1
|
Iacobino A, Teloni R, Mancone C, Facchiano F, Di Giamberardino A, Senatore C, Di Virgilio A, Lanni A, Giannoni F, Nisini R, Mariotti S. Identification of Rv1133c (MetE) as a marker of Mycobacterium tuberculosis replication and as a highly immunogenic antigen with potential immunodiagnostic power. Front Immunol 2024; 15:1464923. [PMID: 39430745 PMCID: PMC11486704 DOI: 10.3389/fimmu.2024.1464923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024] Open
Abstract
The immunization of mice with the sterile culture medium supernatants of Mycobacterium tuberculosis (Mtb) H37Rv permitted the production of several monoclonal antibodies (mAbs) specific for secreted and/or released antigens. Two mAbs bound and immunoprecipitated an 80-kDa protein that was identified by mass spectrometry as Rv1133c, the methionine synthase MetE. The protein MetE is ubiquitous among prokaryota and shows a significant sequence homology in many bacteria. We produced both the full-length recombinant MetE and its N-terminal fragment, whose sequence is more conserved among mycobacteria, to select mAbs recognizing an Mtb-specific region of MetE. Finally, we produced and selected eight mAbs that specifically detect the MetE protein in the supernatant and cell lysate of Mtb and BCG, but not other bacteria such as non-tuberculous mycobacteria (NTM), Streptococcus pneumoniae, Staphylococcus aureus, Acinetobacter baumanii, or Escherichia coli. Taking advantage of our mAbs, we studied (i) the vitamin B12 dependence for the synthesis of MetE in Mtb and NTM and (ii) the kinetics of MetE production and secretion in supernatants during the in vitro reproduced replicative, dormant, and resuscitation cycle of Mtb. Our data demonstrate that dormant Mtb, which are assumed to be prevalent in latent infections, as well as NTM do not produce and secrete MetE. Results indicate an unexpected specificity for Mtb of our anti-MetE mAbs and encourage the use of rMetE and our mAbs as tools for the immunodiagnosis of TB and its stages.
Collapse
Affiliation(s)
- Angelo Iacobino
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Raffaela Teloni
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Carmine Mancone
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma, Roma, Italy
| | - Francesco Facchiano
- Dipartimento Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Roma, Italy
| | | | - Cinzia Senatore
- Dipartimento Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Roma, Italy
| | - Antonio Di Virgilio
- Centro per la Sperimentazione ed il Benessere Animale, Istituto Superiore di Sanità, Roma, Italy
| | - Alessio Lanni
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Federico Giannoni
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Roberto Nisini
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Sabrina Mariotti
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Roma, Italy
| |
Collapse
|
2
|
Moura NMM, Guedes S, Salvador D, Oliveira H, Alves MQ, Paradis N, Wu C, Neves MGPMS, Ramos CIV. Oncogenic and telomeric G-quadruplexes: Targets for porphyrin-triphenylphosphonium conjugates. Int J Biol Macromol 2024; 277:134126. [PMID: 39097044 DOI: 10.1016/j.ijbiomac.2024.134126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024]
Abstract
DNA chains with sequential guanine (G) repeats can lead to the formation of G-quadruplexes (G4), which are found in functional DNA and RNA regions like telomeres and oncogene promoters. The development of molecules with adequate structural features to selectively stabilize G4 structures can counteract cell immortality, highly described for cancer cells, and also downregulate transcription events underlying cell apoptosis and/or senescence processes. We describe here, the efficiency of four highly charged porphyrins-phosphonium conjugates to act as G4 stabilizing agents. The spectrophotometric results allowed to select the conjugates P2-PPh3 and P3-PPh3 as the most promising ones to stabilize selectively G4 structures. Molecular dynamics simulation experiments were performed and support the preferential binding of P2-PPh3 namely to MYC and of P3-PPh3 to KRAS. The ability of both ligands to block the activity of Taq polymerase was confirmed and also their higher cytotoxicity against the two melanoma cell lines A375 and SK-MEL-28 than to immortalized skin keratinocytes. Both ligands present efficient cellular uptake, nuclear co-localization and high ability to generate 1O2 namely when interacting with G4 structure. The obtained data points the synthesized porphyrins as promising ligands to be used in a dual approach that can combine G4 stabilization and Photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Nuno M M Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sofia Guedes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana Salvador
- CESAM-Centre for Environmental and Marine Studies, Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mariana Q Alves
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nicholas Paradis
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States of America
| | - Chun Wu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States of America
| | - M Graça P M S Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Catarina I V Ramos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Fischer KD, Tiwari S, Thier B, Qiu LC, Lin TC, Paschen A, Imig J. Long non-coding RNA GRASLND links melanoma differentiation and interferon-gamma response. Front Mol Biosci 2024; 11:1471100. [PMID: 39398277 PMCID: PMC11466874 DOI: 10.3389/fmolb.2024.1471100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Melanoma is a highly malignant tumor, that stands as the most lethal form of skin cancer and is characterized by notable phenotypic plasticity and intratumoral heterogeneity. Melanoma plasticity is involved in tumor growth, metastasis and therapy resistance. Long non-coding RNAs (lncRNAs) could influence plasticity due to their regulatory function. However, their role and mode of action are poorly studied. Here, we show a relevance of lncRNA GRASLND in melanoma differentiation and IFNγ signaling. GRASLND knockdown revealed switching of differentiated, melanocytic melanoma cells towards a dedifferentiated, slow-proliferating and highly-invasive cell state. Interestingly, GRASLND is overexpressed in differentiated melanomas and associated with poor prognosis. Accordingly, we found GRASLND expressed in immunological "cold" tumors and it negatively correlates with gene signatures of immune response activation. In line, silencing of GRASLND under IFNγ enhanced the expression of IFNγ-stimulated genes, including HLA-I antigen presentation, demonstrating suppressive activity of GRASLND on IFNγ signaling. Our findings demonstrate that in differentiated melanomas elevated expression of GRASLND interferes with anti-tumor effects of IFNγ, suggesting a role of GRASLND in tumor immune evasion.
Collapse
Affiliation(s)
- Kim Denise Fischer
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, Technical University of Dortmund, Dortmund, Germany
| | - Shashank Tiwari
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Beatrice Thier
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lin Christina Qiu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, Technical University of Dortmund, Dortmund, Germany
| | - Tzu-Chen Lin
- Faculty of Chemistry and Chemical Biology, Technical University of Dortmund, Dortmund, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jochen Imig
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
4
|
Cecchi M, Anceschi C, Silvano A, Coniglio ML, Chinnici A, Magnelli L, Lapucci A, Laurenzana A, Parenti A. Unveiling the Role of Tryptophan 2,3-Dioxygenase in the Angiogenic Process. Pharmaceuticals (Basel) 2024; 17:558. [PMID: 38794128 PMCID: PMC11124529 DOI: 10.3390/ph17050558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Indoleamine 2,3-dioxygenase (IDO1) and tryptophan-2,3-dioxygenase (TDO) are the two principals enzymes involved in the catabolization of tryptophan (Trp) into kynurenine (Kyn). Despite their well-established role in the immune escape, their involvement in angiogenesis remains uncertain. We aimed to characterize TDO and IDO1 in human umbilical venular endothelial cells (HUVECs) and human endothelial colony-forming cells (ECFCs). METHODS qRT-PCR and immunofluorescence were used for TDO and IDO1 expression while their activity was measured using ELISA assays. Cell proliferation was examined via MTT tests and in in vitro angiogenesis by capillary morphogenesis. RESULTS HUVECs and ECFCs expressed TDO and IDO1. Treatment with the selective TDO inhibitor 680C91 significantly impaired HUVEC proliferation and 3D-tube formation in response to VEGF-A, while IDO1 inhibition showed no effect. VEGF-induced mTor phosphorylation and Kyn production were hindered by 680C91. ECFC morphogenesis was also inhibited by 680C91. Co-culturing HUVECs with A375 induced TDO up-regulation in both cell types, whose inhibition reduced MMP9 activity and prevented c-Myc and E2f1 upregulation. CONCLUSIONS HUVECs and ECFCs express the key enzymes of the kynurenine pathway. Significantly, TDO emerges as a pivotal player in in vitro proliferation and capillary morphogenesis, suggesting a potential pathophysiological role in angiogenesis beyond its well-known immunomodulatory effects.
Collapse
Affiliation(s)
- Marta Cecchi
- Department of Neuroscience, Psychology, Drug Research and Child Health, (NEUROFARBA) Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (M.C.); (A.C.)
| | - Cecilia Anceschi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy; (C.A.); (L.M.); (A.L.)
| | - Angela Silvano
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, University of Florence, 50134 Florence, Italy;
| | - Maria Luisa Coniglio
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy;
| | - Aurora Chinnici
- Department of Neuroscience, Psychology, Drug Research and Child Health, (NEUROFARBA) Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (M.C.); (A.C.)
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy;
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy; (C.A.); (L.M.); (A.L.)
| | - Andrea Lapucci
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, V. le G. Pieraccini, 6, 50139 Florence, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy; (C.A.); (L.M.); (A.L.)
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, V. le G. Pieraccini, 6, 50139 Florence, Italy
| |
Collapse
|
5
|
Wang M, Chen S, He X, Yuan Y, Wei X. Targeting inflammation as cancer therapy. J Hematol Oncol 2024; 17:13. [PMID: 38520006 PMCID: PMC10960486 DOI: 10.1186/s13045-024-01528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 03/25/2024] Open
Abstract
Inflammation has accompanied human beings since the emergence of wounds and infections. In the past decades, numerous efforts have been undertaken to explore the potential role of inflammation in cancer, from tumor development, invasion, and metastasis to the resistance of tumors to treatment. Inflammation-targeted agents not only demonstrate the potential to suppress cancer development, but also to improve the efficacy of other therapeutic modalities. In this review, we describe the highly dynamic and complex inflammatory tumor microenvironment, with discussion on key inflammation mediators in cancer including inflammatory cells, inflammatory cytokines, and their downstream intracellular pathways. In addition, we especially address the role of inflammation in cancer development and highlight the action mechanisms of inflammation-targeted therapies in antitumor response. Finally, we summarize the results from both preclinical and clinical studies up to date to illustrate the translation potential of inflammation-targeted therapies.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
6
|
Fernandes Q, Inchakalody VP, Bedhiafi T, Mestiri S, Taib N, Uddin S, Merhi M, Dermime S. Chronic inflammation and cancer; the two sides of a coin. Life Sci 2024; 338:122390. [PMID: 38160787 DOI: 10.1016/j.lfs.2023.122390] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
The correlation between chronic inflammation and cancer was initially identified in the 19th century. Biomolecules like interleukins, chemokines, tumor necrosis factors, growth factors, and adhesion molecules, which regulate inflammation, are recognized contributors to neoplastic transformation through various mechanisms, including oncogenic mutations, resistance to apoptosis, and adaptive responses like angiogenesis. This review aims to establish connections between the intricate and complex mechanisms of chronic inflammation and cancer. We illuminate implicit signaling mechanisms that drive the association between chronic inflammation and the initiation/progression of cancer, exploring potential impacts on other diseases. Additionally, we discuss the modalities of currently available therapeutic options for chronic inflammation and cancer, emphasizing the dual nature of such therapies. A thorough understanding of the molecular basis of chronic inflammation is crucial for developing novel approaches in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Takwa Bedhiafi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar.
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
7
|
Kim HE, Kim J, Park HK, Lee JB, Yun SJ. Correlations between inflammatory cytokine levels and degree of pigmentation in acral melanomas. Melanoma Res 2024; 34:38-43. [PMID: 37924528 DOI: 10.1097/cmr.0000000000000939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Cutaneous melanoma, a highly aggressive skin tumor, is characterized by complex signaling pathways in terms of its pathogenesis and progression. Although the degree of pigmentation in melanoma determines its progression, metastasis, and prognosis, its association with inflammatory cytokines remains unclear. Thus, we evaluated the associations between melanoma pigmentation and plasma levels of inflammatory cytokines; furthermore, we investigated the potential variations in this relationship across the primary anatomic sites of melanoma. We enrolled patients with cutaneous melanoma who visited Chonnam National University Hwasun Hospital between January 2021 and December 2021. The anatomical sites of melanoma were categorized as acral and non-acral sites. The degree of pigmentation was quantified using computer software. In total, nine inflammatory cytokines were analyzed, including interleukin (IL)-2, IL-4, IL-5, IL-10, IL-12, IL-13, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α). This study included 80 melanoma patients. Of these, 53 had acral melanoma and 27 had non-acral melanoma. Overall, plasma concentrations of IL-2, IL-4, IL-5, GM-CSF, and IFN-γ demonstrated significant correlations with diminished pigmentation. Furthermore, in the acral melanoma patients group, plasma concentrations of IL-2, IL-4, IL-5, GM-CSF, IFN-γ, and TNF-α revealed significant correlations with diminished pigmentation. Our results reveal significant associations between melanoma pigmentation and various cytokine levels, particularly in acral melanoma patients; these associations can be influenced by factors related to acral melanoma, such as physical stress or trauma. These correlations may also provide directions for the treatment of acral melanoma.
Collapse
Affiliation(s)
- Hong Euy Kim
- Department of Dermatology, Chonnam National University Medical School, Gwangju, South Korea
| | | | | | | | | |
Collapse
|
8
|
Quesnel A, Martin LD, Tarzi C, Lenis VP, Coles N, Islam M, Angione C, Outeiro TF, Khundakar AA, Filippou PS. Uncovering potential diagnostic and pathophysiological roles of α-synuclein and DJ-1 in melanoma. Cancer Med 2024; 13:e6900. [PMID: 38189631 PMCID: PMC10807602 DOI: 10.1002/cam4.6900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Melanoma, the most lethal skin cancer type, occurs more frequently in Parkinson's disease (PD), and PD is more frequent in melanoma patients, suggesting disease mechanisms overlap. α-synuclein, a protein that accumulates in PD brain, and the oncogene DJ-1, which is associated with PD autosomal recessive forms, are both elevated in melanoma cells. Whether this indicates melanoma progression or constitutes a protective response remains unclear. We hereby investigated the molecular mechanisms through which α-synuclein and DJ-1 interact, suggesting novel biomarkers and targets in melanoma. METHODS The Cancer Genome Atlas (TCGA) expression profiles derived from UCSC Xena were used to obtain α-synuclein and DJ-1 expression and correlated with survival in skin cutaneous melanoma (SKCM). Immunohistochemistry determined the expression in metastatic melanoma lymph nodes. Protein-protein interactions (PPIs) and molecular docking assessed protein binding and affinity with chemotherapeutic drugs. Further validation was performed using in vitro cellular models and ELISA immunoassays. RESULTS α-synuclein and DJ-1 were upregulated in primary and metastatic SKCM. Aggregated α-synuclein was selectively detected in metastatic melanoma lymph nodes. α-synuclein overexpression in SK-MEL-28 cells induced the expression of DJ-1, supporting PPI and a positive correlation in melanoma patients. Molecular docking revealed a stable protein complex, with differential binding to chemotherapy drugs such as temozolomide, dacarbazine, and doxorubicin. Parallel reduction of both proteins in temozolomide-treated SK-MEL-28 spheroids suggests drug binding may affect protein interaction and/or stability. CONCLUSION α-synuclein, together with DJ-1, may play a role in melanoma progression and chemosensitivity, constituting novel targets for therapeutic intervention, and possible biomarkers for melanoma.
Collapse
Affiliation(s)
- Agathe Quesnel
- School of Health & Life SciencesTeesside UniversityMiddlesbroughUK
- National Horizons CentreTeesside UniversityDarlingtonUK
| | - Leya Danielle Martin
- School of Health & Life SciencesTeesside UniversityMiddlesbroughUK
- National Horizons CentreTeesside UniversityDarlingtonUK
| | - Chaimaa Tarzi
- School of Computing, Engineering & Digital TechnologiesTeesside UniversityMiddlesbroughUK
- Centre for Digital InnovationTeesside UniversityMiddlesbroughUK
| | - Vasileios P. Lenis
- School of Health & Life SciencesTeesside UniversityMiddlesbroughUK
- National Horizons CentreTeesside UniversityDarlingtonUK
| | - Nathan Coles
- School of Health & Life SciencesTeesside UniversityMiddlesbroughUK
- National Horizons CentreTeesside UniversityDarlingtonUK
| | - Meez Islam
- School of Health & Life SciencesTeesside UniversityMiddlesbroughUK
- National Horizons CentreTeesside UniversityDarlingtonUK
| | - Claudio Angione
- National Horizons CentreTeesside UniversityDarlingtonUK
- School of Computing, Engineering & Digital TechnologiesTeesside UniversityMiddlesbroughUK
- Centre for Digital InnovationTeesside UniversityMiddlesbroughUK
| | - Tiago F. Outeiro
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of NeurodegenerationUniversity Medical CenterGöttingenGermany
- Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)GöttingenGermany
| | - Ahmad A. Khundakar
- School of Health & Life SciencesTeesside UniversityMiddlesbroughUK
- National Horizons CentreTeesside UniversityDarlingtonUK
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Panagiota S. Filippou
- School of Health & Life SciencesTeesside UniversityMiddlesbroughUK
- National Horizons CentreTeesside UniversityDarlingtonUK
| |
Collapse
|
9
|
Zheng S, Xie S, Yu H, Duan X, He Y, Ho C, Wan Y, Hang T, Chen W, Lyu J, Deng L. Competing-risks analysis for evaluating the prognosis of patients with microinvasive cutaneous squamous cell carcinoma based on the SEER database. BMC Med Res Methodol 2023; 23:286. [PMID: 38062392 PMCID: PMC10701925 DOI: 10.1186/s12874-023-02109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Utilizing the traditional Cox regression model to identify the factors affecting the risk of mortality due to microinvasive cutaneous squamous cell carcinoma (micSCC) may produce skewed results. Since cause-specific mortality can guide clinical decision-making, this study employed the Fine-Gray model based on the Surveillance, Epidemiology, and End Results (SEER) database to identify significant predictive variables for the risk of micSCC-related mortality. METHODS This study used the information of patients with micSCC who were listed in the SEER database during 2000-2015. Cox regression and Fine-Gray models were utilized for the multivariable analysis, and Gray's test and the cumulative incidence function were used for the univariable analyses. RESULTS There were 100 patients who died from other reasons and 38 who died from micSCC among the 1259 qualified patients with micSCC. Most were female, white, married, had localized metastasis, etc. According to the univariable Gray's test (P < 0.05), the cumulative incidence rate for events of interest was strongly associated with age, sex, marital status, American Joint Committee on Cancer staging, radiation status, summary stage, chemotherapy status, surgery status, and tumor size. Multivariable Cox regression analysis and multivariable competing-risks analysis indicated that age, tumor size, and income were independent risk variables for the prognosis of patients with micSCC. In both age and tumor size variables, the competing-risks model showed a slight decrease in the hazard ratio and a slight narrowing of the 95% confidence interval compared with the Cox regression model. However, this pattern is not evident in the income variable. CONCLUSIONS This study established a Fine-Gray model for identifying the independent risk factors that influence the risk of mortality among patients with micSCC. This study uncovers that, in the context of competing risks, age, tumor size, and income serve as independent risk factors influencing the risk of mortality due to micSCC among patients. Our findings have the potential to provide more accurate risk assessments for patient outcomes and contribute to the development of individualized treatment plans.
Collapse
Affiliation(s)
- Suzheng Zheng
- Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, Guangzhou, China
| | - Shuping Xie
- School of Basic Medicine and Public Health, Jinan University, Guangzhou, China
| | - Hai Yu
- Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, Guangzhou, China
| | - Xi Duan
- Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, Guangzhou, China
- Department of Dermatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yong He
- Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, Guangzhou, China
| | - Chichien Ho
- Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, Guangzhou, China
| | - Yang Wan
- Guangzhou Jnumeso Bio-Technology Co., Ltd, Guangzhou, China
| | - Tie Hang
- Chinese Academy of Inspection and Quarantine Greater Bay Area, Zhongshan, China
| | - Wenhui Chen
- Shanghai Aige Medical Beauty Clinic Co., Ltd. (Agge), Shanghai, China.
| | - Jun Lyu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China.
| | - Liehua Deng
- Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, Guangzhou, China.
- Department of Dermatology, The Fifth Affiliated Hospital of Jinan University, Heyuan, China.
| |
Collapse
|
10
|
Modestino L, Cristinziano L, Trocchia M, Ventrici A, Capone M, Madonna G, Loffredo S, Ferrara AL, Romanelli M, Simeone E, Varricchi G, Rossi FW, de Paulis A, Marone G, Ascierto PA, Galdiero MR. Melanoma-derived soluble mediators modulate neutrophil biological properties and the release of neutrophil extracellular traps. Cancer Immunol Immunother 2023; 72:3363-3376. [PMID: 37525065 PMCID: PMC10491523 DOI: 10.1007/s00262-023-03493-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023]
Abstract
Polymorphonuclear neutrophils (PMNs) are the main effector cells in the inflammatory response. The significance of PMN infiltration in the tumor microenvironment remains unclear. Metastatic melanoma is the most lethal skin cancer with an increasing incidence over the last few decades. This study aimed to investigate the role of PMNs and their related mediators in human melanoma. Highly purified human PMNs from healthy donors were stimulated in vitro with conditioned media (CM) derived from the melanoma cell lines SKMEL28 and A375 (melanoma CM), and primary melanocytes as controls. PMN biological properties (chemotaxis, survival, activation, cell tracking, morphology and NET release) were evaluated. We found that the A375 cell line produced soluble factors that promoted PMN chemotaxis, survival, activation and modification of morphological changes and kinetic properties. Furthermore, in both melanoma cell lines CM induced chemotaxis, activation and release of neutrophil extracellular traps (NETs) from PMNs. In contrast, the primary melanocyte CM did not modify the biological behavior of PMNs. In addition, serum levels of myeloperoxidase, matrix metalloprotease-9, CXCL8/IL-8, granulocyte and monocyte colony-stimulating factor and NETs were significantly increased in patients with advanced melanoma compared to healthy controls. Melanoma cell lines produce soluble factors able to "educate" PMNs toward an activated functional state. Patients with metastatic melanoma display increased circulating levels of neutrophil-related mediators and NETs. Further investigations are needed to better understand the role of these "tumor-educated neutrophils" in modifying melanoma cell behavior.
Collapse
Affiliation(s)
- Luca Modestino
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
| | - Marialuisa Trocchia
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
| | - Annagioia Ventrici
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
| | - Mariaelena Capone
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", 80131, Naples, Italy
| | - Gabriele Madonna
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", 80131, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Marilena Romanelli
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", 80131, Naples, Italy
| | - Ester Simeone
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", 80131, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", 80131, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy.
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.
| |
Collapse
|
11
|
Rigg E, Wang J, Xue Z, Lunavat TR, Liu G, Hoang T, Parajuli H, Han M, Bjerkvig R, Nazarov PV, Nicot N, Kreis S, Margue C, Nomigni MT, Utikal J, Miletic H, Sundstrøm T, Ystaas LAR, Li X, Thorsen F. Inhibition of extracellular vesicle-derived miR-146a-5p decreases progression of melanoma brain metastasis via Notch pathway dysregulation in astrocytes. J Extracell Vesicles 2023; 12:e12363. [PMID: 37759347 PMCID: PMC10533779 DOI: 10.1002/jev2.12363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/04/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
Melanoma has the highest propensity of all cancers to metastasize to the brain with a large percentage of late-stage patients developing metastases in the central nervous system (CNS). It is well known that metastasis establishment, cell survival, and progression are affected by tumour-host cell interactions where changes in the host cellular compartments likely play an important role. In this context, miRNAs transferred by tumour derived extracellular vesicles (EVs) have previously been shown to create a favourable tumour microenvironment. Here, we show that miR-146a-5p is highly expressed in human melanoma brain metastasis (MBM) EVs, both in MBM cell lines as well as in biopsies, thereby modulating the brain metastatic niche. Mechanistically, miR-146a-5p was transferred to astrocytes via EV delivery and inhibited NUMB in the Notch signalling pathway. This resulted in activation of tumour-promoting cytokines (IL-6, IL-8, MCP-1 and CXCL1). Brain metastases were significantly reduced following miR-146a-5p knockdown. Corroborating these findings, miR-146a-5p inhibition led to a reduction of IL-6, IL-8, MCP-1 and CXCL1 in astrocytes. Following molecular docking analysis, deserpidine was identified as a functional miR-146a-5p inhibitor, both in vitro and in vivo. Our results highlight the pro-metastatic function of miR-146a-5p in EVs and identifies deserpidine for targeted adjuvant treatment.
Collapse
Affiliation(s)
- Emma Rigg
- Department of BiomedicineUniversity of BergenBergenNorway
| | - Jiwei Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain‐Inspired Science, Cheeloo College of MedicineShandong UniversityJinanChina
- Department of BiomedicineUniversity of BergenBergenNorway
- Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Zhiwei Xue
- Department of BiomedicineUniversity of BergenBergenNorway
- Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Taral R. Lunavat
- Department of BiomedicineUniversity of BergenBergenNorway
- Department of Neurology, Molecular Neurogenetics Unit‐West, Massachusetts General HospitalHarvard Medical SchoolCharlestownMassachusettsUSA
| | - Guowei Liu
- Department of BiomedicineUniversity of BergenBergenNorway
- Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Tuyen Hoang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain‐Inspired Science, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Himalaya Parajuli
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain‐Inspired Science, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain‐Inspired Science, Cheeloo College of MedicineShandong UniversityJinanChina
- Department of BiomedicineUniversity of BergenBergenNorway
- Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Rolf Bjerkvig
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain‐Inspired Science, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Petr V. Nazarov
- Bioinformatics Platform and Multiomics Data Science Research Group, Department of Cancer ResearchLuxembourg Institute of HealthLuxembourg
| | - Nathalie Nicot
- LuxGen Genome Center, Luxembourg Institute of HealthLaboratoire National de SantéDudelangeLuxembourg
| | - Stephanie Kreis
- Department of Life Sciences and MedicineUniversity of LuxembourgLuxembourg
| | - Christiane Margue
- Department of Life Sciences and MedicineUniversity of LuxembourgLuxembourg
| | | | - Jochen Utikal
- Skin Cancer UnitGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Dermatology, Venereology and AllergologyUniversity Medical Center Mannheim, Ruprecht‐Karl University of HeidelbergMannheimGermany
- DKFZ Hector Cancer Institute at the University Medical Center MannheimMannheimGermany
| | - Hrvoje Miletic
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain‐Inspired Science, Cheeloo College of MedicineShandong UniversityJinanChina
- Department of PathologyHaukeland University HospitalBergenNorway
| | - Terje Sundstrøm
- Department of NeurosurgeryHaukeland University HospitalBergenNorway
- Department of Clinical MedicineUniversity of BergenBergenNorway
| | - Lars A. R. Ystaas
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain‐Inspired Science, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Xingang Li
- Department of BiomedicineUniversity of BergenBergenNorway
- Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Frits Thorsen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain‐Inspired Science, Cheeloo College of MedicineShandong UniversityJinanChina
- Department of BiomedicineUniversity of BergenBergenNorway
- Department of NeurosurgeryHaukeland University HospitalBergenNorway
- Molecular Imaging Center, Department of BiomedicineUniversity of BergenBergenNorway
| |
Collapse
|
12
|
Rahman S, Haque TN, Sugandhi VV, Saraswat AL, Xin X, Cho H. Topical Cream Carrying Drug-Loaded Nanogels for Melanoma Treatment. Pharm Res 2023; 40:2291-2301. [PMID: 37012533 DOI: 10.1007/s11095-023-03506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
In this study, nanogel creams carrying paclitaxel (PTX) and temozolomide (TMZ) were prepared for the topical treatment of melanoma. PTX and TMZ were first loaded in poly-(D,L-lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly-(D,L-lactide-co-glycolide) (PLAG-b-PEG-b-PLGA) thermosensitive nanogels, which made a transition from a free-flowing sol (formation of micellar network) at 25°C with the z-average particle size of c.a. 96 nm to a gel (aggregation of micelles) at 33°C with the z-average particle size of c.a. 427 nm. An anhydrous absorption ointment base, aquaphor, was then added to drug-loaded nanogels to form nanogel creams carrying PTX and TMZ. Nanogel creams permitted controlled release of the payloads and improved the penetration of the payloads through the rodent skin compared to drug(s)-loaded nanogels. PTX and TMZ in a combination were synergistically effective in inhibiting SK-MEL28, A375, and B16-F10 melanoma cancer cells in vitro. Topically applied nanogel creams carrying TMZ/PTX (4 mg/1.5 mg/dose) showed a trend of tumor volume inhibition on B16-F10-bearing xenograft mice in vivo.
Collapse
Affiliation(s)
- Sadia Rahman
- College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Tasmima N Haque
- College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Vrashabh V Sugandhi
- College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Aishwarya L Saraswat
- College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Xiaoban Xin
- OncoGone, Inc., 4539 Metropolitan Ct, Frederick, MD, 21704, USA
| | - Hyunah Cho
- College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| |
Collapse
|
13
|
McDonald B, Barth K, Schmidt MHH. The origin of brain malignancies at the blood-brain barrier. Cell Mol Life Sci 2023; 80:282. [PMID: 37688612 PMCID: PMC10492883 DOI: 10.1007/s00018-023-04934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
Despite improvements in extracranial therapy, survival rate for patients suffering from brain metastases remains very poor. This is coupled with the incidence of brain metastases continuing to rise. In this review, we focus on core contributions of the blood-brain barrier to the origin of brain metastases. We first provide an overview of the structure and function of the blood-brain barrier under physiological conditions. Next, we discuss the emerging idea of a pre-metastatic niche, namely that secreted factors and extracellular vesicles from a primary tumor site are able to travel through the circulation and prime the neurovasculature for metastatic invasion. We then consider the neurotropic mechanisms that circulating tumor cells possess or develop that facilitate disruption of the blood-brain barrier and survival in the brain's parenchyma. Finally, we compare and contrast brain metastases at the blood-brain barrier to the primary brain tumor, glioma, examining the process of vessel co-option that favors the survival and outgrowth of brain malignancies.
Collapse
Affiliation(s)
- Brennan McDonald
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany.
| | - Kathrin Barth
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| |
Collapse
|
14
|
Molinelli E, Ceccarelli G, Fantone S, Di Mercurio E, Gambini D, Maurizi A, Perugini J, Tossetta G, Brisigotti V, De Simoni E, Sapigni C, Rizzetto G, Campanati A, Simonetti O, Marzioni D, Offidani A. Melanoma and subcutaneous adipose tissue: Role of peritumoral adipokines in disease characterization and prognosis. Pigment Cell Melanoma Res 2023; 36:423-430. [PMID: 37334675 DOI: 10.1111/pcmr.13103] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/08/2023] [Accepted: 05/26/2023] [Indexed: 06/20/2023]
Abstract
In the last decades, the concept of adipose organ has emerged, giving adipose tissue an active endocrine and immunologic function through the secretion of multiple cytokines and chemokines that seem to be implicated in the development and progression of several cancer, including cutaneous melanoma. In this pilot experimental study, we analyzed the expression in the peritumor subcutaneous adipose tissue of the most significant adipokines involved in the processes of carcinogenesis and metastasis in a population of melanoma patients and in two control groups composed of melanocytic nevi and epidermoid cysts, respectively. We correlated the results obtained with the main disease prognostic factors observing a statistically significant increase in the expression of PAI1, LEP, CXCL1, NAMPT, and TNF-α at the level of the peritumor tissue of the melanoma samples compared to the control groups and a correlation of the same with the histopathological prognostic factor of melanoma. Our preliminary study shows that the overexpression of PAI1, LEP, CXCL1, NAMPT, and TNF-α may contribute to the growth and to the local aggressiveness of cutaneous melanoma. It opens the hypothesis of a direct oncogenic role of subcutaneous adipose tissue and adipokines in the tumorigenesis of melanoma.
Collapse
Affiliation(s)
- Elisa Molinelli
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Eleonora Di Mercurio
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Daisy Gambini
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Maurizi
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Jessica Perugini
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Valerio Brisigotti
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Edoardo De Simoni
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Claudia Sapigni
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Giulio Rizzetto
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Anna Campanati
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Oriana Simonetti
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Annamaria Offidani
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
15
|
Lancia G, Durastanti C, Spitoni C, De Benedictis I, Sciortino A, Cirillo ENM, Ledda M, Lisi A, Convertino A, Mussi V. Learning models for classifying Raman spectra of genomic DNA from tumor subtypes. Sci Rep 2023; 13:11370. [PMID: 37452161 PMCID: PMC10349119 DOI: 10.1038/s41598-023-37303-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
An early and accurate detection of different subtypes of tumors is crucial for an effective guidance to personalized therapy and in predicting the ability of tumor to metastasize. Here we exploit the Surface Enhanced Raman Scattering (SERS) platform, based on disordered silver coated silicon nanowires (Ag/SiNWs), to efficiently discriminate genomic DNA of different subtypes of melanoma and colon tumors. The diagnostic information is obtained by performing label free Raman maps of the dried drops of DNA solutions onto the Ag/NWs mat and leveraging the classification ability of learning models to reveal the specific and distinct physico-chemical interaction of tumor DNA molecules with the Ag/NW, here supposed to be partly caused by a different DNA methylation degree.
Collapse
Affiliation(s)
- Giacomo Lancia
- Mathematical Institute, Utrecht University, Budapestlaan 6, 3584 CD, Utrecht, The Netherlands
| | - Claudio Durastanti
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, via A. Scarpa 16, 00161, Rome, Italy.
| | - Cristian Spitoni
- Mathematical Institute, Utrecht University, Budapestlaan 6, 3584 CD, Utrecht, The Netherlands
| | - Ilaria De Benedictis
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, via A. Scarpa 16, 00161, Rome, Italy
| | - Antonio Sciortino
- Institute for Microelectronics and Microsystems, CNR, via del Fosso del Cavaliere, 100, Rome, Italy
| | - Emilio N M Cirillo
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, via A. Scarpa 16, 00161, Rome, Italy
| | - Mario Ledda
- Institute of Translational Pharmacology, CNR, via del Fosso del Cavaliere, 100, Rome, Italy
| | - Antonella Lisi
- Institute of Translational Pharmacology, CNR, via del Fosso del Cavaliere, 100, Rome, Italy
| | - Annalisa Convertino
- Institute for Microelectronics and Microsystems, CNR, via del Fosso del Cavaliere, 100, Rome, Italy
| | - Valentina Mussi
- Institute for Microelectronics and Microsystems, CNR, via del Fosso del Cavaliere, 100, Rome, Italy
| |
Collapse
|
16
|
Pinho JO, Matias M, Godinho-Santos A, Amaral JD, Mendes E, Jesus Perry M, Paula Francisco A, Rodrigues CMP, Manuela Gaspar M. A step forward on the in vitro and in vivo assessment of a novel nanomedicine against melanoma. Int J Pharm 2023; 640:123011. [PMID: 37146952 DOI: 10.1016/j.ijpharm.2023.123011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/11/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Melanoma is the most aggressive form of skin cancer, with increasing incidence and mortality rates. To overcome current treatment limitations, a hybrid molecule (HM) combining a triazene and a ʟ-tyrosine analogue, was recently synthesized, incorporated in long blood circulating liposomes (LIP HM) and validated in an immunocompetent melanoma model. The present work constitutes a step forward in the therapeutic assessment of HM formulations. Here, human melanoma cells, A375 and MNT-1, were used and dacarbazine (DTIC), a triazene drug clinically available as first-line treatment for melanoma, constituted the positive control. In cell cycle analysis, A375 cells, after 24-h incubation with HM (60 μM) and DTIC (70 μM), resulted in a 1.2 fold increase (related to control) in the percentage of cells in G0/G1 phase. The therapeutic activity was evaluated in a human murine melanoma model (subcutaneously injected with A375 cells) to most closely resemble the human pathology. Animals treated with LIP HM exhibited the highest antimelanoma effect resulting in a 6-, 5- and 4-fold reduction on tumor volume compared to negative control, Free HM and DTIC groups, respectively. No toxic side effects were detected. Overall, these results constitute another step forward in the validation of the antimelanoma activity of LIP HM, using a murine model that more accurately simulates the pathology that occurs in human patients.
Collapse
Affiliation(s)
- Jacinta O Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Mariana Matias
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Ana Godinho-Santos
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Joana D Amaral
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Eduarda Mendes
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Maria Jesus Perry
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Ana Paula Francisco
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Cecília M P Rodrigues
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - M Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
17
|
Sun EG, Vijayan V, Park MR, Yoo KH, Cho SH, Bae WK, Shim HJ, Hwang JE, Park IK, Chung IJ. Suppression of triple-negative breast cancer aggressiveness by LGALS3BP via inhibition of the TNF-α-TAK1-MMP9 axis. Cell Death Discov 2023; 9:122. [PMID: 37041137 PMCID: PMC10090165 DOI: 10.1038/s41420-023-01419-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Transforming growth factor-β-activated kinase 1 (TAK1), which is highly expressed and aberrantly activated in triple-negative breast cancer (TNBC), plays a pivotal role in metastasis and progression. This makes it a potential therapeutic target for TNBC. Previously, we reported lectin galactoside-binding soluble 3 binding protein (LGALS3BP) as a negative regulator of TAK1 signaling in the inflammatory response and inflammation-associated cancer progression. However, the role of LGALS3BP and its molecular interaction with TAK1 in TNBC remain unclear. This study aimed to investigate the function and underlying mechanism of action of LGALS3BP in TNBC progression and determine the therapeutic potential of nanoparticle-mediated delivery of LGALS3BP in TNBC. We found that LGALS3BP overexpression suppressed the overall aggressive phenotype of TNBC cells in vitro and in vivo. LGALS3BP inhibited TNF-α-mediated gene expression of matrix metalloproteinase 9 (MMP9), which encodes a protein crucial for lung metastasis in TNBC patients. Mechanistically, LGALS3BP suppressed TNF-α-mediated activation of TAK1, a key kinase linking TNF-α stimulation and MMP9 expression in TNBC. Nanoparticle-mediated delivery enabled tumor-specific targeting and inhibited TAK1 phosphorylation and MMP9 expression in tumor tissues, suppressing primary tumor growth and lung metastasis in vivo. Our findings reveal a novel role of LGALS3BP in TNBC progression and demonstrate the therapeutic potential of nanoparticle-mediated delivery of LGALS3BP in TNBC.
Collapse
Affiliation(s)
- Eun-Gene Sun
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
- Immunotherapy Innovation Center, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Veena Vijayan
- Department of Biomedical Sciences and Center for Global Future Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Mi-Ra Park
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Kyung Hyun Yoo
- Department of Biological Science, Sookmyung Women's University, Seoul, Republic of Korea
| | - Sang-Hee Cho
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
- Immunotherapy Innovation Center, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Woo-Kyun Bae
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC Center, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Hyun-Jeong Shim
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Jun-Eul Hwang
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and Center for Global Future Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju, Republic of Korea.
| | - Ik-Joo Chung
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea.
- Immunotherapy Innovation Center, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea.
| |
Collapse
|
18
|
Venturella M, Falsini A, Coppola F, Giuntini G, Carraro F, Zocco D, Chiesi A, Naldini A. CA-IX-Expressing Small Extracellular Vesicles (sEVs) Are Released by Melanoma Cells under Hypoxia and in the Blood of Advanced Melanoma Patients. Int J Mol Sci 2023; 24:ijms24076122. [PMID: 37047096 PMCID: PMC10094632 DOI: 10.3390/ijms24076122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Cutaneous melanoma is a highly aggressive skin cancer, with poor prognosis. The tumor microenvironment is characterized by areas of hypoxia. Carbonic anhydrase IX (CA-IX) is a marker of tumor hypoxia and its expression is regulated by hypoxia-inducible factor-1 (HIF-1). CA-IX has been found to be highly expressed in invasive melanomas. In this study, we investigated the effects of hypoxia on the release of small extracellular vesicles (sEVs) in two melanoma in vitro models. We demonstrated that melanoma cells release sEVs under both normoxic and hypoxic conditions, but only hypoxia-induced sEVs express CA-IX mRNA and protein. Moreover, we optimized an ELISA assay to provide evidence for CA-IX protein expression on the membranes of the sEVs. These CA-IX-positive sEVs may be exploited as potential biomarkers for liquid biopsy.
Collapse
Affiliation(s)
- Marta Venturella
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Alessandro Falsini
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Federica Coppola
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Gaia Giuntini
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Fabio Carraro
- Cellular and Molecular Physiology Unit, Department of Medical Biotechnologies, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Davide Zocco
- Lonza Siena, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Antonio Chiesi
- Exosomics SpA, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Antonella Naldini
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
19
|
Sharifi F, Sharifi I, Babaei Z, Alahdin S, Afgar A. Bioinformatics evaluation of anticancer properties of GP63 protein-derived peptides on MMP2 protein of melanoma cancer. J Pathol Inform 2023; 14:100190. [PMID: 36700237 PMCID: PMC9867975 DOI: 10.1016/j.jpi.2023.100190] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Background GP63, also known as Leishmanolysin, is a multifunctional virulence factor abundant on the surface of Leishmania spp. small peptides with anticancer capabilities that are selective and toxic to cancer cells are known as anticancer peptides. We aimed to demonstrate the activity of GP63 and its anticancer properties on melanoma using a range of in silico tools and screening methods to identify predicted and designed anticancer peptides. Methods Various in silico modeling methodologies are used to establish the three-dimensional (3D) structure of GP63. Refinement and re-evaluation of the modeled structures and the built models' quality evaluated using the different docking used to find the interacting amino acids between MMP2 and GP63 and its anticancer peptides. AntiCP2.0 is used for screening anticancer peptides. 2D interaction plots of protein-ligand complexes evaluated by Protein-Ligand Interaction Profiler server. It is for the first time that used anticancer peptides of GP63 and the predicted and designed peptides. Results We used 3 peptides of GP63 based on the AntiCP 2.0 server with scores of 0.63, 0.53, and 0.49, and common peptides of GP63/MMP2 (continues peptide: mean the completely selected peptide after docking with non-anticancer effect, predicted with 0.58 score and designed peptides with 0.47 and 0.45 scores by AntiCP 2.0 server). Conclusions The antileishmanial and anticancer peptide research topics exemplify the multidisciplinary nature of peptide research. The advancement of therapeutics targeting cancer and/or Leishmania requires an interconnected research strategy shown in this work.
Collapse
Key Words
- ACPs, anticancer peptides
- Anticancer
- CASTp, Computed Atlas of Surface Topography of proteins
- CL, cutaneous leishmaniasis
- GP63, Glycoprotein 63
- In silico
- Leishmania
- Leishmanolysin
- MD, molecular dynamics
- MMPs, matrix metalloproteases
- MSP, major surface protease
- Matrix metalloproteases
- PDB, Protein Data Bank
- PLIP, Protein–Ligand Interaction Profiler
- Peptide
- Protein–Ligand Interaction Profiler
- ROS, reactive oxygen species formation
- SVM, Support Vector Machine
- VL, visceral leishmaniasis
- kNN, k-Nearest Neighbors
Collapse
Affiliation(s)
- Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Babaei
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sodabeh Alahdin
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
20
|
Stolwijk JA, Wallner S, Heider J, Kurz B, Pütz L, Michaelis S, Goricnik B, Erl J, Frank L, Berneburg M, Haubner F, Wegener J, Schreml S. GPR4 in the pH-dependent migration of melanoma cells in the tumor microenvironment. Exp Dermatol 2022; 32:479-490. [PMID: 36562556 DOI: 10.1111/exd.14735] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Due to its high metastatic potential, malignant melanoma is one of the deadliest skin cancers. In melanoma as well as in other cancers, acidification of the tumor microenvironment (=TME, inverse pH-gradient) is a well-known driver of tumor progression and metastasis. Membrane-bound receptors, such as the proton-sensitive GPCR (pH-GPCR) GPR4, are considered as potential initiators of the signalling cascades relevant to malignant transformation. In this study, we investigated the pH-dependent migration of GPR4 wildtype/overexpressing SK-Mel-28 cells using an impedance-based electrical wounding and migration assay and classical Boyden chamber experiments. Migration of GPR4 overexpressing SK-Mel-28 cells was enhanced in a range of pH 6.5-7.5 as compared to controls in the impedance-based electrical wounding and migration assay. In Boyden chamber experiments, GPR4 overexpression only increased migration at pH 7.5 in a Matrigel-free setup, but not at pH 6.5. Results indicate that GPR4 is involved in the migration of melanoma cells, especially in the tumor periphery, and that this process is affected by pH in the TME.
Collapse
Affiliation(s)
- Judith Anthea Stolwijk
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany.,Faculty of Chemistry and Pharmacy, Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Susanne Wallner
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany
| | - Judith Heider
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany
| | - Bernadett Kurz
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany
| | - Lisa Pütz
- Faculty of Chemistry and Pharmacy, Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Stefanie Michaelis
- Faculty of Chemistry and Pharmacy, Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany.,Fraunhofer Research Institution for Microsystems and Solid State Technologies EMFT, Regensburg, Germany
| | - Barbara Goricnik
- Faculty of Chemistry and Pharmacy, Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Julia Erl
- Faculty of Chemistry and Pharmacy, Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Linda Frank
- Faculty of Chemistry and Pharmacy, Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Mark Berneburg
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany
| | - Frank Haubner
- Department of Otorhinolaryngology, Ludwig Maximilians University Munich, Munich, Germany
| | - Joachim Wegener
- Faculty of Chemistry and Pharmacy, Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany.,Fraunhofer Research Institution for Microsystems and Solid State Technologies EMFT, Regensburg, Germany
| | - Stephan Schreml
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
21
|
Identification of Dihydrolipoamide Dehydrogenase as Potential Target of Vemurafenib-Resistant Melanoma Cells. Molecules 2022; 27:molecules27227800. [PMID: 36431901 PMCID: PMC9698468 DOI: 10.3390/molecules27227800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Despite recent improvements in therapy, the five-year survival rate for patients with advanced melanoma is poor, mainly due to the development of drug resistance. The aim of the present study was to investigate the mechanisms underlying this phenomenon, applying proteomics and structural approaches to models of melanoma cells. METHODS Sublines from two human (A375 and SK-MEL-28) cells with acquired vemurafenib resistance were established, and their proteomic profiles when exposed to denaturation were identified through LC-MS/MS analysis. The pathways derived from bioinformatics analyses were validated by in silico and functional studies. RESULTS The proteomic profiles of resistant melanoma cells were compared to parental counterparts by taking into account protein folding/unfolding behaviors. Several proteins were found to be involved, with dihydrolipoamide dehydrogenase (DLD) being the only one similarly affected by denaturation in all resistant cell sublines compared to parental ones. DLD expression was observed to be increased in resistant cells by Western blot analysis. Protein modeling analyses of DLD's catalytic site coupled to in vitro assays with CPI-613, a specific DLD inhibitor, highlighted the role of DLD enzymatic functions in the molecular mechanisms of BRAFi resistance. CONCLUSIONS Our proteomic and structural investigations on resistant sublines indicate that DLD may represent a novel and potent target for overcoming vemurafenib resistance in melanoma cells.
Collapse
|
22
|
Comert S, Sen S, Eryilmaz O, Doruk C, Ulusan M, Demokan S. Evaluation of genetic and epigenetic changes of Tumor Necrosis Factor-Alpha gene in larynx cancer. Pathol Res Pract 2022; 238:154085. [PMID: 36027653 DOI: 10.1016/j.prp.2022.154085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Tumor Necrosis Factor-Alpha (TNF-α) is a proinflammatory cytokine that plays a role in inflammation, which is one of the hallmarks of cancer, and its polymorphic variants have been associated with disease risk in many cancers in the literature. The aim of this study was to investigate four different polymorphic variants, differential methylation and expression status of the TNF-α gene and to determine the associations between these variants and disease risk, and to evaluate the relationship between the results and clinical parameters. We purposed to investigate the genetic and epigenetic alterations of the TNF-α gene in larynx cancer (LC). MATERIAL AND METHODS After isolation of DNA/RNA from whole blood, tumor and normal tissue, polymorphic variant alleles differrential expression and methylation levels were analyzed by RFLP, semiquantitative RT-PCR, and restriction enzyme digestion, respectively. TNF-α expression and methylation levels were calculated using BIO1D software. The frequencies of the variants c.-238 G>A (rs361525), c.-857 C>T (rs1799724), c.-863 C>A (rs1800630), and c.-1031 T > C (rs1799964) in the promoter region of TNF-α in LC Turkish patients and healthy individuals were examined using the De-Finetti case-control program. Haplotype frequencies and linkage disequilibrium were analyzed using the SNPStats program. RESULTS The frequency of genotype c.-1031 T > C was significantly lower in patients than in healthy individuals [TT vs TC: OR (%95CI) = 7.00 (1.75-27.93), p = 0.003, χ2 = 8.76]. The heterozygous variant of - 857 was associated with recurrence [T vs G: OR (%95CI) = 0.15 (0.02-0.95), p = 0.02, χ2 = 4.86]. For c.-238 G>A, c.-857 C>T, and c.-863 C>A, there was no statistically significant difference between the patient and healthy group in terms of disease risk. A significant association was found between c.-1031 T > C and disease risk of LC. Decreased expression was detected in 46% (23/50) and increased expression in 54% (27/50) of tumor tissue samples compared to the matched normal tissues of patients. Methylation-related loss of expression was detected in 53.3% (16/30) of patients. CONCLUSION Our study is the first investigating four different polymorphic regions of the TNF-α promoter region and the expression/methylation status of TNF-α in the same LC patient and healthy cohort. According to our results, the c.-1031 T > C variant was reported to be significantly associated with a reduced risk of LC. In addition, the TNF-α variant c. -857 C>T suggests that it may be a potential biomarker for predicting the recurrence of LC. An association between c. -857 C>T variant and methylation-based expression status was observed.
Collapse
Affiliation(s)
- Sevde Comert
- Department of Basic Oncology, Oncology Institute, Istanbul University, Istanbul, Türkiye; Department of Basic Oncology, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Türkiye
| | - Sena Sen
- Department of Basic Oncology, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Onder Eryilmaz
- Department of Basic Oncology, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Can Doruk
- Department of Otorhinolaryngology-Head and Neck Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Murat Ulusan
- Department of Otorhinolaryngology-Head and Neck Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Semra Demokan
- Department of Basic Oncology, Oncology Institute, Istanbul University, Istanbul, Türkiye.
| |
Collapse
|
23
|
Zhang H, Xu X, Xu R, Ye T. Drug repurposing of ivermectin abrogates neutrophil extracellular traps and prevents melanoma metastasis. Front Oncol 2022; 12:989167. [PMID: 36132145 PMCID: PMC9484526 DOI: 10.3389/fonc.2022.989167] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Neutrophil extracellular traps (NETs) have recently been identified to play a crucial role in cancer metastasis. However, the therapeutic target in NETs of melanoma cancer metastasis is still unknown. In this work, we screened a collection of 231 small molecule compounds. We identified ivermectin (IVM), a widely used antiparasitic drug, significantly inhibits neutrophil extracellular traps (NETs) formation after cathepsin B (CTSB) treatment. In vivo, IVM treatment showed no effects of melanoma tumor growth, while the orthotopic melanoma to lung metastasis was significantly suppressed by IVM. Serum level of myeloperoxidase-DNA and neutrophil elastase-DNA were suppressed after IVM treatment. Tumor infiltrated myeloid-derived suppressor cells (MDSCs) were significantly suppressed while tumor infiltrated CD8+T cells in lung was increased after IVM treatment in mouse melanoma model. Mechanistically, IVM targeted a pyroptotic driving factor gasdermin D (GSDMD), and exhibited a Kd of 267.96 nM by microscale thermophoresis (MST) assay. Furthermore, the direct interaction of IVM and GSDMD significantly suppressed GSDMD oligomerization, which are essential for GSDMD-dependent NETs formation. In vitro, treatment with CTSB in bone marrow neutrophils significantly promotes NETs formation, and the release of extracellular DNA was significantly suppressed by IVM pretreatment. Collectively, our results reveal that with the regulation role of IVM in neutrophils and NETs, IVM may potentially be used as a viable therapeutic approach for the treatment of melanoma cancer metastasis.
Collapse
Affiliation(s)
- Hongjun Zhang
- Department of Ophthalmology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - XiaoZhu Xu
- Department of Quality Arbitration, Shanghai Institute of Biological Products, Shanghai, China
| | - Rui Xu
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Rui Xu, ; Tao Ye,
| | - Tao Ye
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
- *Correspondence: Rui Xu, ; Tao Ye,
| |
Collapse
|
24
|
Cecchi M, Mannini A, Lapucci A, Silvano A, Lulli M, Luceri C, D’Ambrosio M, Chiarugi A, Eid AH, Parenti A. Dexamethasone Promotes a Stem-Like Phenotype in Human Melanoma Cells via Tryptophan 2,3 Dioxygenase. Front Pharmacol 2022; 13:911019. [PMID: 35847038 PMCID: PMC9280025 DOI: 10.3389/fphar.2022.911019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
In addition to its well-established immunosuppressive actions, tryptophan 2,3-dioxygenase (TDO) appears to elicit direct effects on tumor cell function. Although TDO has been associated with cancer stemness, its involvement in melanoma stem cell biology remains largely unknown. Since we showed that by upregulating TDO, dexamethasone (dex) promotes proliferation and migration of SK-Mel-28 human melanoma cells, we sought to investigate dex effects on melanoma spherogenesis and stemness, and whether these events are mediated by TDO. We demonstrate here that dex significantly upregulates TDO in A375, a more aggressive melanoma cell line, confirming that dex effects are not limited to SK-Mel-28 cells. Moreover, dex stimulates spherogenesis of both cell lines, which is mediated by TDO, evident by its suppression with 680C91, a TDO inhibitor. The formed melanospheres appear to be enriched with embryonic stem cell marker mRNAs, the expression of which is potentiated by dex. Expression of cancer stem cell markers (CD133, CD44, ganglioside GD2) was significantly increased in A375 spheres, as detected by flow cytometry. Taken together, our results suggest that TDO could represent a promising target in the management of melanoma and that dex, routinely used as a co-medication also in advanced melanoma, may stimulate melanoma cell function/tumor-supporting properties, a rather debilitating and undesired side effect.
Collapse
Affiliation(s)
- Marta Cecchi
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Antonella Mannini
- Department of Experimental and Clinical Medicine, Internal Medicine Section, University of Florence, Florence, Italy
| | - Andrea Lapucci
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Angela Silvano
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Cristina Luceri
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Mario D’Ambrosio
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Alberto Chiarugi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Ali H. Eid
- Department of Basic Medical Sciences, Qatar University, QU Health, Doha, Qatar
- *Correspondence: Ali H. Eid, ; Astrid Parenti,
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
- *Correspondence: Ali H. Eid, ; Astrid Parenti,
| |
Collapse
|
25
|
Torres GM, Yang H, Park C, Spezza PA, Khatwani N, Bhandari R, Liby KT, Pioli PA. T Cells and CDDO-Me Attenuate Immunosuppressive Activation of Human Melanoma-Conditioned Macrophages. Front Immunol 2022; 13:768753. [PMID: 35265066 PMCID: PMC8898828 DOI: 10.3389/fimmu.2022.768753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Melanoma tumors are highly immunogenic, making them an attractive target for immunotherapy. However, many patients do not mount robust clinical responses to targeted therapies, which is attributable, at least in part, to suppression of immune responses by tumor-associated macrophages (TAMs) in the tumor microenvironment (TME). Using a human in vitro tri-culture system of macrophages with activated autologous T cells and BRAFV600E mutant melanoma cells, we now show that activated T cells and the synthetic triterpenoid the methyl ester of 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO-Me) attenuate immune suppression. Surface expression of CD206, CD16 and CD163 on melanoma-conditioned macrophages was inhibited by the addition of T cells, suggesting relief of immuno-suppressive macrophage activation. We also demonstrated that addition of CDDO-Me to tri-cultures enhanced T cell-mediated reductions in CCL2, VEGF and IL-6 production in a contact-independent manner. Because these results suggest CDDO-Me alters melanoma-conditioned macrophage activation, we interrogated CDDO-Me-mediated changes in macrophage signaling pathway activation. Our results indicated that CDDO-Me inhibited phosphorylation of STAT3, a known inducer of TAM activation. Collectively, our studies suggest that activated T cells and CDDO-Me synergistically relieve immune suppression in melanoma cultures and implicate the potential utility of CDDO-Me in the treatment of melanoma.
Collapse
Affiliation(s)
- Gretel M Torres
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Heetaek Yang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Chanhyuk Park
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Paul A Spezza
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Nikhil Khatwani
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Rajan Bhandari
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Karen T Liby
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Patricia A Pioli
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
26
|
Arslanbaeva L, Tosi G, Ravazzolo M, Simonato M, Tucci FA, Pece S, Cogo P, Santoro MM. UBIAD1 and CoQ10 protect melanoma cells from lipid peroxidation-mediated cell death. Redox Biol 2022; 51:102272. [PMID: 35255427 PMCID: PMC8902599 DOI: 10.1016/j.redox.2022.102272] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Cutaneous melanoma is the deadliest type of skin cancer, although it accounts for a minority of all skin cancers. Oxidative stress is involved in all stages of melanomagenesis and cutaneous melanoma can sustain a much higher load of Reactive Oxygen Species (ROS) than normal tissues. Melanoma cells exploit specific antioxidant machinery to support redox homeostasis. The enzyme UBIA prenyltransferase domain-containing protein 1 (UBIAD1) is responsible for the biosynthesis of non-mitochondrial CoQ10 and plays an important role as antioxidant enzyme. Whether UBIAD1 is involved in melanoma progression has not been addressed, yet. Here, we provide evidence that UBIAD1 expression is associated with poor overall survival (OS) in human melanoma patients. Furthermore, UBIAD1 and CoQ10 levels are upregulated in melanoma cells with respect to melanocytes. We show that UBIAD1 and plasma membrane CoQ10 sustain melanoma cell survival and proliferation by preventing lipid peroxidation and cell death. Additionally, we show that the NAD(P)H Quinone Dehydrogenase 1 (NQO1), responsible for the 2-electron reduction of CoQ10 on plasma membranes, acts downstream of UBIAD1 to support melanoma survival. By showing that the CoQ10-producing enzyme UBIAD1 counteracts oxidative stress and lipid peroxidation events in cutaneous melanoma, this work may open to new therapeutic investigations based on UBIAD1/CoQ10 loss to cure melanoma.
Collapse
Affiliation(s)
- Liaisan Arslanbaeva
- Laboratory of Angiogenesis and Cancer Metabolism, DiBio, University of Padua, Italy
| | - Giovanni Tosi
- Laboratory of Angiogenesis and Cancer Metabolism, DiBio, University of Padua, Italy; Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Marco Ravazzolo
- Laboratory of Angiogenesis and Cancer Metabolism, DiBio, University of Padua, Italy
| | - Manuela Simonato
- Fondazione Istituto di Ricerca Pediatrica "Città della Speranza", Padova, Italy
| | | | | | - Paola Cogo
- Fondazione Istituto di Ricerca Pediatrica "Città della Speranza", Padova, Italy; Division of Pediatrics, Department of Medicine, University Hospital S Maria della Misericordia, University of Udine, Italy
| | - Massimo M Santoro
- Laboratory of Angiogenesis and Cancer Metabolism, DiBio, University of Padua, Italy; Veneto Institute of Molecular Medicine (VIMM), Padua, Italy.
| |
Collapse
|
27
|
Hu CW, Chang YC, Liu CH, Yu YA, Mou KY. Development of a TNF-α-mediated Trojan Horse for Bacteria-based Cancer Therapy. Mol Ther 2022; 30:2522-2536. [PMID: 35440418 DOI: 10.1016/j.ymthe.2022.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/11/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022] Open
Abstract
TNF-α is up-regulated in a chronic inflammatory environment, including tumors, and has been recognized as a pro-tumor factor in many cancers. Applying the traditional TNF-α antibodies that neutralize the TNF-α activity, however, only exerts modest anti-tumor efficacy in the clinical studies. Here, we develop an innovative approach to target TNF-α that is distinct from the neutralization mechanism. We employed phage display and yeast display to select non-neutralizing antibodies that can piggyback on TNF-α and co-internalize into cells through the receptor ligation. When conjugating with toxins, the antibody exhibited cytotoxicity to cancer cells in a TNF-α-dependent manner. We further implemented the immunotoxin to an E. coli vehicle specially engineered for a high secretion level. In a syngeneic murine melanoma model, the bacteria stimulated the TNF-α expression that synergized with the secreted immunotoxin and greatly inhibited the tumor growth. The treatment also dramatically remodeled the tumor microenvironment in favor of several anti-tumor immune cells, including the N1 neutrophils, the M1 macrophages, and the activated CD4+ and CD8+ lymphocytes. We anticipate that our new piggyback strategy is generalizable to target other soluble ligands and/or conjugate with different drugs for managing a diverse set of diseases.
Collapse
Affiliation(s)
- Che-Wei Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - You-Chiun Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan; Taiwan International Graduate Program in Chemical Biology and Molecular Biophysics, National Taiwan University and Academia Sinica, Taipei, 11529, Taiwan
| | - Cheng-Hao Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan; Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 11529, Taiwan
| | - Yao-An Yu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan; Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112, Taiwan
| | - Kurt Yun Mou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
28
|
Caban M, Owczarek K, Lewandowska U. The Role of Metalloproteinases and Their Tissue Inhibitors on Ocular Diseases: Focusing on Potential Mechanisms. Int J Mol Sci 2022; 23:ijms23084256. [PMID: 35457074 PMCID: PMC9026850 DOI: 10.3390/ijms23084256] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 02/01/2023] Open
Abstract
Eye diseases are associated with visual impairment, reduced quality of life, and may even lead to vision loss. The efficacy of available treatment of eye diseases is not satisfactory. The unique environment of the eye related to anatomical and physiological barriers and constraints limits the bioavailability of existing agents. In turn, complex ethiopathogenesis of ocular disorders that used drugs generally are non-disease specific and do not act causally. Therefore, there is a need for the development of a new therapeutic and preventive approach. It seems that matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) have a significant role in the development and progression of eye diseases and could be used in the therapy of these disorders as pharmacological targets. MMPs and TIMPs play an important role in the angiogenesis, epithelial-mesenchymal transition, cell invasion, and migration, which occur in ocular diseases. In this review, we aim to describe the participation of MMPs and TIMPs in the eye diseases, such as age-related macular degeneration, cataract, diabetic retinopathy, dry eye syndrome, glaucoma, and ocular cancers, posterior capsule opacification focusing on potential mechanisms.
Collapse
|
29
|
Wang D, Fu Z, Gao L, Zeng J, Xiang Y, Zhou L, Tong X, Wang XQ, Lu J. Increased IRF9-STAT2 signaling leads to adaptive resistance toward targeted therapy in melanoma by restraining GSDME-dependent pyroptosis. J Invest Dermatol 2022; 142:2476-2487.e9. [PMID: 35148998 DOI: 10.1016/j.jid.2022.01.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 12/28/2022]
Abstract
Melanoma is the leading cause of cutaneous malignancy death. BRAF inhibitors (BRAFis) have been developed as target therapies because nearly half of melanoma patients have activating mutations in the BRAF oncogene. However, the fast-developed resistance of BRAFis limits its treatment efficacy. Understanding the molecular mechanism of resistance is vital to increase the success of clinical treatment. We searched three datasets (GSE42872, GSE52882, and GSE106321) from the Gene Expression Omnibus (GEO), which analyzed the mRNA expression profile in melanoma cells under BRAFis treatment, and the differentially expressed genes (DEGs) were identified. Among all the DEGs, increased expression of IRF9 and STAT2 was distinguished and verified to be upregulated in BRAFis-treated melanoma cells. Furthermore, IRF9 or STAT2 overexpression led to less sensitivity, while IRF9 or STAT2 knockdown increased sensitivity to BRAFis treatment. In a subcutaneous xenograft tumor model, we demonstrated that IRF9 or STAT2 overexpression slowed BRAFis-induced tumor shrank, but IRF9 or STAT2 knockdown led to BRAFis-induced tumor shrank more quickly. More interestingly, we discovered that IRF9-STAT2 signaling controlled GSDME-dependent pyroptosis by restoring GSDME transcription. These results suggest that targeting IRF9/STAT2 may lead to more promising effective treatments to prevent melanoma resistance to BRAFis by inducing pyroptosis.
Collapse
Affiliation(s)
- Dan Wang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013 P. R. China
| | - Zhibing Fu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013 P. R. China
| | - Lihua Gao
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013 P. R. China
| | - Jinrong Zeng
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013 P. R. China
| | - Yaping Xiang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013 P. R. China
| | - Lu Zhou
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013 P. R. China
| | - Xiaoliang Tong
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013 P. R. China
| | - Xiao-Qi Wang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jianyun Lu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013 P. R. China.
| |
Collapse
|
30
|
Abstract
Melanoma is the most lethal skin cancer that originates from the malignant transformation of melanocytes. Although melanoma has long been regarded as a cancerous malignancy with few therapeutic options, increased biological understanding and unprecedented innovations in therapies targeting mutated driver genes and immune checkpoints have substantially improved the prognosis of patients. However, the low response rate and inevitable occurrence of resistance to currently available targeted therapies have posed the obstacle in the path of melanoma management to obtain further amelioration. Therefore, it is necessary to understand the mechanisms underlying melanoma pathogenesis more comprehensively, which might lead to more substantial progress in therapeutic approaches and expand clinical options for melanoma therapy. In this review, we firstly make a brief introduction to melanoma epidemiology, clinical subtypes, risk factors, and current therapies. Then, the signal pathways orchestrating melanoma pathogenesis, including genetic mutations, key transcriptional regulators, epigenetic dysregulations, metabolic reprogramming, crucial metastasis-related signals, tumor-promoting inflammatory pathways, and pro-angiogenic factors, have been systemically reviewed and discussed. Subsequently, we outline current progresses in therapies targeting mutated driver genes and immune checkpoints, as well as the mechanisms underlying the treatment resistance. Finally, the prospects and challenges in the development of melanoma therapy, especially immunotherapy and related ongoing clinical trials, are summarized and discussed.
Collapse
Affiliation(s)
- Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
31
|
Raj AT, Kheur S, Bhonde R, Mani VR, Baeshen HA, Patil S. Assessing the effect of human dental pulp mesenchymal stem cell secretome on human oral, breast, and melanoma cancer cell lines. Saudi J Biol Sci 2021; 28:6556-6567. [PMID: 34764771 PMCID: PMC8568833 DOI: 10.1016/j.sjbs.2021.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022] Open
Abstract
Background The secretome of the dental pulp mesenchymal stem cells (DPMSCS-S) have an array of regenerative potential and could aid in the rehabilitation of cancer patients post-therapeutic interventions, although caution is required as DPMSC-S have shown to augment prostate cancer cells. Thus, it is vital to assess if these pro-carcinogenic effects extend to other cancer types. Objective To assess if DPMSC-S has any pro-carcinogenic effect on oral cancer, breast cancer, and melanoma cell lines. Materials and methods Conditioned media obtained from the isolated and characterized DPMSC (DPMSC-CM) were profiled using bead-based multiplex assay. AW13515 (oral cancer), MDA-MB-231 (breast cancer), and A-375 (melanoma) cell lines were exposed to 20%, 50%, and 100% DPMSC-CM for 24, 48, and 72 h. DPMSC-CM effect on the cancer cell properties and secretome were assessed. Results DPMSC-CM augmented invasion, adhesion, multi-drug resistance, DNA repair, and mitochondrial repair in AW13516 through upregulation of growth factors Ang-2, EGF, M−CSF, PDGF-AA, PDGF-BB, pro-inflammatory cytokines TNF-α, IL-2, downregulation of anti-inflammatory cytokine TGF-β1, and pro-inflammatory cytokine IL-4. In MDA-MB-231, invasion, and multi-drug resistance were augmented through upregulation of growth factors EGF, EPO, G-CSF, HGF, M−CSF, PDGF-AA, and pro-inflammatory cytokine TNF-α, CXCL10, IL-12p70. EMT, invasion, migration, and adhesion were augmented in A-375 through upregulation of growth factors Ang-2, EGF, PDGF-BB, TGF-α, pro-inflammatory cytokines TNF-α, and IL-17A. Conclusion DPMSC-CM can augment the carcinogenic properties of oral cancer, breast cancer, and melanoma cells, further animal model studies are required to validate our in-vitro findings.
Collapse
Affiliation(s)
- A Thirumal Raj
- Department of Oral Pathology and Microbiology, Dr.D.Y.Patil Dental College and Hospital, Dr.D.Y.Patil Vidyapeeth, Pune, India
| | - Supriya Kheur
- Department of Oral Pathology and Microbiology, Dr.D.Y.Patil Dental College and Hospital, Dr.D.Y.Patil Vidyapeeth, Pune, India
| | | | - Vishnu R Mani
- Division of Trauma, Acute and Critical Care Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| | - Hosam Ali Baeshen
- Department of Orthodontics, College of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
32
|
p32 promotes melanoma progression and metastasis by targeting EMT markers, Akt/PKB pathway, and tumor microenvironment. Cell Death Dis 2021; 12:1012. [PMID: 34711805 PMCID: PMC8553772 DOI: 10.1038/s41419-021-04311-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 09/19/2021] [Accepted: 10/04/2021] [Indexed: 12/22/2022]
Abstract
Melanoma originates from melanin-producing cells called melanocytes. Melanoma poses a great risk because of its rapid ability to spread and invade new organs. Cellular metastasis involves alteration in the gene expression profile and their transformation from epithelial to mesenchymal state. Despite of several advances, metastatic melanoma being a key cause of therapy failure and mortality remains poorly understood. p32 has been found to be involved in various physiological and pathophysiological conditions. However, the role of p32 in melanoma progression and metastasis remains underexplored. Here, we identify the role of p32 in the malignancy of both murine and human melanoma. p32 knockdown leads to reduced cell proliferation, migration, and invasion in murine and human melanoma cells. Furthermore, p32 promotes in vitro tumorigenesis, inducing oncogenes and EMT markers. Mechanistically, we show p32 regulates tumorigenic and metastatic properties through the Akt/PKB signaling pathway in both murine and human melanoma. Furthermore, p32 silencing attenuates melanoma tumor progression and lung metastasis in vivo, modulating the tumor microenvironment by inhibiting the angiogenesis, infiltration of macrophages, and leukocytes in mice. Taken together, our findings identify that p32 drives melanoma progression, metastasis, and regulates the tumor microenvironment. p32 can be a target of a novel therapeutic approach in the regulation of melanoma progression and metastasis.
Collapse
|
33
|
Kim HY, Jung H, Kim HM, Jeong HJ. Surfactin exerts an anti-cancer effect through inducing allergic reactions in melanoma skin cancer. Int Immunopharmacol 2021; 99:107934. [PMID: 34233232 DOI: 10.1016/j.intimp.2021.107934] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/31/2021] [Accepted: 06/28/2021] [Indexed: 12/30/2022]
Abstract
Surfactin is a mast cell degranulator, that increases the immune response via the degranulation of mast cells. Recently, numerous studies reported that allergic reactions play an important role in the reduction of melanoma development. So, this study aimed to investigate the anti-cancer effects of surfactin in a melanoma skin cancer in vivo model and a melanoma cell line, B16F10. Oral administration of surfactin significantly increased survival rate and reduced tumor growth and tumor weight on melanoma skin cancer in vivo model. Surfactin significantly increased infiltration of mast cells and levels of histamine. Surfactin significantly enhanced levels of IgE and immune-enhancing mediators, such as interferon-γ, interleukin (IL)-2, IL-6, IL-12, and tumor necrosis factor-α in serum and melanoma tissues. Activities of caspase-3, 8, and 9 were significantly enhanced by oral administration of surfactin. In vitro model, surfactin significantly increased B16F10 cell death via activation of caspase-3, 8, and 9 in a dose-dependent manner. Overall, our results indicate that surfactin has a significant anti-cancer effect on melanoma skin cancer through indirectly or directly inducing apoptosis of B16F10 melanoma cells. Also, these findings suggest that it will contribute to a novel perception into the role of allergic reactions in melanoma.
Collapse
Affiliation(s)
- Hee-Yun Kim
- Biochip Research Center, Hoseo University, Asan, Chungnam 31499, Republic of Korea
| | - Hanchul Jung
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyung-Min Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun-Ja Jeong
- Biochip Research Center, Hoseo University, Asan, Chungnam 31499, Republic of Korea; Department of Food Science & Technology, Hoseo University, Asan 31499, Republic of Korea.
| |
Collapse
|
34
|
Pinzaru I, Chioibas R, Marcovici I, Coricovac D, Susan R, Predut D, Georgescu D, Dehelean C. Rutin Exerts Cytotoxic and Senescence-Inducing Properties in Human Melanoma Cells. TOXICS 2021; 9:toxics9090226. [PMID: 34564377 PMCID: PMC8472636 DOI: 10.3390/toxics9090226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022]
Abstract
Malignant melanoma represents the deadliest type of skin cancer with narrow treatment options in advanced stages. Herbal constituents possessing anticancer properties occupy a particular spot in melanoma research as potential chemotherapeutics. Rutin (RUT) is a natural compound exerting antioxidant, antimicrobial, anti-inflammatory, UV-filtering, and SPF-enhancing activities that are beneficial to the skin; however, its effect as an anti-melanoma agent is less investigated. The current study is focused on assessing the cytotoxic potential of RUT against two different human melanoma cell lines: RPMI-7951 and SK-MEL-28 by evaluating its impact in terms of cell viability, cells’ morphology, and nuclear aspect assessment, and senescence-inducing properties. The results indicate a dose-dependent decrease in the viability of both cell lines, with calculated IC50 values of 64.49 ± 13.27 µM for RPMI-7951 cells and 47.44 ± 2.41 µM for SK-MEL-28, respectively, accompanied by a visible reduction in the cell confluency and apoptotic features within the cell nuclei. RUT exerted a senescence-inducing property highlighted by the elevated expression of senescent-associated beta-galactosidase (SA-β-gal) in SK-MEL-28 cells. Despite the in vitro anti-melanoma effect revealed by our results, further studies are required to elucidate the mechanisms of RUT-induced cytotoxicity and senescence in melanoma cells.
Collapse
Affiliation(s)
- Iulia Pinzaru
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.P.); (I.M.); (C.D.)
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Raul Chioibas
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (R.C.); (D.G.)
| | - Iasmina Marcovici
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.P.); (I.M.); (C.D.)
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Dorina Coricovac
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.P.); (I.M.); (C.D.)
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Correspondence: (D.C.); (R.S.); Tel.: +40-743-092-959 (D.C.); +40-744-337-091 (R.S.)
| | - Razvan Susan
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (R.C.); (D.G.)
- Correspondence: (D.C.); (R.S.); Tel.: +40-743-092-959 (D.C.); +40-744-337-091 (R.S.)
| | - Denisa Predut
- Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Doina Georgescu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (R.C.); (D.G.)
| | - Cristina Dehelean
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.P.); (I.M.); (C.D.)
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| |
Collapse
|
35
|
Jung J, Liao H, Coker SA, Liang H, Hancock JF, Denicourt C, Venkatachalam K. p53 mitigates the effects of oncogenic HRAS in urothelial cells via the repression of MCOLN1. iScience 2021; 24:102701. [PMID: 34222845 PMCID: PMC8243020 DOI: 10.1016/j.isci.2021.102701] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/10/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Inhibition of TRPML1, which is encoded by MCOLN1, is known to deter cell proliferation in various malignancies. Here, we report that the tumor suppressor, p53, represses MCOLN1 in the urothelium such that either the constitutive loss or ectopic knockdown of TP53-in both healthy and bladder cancer cells-increased MCOLN1 expression. Conversely, nutlin-mediated activation of p53 led to the repression of MCOLN1. Elevated MCOLN1 expression in p53-deficient cancer cells, though not sufficient for bolstering proliferation, augmented the effects of oncogenic HRAS on proliferation, cytokine production, and invasion. Our data suggest that owing to derepression of MCOLN1, urothelial cells lacking p53 are poised for tumorigenesis driven by oncogenic HRAS. Given our prior findings that HRAS mutations predict addiction to TRPML1, this study points to the utility of TRPML1 inhibitors for mitigating the growth of a subset of urothelial tumors that lack p53.
Collapse
Affiliation(s)
- Jewon Jung
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
| | - Han Liao
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
| | - Shannon A. Coker
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
| | - Hong Liang
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
| | - John F. Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Catherine Denicourt
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Graduate Program in Neuroscience, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
36
|
Tumosienė I, Jonuškienė I, Kantminienė K, Mickevičius V, Petrikaitė V. Novel N-Substituted Amino Acid Hydrazone-Isatin Derivatives: Synthesis, Antioxidant Activity, and Anticancer Activity in 2D and 3D Models In Vitro. Int J Mol Sci 2021; 22:ijms22157799. [PMID: 34360565 PMCID: PMC8346030 DOI: 10.3390/ijms22157799] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
A series of novel mono and bishydrazones each bearing a 2-oxindole moiety along with substituted phenylaminopropanamide, pyrrolidin-2-one, benzimidazole, diphenylmethane, or diphenylamine fragments were synthesized, and their anticancer activities were tested by MTT assay against human melanoma A375 and colon adenocarcinoma HT-29 cell lines. In general, the synthesized compounds were more cytotoxic against HT-29 than A375. 3-((4-Methoxyphenyl)(3-oxo-3-(2-(2-oxoindolin-3-ylidene)hydrazinyl)propyl)amino)-N′-(2-oxoindolin-3-ylidene)propanehydrazide and (N′,N‴)-1,1′-(methylenebis(4,1-phenylene))bis(5-oxo-N′-(2-oxoindolin-3-ylidene)pyrrolidine-3-carbohydrazide) were identified as the most active compounds against HT-29 in 2D and 3D cell cultures. The same compounds showed the highest antioxidant activity among the synthesized compounds screened by ferric reducing antioxidant power assay (FRAP). Their antioxidant activity is on par with that of a well-known antioxidant ascorbic acid.
Collapse
Affiliation(s)
- Ingrida Tumosienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (I.T.); (I.J.); (V.M.)
| | - Ilona Jonuškienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (I.T.); (I.J.); (V.M.)
| | - Kristina Kantminienė
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
- Correspondence:
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (I.T.); (I.J.); (V.M.)
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-50162 Kaunas, Lithuania;
- Institute of Physiology and Pharmacology, Faculty of Medicine, Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, LT-44307 Kaunas, Lithuania
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
37
|
The Analysis of Inflammation-Related Proteins in a Cargo of Exosomes Derived from the Serum of Uveal Melanoma Patients Reveals Potential Biomarkers of Disease Progression. Cancers (Basel) 2021; 13:cancers13133334. [PMID: 34283046 PMCID: PMC8268237 DOI: 10.3390/cancers13133334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Uveal melanoma (UM) is the most common intraocular tumour in adults with a poor prognosis and extremely high mortality rate due to the development of metastatic disease. Despite good knowledge of the histological and genetic background of metastases formation, there is still a lack of specific biomarkers which would allow early detection of UM progression. Due to their unique molecular cargo consisting of proteins and nucleic acids, exosomes have been widely studied as carriers of biomarkers for cancer development and progression. In this study, we analyzed the inflammation-related protein cargo of exosomes derived from the serum of primary and metastatic UM patients and healthy donors using multiplex immunoassay technology. We showed a significant correlation between the disease stage and the concentration of inflammation-related proteins from exosomal cargo. Based on the obtained results, we propose the panel of exosomal proteins for early detection of uveal melanoma progression into metastatic disease. Abstract Background: Uveal melanoma (UM) is the most common intraocular tumour in adults with a poor prognosis and extremely high mortality rate due to the development of metastatic disease. However, despite relatively good knowledge about the histological and genetic risk factors for metastasis development, there is no specific biomarker that would allow early detection of UM progression. Recently, exosomes and their molecular cargo have been widely studied in the search for potential biomarkers in several cancers. The purpose of this study was to analyze the inflammation-related protein cargo of exosomes derived from the serum of primary and metastatic UM patients and healthy donors. Methods: The exosomes were isolated from the serum of primary and metastatic UM patients and healthy donors. Using multiplex immunoassay technology, we analyzed the concentration of 37 inflammation-related proteins in obtained exosomes. Results: The analysis of protein cargo showed several molecules related to inflammation, such as interferon-gamma, interleukin 2, 22 and 12(p40), Pentraxin-3, TNFSF13B and TNFSF8 which were significantly enriched in metastatic UM exosomes. We showed a significant correlation between the disease stage and the concentration of these inflammation-related proteins from exosomal cargo. Conclusions: Based on the obtained results, we propose the panel of exosomal proteins for early detection of uveal melanoma progression into metastatic disease.
Collapse
|
38
|
Tampa M, Georgescu SR, Mitran MI, Mitran CI, Matei C, Caruntu A, Scheau C, Nicolae I, Matei A, Caruntu C, Constantin C, Neagu M. Current Perspectives on the Role of Matrix Metalloproteinases in the Pathogenesis of Basal Cell Carcinoma. Biomolecules 2021; 11:biom11060903. [PMID: 34204372 PMCID: PMC8235174 DOI: 10.3390/biom11060903] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common skin malignancy, which rarely metastasizes but has a great ability to infiltrate and invade the surrounding tissues. One of the molecular players involved in the metastatic process are matrix metalloproteinases (MMPs). MMPs are enzymes that can degrade various components of the extracellular matrix. In the skin, the expression of MMPs is increased in response to various stimuli, including ultraviolet (UV) radiation, one of the main factors involved in the development of BCC. By modulating various processes that are linked to tumor growth, such as invasion and angiogenesis, MMPs have been associated with UV-related carcinogenesis. The sources of MMPs are multiple, as they can be released by both neoplastic and tumor microenvironment cells. Inhibiting the action of MMPs could be a useful therapeutic option in BCC management. In this review that reunites the latest advances in this domain, we discuss the role of MMPs in the pathogenesis and evolution of BCC, as molecules involved in tumor aggressiveness and risk of recurrence, in order to offer a fresh and updated perspective on this field.
Collapse
Affiliation(s)
- Mircea Tampa
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Simona Roxana Georgescu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
- Correspondence: (S.R.G.); (A.C.)
| | - Madalina Irina Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.M.); (C.I.M.)
| | - Cristina Iulia Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.M.); (C.I.M.)
| | - Clara Matei
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
- Correspondence: (S.R.G.); (A.C.)
| | - Cristian Scheau
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
| | - Ilinca Nicolae
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Andreea Matei
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
| | - Constantin Caruntu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania
- Faculty of Biology, University of Bucharest, Bucharest 76201, Romania
| |
Collapse
|
39
|
Zhang H, Zhang A, Gupte AA, Hamilton DJ. Plumbagin Elicits Cell-Specific Cytotoxic Effects and Metabolic Responses in Melanoma Cells. Pharmaceutics 2021; 13:pharmaceutics13050706. [PMID: 34066184 PMCID: PMC8151164 DOI: 10.3390/pharmaceutics13050706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/13/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Melanoma is one of the most malignant skin cancers that require comprehensive therapies, including chemotherapy. A plant-derived drug, plumbagin (PLB), exhibits an anticancer property in several cancers. We compared the cytotoxic and metabolic roles of PLB in A375 and SK-MEL-28 cells, each with different aggressiveness. In our results, they were observed to have distinctive mitochondrial respiratory functions. The primary reactive oxygen species (ROS) source of A375 can be robustly attenuated by cell membrane permeabilization. A375 cell viability and proliferation, migration, and apoptosis induction are more sensitive to PLB treatment. PLB induced metabolic alternations in SK-MEL-28 cells, which included increasing mitochondrial oxidative phosphorylation (OXPHOS), mitochondrial ATP production, and mitochondrial mass. Decreasing mitochondrial OXPHOS and total ATP production with elevated mitochondrial membrane potential (MMP) were observed in PLB-induced A375 cells. PLB also induced ROS production and increased proton leak and non-mitochondria respiration in both cells. This study reveals the relationship between metabolism and cytotoxic effects of PLB in melanoma. PLB displays stronger cytotoxic effects on A375 cells, which exhibit lower respiratory function than SK-MEL-28 cells with higher respiratory function, and triggers cell-specific metabolic changes in accordance with its cytotoxic effects. These findings indicate that PLB might serve as a promising anticancer drug, targeting metabolism.
Collapse
Affiliation(s)
- Haoran Zhang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; (H.Z.); (A.Z.); (A.A.G.)
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Aijun Zhang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; (H.Z.); (A.Z.); (A.A.G.)
- Molecular Biology Research in Medicine, Houston Methodist Research Institute, Weill Cornell Medicine Affiliate, Houston, TX 77030, USA
| | - Anisha A. Gupte
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; (H.Z.); (A.Z.); (A.A.G.)
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, TX 77030, USA
| | - Dale J. Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; (H.Z.); (A.Z.); (A.A.G.)
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-(713)-441-4483
| |
Collapse
|
40
|
Olszańska J, Pietraszek-Gremplewicz K, Nowak D. Melanoma Progression under Obesity: Focus on Adipokines. Cancers (Basel) 2021; 13:cancers13092281. [PMID: 34068679 PMCID: PMC8126042 DOI: 10.3390/cancers13092281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Obesity is a rapidly growing public health problem and the reason for numerous diseases in the human body, including cancer. This article reviews the current knowledge of the effect of molecules secreted by adipose tissue-adipokines on melanoma progression. We also discuss the role of these factors as markers of incidence, metastasis, and melanoma patient survival. Understanding the functions of adipokines will lead to knowledge of whether and how obesity promotes melanoma growth. Abstract Obesity is a growing problem in the world and is one of the risk factors of various cancers. Among these cancers is melanoma, which accounts for the majority of skin tumor deaths. Current studies are looking for a correlation between obesity and melanoma. They suspect that a potential cause of its development is connected to the biology of adipokines, active molecules secreted by adipose tissue. Under physiological conditions, adipokines control many processes, including lipid and glucose homeostasis, insulin sensitivity, angiogenesis, and inflammations. However, when there is an increased amount of fat in the body, their secretion is dysregulated. This article reviews the current knowledge of the effect of adipokines on melanoma growth. This work focuses on the molecular pathways by which adipose tissue secreted molecules modify the angiogenesis, migration, invasion, proliferation, and death of melanoma cells. We also discuss the role of these factors as markers of incidence, metastasis, and melanoma patient survival. Understanding the functions of adipokines will lead to knowledge of whether and how obesity promotes melanoma growth. Further studies may contribute to the innovations of therapies and the use of adipokines as predictive and/or prognostic biomarkers.
Collapse
|
41
|
Tyciakova S, Valova V, Svitkova B, Matuskova M. Overexpression of TNFα induces senescence, autophagy and mitochondrial dysfunctions in melanoma cells. BMC Cancer 2021; 21:507. [PMID: 33957885 PMCID: PMC8101174 DOI: 10.1186/s12885-021-08237-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 04/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Tumor necrosis factor alpha (TNFα) is a pleiotropic cytokine with both anti-tumorigenic and pro-tumorigenic activity, affecting tumor cell biology, the balance between cell survival and death. The final effect of TNFα is dependent on the type of malignant cells, with the potential to arrest cancer progression. Methods In order to explain the diverse cellular response to TNFα, we engineered melanoma and colorectal carcinoma cell lines stably overexpressing this cytokine. Results Under the TNFα overexpression, significant upregulation of two genes was observed: proinflammatory cytokine IL6 gene in melanoma cells A375 and gene for pro-apoptotic ligand TRAIL in colorectal carcinoma cells HT29, both mediated by TNFα/TNFR1 signaling. Malignant melanoma line A375 displayed also increased autophagy on day 3, followed by premature senescence on day 6. Both processes seem to be interconnected, following earlier apoptosis induction and deregulation of mitochondrial functions. We documented altered mitochondrial status, lowered ATP production, lowered mitochondrial mass, and changes in mitochondrial morphology (shortened and condensed mitochondria) both in melanoma and colorectal carcinoma cells. Overexpression of TNFα was not linked with significant affection of the subpopulation of cancer stem-like cells in vitro. However, we could demonstrate a decrease in aldehyde dehydrogenase (ALDH) activity up to 50%, which is associated with to the stemness phenotype. Conclusions Our in vitro study of direct TNFα influence demonstrates two distinct outcomes in tumor cells of different origin, in non-epithelial malignant melanoma cells of neural crest origin, and in colorectal carcinoma cells derived from the epithelium. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08237-1.
Collapse
Affiliation(s)
- Silvia Tyciakova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.
| | - Valeria Valova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.,Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Barbora Svitkova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Miroslava Matuskova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| |
Collapse
|
42
|
Cecchi M, Paccosi S, Silvano A, Eid AH, Parenti A. Dexamethasone Induces the Expression and Function of Tryptophan-2-3-Dioxygenase in SK-MEL-28 Melanoma Cells. Pharmaceuticals (Basel) 2021; 14:ph14030211. [PMID: 33806305 PMCID: PMC7998133 DOI: 10.3390/ph14030211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/18/2022] Open
Abstract
Tryptophan-2,3-dioxygenase (TDO) is one of the key tryptophan-catabolizing enzymes with immunoregulatory properties in cancer. Contrary to expectation, clinical trials showed that inhibitors of the ubiquitously expressed enzyme, indoleamine-2,3-dioxygenase-1 (IDO1), do not provide benefits in melanoma patients. This prompted the hypothesis that TDO may be a more attractive target. Because the promoter of TDO harbors glucocorticoid response elements (GREs), we aimed to assess whether dexamethasone (dex), a commonly used glucocorticoid, modulates TDO expression by means of RT-PCR and immunofluorescence and function by assessing cell proliferation and migration as well as metalloproteinase activity. Our results show that, in SK-Mel-28 melanoma cells, dex up-regulated TDO and its downstream effector aryl hydrocarbon receptor (AHR) but not IDO1. Furthermore, dex stimulated cellular proliferation and migration and potentiated MMP2 activity. These effects were inhibited by the selective TDO inhibitor 680C91 and enhanced by IDO1 inhibitors. Taken together, our results demonstrate that the metastatic melanoma cell line SK-Mel-28 possesses a functional TDO which can also modulate cancer cell phenotype directly rather than through immune suppression. Thus, TDO appears to be a promising, tractable target in the management or the treatment of melanoma progression.
Collapse
Affiliation(s)
- Marta Cecchi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (M.C.); (S.P.); (A.S.)
| | - Sara Paccosi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (M.C.); (S.P.); (A.S.)
| | - Angela Silvano
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (M.C.); (S.P.); (A.S.)
| | - Ali Hussein Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence: (A.H.E.); (A.P.); Tel.: +974-4403-7893 (A.H.E.)
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (M.C.); (S.P.); (A.S.)
- Correspondence: (A.H.E.); (A.P.); Tel.: +974-4403-7893 (A.H.E.)
| |
Collapse
|
43
|
Aranha ESP, Portilho AJDS, Bentes de Sousa L, da Silva EL, Mesquita FP, Rocha WC, Araújo da Silva FM, Lima ES, Alves APNN, Koolen HHF, Montenegro RC, Vasconcellos MCD. 22β-hydroxytingenone induces apoptosis and suppresses invasiveness of melanoma cells by inhibiting MMP-9 activity and MAPK signaling. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113605. [PMID: 33232779 DOI: 10.1016/j.jep.2020.113605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 22β-hydroxytingenone (22-HTG) is a quinonemethide triterpene isolated from Salacia impressifolia (Miers) A. C. Smith (family Celastraceae), which has been used in traditional medicine to treat a variety of diseases, including dengue, renal infections, rheumatism and cancer. However, the anticancer effects of 22-HTG and the underlying molecular mechanisms in melanoma cells have not yet been elucidated. AIM OF THE STUDY The present study investigated apoptosis induction and antimetastatic potencial of 22-HTG in SK-MEL-28 human melanoma cells. MATERIALS AND METHODS First, the in vitro cytotoxic activity of 22-HTG in cultured cancer cells was evaluated. Then, cell viability was determined using the trypan blue assay in melanoma cells (SK-MEL-28), which was followed by cell cycle, annexin V-FITC/propidium iodide assays (Annexin/PI), as well as assays to evaluate mitochondrial membrane potential, production of reactive oxygen species (ROS) using flow cytometry. Fluorescence microscopy using acridine orange/ethidium bromide (AO/BE) staining was also performed. RT-qPCR was carried out to evaluate the expression of BRAF, NRAS, and KRAS genes. The anti-invasiveness potential of 22-HTG was evaluated in a three-dimensional (3D) model of reconstructed human skin. RESULTS 22-HTG reduced viability of SK-MEL-28 cells and caused morphological changes, as cell shrinkage, chromatin condensation, and nuclear fragmentation. Furthermore, 22-HTG caused apoptosis, which was demonstrated by increased staining with AO/BE and Annexin/PI. The apoptosis may have been caused by mitochondrial instability without the involvement of ROS production. The expression of BRAF, NRAS, and KRAS, which are important biomarkers in melanoma development, was reduced by the 22-HTG treatment. In the reconstructed skin model, 22-HTG was able to decrease the invasion capacity of melanoma cells in the dermis. CONCLUSIONS Our data indicate that 22-HTG has anti-tumorigenic properties against melanoma cells through the induction of cell cycle arrest, apoptosis and inhibition of invasiveness potential, as observed in the 3D model. As such, the results provide new insights for future work on the utilization of 22-HTG in malignant melanoma treatment.
Collapse
Affiliation(s)
- Elenn Suzany Pereira Aranha
- Faculty of Pharmaceutical Sciences, Post Graduate Program in Biodiversity and Biotechnology of the Amazon (Bionorte), Federal University of Amazonas, Manaus, Amazonas, 69080-900, Brazil.
| | | | - Leilane Bentes de Sousa
- Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus, Amazonas, 69080-900, Brazil.
| | - Emerson Lucena da Silva
- Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil.
| | - Felipe Pantoja Mesquita
- Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil.
| | - Waldireny C Rocha
- Health and Biotechnology Institute, Federal University of Amazonas, Coari, Amazonas, 69460-000, Brazil.
| | | | - Emerson Silva Lima
- Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus, Amazonas, 69080-900, Brazil.
| | | | | | - Raquel Carvalho Montenegro
- Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil.
| | | |
Collapse
|
44
|
Mussi V, Ledda M, Polese D, Maiolo L, Paria D, Barman I, Lolli MG, Lisi A, Convertino A. Silver-coated silicon nanowire platform discriminates genomic DNA from normal and malignant human epithelial cells using label-free Raman spectroscopy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111951. [PMID: 33641882 DOI: 10.1016/j.msec.2021.111951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/04/2023]
Abstract
Genomic deoxyribonucleic acid (DNA) stores and carries the information required to maintain and replicate cellular life. While much efforts have been devoted in decoding the sequence of DNA basis to detect the genetic mutations related to cancer disease, it is becoming clear that physical properties, like structural conformation, stiffness and shape, can play an important role to recognize DNA modifications. Here, silver-coated silicon nanowires (Ag/SiNWs) are exploited as Raman spectroscopic platform to easily discriminate healthy and cancer genomic DNA, extracted from human normal skin and malignant melanoma cells, respectively. In particular, aqueous DNA droplets are directly deposited onto a forest of Ag/SiNWs and Raman maps are acquired after sample dehydration. By applying principal component analysis (PCA) to the Raman spectra collected within the droplets, healthy and cancer cell DNA can be distinguished without false negative identifications and with few false positive results (< 2%). The discrimination occurs regardless the analysis of specific DNA sequencing, but through Raman bands strictly related to the interfacing of the DNA and the NWs. The observed phenomenon can be ascribed to conformational differences and/or diverse charge properties between healthy and cancer cell DNA determining a different arrangement of the molecules adsorbed onto the NWs upon water evaporation. The unique interaction with DNA and facile fabrication technology make Ag/SiNWs an effective platform for a robust, rapid and label-free cancer diagnosis, as well as a potential tool to investigate physical properties of DNA.
Collapse
Affiliation(s)
- Valentina Mussi
- Institute for Microelectronics and Microsystems, CNR, 00133 Rome, Italy
| | - Mario Ledda
- Institute of Translational Pharmacology, CNR, 00133 Rome, Italy
| | - Davide Polese
- Institute for Microelectronics and Microsystems, CNR, 00133 Rome, Italy
| | - Luca Maiolo
- Institute for Microelectronics and Microsystems, CNR, 00133 Rome, Italy
| | - Debadrita Paria
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | | | - Antonella Lisi
- Institute of Translational Pharmacology, CNR, 00133 Rome, Italy.
| | | |
Collapse
|
45
|
Mercogliano MF, Bruni S, Mauro F, Elizalde PV, Schillaci R. Harnessing Tumor Necrosis Factor Alpha to Achieve Effective Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13030564. [PMID: 33540543 PMCID: PMC7985780 DOI: 10.3390/cancers13030564] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor alpha (TNFα) is a pleiotropic cytokine known to have contradictory roles in oncoimmunology. Indeed, TNFα has a central role in the onset of the immune response, inducing both activation and the effector function of macrophages, dendritic cells, natural killer (NK) cells, and B and T lymphocytes. Within the tumor microenvironment, however, TNFα is one of the main mediators of cancer-related inflammation. It is involved in the recruitment and differentiation of immune suppressor cells, leading to evasion of tumor immune surveillance. These characteristics turn TNFα into an attractive target to overcome therapy resistance and tackle cancer. This review focuses on the diverse molecular mechanisms that place TNFα as a source of resistance to immunotherapy such as monoclonal antibodies against cancer cells or immune checkpoints and adoptive cell therapy. We also expose the benefits of TNFα blocking strategies in combination with immunotherapy to improve the antitumor effect and prevent or treat adverse immune-related effects.
Collapse
Affiliation(s)
- María Florencia Mercogliano
- Laboratorio de Biofisicoquímica de Proteínas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires 1428, Argentina;
| | - Sofía Bruni
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Florencia Mauro
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Patricia Virginia Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Roxana Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
- Correspondence: ; Tel.: +54-11-4783-2869; Fax: +54-11-4786-2564
| |
Collapse
|
46
|
Melanoma Cell Resistance to Vemurafenib Modifies Inter-Cellular Communication Signals. Biomedicines 2021; 9:biomedicines9010079. [PMID: 33467521 PMCID: PMC7830125 DOI: 10.3390/biomedicines9010079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022] Open
Abstract
The therapeutic success of BRAF inhibitors (BRAFi) and MEK inhibitors (MEKi) in BRAF-mutant melanoma is limited by the emergence of drug resistance, and several lines of evidence suggest that changes in the tumor microenvironment can play a pivotal role in acquired resistance. The present study focused on secretome profiling of melanoma cells sensitive or resistant to the BRAFi vemurafenib. Proteomic and cytokine/chemokine secretion analyses were performed in order to better understand the interplay between vemurafenib-resistant melanoma cells and the tumor microenvironment. We found that vemurafenib-resistant melanoma cells can influence dendritic cell (DC) maturation by modulating their activation and cytokine production. In particular, human DCs exposed to conditioned medium (CM) from vemurafenib-resistant melanoma cells produced higher levels of pro-inflammatory cytokines—that potentially facilitate melanoma growth—than DCs exposed to CM derived from parental drug-sensitive cells. Bioinformatic analysis performed on proteins identified by mass spectrometry in the culture medium from vemurafenib-sensitive and vemurafenib-resistant melanoma cells suggests a possible involvement of the proteasome pathway. Moreover, our data confirm that BRAFi-resistant cells display a more aggressive phenotype compared to parental ones, with a significantly increased production of interferon-γ, interleukin-8, vascular-endothelial growth factor, CD147/basigin, and metalloproteinase 2 (MMP-2). Plasma levels of CD147/basigin and MMP-2 were also measured before the start of therapy and at disease progression in a small group of melanoma patients treated with vemurafenib or vemurafenib plus cobimetinib. A significant increment in CD147/basigin and MMP-2 was observed in all patients at the time of treatment failure, strengthening the hypothesis that CD147/basigin might play a role in BRAFi resistance.
Collapse
|
47
|
Fares J, Cordero A, Kanojia D, Lesniak MS. The Network of Cytokines in Brain Metastases. Cancers (Basel) 2021; 13:E142. [PMID: 33466236 PMCID: PMC7795138 DOI: 10.3390/cancers13010142] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022] Open
Abstract
Brain metastases are the most common of all intracranial tumors and a major cause of death in patients with cancer. Cytokines, including chemokines, interferons, interleukins, lymphokines, and tumor necrosis factors are key regulators in the formation of brain metastases. They regulate the infiltration of different cellular subsets into the tumor microenvironment and affect the therapeutic outcomes in patients. Elucidating the cancer cell-cytokine interactions in the setting of brain metastases is crucial for the development of more accurate diagnostics and efficacious therapies. In this review, we focus on cytokines that are found in the tumor microenvironment of brain metastases and elaborate on their trends of expression, regulation, and roles in cellular recruitment and tumorigenesis. We also explore how cytokines can alter the anti-tumor response in the context of brain metastases and discuss ways through which cytokine networks can be manipulated for diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (J.F.); (A.C.); (D.K.)
| |
Collapse
|
48
|
Lifshits LM, Roque JA, Cole HD, Thummel RP, Cameron CG, McFarland SA. NIR-Absorbing Ru II Complexes Containing α-Oligothiophenes for Applications in Photodynamic Therapy. Chembiochem 2020; 21:3594-3607. [PMID: 32761725 PMCID: PMC7736147 DOI: 10.1002/cbic.202000419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Indexed: 12/12/2022]
Abstract
The design of near-infrared (NIR)-active photosensitizers (PSs) for light-based cancer treatments such as photodynamic therapy (PDT) has been a challenge. While several NIR-RuII scaffolds have been reported, this approach has not been proven in cells. This is the first report of NIR-RuII PSs that are phototoxic to cancer cells, including highly pigmented B16F10 melanoma cells. The PS family incorporated a bis(1,8-naphthyridine)-based ligand (tpbn), a bidentate thiophene-based ligand (nT; n=0-4), and a monodentate 4-picoline ligand (4-pic). All compounds absorbed light >800 nm with maxima near 730 nm. Transient absorption (TA) measurements indicated that n=4 thiophene rings (4T) positioned the PDT-active triplet intraligand charge transfer (3 ILCT) excited state in energetic proximity to the lowest-lying triplet metal-to-ligand charge transfer (3 MLCT). 4T had low-micromolar phototoxicity with PIvis and PI733nm values as large as 90 and 12, respectively. Spectroscopic studies suggested that the longer-lived (τTA =3-6 μs) 3 ILCT state was accessible from the 3 MLCT state, but energetically uphill in the overall photophysics. The study highlights that phototoxic effects can be achieved with NIR-absorbing RuII PSs as long as the reactive 3 ILCT states are energetically accessible from the low-energy 3 MLCT states. It also demonstrates that tissue-penetrating NIR light can be used to activate the PSs in highly pigmented cells where melanin attenuates shorter wavelengths of light.
Collapse
Affiliation(s)
- Liubov M. Lifshits
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - John A. Roque
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Randolph P. Thummel
- Department of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas, 77204-5003, USA
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| |
Collapse
|
49
|
Cesati M, Scatozza F, D’Arcangelo D, Antonini-Cappellini GC, Rossi S, Tabolacci C, Nudo M, Palese E, Lembo L, Di Lella G, Facchiano F, Facchiano A. Investigating Serum and Tissue Expression Identified a Cytokine/Chemokine Signature as a Highly Effective Melanoma Marker. Cancers (Basel) 2020; 12:cancers12123680. [PMID: 33302400 PMCID: PMC7762568 DOI: 10.3390/cancers12123680] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary In this study, we investigated the expression of 27 cytokines/chemokines in the serum of 232 individuals (136 melanoma patients vs. 96 controls). It identified several cytokines/chemokines differently expressed in melanoma patients as compared to the healthy controls, as a function of the presence of the melanoma, age, tumor thickness, and gender, indicating different systemic responses to the melanoma presence. We also analyzed the gene expression of the same 27 molecules at the tissue level in 511 individuals (melanoma patients vs. controls). From the gene expression analysis, we identified several cytokines/chemokines showing strongly different expression in melanoma as compared to the controls, and the 4-gene signature “IL-1Ra, IL-7, MIP-1a, and MIP-1b” as the best combination to discriminate melanoma samples from the controls, with an extremely high accuracy (AUC = 0.98). These data indicate the molecular mechanisms underlying melanoma setup and the relevant markers potentially useful to help the diagnosis of biopsy samples. Abstract The identification of reliable and quantitative melanoma biomarkers may help an early diagnosis and may directly affect melanoma mortality and morbidity. The aim of the present study was to identify effective biomarkers by investigating the expression of 27 cytokines/chemokines in melanoma compared to healthy controls, both in serum and in tissue samples. Serum samples were from 232 patients recruited at the IDI-IRCCS hospital. Expression was quantified by xMAP technology, on 27 cytokines/chemokines, compared to the control sera. RNA expression data of the same 27 molecules were obtained from 511 melanoma- and healthy-tissue samples, from the GENT2 database. Statistical analysis involved a 3-step approach: analysis of the single-molecules by Mann–Whitney analysis; analysis of paired-molecules by Pearson correlation; and profile analysis by the machine learning algorithm Support Vector Machine (SVM). Single-molecule analysis of serum expression identified IL-1b, IL-6, IP-10, PDGF-BB, and RANTES differently expressed in melanoma (p < 0.05). Expression of IL-8, GM-CSF, MCP-1, and TNF-α was found to be significantly correlated with Breslow thickness. Eotaxin and MCP-1 were found differentially expressed in male vs. female patients. Tissue expression analysis identified very effective marker/predictor genes, namely, IL-1Ra, IL-7, MIP-1a, and MIP-1b, with individual AUC values of 0.88, 0.86, 0.93, 0.87, respectively. SVM analysis of the tissue expression data identified the combination of these four molecules as the most effective signature to discriminate melanoma patients (AUC = 0.98). Validation, using the GEPIA2 database on an additional 1019 independent samples, fully confirmed these observations. The present study demonstrates, for the first time, that the IL-1Ra, IL-7, MIP-1a, and MIP-1b gene signature discriminates melanoma from control tissues with extremely high efficacy. We therefore propose this 4-molecule combination as an effective melanoma marker.
Collapse
Affiliation(s)
- Marco Cesati
- Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Francesca Scatozza
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy; (F.S.); (D.D.); (G.C.A.-C.); (M.N.); (E.P.); (L.L.); (G.D.L.)
| | - Daniela D’Arcangelo
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy; (F.S.); (D.D.); (G.C.A.-C.); (M.N.); (E.P.); (L.L.); (G.D.L.)
| | - Gian Carlo Antonini-Cappellini
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy; (F.S.); (D.D.); (G.C.A.-C.); (M.N.); (E.P.); (L.L.); (G.D.L.)
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.R.); (C.T.)
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.R.); (C.T.)
| | - Maurizio Nudo
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy; (F.S.); (D.D.); (G.C.A.-C.); (M.N.); (E.P.); (L.L.); (G.D.L.)
| | - Enzo Palese
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy; (F.S.); (D.D.); (G.C.A.-C.); (M.N.); (E.P.); (L.L.); (G.D.L.)
| | - Luigi Lembo
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy; (F.S.); (D.D.); (G.C.A.-C.); (M.N.); (E.P.); (L.L.); (G.D.L.)
| | - Giovanni Di Lella
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy; (F.S.); (D.D.); (G.C.A.-C.); (M.N.); (E.P.); (L.L.); (G.D.L.)
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.R.); (C.T.)
- Correspondence: (F.F.); (A.F.)
| | - Antonio Facchiano
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy; (F.S.); (D.D.); (G.C.A.-C.); (M.N.); (E.P.); (L.L.); (G.D.L.)
- Correspondence: (F.F.); (A.F.)
| |
Collapse
|
50
|
Giuntini G, Monaci S, Cau Y, Mori M, Naldini A, Carraro F. Inhibition of Melanoma Cell Migration and Invasion Targeting the Hypoxic Tumor Associated CAXII. Cancers (Basel) 2020; 12:E3018. [PMID: 33080820 PMCID: PMC7602957 DOI: 10.3390/cancers12103018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Intratumoral hypoxia contributes to cancer progression and poor prognosis. Carbonic anhydrases IX (CAIX) and XII (CAXII) play pivotal roles in tumor cell adaptation and survival, as aberrant Hedgehog (Hh) pathway does. In malignant melanoma both features have been investigated for years, but they have not been correlated before and/or identified as a potential pharmacological target. Here, for the first time, we demonstrated that malignant melanoma cell motility was impaired by targeting CAXII via either CAs inhibitors or through the inhibition of the Hh pathway. METHODS We tested cell motility in three melanoma cell lines (WM-35, SK-MEL28, and A375), with different invasiveness capabilities. To this end we performed a scratch assay in the presence of the smoothened (SMO) antagonist cyclopamine (cyclo) or CAs inhibitors under normoxia or hypoxia. Then, we analyzed the invasiveness potential in the cell lines which were more affected by cyclo and CAs inhibitors (SK-MEL28 and A375). Western blot was employed to assess the expression of the hypoxia inducible factor 1α, CAXII, and FAK phosphorylation. Immunofluorescence staining was performed to verify the blockade of CAXII expression. RESULTS Hh inhibition reduced melanoma cell migration and CAXII expression under both normoxic and hypoxic conditions. Interestingly, basal CAXII expression was higher in the two more aggressive melanoma cell lines. Finally, a direct CAXII blockade impaired melanoma cell migration and invasion under hypoxia. This was associated with a decrease of FAK phosphorylation and metalloprotease activities. CONCLUSIONS CAXII may be used as a target for melanoma treatment not only through its direct inhibition, but also through Hh blockade.
Collapse
Affiliation(s)
- Gaia Giuntini
- Department of Molecular and Developmental Medicine, Cellular and Molecular Physiology Unit, University of Siena, 53100 Siena, Italy; (G.G.); (S.M.); (A.N.)
| | - Sara Monaci
- Department of Molecular and Developmental Medicine, Cellular and Molecular Physiology Unit, University of Siena, 53100 Siena, Italy; (G.G.); (S.M.); (A.N.)
| | - Ylenia Cau
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (Y.C.); (M.M.)
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (Y.C.); (M.M.)
| | - Antonella Naldini
- Department of Molecular and Developmental Medicine, Cellular and Molecular Physiology Unit, University of Siena, 53100 Siena, Italy; (G.G.); (S.M.); (A.N.)
| | - Fabio Carraro
- Department of Medical Biotechnologies, Cellular and Molecular Physiology Unit, University of Siena, 53100 Siena, Italy
| |
Collapse
|