motif, and identify the fifth proline and the tyrosine as most critical for interaction. Competition binding and hydrogen-deuterium exchange mass spectrometry studies demonstrate that each protein binds a similar interface on VP30. VP30 therefore presents a novel proline recognition domain that is targeted by multiple host proteins to modulate viral transcription.
Collapse
Affiliation(s)
- Jyoti Batra
- J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
| | - Hiroyuki Mori
- Department of Microbiology, NEIDL, Boston University School of Medicine, Boston, MA, USA
| | - Gabriel I Small
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.,John T. Milliken Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Manu Anantpadma
- Department of Microbiology, NEIDL, Boston University School of Medicine, Boston, MA, USA
| | - Olena Shtanko
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Nawneet Mishra
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mengru Zhang
- Department of Chemistry, Washington University School of Medicine, St. Louis, MO, USA
| | - Dandan Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Caroline G Williams
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Nadine Biedenkopf
- Institute of Virology, Philipps University of Marburg, Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University of Marburg, Marburg, Germany
| | - Michael L Gross
- Department of Chemistry, Washington University School of Medicine, St. Louis, MO, USA
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.,John T. Milliken Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert A Davey
- Department of Microbiology, NEIDL, Boston University School of Medicine, Boston, MA, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nevan J Krogan
- J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
25
|
Zhang Y, Guo H, Zhang H. SNHG10/DDX54/PBX3 Feedback Loop Contributes to Gastric Cancer Cell Growth. Dig Dis Sci 2021; 66:1875-1884. [PMID: 32712782 DOI: 10.1007/s10620-020-06488-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 07/11/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND The importance of long noncoding RNAs (lncRNAs) has been identified in human cancers, such as emerged as tumor facilitator or tumor suppressor. Small nucleolar RNA host gene 10 (SNHG10) has been reported as an oncogenic lncRNA in hepatocellular carcinoma. However, its functional role and underlying mechanism in gastric cancer (GC) need to be further explored. AIMS Our study was conducted to investigate the function and molecular mechanism of SNHG10 in GC. METHODS SNHG10 expression was detected by qRT-PCR. The effect of SNHG10 on GC cell growth was assessed by colony formation, EdU, JC-1, flow cytometry, and wound-healing assays. The interaction between SNHG10 and PBX3 was confirmed through ChIP and luciferase reporter assay. RIP and RNA pull down assays was used to define the binding of DEAD-box helicase 54 (DDX54) to SNHG10 or PBX homeobox 3 (PBX3). RESULTS SNHG10 was expressed at a high level in GC cells. SNHG10 knockdown resulted in the inhibition on GC cell proliferation, migration but induced cell apoptosis. PBX3 could interact with SNHG10 promoter and thereby activate the expression of SNHG10. Subsequently, it was confirmed that SNHG10 positively modulated the expression of PBX3. Based on this, we found that DDX54 could bind to SNHG10 and PBX3, suggesting that SNHG10 maintained PBX3 mRNA stability through recruiting DDX54. Restoration assays indicated that PBX3 overexpression recovered SNHG10 silencing-induced inhibition on GC cell growth. CONCLUSIONS SNHG10 facilitates cell growth by affecting DDX54-mediated PBX3 mRNA stability in GC.
Collapse
Affiliation(s)
- Yunfei Zhang
- Deparetment of Pathology, the Affiliated Hospital of Northwest University for Nationalities, Second Province People's Hospital of Gansu, Lanzhou, 730000, Gansu, China.
| | - Hongyan Guo
- Deparetment of Pathology, the Affiliated Hospital of Northwest University for Nationalities, Second Province People's Hospital of Gansu, Lanzhou, 730000, Gansu, China
| | - Hong Zhang
- Deparetment of Pathology, the Affiliated Hospital of Northwest University for Nationalities, Second Province People's Hospital of Gansu, Lanzhou, 730000, Gansu, China
| |
Collapse
|
26
|
Zhang L, Wan Y, Zhang Z, Jiang Y, Gu Z, Ma X, Nie S, Yang J, Lang J, Cheng W, Zhu L. IGF2BP1 overexpression stabilizes PEG10 mRNA in an m6A-dependent manner and promotes endometrial cancer progression. Theranostics 2021; 11:1100-1114. [PMID: 33391523 PMCID: PMC7738899 DOI: 10.7150/thno.49345] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/16/2020] [Indexed: 01/18/2023] Open
Abstract
Rationale: N6-methyladenosine (m6A) mRNA methylation is the most abundant chemical posttranscriptional modification in mRNA and is involved in the regulation of a number of biological processes. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) has recently been reported as having the capacity to recognize m6A sites in mRNA and plays a role in regulating mRNA metabolization. However, it is unclear which genes IGF2BP1 targets to identify m6A sites and what are their respective functions in endometrial cancer (EC). Methods: Quantitative PCR, western blot and immunohistochemistry were used to measure IGF2BP1 expression in EC cell lines and tissues. Xenograft experiments were performed to examine the in vivo role of IGF2BP1 in EC cell growth. RNA-binding protein immunoprecipitation sequencing, methylated RNA-binding protein immunoprecipitation sequencing and RNA-sequencing were also conducted to identify potential IGF2BP1 targets involved in EC regulation. Co-immunoprecipitation and mass spectrometry were used to identify IGF2BP1-interacting proteins. Results: IGF2BP1 expression increased in EC, and high expression of this protein correlated with poor prognosis. IGF2BP1 overexpression/knockdown can promote (and inhibit) cell proliferation and regulate the tumor cell cycle and cancer progression, both in vivo and in vitro. Mechanistically, IGF2BP1 can recognize m6A sites in the 3' untranslated region (3'UTR) of Paternally Expressed Gene 10 (PEG10) mRNA and recruits polyadenylate-binding protein 1 (PABPC1) to enhance PEG10 mRNA stability, which consequently promotes PEG10 protein expression. Additionally, it would appear that a large number of PEG10 proteins bind p16 and p18 gene promoter sequences, thereby repressing expression and accelerating the cell cycle. Conclusion: This investigation found that IGF2BP1 has a crucial role in the m6A-dependent regulatory mechanism for endometrial cancer. This study provides new insights into our understanding of disease progression and provides another potential route for understanding biological functions.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100010, China
| | - Yicong Wan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Zihan Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100010, China
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Zhiyue Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100010, China
| | - Xiaoling Ma
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Sipei Nie
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Jing Yang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100010, China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Lan Zhu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100010, China
| |
Collapse
|
27
|
Differential Expression of PEG10 Contributes to Aggressive Disease in Early Versus Late-Onset Colorectal Cancer. Dis Colon Rectum 2020; 63:1610-1620. [PMID: 33149023 PMCID: PMC7653836 DOI: 10.1097/dcr.0000000000001774] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Colorectal cancer is a leading cause of cancer-related death. Early onset colorectal cancer (age ≤45 y) is increasing and associated with advanced disease. Although distinct molecular subtypes of colorectal cancer have been characterized, it is unclear whether age-related molecular differences exist. OBJECTIVE We sought to identify differences in gene expression between early and late-onset (age ≥65 y) colorectal cancer. DESIGN We performed a review of our institution's colorectal cancer registry and identified patients with colorectal cancer with tissue specimens available for analysis. We used the Cancer Genome Atlas to initially identify differences in gene expression between early and late-onset colorectal cancer. In vitro experiments were performed on 2 colorectal cancer cell lines. SETTINGS The study was conducted at a tertiary medical center. PATIENTS Patients with early onset (n = 28) or late onset (age ≥65 y; n = 38) at time of diagnosis were included. MAIN OUTCOME MEASURES The primary outcome was differential gene expression in patients with early versus late-onset colorectal cancer. The secondary outcome was patient mortality. RESULTS Seven genes had increased expression in younger patients using The Cancer Genome Atlas. Only PEG10 was sufficiently expressed with quantitative polymerase chain reaction and had increased expression in our early onset group. Multivariable linear regression analysis identified age as a significant independent predictor of increased PEG10 expression. Outcomes data from The Cancer Genome Atlas suggests that PEG10 is associated with poor overall survival. In vitro studies in HCT-116 and HT-29 cell lines showed that PEG10 contributes to cellular proliferation and invasion in colorectal cancer. LIMITATIONS Tissue samples were from formalin-fixed, paraffin-embedded sections. Many patients did not have mutational status for review. CONCLUSIONS PEG10 is differentially expressed in early onset colorectal cancer and may functionally contribute to tumor cell proliferation and invasion. An increase in PEG10 expression correlates with decreased overall survival. See Video Abstract at http://links.lww.com/DCR/B343. LA EXPRESIÓN DIFERENCIAL DE PEG10 CONTRIBUYE A LA ENFERMEDAD AGRESIVA EN EL CÁNCER COLORRECTAL DE INICIO TEMPRANO VERSUS INICIO TARDÍO: El cáncer colorrectal es una de las principales causas de muerte relacionada con el cáncer. El cáncer colorrectal de inicio temprano (edad ≤45 años) está en aumento y asociado con enfermedad avanzada. Aunque se han caracterizado distintos subtipos moleculares del cáncer colorrectal, no está claro si existen diferencias moleculares relacionadas con la edad.Se buscó identificar diferencias en la expresión génica entre el cáncer colorrectal de inicio temprano y tardío (edad ≥ 65 años).Realizamos una revisión del registro de cáncer colorrectal de nuestra institución e identificamos pacientes con cáncer colorrectal con muestras de tejido disponibles para su análisis. Utilizamos el Atlas del Genoma del Cáncer para identificar inicialmente las diferencias en la expresión génica entre el cáncer colorrectal de inicio temprano y de inicio tardío. Se realizaron experimentos in vitro en dos líneas celulares de cáncer colorrectal.El estudio se realizó en un centro médico de tercer nivel.Se incluyeron pacientes con inicio temprano (n = 28) e inicio tardío (edad ≥65 años, n = 38) al momento del diagnóstico.El resultado primario fue la expresión diferencial de genes en pacientes con cáncer colorrectal de inicio temprano versus tardío. El resultado secundario fue la mortalidad de los pacientes.Siete genes aumentaron su expresión en pacientes más jóvenes usando el Atlas del Genoma del Cáncer. Solo PEG10 se expresó suficientemente con la reacción en cadena de la polimerasa cuantitativa y tuvo una mayor expresión en nuestro grupo de inicio temprano. El análisis de regresión lineal multivariable identificó la edad como un predictor independiente significativo del aumento de la expresión de PEG10. Los datos de resultados de el Atlas del Genoma del Cáncer sugieren que PEG10 está asociado con una pobre supervivencia general. Los estudios in vitro en líneas celulares HCT-116 y HT-29 mostraron que PEG10 contribuye a la proliferación e invasión celular en el cáncer colorrectal.Las muestras de tejido fueron de portaobjetos embebidos en parafina fijados con formalina. Muchos pacientes no tenían el estado de mutación para su revisión.El PEG10 se expresa diferencialmente en el cáncer colorrectal de inicio temprano y puede contribuir funcionalmente a la proliferación e invasión de células tumorales. El aumento en la expresión de PEG10 se correlaciona con la disminución de la supervivencia general. Consulte Video Resumen en http://links.lww.com/DCR/B343.
Collapse
|
28
|
Zhao J, Su L, Jiang J. Long Non-Coding RNA Paternally Expressed Imprinted Gene 10 (PEG10) Elevates Diffuse Large B-Cell Lymphoma Progression by Regulating Kinesin Family Member 2A (KIF2A) via Targeting MiR-101-3p. Med Sci Monit 2020; 26:e922810. [PMID: 32976381 PMCID: PMC7523416 DOI: 10.12659/msm.922810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is a common malignant tumor in the immune system with high mortality. We investigated the functional effects of long non-coding RNA paternally expressed imprinted gene 10 (PEG10) on DLBCL progression. Material/Methods Real-time quantitative polymerase chain reaction was used to measure the level of PEG10, kinesin family member 2A (KIF2A) and microRNA-101-3p (miR-101-3p) in DLBCL tissues and cell lines. The relative protein level was detected by western blot analysis. The biological behaviors including cell proliferation, apoptosis, migration, and invasion were determined by MTT assay, flow cytometry analysis, and Transwell assays, respectively. Bioinformatics analysis and dual-luciferase reporter assay were performed to evaluate the interaction among PEG10, miR-101-3p, and KIF2A. Results PEG10 and KIF2A level were significantly upregulated, while miR-101-3p was downregulated in DLBCL tissues and cells. PEG10 positively regulated KIF2A level in DLBCL. PEG10, or KIF2A deletion significantly inhibited the proliferative, migratory, and invasive abilities of DLBCL cells and elevated cell apoptosis in DLBCL cells. KIF2A upregulation partially reversed the effects of PEG10 downregulation on cell growth, metastasis, and apoptosis in DLBCL. Moreover, PEG10 negatively regulated miR-101-3p level and miR-101-3p upregulation exerted inhibition effects on the progression of DLBCL. Besides, miR-101-3p was a target of PEG10 and miR-101-3p could directly target KIF2A. PEG10 promoted KIF2A level by sponging miR-101-3p. Conclusions Our findings revealed that PEG10 played an oncogenic role in DLBCL progression, which might be a potential target for the treatment of DLBCL.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Hematology, Affiliated Shanxi Tumor Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Liping Su
- Department of Hematology, Affiliated Shanxi Tumor Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Jianjun Jiang
- Department of Palliative Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
29
|
Tan HX, Yang SL, Li MQ, Wang HY. Autophagy suppression of trophoblast cells induces pregnancy loss by activating decidual NK cytotoxicity and inhibiting trophoblast invasion. Cell Commun Signal 2020; 18:73. [PMID: 32398034 PMCID: PMC7218578 DOI: 10.1186/s12964-020-00579-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/13/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The crosstalk between trophoblast cells and decidual NK cells plays an important role in the establishment and maintenance of normal pregnancy. Recent studies reported that autophagy can induce immune tolerance at the maternal fetal interface, while the mechanism remains unclear. METHODS Autophagy levels in the villi of normal and recurrent spontaneous abortion (RSA) patients were detected by transmission electron microscopy. After co-cultured with trophoblast cells pretreated with 3-MA or rapamycin, NK cells were collected and the expression of killer receptors was detected by flow cytometry (FCM). The invasiveness of trophoblasts was tested by Cell invasion assay. RESULTS Compared with elective pregnancy termination patients, the level of autophagy in the villi of RSA patients was significantly decreased. Inducing the autophagy level in trophoblast cells with rapamycin could significantly inhibit the cytotoxicity of NK cells in the co-culture system, and supplement of IGF-2 could rectify this effect. Meanwhile, autophagy suppression of trophoblasts reduced the level of Paternally Expressed Gene 10 (PEG10), leading to the impairment of trophoblast cell invasion. In addition, NK cells educated by autophagy-inhibited trophoblasts further decreased the proliferation and invasiveness of trophoblasts. In pregnant mice model, injection with 3-MA promoted the cytotoxicity of uterine NK cells, and increased the embryo absorption rate. CONCLUSION Autophagy suppression of trophoblasts increase the cytotoxicity of NK cells and damage the trophoblasts invasion possibly by targeting IGF-2 and PEG10, respectively, which ultimately leads to miscarriage. Video Abstarct.
Collapse
Affiliation(s)
- Hai-Xia Tan
- Department of Gynecology of Integrated Traditional Chinese and Western Medicine, Hospital of Obstetrics and Gynecology, Fudan University, Shen Yang Road 128, Shanghai, 200090, People's Republic of China
| | - Shao-Liang Yang
- Department of Gynecology of Integrated Traditional Chinese and Western Medicine, Hospital of Obstetrics and Gynecology, Fudan University, Shen Yang Road 128, Shanghai, 200090, People's Republic of China
| | - Ming-Qing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Pingliang Road, Shanghai, 200080, People's Republic of China.
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200080, People's Republic of China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200080, People's Republic of China.
| | - Hai-Yan Wang
- Department of Gynecology of Integrated Traditional Chinese and Western Medicine, Hospital of Obstetrics and Gynecology, Fudan University, Shen Yang Road 128, Shanghai, 200090, People's Republic of China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
30
|
Haider Z, Landfors M, Golovleva I, Erlanson M, Schmiegelow K, Flægstad T, Kanerva J, Norén-Nyström U, Hultdin M, Degerman S. DNA methylation and copy number variation profiling of T-cell lymphoblastic leukemia and lymphoma. Blood Cancer J 2020; 10:45. [PMID: 32345961 PMCID: PMC7188684 DOI: 10.1038/s41408-020-0310-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Despite having common overlapping immunophenotypic and morphological features, T-cell lymphoblastic leukemia (T-ALL) and lymphoma (T-LBL) have distinct clinical manifestations, which may represent separate diseases. We investigated and compared the epigenetic and genetic landscape of adult and pediatric T-ALL (n = 77) and T-LBL (n = 15) patient samples by high-resolution genome-wide DNA methylation and Copy Number Variation (CNV) BeadChip arrays. DNA methylation profiling identified the presence of CpG island methylator phenotype (CIMP) subgroups within both pediatric and adult T-LBL and T-ALL. An epigenetic signature of 128 differentially methylated CpG sites was identified, that clustered T-LBL and T-ALL separately. The most significant differentially methylated gene loci included the SGCE/PEG10 shared promoter region, previously implicated in lymphoid malignancies. CNV analysis confirmed overlapping recurrent aberrations between T-ALL and T-LBL, including 9p21.3 (CDKN2A/CDKN2B) deletions. A significantly higher frequency of chromosome 13q14.2 deletions was identified in T-LBL samples (36% in T-LBL vs. 0% in T-ALL). This deletion, encompassing the RB1, MIR15A and MIR16-1 gene loci, has been reported as a recurrent deletion in B-cell malignancies. Our study reveals epigenetic and genetic markers that can distinguish between T-LBL and T-ALL, and deepen the understanding of the biology underlying the diverse disease localization.
Collapse
Affiliation(s)
- Zahra Haider
- Department of Medical Biosciences, Umeå University, Umeå, Sweden.
| | - Mattias Landfors
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Irina Golovleva
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Martin Erlanson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, and Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Trond Flægstad
- Department of Pediatrics, University of Tromsø and University Hospital of North Norway, Tromsø, Norway
| | - Jukka Kanerva
- New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Magnus Hultdin
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Sofie Degerman
- Department of Medical Biosciences, Umeå University, Umeå, Sweden.,Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| |
Collapse
|
31
|
Golda M, Mótyán JA, Mahdi M, Tőzsér J. Functional Study of the Retrotransposon-Derived Human PEG10 Protease. Int J Mol Sci 2020; 21:ijms21072424. [PMID: 32244497 PMCID: PMC7212762 DOI: 10.3390/ijms21072424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Paternally expressed gene 10 (PEG10) is a human retrotransposon-derived imprinted gene. The mRNA of PEG10 encodes two protein isoforms: the Gag-like protein (RF1PEG10) is coded by reading frame 1, while the Gag-Pol-like polyprotein (RF1/RF2PEG10) is coded by reading frames 1 and 2. The proteins are translated by a typical retroviral frameshift mechanism. The protease (PR) domain of RF2PEG10 contains an -Asp-Ser-Gly- sequence, which corresponds to the consensus -Asp-Ser/Thr-Gly- active-site motif of retroviral aspartic proteases. The function of the aspartic protease domain of RF2PEG10 remains unclear. To elucidate the function of PEG10 protease (PRPEG10), we designed a frameshift mutant (fsRF1/RF2PEG10) for comparison with the RF1/RF2PEG10 form. To study the effects of PRPEG10 on cellular proliferation and viability, mammalian HEK293T and HaCaT cells were transfected with plasmids coding for either RF1/RF2PEG10, the frameshift mutant (fsRF1/RF2PEG10), or a PR active-site (D370A) mutant fsRF1/RF2PEG10. Our results indicate that fsRF1/RF2PEG10 overexpression results in increased cellular proliferation. Remarkably, transfection with fsRF1/RF2PEG10 had a detrimental effect on cell viability. We hypothesize that PRPEG10 plays an important role in the function of this retroviral remnant, mediating the proliferation of cells and possibly implicating it in the inhibition of apoptosis.
Collapse
Affiliation(s)
- Mária Golda
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.G.); (M.M.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.G.); (M.M.)
- Correspondence: (J.A.M.); (J.T.)
| | - Mohamed Mahdi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.G.); (M.M.)
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.G.); (M.M.)
- Correspondence: (J.A.M.); (J.T.)
| |
Collapse
|
32
|
Somarelli JA, Boddy AM, Gardner HL, DeWitt SB, Tuohy J, Megquier K, Sheth MU, Hsu SD, Thorne JL, London CA, Eward WC. Improving Cancer Drug Discovery by Studying Cancer across the Tree of Life. Mol Biol Evol 2020; 37:11-17. [PMID: 31688937 DOI: 10.1093/molbev/msz254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite a considerable expenditure of time and resources and significant advances in experimental models of disease, cancer research continues to suffer from extremely low success rates in translating preclinical discoveries into clinical practice. The continued failure of cancer drug development, particularly late in the course of human testing, not only impacts patient outcomes, but also drives up the cost for those therapies that do succeed. It is clear that a paradigm shift is necessary if improvements in this process are to occur. One promising direction for increasing translational success is comparative oncology-the study of cancer across species, often involving veterinary patients that develop naturally-occurring cancers. Comparative oncology leverages the power of cross-species analyses to understand the fundamental drivers of cancer protective mechanisms, as well as factors contributing to cancer initiation and progression. Clinical trials in veterinary patients with cancer provide an opportunity to evaluate novel therapeutics in a setting that recapitulates many of the key features of human cancers, including genomic aberrations that underly tumor development, response and resistance to treatment, and the presence of comorbidities that can affect outcomes. With a concerted effort from basic scientists, human physicians and veterinarians, comparative oncology has the potential to enhance the cost-effectiveness and efficiency of pipelines for cancer drug discovery and other cancer treatments.
Collapse
Affiliation(s)
- Jason A Somarelli
- Department of Medicine, Duke University Medical Center, Durham, NC.,Duke Cancer Institute, Durham, NC
| | - Amy M Boddy
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, CA
| | - Heather L Gardner
- Cummings School of Veterinary Medicine, Tufts University, Boston, MA
| | | | - Joanne Tuohy
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA
| | - Kate Megquier
- Broad Institute, Massachussettes Institute of Technology and Harvard University, Boston, MA
| | - Maya U Sheth
- Department of Medicine, Duke University Medical Center, Durham, NC.,Duke Cancer Institute, Durham, NC
| | - Shiaowen David Hsu
- Department of Medicine, Duke University Medical Center, Durham, NC.,Duke Cancer Institute, Durham, NC
| | - Jeffrey L Thorne
- Department of Biological Sciences, North Carolina State University, Raleigh, NC.,Department of Statistics, North Carolina State University, Raleigh, NC
| | - Cheryl A London
- Cummings School of Veterinary Medicine, Tufts University, Boston, MA
| | - William C Eward
- Duke Cancer Institute, Durham, NC.,Department of Orthopaedics, Duke University Medical Center, Durham, NC
| |
Collapse
|
33
|
Xiao H, Ding N, Liao H, Yao Z, Cheng X, Zhang J, Zhao M. Prediction of relapse and prognosis by expression levels of long noncoding RNA PEG10 in glioma patients. Medicine (Baltimore) 2019; 98:e17583. [PMID: 31702614 PMCID: PMC6855493 DOI: 10.1097/md.0000000000017583] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Long noncoding RNA paternally expressed 10 (lncRNA PEG10) is highly expressed in a variety of human cancers and related to the clinical prognosis of patients. However, to date there has been no previous study evaluating the prognostic significance of lncRNA PEG10 in gliomas. In the present study, we investigated the expression levels of lncRNA PEG10 to determine the prognostic value of this oncogene in human gliomas. METHODS Expression levels of lncRNA PEG10 were detected by real-time polymerase chain reaction in a hospital-based study cohort of 147 glioma patients and 23 cases of patients with craniocerebral trauma tissues. Associations of lncRNA PEG10 expression with clinicopathological variables and clinical outcome of glioma patients were investigated. RESULTS The results indicated that expression levels of lncRNA PEG10 were significantly increased in human gliomas compared to normal control brain tissues. In addition, lncRNA PEG10 expression was progressively increased from pathologic grade I to IV (P = .009) and correlated with the Karnofsky performance status (P = .018) in glioma patients. Furthermore, we also found that glioma patients with increased expression of lncRNA PEG10 had a higher risk to relapse and a statistically significant shorter overall survival (OS) than patients with reduced expression of lncRNA PEG10. In multivariate analysis, expression level of lncRNA PEG10 was found to be an independent prognostic factor for both progression-free survival and OS in glioma patients. CONCLUSIONS LncRNA PEG10 served as an oncogene and played crucial roles in the progression of glioma. Molecular therapy targeted on lncRNA PEG10 might bring significant benefits to the clinical outcome of malignant glioma.
Collapse
Affiliation(s)
| | - Ning Ding
- Outpatient Department, The Second Hospital of Shandong University, Shandong University
| | - Hang Liao
- Clinical laboratory, The Second Blood Insurance Center of Jinan
| | - Zhigang Yao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| | - Xiankui Cheng
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| | - Jian Zhang
- School of Life Science, Shandong Universit, Qingdao, Shandong Province, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| |
Collapse
|
34
|
Wang D, Zhao J, Li S, Wei J, Nan L, Mallampalli RK, Weathington NM, Ma H, Zhao Y. Phosphorylated E2F1 is stabilized by nuclear USP11 to drive Peg10 gene expression and activate lung epithelial cells. J Mol Cell Biol 2019; 10:60-73. [PMID: 28992046 DOI: 10.1093/jmcb/mjx034] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 08/15/2017] [Indexed: 12/21/2022] Open
Abstract
Phosphorylation affects ubiquitination, stability, and activity of transcriptional factors, thus regulating various cellular functions. E2F transcriptional factor 1 (E2F1) regulates paternally expressed imprinted gene 10 (Peg10) expression, thereby promoting cell proliferation. However, the effect of E2F1 stability on Peg10 expression and the molecular regulation of E2F1 stability by its phosphorylation have not been well demonstrated. Here, we describe a new pathway in which phosphorylation of E2F1 by GSK3β increases E2F1 association with the deubiquitinating enzyme, ubiquitin-specific protease 11 (USP11), which removes K63-linked ubiquitin chains thereby preventing E2F1 degradation in the nuclei. Downregulation of USP11 increases E2F1 ubiquitination and reduces E2F1 stability and protein levels, thereby decreasing Peg10 mRNA levels. Physiologically, USP11 depletion suppresses cell proliferation and wound healing in lung epithelial cells, and these effects are reversed by E2F1 and PEG10 overexpression. Thus, our study reveals a new molecular model that phosphorylation promotes substrate stability through increasing its association with a deubiquitinating enzyme. The data suggest that GSK3β and USP11 act in concert to modulate E2F1 abundance and PEG10 expression in lung epithelial cells to affect cell wound healing. This study provides new therapeutic targets to lessen lung injury by improving lung epithelial cell repair and remodeling after injury.
Collapse
Affiliation(s)
- Dan Wang
- Department of Anesthesia, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Jing Zhao
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Shuang Li
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA.,Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jianxin Wei
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Ling Nan
- Department of Anesthesia, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Rama K Mallampalli
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA.,Acute Lung Injury Center of Excellence and Vascular Medical Institute, University of Pittsburgh, Pittsburgh, USA
| | - Nathaniel M Weathington
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA.,Acute Lung Injury Center of Excellence and Vascular Medical Institute, University of Pittsburgh, Pittsburgh, USA
| | - Haichun Ma
- Department of Anesthesia, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Yutong Zhao
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA.,Acute Lung Injury Center of Excellence and Vascular Medical Institute, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
35
|
Kim S, Thaper D, Bidnur S, Toren P, Akamatsu S, Bishop JL, Colins C, Vahid S, Zoubeidi A. PEG10 is associated with treatment-induced neuroendocrine prostate cancer. J Mol Endocrinol 2019; 63:39-49. [PMID: 31013476 DOI: 10.1530/jme-18-0226] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/23/2019] [Indexed: 01/03/2023]
Abstract
Neuroendocrine (NE) differentiation of advanced prostate adenocarcinoma following androgen receptor (AR) axis-directed therapy is becoming increasingly recognized. Several models of this transdifferentiation provide insight into its molecular pathogenesis and have highlighted the placental gene PEG10 for further study. Using our unique model of enzalutamide resistance (ENZR) and NE differentiation, we studied PEG10/AR interplay in enzalutamide treatment-resistant cell lines 42DENZR and 42FENZR compared to LNCaP and castration-resistant 16DCRPC cells. ENZR cell lines with positive terminal NE marker status also displayed higher baseline expression of PEG10 compared to LNCaP and 16DCRPC. Antagonism of AR activity increased PEG10 expression followed by an increase in terminal NE markers. Conversely, stimulating AR activity via androgen supplementation reversed PEG10 and NE marker expression in a time and dose-dependent manner. These results were supported by human data showing that PEG10 expression is highest in NEPC and that AR-dependent gene, PSA, is negatively correlated with PEG10 in adenocarcinoma. Further, ChIP assay confirmed binding of activated AR to the PEG10 enhancer, decreasing PEG10 expression. While PEG10 did not drive NEPC, its knockdown reduced NE markers in our cell lines. Moreover, PEG10 knockdown in vitro- and in vivo-attenuated tumor growth. Overall, these observations indicate that PEG10 is an AR-repressed gene which modulates NE markers in ENZR cells and targeting PEG10 in advanced prostate cancer with NE features is a rational and viable option.
Collapse
Affiliation(s)
- Soojin Kim
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Daksh Thaper
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samir Bidnur
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul Toren
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | | | | | - Colin Colins
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sepideh Vahid
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
36
|
Liu Z, Tian Z, Cao K, Zhang B, Wen Q, Zhou X, Yang W, Wang T, Shi H, Wang R. TSG101 promotes the proliferation, migration and invasion of hepatocellular carcinoma cells by regulating the PEG10. J Cell Mol Med 2018; 23:70-82. [PMID: 30450735 PMCID: PMC6307771 DOI: 10.1111/jcmm.13878] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/11/2018] [Accepted: 08/03/2018] [Indexed: 01/19/2023] Open
Abstract
The tumour susceptibility gene 101 (TSG101) is reported to play important roles in the development and progression of several human cancers. However, its potential roles and underlined mechanisms in human hepatocellular carcinoma (HCC) are still needed to be further clarified. In the present study, we reported that knock down of TSG101 suppressed the proliferation, migration and invasion of HCC cells, while overexpression of TSG101 facilitated them. Molecularly, the results revealed that knock down of TSG101 significantly decreased the cell cycle related regulatory factor p53 and p21. In another point, knock down of TSG101 also obviously decreased the level of metallopeptidase inhibitor TIMP1 (Tissue inhibitors of metalloproteinases 1), which results in inhibition of MMP2, MMP7 and MMP9. In contrast, overexpression of TSG101 had opposite effects. The iTRAQ proteomics analysis identified that oncogenic protein PEG10 (Paternally expressed gene 10) might be a potential downstream target of TSG101. Further investigation showed that TSG101 interacted with PEG10 and protected it from proteasomal degradation thereby regulating the expression of p53, p21 and MMPs. Finally, we found that both TSG101 and PEG10 proteins are up-regulated and presented a direct correlation in HCC patients. In conclusion, these results suggest that TSG101 is up-regulated in human HCC patients, which may accelerate the proliferation, migration and invasion of HCC cells through regulating PEG10.
Collapse
Affiliation(s)
- Zhiyi Liu
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zilu Tian
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kuan Cao
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bin Zhang
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Quan Wen
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinyu Zhou
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Weibin Yang
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tao Wang
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hengliang Shi
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renhao Wang
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
37
|
Wang J, Sun D, Wu K, Liu J, Zhao M, Li X, Xu Y, Li B. Genome-wide analysis of long non-coding RNAs in esophageal squamous cell carcinoma reveals their potential role in invasion and metastasis. Thorac Cancer 2018; 10:78-89. [PMID: 30390388 PMCID: PMC6312850 DOI: 10.1111/1759-7714.12904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 09/29/2018] [Accepted: 09/30/2018] [Indexed: 12/18/2022] Open
Abstract
Background A high lymphatic metastasis rate and strong local invasive ability are the key characteristics of esophageal squamous cell carcinoma (ESCC) that affect patient survival, and long non‐coding RNAs (lncRNAs) may play a crucial role. We performed genome‐wide analysis of lncRNAs to identify novel biomarkers associated with local invasion and lymphatic metastasis in ESCC. Methods Six pairs of ESCC tumor and para‐tumor tissues were subjected to microarray analysis to identify differentially expressed lncRNAs, and 25 pairs of tissues samples were used to verify the effectiveness of screened lncRNAs using quantitative reverse transcription PCR. The correlations between verified lncRNAs and clinicopathological characteristics were analyzed to confirm specific lncRNAs associated with the local invasion and lymphatic metastasis of ESCC, and gene co‐expression analysis was used to predict potential mechanisms. Results Microarray analysis identified 1850 lncRNAs with significant differential expression in ESCC. Of 22 lncRNAs selected for quantitative reverse transcription PCR verification, four were significantly upregulated and one was significantly downregulated in ESCC cancer compared to para‐cancer tissues. ENST00000508406.1 was significantly associated with T, N, and tumor node metastasis stages, and NR_037652.1 was significantly associated with N stage. Moreover, 49 lncRNA‐messenger RNA pairs were significantly associated with the two dysregulated lncRNAs and possibly involved in the regulation of local invasion and lymphatic metastasis of ESCC. Conclusion The present genome‐wide analysis identified two novel and tumor‐specific lncRNAs for predicting ESCC local invasion and lymphatic metastasis, providing insight into the potential underlying mechanism, which warrants further investigation.
Collapse
Affiliation(s)
- Jihua Wang
- Cancer Center, The Second Hospital of Shandong University, Jinan, China
| | - Dianshui Sun
- Cancer Center, The Second Hospital of Shandong University, Jinan, China
| | - Kai Wu
- Department of Pathology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Liu
- Department of Thoracic Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, China
| | - Miaoqing Zhao
- Department of Pathology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xiaomei Li
- Cancer Center, The Second Hospital of Shandong University, Jinan, China
| | - Ying Xu
- Cancer Center, The Second Hospital of Shandong University, Jinan, China
| | - Baosheng Li
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
38
|
Qian W, Zhang Z, Peng W, Li J, Gu Q, Ji D, Wang Q, Zhang Y, Ji B, Wang S, Zhang D, Sun Y. CDCA3 mediates p21-dependent proliferation by regulating E2F1 expression in colorectal cancer. Int J Oncol 2018; 53:2021-2033. [PMID: 30226575 PMCID: PMC6192733 DOI: 10.3892/ijo.2018.4538] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/23/2018] [Indexed: 02/06/2023] Open
Abstract
Dysregulated cell cycle progression serves a crucial role in tumor development. Cell division cycle-associated 3 (CDCA3) is considered a trigger of mitotic entry; it is an important part of the S phase kinase-associated protein 1/Cullin/F-box ubiquitin ligase complex and mediates the destruction of mitosis-inhibitory kinase wee1. However, little is known about the role of CDCA3 in cancer, particularly colorectal cancer (CRC). The present study aimed to explore the biological and clinical significance of CDCA3 in CRC growth and progression. CDCA3 expression was significantly associated with tumor progression and poor survival. Overexpression of CDCA3 increased proliferation in LoVo CRC cells, whereas CDCA3 knockdown in SW480 CRC cells led to decreased proliferation, in vitro and in vivo. Further mechanistic investigations demonstrated that reduced CDCA3 expression resulted in G1/S phase transition arrest, which was attributed to a significant accumulation of p21 in SW480 cells; conversely, increased CDCA3 expression promoted G1/S phase transition through decreased p21 accumulation in LoVo cells. It was also demonstrated that CDCA3 was able to regulate the expression of transcription factor E2F1, thereby repressing p21 expression. Taken together, these results suggested that overexpression of CDCA3 may serve a crucial role in tumor malignant potential and that CDCA3 may be used as a prognostic factor and a potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Wenwei Qian
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zhiyuan Zhang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wen Peng
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jie Li
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qiou Gu
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Dongjian Ji
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qingyuan Wang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yue Zhang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Bing Ji
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Sen Wang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Dongsheng Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yueming Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
39
|
Xie T, Pan S, Zheng H, Luo Z, Tembo KM, Jamal M, Yu Z, Yu Y, Xia J, Yin Q, Wang M, Yuan W, Zhang Q, Xiong J. PEG10 as an oncogene: expression regulatory mechanisms and role in tumor progression. Cancer Cell Int 2018; 18:112. [PMID: 30123090 PMCID: PMC6090666 DOI: 10.1186/s12935-018-0610-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/04/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer is a major public health problem as one of the leading causes of death worldwide. Deciphering the molecular regulation mechanisms of tumor progression can make way for tumor diagnosis and therapy. Paternally expressed gene 10 (PEG10), located on human chromosome 7q21.3, has turned out to be an oncogene implicated in the proliferation, apoptosis and metastasis of tumors. PEG10 has been found to be positively expressed in a variety of cancers with seemingly complex expression regulation mechanisms. In this review, we focus on the most vital factors influencing PEG10 expression and recapitulate some of the currently known and potential mechanisms of PEG10 affecting tumor progression, as understanding the molecular regulatory mechanisms of tumor progression can provide potential PEG10 related diagnosis and biomarker specific targeted therapies.
Collapse
Affiliation(s)
- Tian Xie
- 1Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071 China
| | - Shan Pan
- 1Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071 China
| | - Hang Zheng
- 2Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Zilv Luo
- 1Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071 China
| | | | - Muhammad Jamal
- 4State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhongyang Yu
- 1Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071 China
| | - Yao Yu
- 1Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071 China
| | - Jing Xia
- 1Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071 China
| | - Qian Yin
- 1Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071 China
| | - Meng Wang
- 1Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071 China
| | - Wen Yuan
- 1Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071 China
| | - Qiuping Zhang
- 1Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071 China.,5Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, 430071 China
| | - Jie Xiong
- 1Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071 China
| |
Collapse
|
40
|
Zhu X, Shi C, Peng Y, Yin L, Tu M, Chen Q, Hou C, Li Q, Miao Y. Thymidine kinase 1 silencing retards proliferative activity of pancreatic cancer cell via E2F1-TK1-P21 axis. Cell Prolif 2018; 51:e12428. [PMID: 29266545 PMCID: PMC6528927 DOI: 10.1111/cpr.12428] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/28/2017] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES Thymidine kinase 1 (TK1) is one of the salvage enzymes engaged in the synthesis of DNA. Although a pro-carcinogenetic role of TK1 has been reported in various types of cancers, its role in pancreatic ductal adenocarcinoma (PDAC) is still unknown. The study is aimed to elaborate the function of TK1 in PDAC and the potential mechanisms in the following study. MATERIALS AND METHODS TK1 expression was analysed by immunohistochemistry, real-time PCR and Western blot, and its relationship with clinicopathological characteristics of PDAC patients was further investigated. To verify the function of TK1 and potential mechanism, TK1 siRNA was used to transfect PDAC cells and performed a series of assays in cell and animal models. RESULTS The level of TK1 expression was higher in cancerous tissues compared with matched adjacent tissues. TK1 overexpression was associated with progression of PDAC and poor prognosis. Knockdown of TK1 could suppress cell proliferation via inducing S phase arrest mediated by upregulation of P21. Further mechanism investigation suggested that transcription factor E2F-1 could directly regulate the TK1 and promote tumour proliferation. CONCLUSIONS The results suggested that TK1 might be involved in the development and progression of PDAC by regulating cell proliferation and show that TK1 may work as a promising therapeutic target in patients with PDAC.
Collapse
Affiliation(s)
- Xiaole Zhu
- Pancreas CenterFirst Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
- Pancreas InstituteNanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Chenyuan Shi
- Pancreas CenterFirst Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
- Pancreas InstituteNanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Yunpeng Peng
- Pancreas CenterFirst Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
- Pancreas InstituteNanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Lingdi Yin
- Pancreas CenterFirst Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
- Pancreas InstituteNanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Min Tu
- Pancreas CenterFirst Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
- Pancreas InstituteNanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Qiuyang Chen
- Pancreas CenterFirst Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
- Pancreas InstituteNanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Chaoqun Hou
- Pancreas CenterFirst Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
- Pancreas InstituteNanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Qiang Li
- Pancreas CenterFirst Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
- Pancreas InstituteNanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Yi Miao
- Pancreas CenterFirst Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
- Pancreas InstituteNanjing Medical UniversityNanjingJiangsu ProvinceChina
| |
Collapse
|
41
|
Ge H, Yan Y, Wu D, Huang Y, Tian F. Prognostic value of PEG10 in Asian solid tumors: A meta-analysis. Clin Chim Acta 2018; 483:197-203. [PMID: 29727698 DOI: 10.1016/j.cca.2018.04.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND The involvement of paternally expressed gene 10 (PEG10) in the development of solid tumors has been demonstrated. However, the available data have not yet been fully analyzed. We conducted this meta-analysis to evaluate the correlations between PEG10 and the clinicopathological characteristics in patients with solid tumors. METHODS An electronic search for relevant articles was conducted in PubMed, Web of Science, Cochrane Library, EMBASE, Chinese CNKI, and Wan Fang. The relationships between PEG10 and the clinicopathological features and prognosis of patients with cancer were determined using pooled odds ratios and hazard ratios with 95% confidence interval (CI). RESULTS Ten studies comprising 1014 patients were included. The pooled analyses indicated the significant association of PEG10 overexpression with the risk of cancer, differentiation, lymph node metastasis and advanced TNM stage, but not with gender in cancer patients. Moreover, a high level of PEG10 expression correlated with poor prognosis and could be used as an independent prognostic biomarker for patients with solid tumors. CONCLUSIONS PEG10 expression is associated with advanced clinicopathological characteristics and can be used as a prognostic biomarker in patients with solid tumors.
Collapse
Affiliation(s)
- Hua Ge
- Department of Gastrointestinal Surgery, The First people's Hospital of Zunyi, Zunyi Medical University, Zunyi, Guizhou, PR China.
| | - Yan Yan
- Quality Control Department, The First people's Hospital of Zunyi, Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Di Wu
- Department of Gastrointestinal Surgery, The First people's Hospital of Zunyi, Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Yongsheng Huang
- Department of Gastrointestinal Surgery, The First people's Hospital of Zunyi, Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Fei Tian
- Department of Gastrointestinal Surgery, The First people's Hospital of Zunyi, Zunyi Medical University, Zunyi, Guizhou, PR China
| |
Collapse
|
42
|
Zhang S, Xu H, Liu X, Yang Q, Pan C, Lei C, Dang R, Chen H, Lan X. The muscle development transcriptome landscape of ovariectomized goat. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171415. [PMID: 29308264 PMCID: PMC5750031 DOI: 10.1098/rsos.171415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/15/2017] [Indexed: 05/05/2023]
Abstract
In practical production, almost all rams and about 50% of ewes are used to fatten. Researchers have proved that ewe ovariectomy could improve the productivity significantly, but the specific molecular mechanism is still unknown. In this study, five independent cDNA libraries (three and two from ovariectomized and normal ewe longissimus dorsi samples, respectively) were constructed to thoroughly explore the global transcriptome, further to reveal how the ovariectomized ewes influence muscle development by Illumina2000 sequencing technology. As a result, 205 358 transcripts and 118 264 unigenes were generated. 15 490 simple sequence repeats (SSRs) were revealed and divided into six types, and the short repeat sequence SSR (monomers, dimers, trimers) was the domain type. Single nucleotide polymorphism analysis found that the number of transition was greater than the number of transversion among the five libraries. Furthermore, 1612 differently expressed genes (DEGs) (Log2fold_change > 1 and p < 0.05) were revealed between ovariectomized and normal ewe groups, in which 903 genes were expressed commonly in the two groups, and 288 and 421 genes were uniquely expressed in normal and ovariectomized ewe groups, respectively. Gene Ontology (GO) analysis categorized all unigenes into 555 GO terms and 56 DEGs were significantly categorized into 43 GO terms (p < 0.05). KEGG enrichment analysis annotated 12 976 genes (containing 137 DEGs) to 86 pathways, among them 24 and 11 DEGs involved in development and reproduction associated pathways, respectively. To validate the reliability of the RNA-seq analysis, 22 candidate DEGs were randomly selected to perform quantitative real-time polymerase chain reaction. The result showed that 9 and 1 genes were significantly and approximately significantly expressed in control and treatment group, respectively, and the results of RNA-seq are believable in this study. Overall, these results were helpful for elucidating the molecular mechanism of muscle development of ovariectomized animals and the application of female ovariectomy in fattening.
Collapse
|
43
|
Profiling, clinicopathological correlation and functional validation of specific long non-coding RNAs for hepatocellular carcinoma. Mol Cancer 2017; 16:164. [PMID: 29061191 PMCID: PMC5651594 DOI: 10.1186/s12943-017-0733-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most prevalent and aggressive malignancies worldwide. Studies seeking to advance the overall understanding of lncRNA profiling in HCC remain rare. Methods The transcriptomic profiling of 12 HCC tissues and paired adjacent normal tissues was determined using high-throughput RNA sequencing. Fifty differentially expressed mRNAs (DEGs) and lncRNAs (DELs) were validated in 21 paired HCC tissues via quantitative real-time PCR. The correlation between the expression of DELs and various clinicopathological characteristics was analyzed using Student’s t-test or linear regression. Co-expression networks between DEGs and DELs were constructed through Pearson correlation co-efficient and enrichment analysis. Validation of DELs’ functions including proliferation and migration was performed via loss-of-function RNAi assays. Results In this study, we identified 439 DEGs and 214 DELs, respectively, in HCC. Furthermore, we revealed that multiple DELs, including NONHSAT003823, NONHSAT056213, NONHSAT015386 and especially NONHSAT122051, were remarkably correlated with tumor cell differentiation, portal vein tumor thrombosis, and serum or tissue alpha fetoprotein levels. In addition, the co-expression network analysis between DEGs and DELs showed that DELs were involved with metabolic, cell cycle, chemical carcinogenesis, and complement and coagulation cascade-related pathways. The silencing of the endogenous level of NONHSAT122051 or NONHSAT003826 could significantly attenuate the mobility of both SK-HEP-1 and SMMC-7721 HCC cells. Conclusion These findings not only add knowledge to the understanding of genome-wide transcriptional evaluation of HCC but also provide promising targets for the future diagnosis and treatment of HCC.
Collapse
|