1
|
Shalannandia WA, Chou Y, Bashari MH, Khairani AF. Intermediate Filaments in Breast Cancer Progression, and Potential Biomarker for Cancer Therapy: A Narrative Review. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:689-704. [PMID: 39430570 PMCID: PMC11488350 DOI: 10.2147/bctt.s489953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Intermediate filaments are one of the three components of the cytoskeletons, along with actin and microtubules. The intermediate filaments consist of extensive variations of structurally related proteins with specific expression patterns in cell types. The expression pattern alteration of intermediate filaments is frequently correlated with cancer progression, specifically with the epithelial-to-mesenchymal transition process closely related to increasing cellular migration and invasion. This review will discuss the involvement of cytoplasmic intermediate filaments, specifically vimentin, nestin, and cytokeratin (CK5/CK6, CK7, CK8/CK18, CK17, CK19, CK20, CSK1), in breast cancer progression and as prognostic or diagnostic biomarkers. The potential for drug development targeting intermediate filaments in cancer will be reviewed.
Collapse
Affiliation(s)
- Widad Aghnia Shalannandia
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| | - Yoan Chou
- Graduate School of Master Program in Anti Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| | - Muhammad Hasan Bashari
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| | - Astrid Feinisa Khairani
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| |
Collapse
|
2
|
Rai P, Garain T, Gupta D. Phytochemical analysis of Tinospora cordifolia and Withania somnifera and their therapeutic activities with special reference to COVID-19. World J Exp Med 2024; 14:95512. [PMID: 39312696 PMCID: PMC11372741 DOI: 10.5493/wjem.v14.i3.95512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Various important medicines make use of secondary metabolites that are produced by plants. Medicinal plants, such as Withania somnifera and Tinospora cordifolia, are rich sources of chemically active compounds and are reported to have numerous therapeutic applications. The therapeutic use of medicinal plants is widely mentioned in Ayurveda and has folkloric importance in different parts of the world. The aim of this review is to summarize the phytochemical profiles, folkloric importance, and primary pharmacological activity of W. somnifera and T. cordifolia with emphasis on their action against the novel coronavirus.
Collapse
Affiliation(s)
- Prateek Rai
- Chemistry, Amity Institute of Applied Sciences, Amity University, Noida 201301, Uttar Pradesh, India
| | - Tanya Garain
- Chemistry, Amity Institute of Applied Sciences, Amity University, Noida 201301, Uttar Pradesh, India
| | - Deepshikha Gupta
- Chemistry, Amity Institute of Applied Sciences, Amity University, Noida 201301, Uttar Pradesh, India
| |
Collapse
|
3
|
Che W, Wojitas L, Shan C, Lopchuk JM. Divergent synthesis of complex withanolides enabled by a scalable route and late-stage functionalization. SCIENCE ADVANCES 2024; 10:eadp9375. [PMID: 38941454 PMCID: PMC11212736 DOI: 10.1126/sciadv.adp9375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/24/2024] [Indexed: 06/30/2024]
Abstract
Withanolides are a group of naturally occurring C28 steroids based on an ergostane skeleton. They have a high degree of polyoxygenation, and the abundance of O-functional groups has enabled various natural alterations to both the carbocyclic skeleton and the side chain. Consequently, these molecules have intricate structural features that lead to their highly varied display of biological activities including anticancer, anti-inflammatory, and immunomodulating properties. Despite being intriguing leads for further discovery research, synthetic access to the withanolides remains highly challenging-compounds for current biological research are mainly isolated from plants, often inefficiently. Here, we report the divergent synthesis of 11 withanolides in 12 to 20 steps, enabled by a gram-scale route and a series of late-stage functionalizations, most notably a bioinspired photooxygenation-allylic hydroperoxide rearrangement sequence. This approach enables further biological research disconnected from a reliance on minute quantities of the parent natural products or their simple derivatives.
Collapse
Affiliation(s)
- Wen Che
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Lukasz Wojitas
- Department of Chemistry, University of South Florida; Tampa, FL 33620, USA
| | - Chuan Shan
- Department of Chemistry, University of South Florida; Tampa, FL 33620, USA
| | - Justin M. Lopchuk
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
- Department of Chemistry, University of South Florida; Tampa, FL 33620, USA
- Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
4
|
Wijeratne EMK, Xu YM, Padumadasa C, Astashkin AV, Gunatilaka AAL. A Homodimer of Withaferin A Formed by Base-Promoted Elimination of Acetic Acid from 27- O-Acetylwithaferin A Followed by a Diels-Alder Reaction. JOURNAL OF NATURAL PRODUCTS 2024; 87:583-590. [PMID: 38414352 DOI: 10.1021/acs.jnatprod.3c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Treatment of 27-O-acetylwithaferin A (2) with the non-nucleophilic base, 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU), afforded 5β,6β-epoxy-4β-hydroxy-1-oxo-witha-2(3),23(24),25(27)-trienolide (3) and 4, a homodimer of withaferin A resulting from a Diels-Alder [4 + 2] type cycloaddition of the intermediate α,β-dimethylene-δ-lactone (9). Structures of 3 and 4 were elucidated using HRMS and 1D and 2D NMR spectroscopic data. The structure of 4 was also confirmed by single crystal X-ray crystallographic analysis of its bis-4-O-p-nitrobenzoate (8). Formation of withaferin A homodimer (4) as the major product suggests regio- and stereoselectivity of the Diels-Alder [4 + 2] cycloaddition reaction of 9. Acetylation of 2-4 afforded their acetyl derivatives 5-7, respectively. Compounds 2-4 and 6-8 were evaluated for their cytotoxic activities against four prostate cancer (PC) cell lines (LNCaP, 22Rv1, DU-145, and PC-3) and normal human foreskin fibroblast (HFF) cells. Significantly, 4 exhibited improved activity compared to the other compounds for most of the tested cell lines.
Collapse
Affiliation(s)
- E M Kithsiri Wijeratne
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture, Life and Environmental Sciences, University of Arizona, 1064 E. Lowell Street, Tucson, Arizona 85719, United States
| | - Ya-Ming Xu
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture, Life and Environmental Sciences, University of Arizona, 1064 E. Lowell Street, Tucson, Arizona 85719, United States
| | - Chayanika Padumadasa
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture, Life and Environmental Sciences, University of Arizona, 1064 E. Lowell Street, Tucson, Arizona 85719, United States
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Andrei V Astashkin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - A A Leslie Gunatilaka
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture, Life and Environmental Sciences, University of Arizona, 1064 E. Lowell Street, Tucson, Arizona 85719, United States
| |
Collapse
|
5
|
Srivastava A, Ahmad R, Wani IA, Siddiqui S, Yadav K, Trivedi A, Upadhyay S, Husain I, Ahamad T, Dudhagi SS. Steroidal lactones from Withania somnifera effectively target Beta, Gamma, Delta and Omicron variants of SARS-CoV-2 and reveal a decreased susceptibility to viral infection and perpetuation: a polypharmacology approach. In Silico Pharmacol 2024; 12:14. [PMID: 38419919 PMCID: PMC10897645 DOI: 10.1007/s40203-023-00184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 12/14/2023] [Indexed: 03/02/2024] Open
Abstract
Prevention from disease is presently the cornerstone of the fight against COVID-19. With the rapid emergence of novel SARS-CoV-2 variants, there is an urgent need for novel or repurposed agents to strengthen and fortify the immune system. Existing vaccines induce several systemic and local side-effects that can lead to severe consequences. Moreover, elevated cytokines in COVID-19 patients with cancer as co-morbidity represent a significant bottleneck in disease prognosis and therapy. Withania somnifera (WS) and its phytoconstituent(s) have immense untapped immunomodulatory and therapeutic potential and the anticancer potential of WS is well documented. To this effect, WS methanolic extract (WSME) was characterized using HPLC. Withanolides were identified as the major phytoconstituents. In vitro cytotoxicity of WSME was determined against human breast MDA-MB-231 and normal Vero cells using MTT assay. WSME displayed potent cytotoxicity against MDA-MB-231 cells (IC50: 66 µg/mL) and no effect on Vero cells in the above range. MD simulations of Withanolide A with SARS-CoV-2 main protease and spike receptor-binding domain as well as Withanolide B with SARS-CoV spike glycoprotein and SARS-CoV-2 papain-like protease were performed using Schrödinger. Stability of complexes followed the order 6M0J-Withanolide A > 6W9C-Withnaolide B > 5WRG-Withanolide B > 6LU7-Withanolide A. Maximum stable interaction(s) were observed between Withanolides A and B with SARS-CoV-2 and SARS-CoV spike glycoproteins, respectively. Withanolides A and B also displayed potent binding to pro-inflammatory markers viz. serum ferritin and IL-6. Thus, WS phytoconstituents have the potential to be tested further in vitro and in vivo as novel antiviral agents against COVID-19 patients having cancer as a co-morbidity. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00184-y.
Collapse
Affiliation(s)
- Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Irshad A. Wani
- Department of Cardiology, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, UP 226007 India
| | - Anchal Trivedi
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Shivbrat Upadhyay
- Department of Biotechnology, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Ishrat Husain
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Tanveer Ahamad
- Department of Biotechnology, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Shivanand S. Dudhagi
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, UP 226001 India
| |
Collapse
|
6
|
Kumar P, Banik SP, Goel A, Chakraborty S, Bagchi M, Bagchi D. Revisiting the Multifaceted Therapeutic Potential of Withaferin A (WA), a Novel Steroidal Lactone, W-ferinAmax Ashwagandha, from Withania Somnifera (L) Dunal. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:115-130. [PMID: 37410676 DOI: 10.1080/27697061.2023.2228863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Withania somnifera (L.) Dunal, abundant in the Indian subcontinent as Ashwagandha or winter cherry, is a herb of unprecedented therapeutic value. The number of ailments for which crude Ashwagandha extract can be used as a preventive or curative is practically limitless; and this explains why its use has been in vogue in ancient Ayurveda since at-least about four thousand years. The therapeutic potential of Ashwagandha mainly owes from its reservoir of alkaloids (isopelletierine, anaferine), steroidal lactones (withanolides) and saponins with an extra acyl group (sitoindoside VII and VIII). Withaferin A is an exceptionally potent withanolide which is found in high concentrations in W. somnifera plant extracts. The high reactivity of Withaferin A owes to the presence of a C-28 ergostane network with multiple sites of unsaturation and differential oxygenation. It interacts with the effectors of multiple signaling pathways involved in inflammatory response, oxidative stress response, cell cycle regulation and synaptic transmission and has been found to be significantly effective in inducing programmed cell death in cancer cells, restoring cognitive health, managing diabetes, alleviating metabolic disorders, and rejuvenating the overall body homeostasis. Additionally, recent studies suggest that Withaferin A (WA) has the potential to prevent viral endocytosis by sequestering TMPRSS2, the host transmembrane protease, without altering ACE-2 expression. The scope of performing subtle structural modifications in this multi-ring compound is believed to further expand its pharmacotherapeutic horizon. Very recently, a novel, heavy metal and pesticide free formulation of Ashwagandha whole herb extract, with a significant amount of WA, termed W-ferinAmax Ashwagandha, has been developed. The present review attempts to fathom the present and future of this wonder molecule with comprehensive discussion on its therapeutic potential, safety and toxicity.Key teaching pointsWithania somnifera (L.) Dunal is a medicinal plant with versatile therapeutic values.The therapeutic potential of the plant owes to the presence of withanolides such as Withaferin A.Withaferin A is a C-28 ergostane based triterpenoid with multiple reactive sites of therapeutic potential.It is effective against a broad spectrum of ailments including neurodegenerative disorders, cancer, inflammatory and oxidative stress disorders and it also promotes cardiovascular and sexual health.W-ferinAmax Ashwagandha, is a heavy metal and pesticide free Ashwagandha whole herb extract based formulation with significant amount of Withaferin A.
Collapse
Affiliation(s)
- Pawan Kumar
- Research and Development Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Samudra P Banik
- Department of Microbiology, Maulana Azad College, Kolkata, India
| | - Apurva Goel
- Regulatory Department, Chemical Resources (CHERESO), Panchkula, India
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, New York, USA
| | - Manashi Bagchi
- Research & Development Department, Dr. Herbs LLC, Concord, California, USA
| | - Debasis Bagchi
- Department of Biology, Adelphi University, Garden City, New York, USA
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, Texas, USA
| |
Collapse
|
7
|
Nair A, Kuppusamy K, Nangan S, Natesan T, Haponiuk JT, Thomas S, Ramasubburayan R, Gnanasekaran L, Selvaraj M, Gopi S. Multifunctional natural derived carbon quantum dots from Withania somnifera (L.) - Antiviral activities against SARS-CoV-2 pseudoviron. ENVIRONMENTAL RESEARCH 2023; 239:117366. [PMID: 37827368 DOI: 10.1016/j.envres.2023.117366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Natural carbon dots (NCQDs) are expediently significant in the photo-, nano- and biomedical spheres owing to their facile synthesis, optical and physicochemical attributes. In the present study, three NCQDs are prepared and optimized from Withania somnifera (ASH) by one-step hydrothermal (bottom-up) method: HASHP (without dopant), nitrogen doped HASHNH3 (surface passivation using ammonia) and HASHEDA (surface passivation with ethylenediamine). The HR-TEM images reveal that HASHP, HASNH3, HASHEDA are spherically shaped with 2.5 ± 0.5 nm, 4 ± 1 nm and 5 ± 2 nm particle size, respectively, whereas FTIR confirms the aqueous solubility and nitrogen doping. The XRD patterns ensure that the NCQDs are amorphous and graphitic in nature. Comparatively, HASHNH3 (32.5%) and HASHEDA (27.6%) portray better fluorescence quantum yield than HASHP (5.6%). The increase in quantum yield for the doped NCQDs can be attributed to the surface passivation using ammonia and ethylenediamine. Surface passivation plays a crucial role in enhancing the fluorescence properties of quantum dots. The introduction of nitrogen through ammonia and ethylenediamine provides additional electronic states, possibly reducing non-radiative recombination sites and hence boosting the QY. In addition, an antiviral study unveils the striking potential of surface passivated NCQDs to curb Covid-19 crises with around 85% inhibition of SARS-CoV pseudoviron cells, which is better in comparison to the non-doped NCQDs. Hence, to understand the paramount efficacy of these NCQDs, a hypothesis on their possible mechanism of action against Covid-19 is discussed.
Collapse
Affiliation(s)
- Akhila Nair
- Gdansk University of Technology, Faculty of Chemistry, Polymer Technology Department, Gdansk, Poland
| | - Kanagaraj Kuppusamy
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai, 200444, China
| | - Senthilkumar Nangan
- Department of Chemistry, Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248002, India
| | - Thirumalaivasan Natesan
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Jozef T Haponiuk
- Gdansk University of Technology, Faculty of Chemistry, Polymer Technology Department, Gdansk, Poland
| | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, India
| | - Ramasamy Ramasubburayan
- Marine Biomedical Research Laboratory & Environmental Toxicology Unit, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Sreeraj Gopi
- Gdansk University of Technology, Faculty of Chemistry, Polymer Technology Department, Gdansk, Poland; Molecules Food Solutions Private Limited, Kinfra, Koratty, 680309, Kerala, India.
| |
Collapse
|
8
|
Xing Z, Su A, Mi L, Zhang Y, He T, Qiu Y, Wei T, Li Z, Zhu J, Wu W. Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and Mechanisms. Drug Des Devel Ther 2023; 17:2909-2929. [PMID: 37753228 PMCID: PMC10519218 DOI: 10.2147/dddt.s422512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Cancer, as the leading cause of death worldwide, poses a serious threat to human health, making the development of effective tumor treatments a significant challenge. Natural products continue to serve as crucial resources for drug discovery. Among them, Withaferin A (WA), the most active phytocompound extracted from the renowned dietary supplement Withania somnifera (L.) Dunal, exhibits remarkable anti-tumor efficacy. In this manuscript, we aim to comprehensively summarize the pharmacological characteristics of WA as a potential anti-tumor drug candidate, with the objective of contributing to its further development and the discovery of prospective drugs. Through an extensive review of literature from PubMed, Science Direct, and Web of Science, we have gathered substantial evidence showcasing WA's significant anti-tumor effects against a wide range of cancers in both in vitro and in vivo studies. Mechanistically, WA exerts its anti-tumor influence by inducing cell cycle arrest, apoptosis, autophagy, and ferroptosis. Additionally, it inhibits cell proliferation, cancer stem cells, tumor metastasis, and also suppresses epithelial-mesenchymal transition (EMT) and angiogenesis. Several studies have identified direct target proteins of WA, such as vimentin, Hsp90, annexin II and mFAM72A, while BCR-ABL, Mortalin (mtHsp70), Nrf2, and c-MYB are potential targets of WA. Notwithstanding its remarkable anti-tumor efficacy, there are some limitations associated with WA, including potential toxicity and poor oral bioavailability, which need to be addressed when considering it as an anti-tumor candidate agent. Nevertheless, I given its promising anti-tumor attributes, WA remains an encouraging candidate for future drug development. Unveiling the exact target and comprehensive mechanism of WA's action represents a crucial research direction to pursue in the future.
Collapse
Affiliation(s)
- Zhichao Xing
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Anping Su
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Li Mi
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yujie Zhang
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Ting He
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yuxuan Qiu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Tao Wei
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Jingqiang Zhu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
9
|
Liang Y, Jiang Q, Zou H, Zhao J, Zhang J, Ren L. Withaferin A: A potential selective glucocorticoid receptor modulator with anti-inflammatory effect. Food Chem Toxicol 2023; 179:113949. [PMID: 37467946 DOI: 10.1016/j.fct.2023.113949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/03/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Glucocorticoids have been widely applied to various clinical treatment, however some serious side effects may occur during the treatment. It is widely known that glucocorticoids produce a marked effect through binding to glucocorticoid receptor (GR). As withaferin A can provide multiple health benefits, this work aims to confirm withaferin A as a potential selective GR modulator with anti-inflammatory effect. Fluorescence polarization assay confirmed that withaferin A could steadily bind to GR with an IC50 value of 203.80 ± 0.36 μM. Meanwhile, glucocorticoid receptor translocation of withaferin A was measured by nuclear fractionation assay. Dual luciferase reporter assay showed that withaferin A did not activate GR transcription. Furthermore, withaferin A decreased the GR-related protein expression with less side effects. The result of molecular docking showed that hydrogen-bonding and hydrophobic interactions contributed to the binding of withaferin A with GR. In addition, the GR-withaferin A complex maintained a stable binding throughout the dynamics simulation process. Enzyme-linked immunosorbent assay showed that withaferin A inhibited the production of cytokines, confirming its anti-inflammatory effect. These findings indicate that withaferin A is a potential selective GR modulator and this work may provide a research basis for developing dietary supplements and nutraceuticals against inflammation.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
10
|
Kumar Gupta S, Gohil D, Dutta D, Panigrahi GC, Gupta P, Dalvi K, Khanka T, Yadav S, Kumar Kaushal R, Chichra A, Punatar S, Gokarn A, Mirgh S, Jindal N, Nayak L, Tembhare PR, Khizer Hasan S, Kumar Sandur S, Hingorani L, Khattry N, Gota V. Withaferin-A alleviates acute graft versus host disease without compromising graft versus leukemia effect. Int Immunopharmacol 2023; 121:110437. [PMID: 37311352 DOI: 10.1016/j.intimp.2023.110437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Acute graft versus host disease (aGvHD) contributes to a significant proportion of non-relapse mortality and morbidity in patients undergoing allogeneic hematopoietic stem cell transplantation (alloHSCT). Withaferin-A (WA), a phytomolecule obtained from Withania somnifera (Ashwagandha), is known to have anti-inflammatory, anti-proliferative and immunomodulatory properties. The efficacy of WA for the prevention and treatment of aGvHD was evaluated using a murine model of alloHSCT. Prophylactic administration of WA to mice mitigated the clinical symptoms of aGvHD and improved survival significantly compared to the GvHD control [HR = 0.07 (0.01-0.35); P < 0.001]. Furthermore, WA group had better overall survival compared to standard prophylactic regimen of CSA + MTX [HR = 0.19 (0.03-1.1), P < 0.05]. At the same time, WA did not compromise the beneficial GvL effect. In addition, WA administered to animals after the onset of aGvHD could reverse the clinical severity and improved survival, thus establishing its therapeutic potential. Our findings suggest that WA reduced the systemic levels of Th1, Th2 and Th17 inflammatory cytokine and increased the anti-inflammatory cytokine IL-10 levels significantly (P < 0.05). WA also inhibited lymphocytes migration to gut, liver, skin and lung and protected these organs from damage. Ex-vivo, WA inhibited proliferation of human peripheral blood mononuclear cells (hPBMCs), modulated immune cell phenotype and decreased cytokine release. In addition, WA inhibited pJAK2 and pSTAT3 protein levels in mouse splenocytes and hPBMCs. In conclusion, our study demonstrates the utility of WA for the prevention and treatment of aGvHD, which should be further evaluated in a clinical setting.
Collapse
Affiliation(s)
- Saurabh Kumar Gupta
- Department of Clinical Pharmacology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Dievya Gohil
- Department of Clinical Pharmacology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Deepshikha Dutta
- Cell and Tumor Biology Group, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Girish Ch Panigrahi
- Department of Clinical Pharmacology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Puja Gupta
- Department of Clinical Pharmacology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Kajal Dalvi
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Twinkle Khanka
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Subhash Yadav
- Department of Pathology, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Rajiv Kumar Kaushal
- Department of Pathology, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Akanksha Chichra
- Department of Medical Oncology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Sachin Punatar
- Department of Medical Oncology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Anant Gokarn
- Department of Medical Oncology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Sumeet Mirgh
- Department of Medical Oncology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Nishant Jindal
- Department of Medical Oncology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Lingaraj Nayak
- Department of Medical Oncology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Prashant R Tembhare
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Syed Khizer Hasan
- Cell and Tumor Biology Group, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Santosh Kumar Sandur
- Radiation Biology and Health Science Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai 400094, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Lal Hingorani
- Pharmanza Herbal Pvt. Ltd., Anand 388435, Gujarat, India
| | - Navin Khattry
- Department of Medical Oncology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Vikram Gota
- Department of Clinical Pharmacology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India.
| |
Collapse
|
11
|
Ramli S, Wu YS, Batumalaie K, Guad RM, Choy KW, Kumar A, Gopinath SCB, Rahman Sarker MM, Subramaniyan V, Sekar M, Fuloria NK, Fuloria S, Chinni SV, Ramachawolran G. Phytochemicals of Withania somnifera as a Future Promising Drug against SARS-CoV-2: Pharmacological Role, Molecular Mechanism, Molecular Docking Evaluation, and Efficient Delivery. Microorganisms 2023; 11:microorganisms11041000. [PMID: 37110423 PMCID: PMC10142625 DOI: 10.3390/microorganisms11041000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Coronavirus disease (COVID-19) has killed millions of people since first reported in Wuhan, China, in December 2019. Intriguingly, Withania somnifera (WS) has shown promising antiviral effects against numerous viral infections, including SARS-CoV and SARS-CoV-2, which are contributed by its phytochemicals. This review focused on the updated testing of therapeutic efficacy and associated molecular mechanisms of WS extracts and their phytochemicals against SARS-CoV-2 infection in preclinical and clinical studies with the aim to develop a long-term solution against COVID-19. It also deciphered the current use of the in silico molecular docking approach in developing potential inhibitors from WS targeting SARS-CoV-2 and host cell receptors that may aid the development of targeted therapy against SARS-CoV-2 ranging from prior to viral entry until acute respiratory distress syndrome (ARDS). This review also discussed nanoformulations or nanocarriers in achieving effective WS delivery to enhance its bioavailability and therapeutic efficacy, consequently preventing the emergence of drug resistance, and eventually therapeutic failure.
Collapse
Affiliation(s)
- Suaidah Ramli
- Department of Pharmacy, Hospital Sultanah Nur Zahirah, Kuala Terengganu 20400, Malaysia
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, Johor Bahru 81750, Malaysia
| | - Rhanye Mac Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Ker Woon Choy
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia
| | - Ashok Kumar
- Department of Internal Medicine, Division of Pulmonary, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Subash C B Gopinath
- Centre of Excellence (CoE), Faculty of Chemical Engineering & Technology & Micro System Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar 01000, Malaysia
| | - Md Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
- Health Med Science Research Network, 3/1, Block F, Lalmatia, Dhaka 1207, Bangladesh
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
- Department of Pharmacology, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Subang Jaya 42610, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Neeraj Kumar Fuloria
- Centre of Excellence for Biomaterials Engineering & Faculty of Pharmacy, AIMST University, Bedong 08100, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Malaysia
| | - Suresh V Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom 42610, Malaysia
- Department of Periodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Chennai 600077, India
| | - Gobinath Ramachawolran
- Department of Foundation, RCSI & UCD Malaysia Campus, No 4, Jalan Sepoy Lines, Georgetown 10450, Malaysia
| |
Collapse
|
12
|
Zhao R, Xu Y, Wang X, Zhou X, Liu Y, Jiang S, Zhang L, Yu Z. Withaferin A Enhances Mitochondrial Biogenesis and BNIP3-Mediated Mitophagy to Promote Rapid Adaptation to Extreme Hypoxia. Cells 2022; 12:cells12010085. [PMID: 36611879 PMCID: PMC9818179 DOI: 10.3390/cells12010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Rapid adaptation to extreme hypoxia is a challenging problem, and there is no effective scheme to achieve rapid adaptation to extreme hypoxia. In this study, we found that withaferin A (WA) can significantly reduce myocardial damage, maintain cardiac function, and improve survival in rats in extremely hypoxic environments. Mechanistically, WA protects against extreme hypoxia by affecting BCL2-interacting protein 3 (BNIP3)-mediated mitophagy and the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α)-mediated mitochondrial biogenesis pathway among mitochondrial quality control mechanisms. On the one hand, enhanced mitophagy eliminates hypoxia-damaged mitochondria and prevents the induction of apoptosis; on the other hand, enhanced mitochondrial biogenesis can supplement functional mitochondria and maintain mitochondrial respiration to ensure mitochondrial ATP production under acute extreme hypoxia. Our study shows that WA can be used as an effective drug to improve tolerance to extreme hypoxia.
Collapse
Affiliation(s)
- Ruzhou Zhao
- Department of Aerospace Physiology, Air Force Medical University, 169# Changle West Road, Xi’an 710032, China
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Yixin Xu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaobo Wang
- Department of Aerospace Physiology, Air Force Medical University, 169# Changle West Road, Xi’an 710032, China
| | - Xiang Zhou
- Department of Aerospace Physiology, Air Force Medical University, 169# Changle West Road, Xi’an 710032, China
| | - Yanqi Liu
- Department of Aerospace Physiology, Air Force Medical University, 169# Changle West Road, Xi’an 710032, China
| | - Shuai Jiang
- Department of Aerospace Physiology, Air Force Medical University, 169# Changle West Road, Xi’an 710032, China
| | - Lin Zhang
- Department of Aerospace Physiology, Air Force Medical University, 169# Changle West Road, Xi’an 710032, China
| | - Zhibin Yu
- Department of Aerospace Physiology, Air Force Medical University, 169# Changle West Road, Xi’an 710032, China
- Correspondence:
| |
Collapse
|
13
|
Kashyap D, Jakhmola S, Tiwari D, Kumar R, Moorthy NSHN, Elangovan M, Brás NF, Jha HC. Plant derived active compounds as potential anti SARS-CoV-2 agents: an in-silico study. J Biomol Struct Dyn 2022; 40:10629-10650. [PMID: 34225565 DOI: 10.1080/07391102.2021.1947384] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plants are a valued potential source of drugs for a variety of diseases and are often considered less toxic to humans. We investigated antiviral compounds that may potentially target SARS-CoV-2 antigenic spike (S) and host proteins; angiotensin-converting enzyme2 (ACE2), and transmembrane serine protease2 (TMPRSS2). We scrutinized 36 phytochemicals from 15 Indian medicinal plants known to be effective against RNA viruses via molecular docking. Besides, the TMPRSS2 structure was modeled and validated using the SWISS-MODEL. Docking was performed using Autodock Vina and 4.2 followed by visualization of the docking poses on Pymol version 2.4.0 and Discovery Studio Visualizer. Molecular docking showed that 12 out of 36 active compounds interacted efficiently with S, ACE2, and TMPRSS2 proteins. The ADMET profile generated using the swissADME and pkCSM server revealed that these compounds were possessed druggable properties. The Amber 12 simulation package was used to carry out energy minimizations and molecular dynamics (MD) simulations. The total simulation time for both S protein: WFA and S protein: WND complexes was 300 ns (100 ns per replica). A total of 120 structures were extracted from the last 60 ns of each MD simulation for further analysis. MM-PBSA and MM-GBSA were employed to assess the binding energy of each ligand and the receptor-binding domain of the viral S-protein. The methods suggested that WND and WFA showed thermodynamically favorable binding energies, and the S protein had a higher affinity with WND. Interestingly, Leu455 hotspot residue in the S protein, also predicted to participate in binding with ACE2, was engaged by WND and WFA. HighlightsPlants' natural active compounds may aid in the development of COVID-19 therapeutics.MD simulation study revealed stable binding of withanolide D and withaferin A with spike proteinWithanolide D and withaferin A could be effective against SARS-CoV-2 spike protein.Discovery of druggable agents that have less or lack of binding affinity with ACE2 to avoid the organs associated with comorbidities.According to ADMET selected phytochemicals may be used as druggable compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dharmendra Kashyap
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Shweta Jakhmola
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Deeksha Tiwari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Rajesh Kumar
- Department of Physics, Indian Institute of Technology Indore, Indore, India
| | | | | | - Natércia F Brás
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
14
|
Dey R, Samadder A, Nandi S. Selected Phytochemicals to Combat Lungs Injury: Natural Care. Comb Chem High Throughput Screen 2022; 25:2398-2412. [PMID: 35293289 DOI: 10.2174/1386207325666220315113121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 01/27/2023]
Abstract
The human has two lungs responsible for respiration and drug metabolism. Severe lung infection caused by bacteria, mycobacteria, viruses, fungi, and parasites may lead to lungs injury. Smoking and tobacco consumption may also produce lungs injury. Inflammatory and pain mediators are secreted by alveolar macrophages. The inflammatory mediators, such as cytokines, interleukin (IL)-1, IL-6, IL-8, IL-10, and tumor necrosis factor (TNF)-α, neutrophils, and fibroblasts are accumulated in the alveoli sac, which becomes infected. It may lead to hypoxia followed by severe pulmonary congestion and the death of the patient. There is an urgent need for the treatment of artificial respiration and ventilation. However, the situation may be the worst for patients suffering from lung cancer, pulmonary tuberculosis, and acute pneumonia caused by acute respiratory distress syndrome (ARDS). Re-urgency has been happening in the case of coronavirus disease of 2019 (COVID-19) patients. Therefore, it is needed to protect the lungs with the intake of natural phytomedicines. In the present review, several selected phyto components having the potential role in lung injury therapy have been discussed. Regular intake of natural vegetables and fruits bearing these constituents may save the lungs even in the dangerous attack of SARS-CoV-2 in lung cancer, pulmonary TB, and pneumatic patients.
Collapse
Affiliation(s)
- Rishita Dey
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, Nadia, 741235, India.,Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713, India
| | - Asmita Samadder
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713, India
| |
Collapse
|
15
|
Chantriolides F-P, Highly Oxidized Withanolides with Hepatoprotective Activity from Tacca chantrieri. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238197. [PMID: 36500291 PMCID: PMC9739516 DOI: 10.3390/molecules27238197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Eleven highly oxidized withanolides, chantriolides F-P (1-11), together with six known analogues (12-17), were isolated from the rhizomes of Tacca chantrieri. Their structures were established on the basis of comprehensive spectroscopic data analysis and comparison with published NMR data, and their absolute configurations were further confirmed by experimental ECD data and single crystal X-ray diffraction analysis. The structures of compounds 5-8 contained a chlorine atom substituted at C-3. Compounds 1 and 12 are a pair of epimers isomerized at C-24 and C-25, while compounds 9 and 16 are isomerized at C-1, C-7, C-24, and C-25. Next, the hepatoprotective effect of all the isolates was evaluated on tert-butyl hydroperoxide (t-BHP)-injured AML12 hepatocytes. Compounds 5-11 and 16 significantly enhanced cell viability. Compound 8 decreased reactive oxygen species accumulation and increased glutathione level in t-BHP injured AML12 hepatocytes through promoting nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2).
Collapse
|
16
|
Dey R, Samadder A, Nandi S. Exploring the Targets of Novel Corona Virus and Docking-based Screening of Potential Natural Inhibitors to Combat COVID-19. Curr Top Med Chem 2022; 22:2410-2434. [PMID: 36281864 DOI: 10.2174/1568026623666221020163831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 01/20/2023]
Abstract
There is a need to explore natural compounds against COVID-19 due to their multitargeted actions against various targets of nCoV. They act on multiple sites rather than single targets against several diseases. Thus, there is a possibility that natural resources can be repurposed to combat COVID-19. However, the biochemical mechanisms of these inhibitors were not known. To reveal the mode of anti-nCoV action, structure-based docking plays a major role. The present study is an attempt to explore various potential targets of SARS-CoV-2 and the structure-based screening of various potential natural inhibitors to combat the novel coronavirus.
Collapse
Affiliation(s)
- Rishita Dey
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, Nadia, 741235, India.,Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur, 244713, India
| | - Asmita Samadder
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur, 244713, India
| |
Collapse
|
17
|
Chakraborty S, Mallick D, Goswami M, Guengerich FP, Chakrabarty A, Chowdhury G. The Natural Products Withaferin A and Withanone from the Medicinal Herb Withania somnifera Are Covalent Inhibitors of the SARS-CoV-2 Main Protease. JOURNAL OF NATURAL PRODUCTS 2022; 85:2340-2350. [PMID: 36098617 PMCID: PMC9491402 DOI: 10.1021/acs.jnatprod.2c00521] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 05/14/2023]
Abstract
The current COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) created a global health crisis. The ability of vaccines to protect immunocompromised individuals and from emerging new strains are major concerns. Hence antiviral drugs against SARS-CoV-2 are essential. The SARS-CoV-2 main protease Mpro is vital for replication and an important target for antivirals. Using CMap analysis and docking studies, withaferin A (wifA) and withanone (win), two natural products from the medicinal herb Withania somnifera (ashwagandha), were identified as promising candidates that can covalently inhibit the viral protease Mpro. Cell culture, enzymatic, LC-MS/MS, computational, and equilibrium dialysis based assays were performed. DFT calculations indicated that wifA and win can form stable adducts with thiols. The cytotoxicity of Mpro was significantly reduced by wifA and win. Both wifA and win were found to irreversibly inhibit 0.5 μM Mpro with IC50 values of 0.54 and 1.8 μM, respectively. LC-MS/MS analysis revealed covalent adduct formation with wifA at cysteines 145 and 300 of Mpro. The natural products wifA and win can irreversibly inhibit the SARS-CoV-2 main protease Mpro. Based on the work presented here we propose that both wifA and win have the potential to be safely used as preventative and therapeutic interventions for COVID-19.
Collapse
Affiliation(s)
| | - Dibyendu Mallick
- Department of Chemistry, Presidency University, Kolkata 700073, India
| | - Mausumi Goswami
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, TN 632014, India
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37235, United States
| | - Anindita Chakrabarty
- Department of Life Science, Shiv Nadar University, Greater Noida, UP 201314, India
| | | |
Collapse
|
18
|
Gheshlaghi SZ, Nakhaei E, Ebrahimi A, Jafari M, Shahraki A, Rezazadeh S, Saberinasab E, Nowroozi A, Hosseini SS. Analysis of medicinal and therapeutic potential of Withania somnifera derivatives against COVID-19. J Biomol Struct Dyn 2022:1-11. [PMID: 35993530 DOI: 10.1080/07391102.2022.2112977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Apart from chemical and allopathic drugs, several medicinal plants contain phytochemicals that are potentially useful to counter the COVID-19 pandemic. Withania somnifera (Ashwagandha), which has a good effect on some viral infections, can be considered as a candidate against the virus. In the present study, thirty-nine natural compounds of Ashwagandha were investigated in terms of their binding to the important drug targets to treat the COVID-19. Although the molecular docking calculations reveal the binding affinities of the compounds to Mpro, TMPRSS2, NSP15, PLpro, Spike RBD + ACE2, RdRp and NSP12 as targets in controlling the coronavirus enzymes, Withanoside II is expected to be the most effective compound due to the high affinity in binding with many of considered targets. Furthermore, the Withanoside III, IV, V, X, and XI have favorable binding affinities as ligands with respect to the MM/GBSA calculations. The molecular dynamics simulations MD explore a stable hydrogen bond network between ligands and the active sites residues. Also, the dynamic fluctuations of the binding site residues verify their tight binding to ligands. Moreover, the stability of ligand-protein complexes is approved by the RMSD ranges lower than 0.5 Å in equilibration zone for all mentioned complexes. The TMPRSS2-Withanolide Q and Mpro-Withanoside IV complexes are the most stable pairs using the MM/GBSA calculations and MD simulation.
Collapse
Affiliation(s)
- Saman Zare Gheshlaghi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Ebrahim Nakhaei
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Ali Ebrahimi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Majid Jafari
- Department of Plant Protection, Higher Education Complex of Saravan, College of Agriculture
| | - Asiyeh Shahraki
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Shiva Rezazadeh
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Erfan Saberinasab
- School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Nowroozi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | | |
Collapse
|
19
|
Jouaneh TMM, Motta N, Wu C, Coffey C, Via CW, Kirk RD, Bertin MJ. Analysis of botanicals and botanical supplements by LC-MS/MS-based molecular networking: Approaches for annotating plant metabolites and authentication. Fitoterapia 2022; 159:105200. [PMID: 35460834 PMCID: PMC9148416 DOI: 10.1016/j.fitote.2022.105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022]
Abstract
Prior to the advent of modern medicine, humans have used botanicals extensively for their therapeutic potential. With the majority of newly approved drugs having their origins in natural products, plants remain at the forefront of drug discovery. Continued research and discovery necessitate the use of high-throughput analytical methods to screen and identify bioactive components and potential therapeutic molecules from plants. Utilizing a pre-generated plant extract library, we subjected botanicals to LC-MS/MS-based molecular networking to determine their chemical composition and relatively quantify already known metabolites. The LC-MS/MS-based molecular networking approach was also used to authenticate the composition of dietary supplements against their corresponding plant specimens. The networking procedures provided concise visual representations of the chemical space and highly informative assessments of the botanicals. The procedures also proved to define the composition of the botanical supplements quickly and efficiently. This offered an innovative approach to metabolite profiling and authentication practices and additionally allowed for the identification of new, putatively unknown metabolites for future isolation and biological evaluation.
Collapse
Affiliation(s)
- Terra Marie M Jouaneh
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Neil Motta
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Christine Wu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Cole Coffey
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Christopher W Via
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Riley D Kirk
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Matthew J Bertin
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
20
|
Food Waste Management Employing UV-Induced Black Soldier Flies: Metabolomic Analysis of Bioactive Components, Antioxidant Properties, and Antibacterial Potential. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116614. [PMID: 35682198 PMCID: PMC9179956 DOI: 10.3390/ijerph19116614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022]
Abstract
Food waste, as a major part of municipal solid waste, has been increasingly generated worldwide. Efficient and feasible utilization of this waste material for biomanufacturing is crucial to improving economic and environmental sustainability. In the present study, black soldier flies (BSF) larvae were used as carriers to treat and upcycle food waste. Larvae of the BSF were incubated with UV light for 10, 20, and 30 min at a wavelength of 257.3 nm and an intensity of 8 W. The food waste utilization efficiency, antioxidant assays, antibacterial activity, and bioactive metabolites without and with UV treatment were determined and compared. Results showed that the BSF larvae feed utilization rate was around 75.6%, 77.7%, and 71.2% after UV treatment for 10, 20, and 30 min respectively, contrasting with the non-UV induced group (73.7%). In addition, it was perceived that the UV exposure enhanced antioxidant and antimicrobial properties of BSF extracts, and the maximum values were observed after 20 min UV induction time. Moreover, UV-induced BSF extracts showed an improved metabolic profile than the control group, with a change in the amino acids, peptides, organic acids, lipids, organic oxides, and other derivatives. This change in metabolomics profile boosted environmental signaling, degradation of starch, amino acids, sugars, and peptide metabolism. It was concluded that the bioconversion of food wastes using UV-induced BSF larvae can enhance the generation of a variety of functional proteins and bioactive compounds with potent antioxidant and antimicrobial activity. However, more studies are required to exploit the efficiency of UV treatment in improving BSF’s potential for upcycling of food wastes.
Collapse
|
21
|
Brahmi F, Vejux A, Ghzaiel I, Ksila M, Zarrouk A, Ghrairi T, Essadek S, Mandard S, Leoni V, Poli G, Vervandier-Fasseur D, Kharoubi O, El Midaoui A, Atanasov AG, Meziane S, Latruffe N, Nasser B, Bouhaouala-Zahar B, Masmoudi-Kouki O, Madani K, Boulekbache-Makhlouf L, Lizard G. Role of Diet and Nutrients in SARS-CoV-2 Infection: Incidence on Oxidative Stress, Inflammatory Status and Viral Production. Nutrients 2022; 14:2194. [PMID: 35683996 PMCID: PMC9182601 DOI: 10.3390/nu14112194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Coronavirus illness (COVID-19) is an infectious pathology generated by intense severe respiratory syndrome coronavirus 2 (SARS-CoV-2). This infectious disease has emerged in 2019. The COVID-19-associated pandemic has considerably affected the way of life and the economy in the world. It is consequently crucial to find solutions allowing remedying or alleviating the effects of this infectious disease. Natural products have been in perpetual application from immemorial time given that they are attested to be efficient towards several illnesses without major side effects. Various studies have shown that plant extracts or purified molecules have a promising inhibiting impact towards coronavirus. In addition, it is substantial to understand the characteristics, susceptibility and impact of diet on patients infected with COVID-19. In this review, we recapitulate the influence of extracts or pure molecules from medicinal plants on COVID-19. We approach the possibilities of plant treatment/co-treatment and feeding applied to COVID-19. We also show coronavirus susceptibility and complications associated with nutrient deficiencies and then discuss the major food groups efficient on COVID-19 pathogenesis. Then, we covered emerging technologies using plant-based SARS-CoV-2 vaccine. We conclude by giving nutrient and plants curative therapy recommendations which are of potential interest in the COVID-19 infection and could pave the way for pharmacological treatments or co-treatments of COVID-19.
Collapse
Affiliation(s)
- Fatiha Brahmi
- Laboratory Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria; (K.M.); (L.B.-M.)
| | - Anne Vejux
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
| | - Imen Ghzaiel
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
- Lab-NAFS ‘Nutrition-Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia;
| | - Mohamed Ksila
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (T.G.); (O.M.-K.)
| | - Amira Zarrouk
- Lab-NAFS ‘Nutrition-Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia;
- Laboratory of Biochemistry, Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia
| | - Taoufik Ghrairi
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (T.G.); (O.M.-K.)
| | - Soukena Essadek
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
- Laboratory Neuroscience and Biochemistry, University of Hassan 1st, Settat 26000, Morocco;
| | - Stéphane Mandard
- Lipness Team and LipSTIC LabEx, UFR Sciences de Santé, INSERM/University of Bourgogne Franche-Comté LNC UMR1231, 21000 Dijon, France;
| | - Valerio Leoni
- Department of Laboratory Medicine, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale Brianza ASST-Brianza, Desio Hospital, Via Mazzini 1, 20833 Desio, Italy;
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Turin, 10043 Orbassano (Turin), Italy;
| | - Dominique Vervandier-Fasseur
- Team OCS, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), University of Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Omar Kharoubi
- Laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences, University Oran 1 ABB, Oran 31000, Algeria;
| | - Adil El Midaoui
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada;
- Faculty of Sciences and Techniques, Moulay Ismail University of Meknes, Errachidia 52000, Morocco
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Smail Meziane
- Institut Européen des Antioxydants, 1b Rue Victor de Lespinats, 54230 Neuves-Maison, France;
| | - Norbert Latruffe
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
| | - Boubker Nasser
- Laboratory Neuroscience and Biochemistry, University of Hassan 1st, Settat 26000, Morocco;
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Biomolecules, Venoms and Theranostic Applications, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Olfa Masmoudi-Kouki
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (T.G.); (O.M.-K.)
| | - Khodir Madani
- Laboratory Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria; (K.M.); (L.B.-M.)
- Centre de Recherche en Technologie des Industries Agroalimentaires, Route de Targua Ouzemour, Bejaia 06000, Algeria
| | - Lila Boulekbache-Makhlouf
- Laboratory Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria; (K.M.); (L.B.-M.)
| | - Gérard Lizard
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
| |
Collapse
|
22
|
Safety, toxicity and pharmacokinetic assessment of oral Withaferin-A in mice. Toxicol Rep 2022; 9:1204-1212. [DOI: 10.1016/j.toxrep.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/02/2022] [Accepted: 05/14/2022] [Indexed: 11/16/2022] Open
|
23
|
Singh SK, Singh R. Cytokines and Chemokines in Cancer Cachexia and Its Long-Term Impact on COVID-19. Cells 2022; 11:cells11030579. [PMID: 35159388 PMCID: PMC8834385 DOI: 10.3390/cells11030579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer cachexia remains a serious public health concern worldwide, particularly as cancer rates rise. Treatment is endangered, and survival is reduced, because this illness is commonly misdiagnosed and undertreated. Although weight loss is the most evident sign of cachexia, there are other early metabolic and inflammatory changes that occur before the most obvious symptoms appear. Cachexia-related inflammation is induced by a combination of factors, one of which is the release of inflammation-promoting chemicals by the tumor. Today, more scientists are beginning to believe that the development of SARS-CoV-2 (COVID-19) related cachexia is similar to cancer-related cachexia. It is worth noting that patients infected with COVID-19 have a significant inflammatory response and can develop cachexia. These correlations provide feasible reasons for the variance in the occurrence and severity of cachexia in human malignancies, therefore, specific therapeutic options for these individuals must be addressed based on disease types. In this review, we highlighted the role of key chemokines, cytokines, and clinical management in relation to cancer cachexia and its long-term impact on COVID-19 patients.
Collapse
Affiliation(s)
- Santosh Kumar Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Correspondence: ; Tel.: +1-404-756-6661; Fax: +1-404-752-1179
| |
Collapse
|
24
|
Yan W, Zheng Y, Zeng X, He B, Cheng W. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduct Target Ther 2022; 7:26. [PMID: 35087058 PMCID: PMC8793099 DOI: 10.1038/s41392-022-00884-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the causative agent of the pandemic disease COVID-19, which is so far without efficacious treatment. The discovery of therapy reagents for treating COVID-19 are urgently needed, and the structures of the potential drug-target proteins in the viral life cycle are particularly important. SARS-CoV-2, a member of the Orthocoronavirinae subfamily containing the largest RNA genome, encodes 29 proteins including nonstructural, structural and accessory proteins which are involved in viral adsorption, entry and uncoating, nucleic acid replication and transcription, assembly and release, etc. These proteins individually act as a partner of the replication machinery or involved in forming the complexes with host cellular factors to participate in the essential physiological activities. This review summarizes the representative structures and typically potential therapy agents that target SARS-CoV-2 or some critical proteins for viral pathogenesis, providing insights into the mechanisms underlying viral infection, prevention of infection, and treatment. Indeed, these studies open the door for COVID therapies, leading to ways to prevent and treat COVID-19, especially, treatment of the disease caused by the viral variants are imperative.
Collapse
Affiliation(s)
- Weizhu Yan
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Yanhui Zheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Xiaotao Zeng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Bin He
- Department of Emergency Medicine, West China Hospital of Sichuan University, 610041, Chengdu, China.
- The First People's Hospital of Longquanyi District Chengdu, 610100, Chengdu, China.
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
25
|
Abstract
Covering: March 2010 to December 2020. Previous review: Nat. Prod. Rep., 2011, 28, 705This review summarizes the latest progress and perspectives on the structural classification, biological activities and mechanisms, metabolism and pharmacokinetic investigations, biosynthesis, chemical synthesis and structural modifications, as well as future research directions of the promising natural withanolides. The literature from March 2010 to December 2020 is reviewed, and 287 references are cited.
Collapse
Affiliation(s)
- Gui-Yang Xia
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China. .,Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shi-Jie Cao
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| | - Li-Xia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Feng Qiu
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
26
|
Singh R, Goel S, Bourgeade P, Aleya L, Tewari D. Ayurveda Rasayana as antivirals and immunomodulators: potential applications in COVID-19. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55925-55951. [PMID: 34491498 PMCID: PMC8422837 DOI: 10.1007/s11356-021-16280-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/27/2021] [Indexed: 05/08/2023]
Abstract
Coronavirus disease (COVID-19) has been declared as a pandemic by the World Health Organization with rapid spread across 216 countries. COVID-19 pandemic has left its imprints on various health systems globally and caused immense social and economic disruptions. The scientific community across the globe is in a quest for digging the effective treatment for COVID-19 and exploring potential leads from traditional systems of healthcare across the world too. Ayurveda (Indian traditional system of medicine) has a comprehensive aspect of immunity through Rasayana which is a rejuvenation therapy. Here we attempt to generate the potential leads based on the classical text from Ayurveda in general and Rasayana in particular to develop effective antiviral and/or immunomodulator for potential or adjunct therapy in SARS-CoV-2. The Rasayana acts not only by resisting body to restrain or withstand the strength, severity or progression of a disease but also by promoting power of the body to prevent the manifestation of a disease. These Rasayana herbs are common in practice as immunomodulator, antiviral and protectives. The studies on Rasayana can provide an insight into the future course of research for the plausible development of effective management of COVID-19 by the utilization and development of various traditional systems of healthcare. Keeping in view the current pandemic situation, there is an urgent need of developing potential medicines. This study proposes certain prominent medicinal plants which may be further studied for drug development process and also in clinical setup under repurposing of these herbs.
Collapse
Affiliation(s)
- Rajeshwari Singh
- Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Janakpuri, New Delhi, 110058, India
| | - Sumeet Goel
- Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Janakpuri, New Delhi, 110058, India
| | - Pascale Bourgeade
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France.
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
27
|
Alsayari A, Muhsinah AB, Almaghaslah D, Annadurai S, Wahab S. Pharmacological Efficacy of Ginseng against Respiratory Tract Infections. Molecules 2021; 26:molecules26134095. [PMID: 34279434 PMCID: PMC8271507 DOI: 10.3390/molecules26134095] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
Respiratory tract infections are underestimated, as they are mild and generally not incapacitating. In clinical medicine, however, these infections are considered a prevalent problem. By 2030, the third most comprehensive reason for death worldwide will be chronic obstructive pulmonary disease (COPD), according to the World Health Organization. The current arsenal of anti-inflammatory drugs shows little or no benefits against COPD. For thousands of years, herbal drugs have been used to cure numerous illnesses; they exhibit promising results and enhance physical performance. Ginseng is one such herbal medicine, known to alleviate pro-inflammatory chemokines and cytokines (IL-2, IL-4, IFN-γ, TNF-α, IL-5, IL-6, IL-8) formed by macrophages and epithelial cells. Furthermore, the mechanisms of action of ginsenoside are still not fully understood. Various clinical trials of ginseng have exhibited a reduction of repeated colds and the flu. In this review, ginseng’s structural features, the pathogenicity of microbial infections, and the immunomodulatory, antiviral, and anti-bacterial effects of ginseng were discussed. The focus was on the latest animal studies and human clinical trials that corroborate ginseng’s role as a therapy for treating respiratory tract infections. The article concluded with future directions and significant challenges. This review would be a valuable addition to the knowledge base for researchers in understanding the promising role of ginseng in treating respiratory tract infections. Further analysis needs to be re-focused on clinical trials to study ginseng’s efficacy and safety in treating pathogenic infections and in determining ginseng-drug interactions.
Collapse
Affiliation(s)
- Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Dalia Almaghaslah
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
- Correspondence: or
| |
Collapse
|
28
|
Chandel V, Tripathi G, Nayar SA, Rathi B, Kumar A, Kumar D. In silico identification and validation of triarylchromones as potential inhibitor against main protease of severe acute respiratory syndrome coronavirus 2. J Biomol Struct Dyn 2021; 40:8850-8865. [PMID: 33939590 PMCID: PMC8108196 DOI: 10.1080/07391102.2021.1918255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/11/2021] [Indexed: 12/14/2022]
Abstract
The ongoing pandemic due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused COVID-19 has emerged as a severe threat to the life of human kind. The identification and designing of appropriate and reliable drug molecule for the treatment of COVID-19 patients is the pressing need of the present time. Among different drug targets, the main protease of SARS-CoV-2 is being considered as most effective target. In addition to the drug repurposing, different compounds of natural as well as synthetic origins are being investigated for their efficacy against different drug targets of SARS-CoV-2 virus. In that context, the chromone based natural flavonols have also exhibited significant antiviral properties against different targets of SARS-CoV-2. The in silico studies presented here discloses the efficacy of triarylchromones (TAC) as potential inhibitor against main protease of SARS-CoV-2. The molecular docking and ADMET study performed using 14 arylchromones which could easily be accessed through simple synthetic protocols, revealed best binding affinities in case of TAC-3 (-11.2 kcal/mol), TAC-4 (-10.5 kcal/mol), TAC-6 (-11.2 kcal/mol), TAC-7 (-10.0 kcal/mol). Additional validation studies including molecular dynamics simulation and binding energy calculation using MMGBSA for protein ligand complex for 100 ns revealed the best binding interaction of TAC-3, TAC-4, TAC-6, TAC-7 against main protease of SARS-CoV-2. Moreover, the in vitro and preclinical validation of identified compounds will help us to understand the molecular mechanisms of regulation of TACs against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vaishali Chandel
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida201313, India
| | - Garima Tripathi
- Department of Chemistry, T. N. B. College, TMBU, Bhgalpur, Bihar, India
| | - Seema A. Nayar
- Department of Microbiology, Government Medical College, Trivandrum, India
- Department of Microbiology, Sree Gokulam Medical College, Trivandrum, India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, New Delhi, India
| | - Abhijeet Kumar
- Department of Chemistry, Mahatma Gandhi Central UniversityMotihari845401, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida201313, India
| |
Collapse
|
29
|
Sokullu E, Pinard M, Gauthier MS, Coulombe B. Analysis of the SARS-CoV-2-host protein interaction network reveals new biology and drug candidates: focus on the spike surface glycoprotein and RNA polymerase. Expert Opin Drug Discov 2021; 16:881-895. [PMID: 33769912 PMCID: PMC8040492 DOI: 10.1080/17460441.2021.1909566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: The COVID-19 pandemic originated from the emergence of anovel coronavirus, SARS-CoV-2, which has been intensively studied since its discovery in order to generate the knowledge necessary to accelerate the development of vaccines and antivirals. Of note, many researchers believe there is great potential in systematically identifying host interactors of viral factors already targeted by existing drugs.Areas Covered: Herein, the authors discuss in detail the only available large-scale systematic study of the SARS-CoV-2-host protein-protein interaction network. More specifically, the authors review the literature on two key SARS-CoV-2 drug targets, the Spike surface glycoprotein, and the RNA polymerase. The authors also provide the reader with their expert opinion and future perspectives.Expert opinion: Interactions made by viral proteins with host factors reveal key functions that are likely usurped by the virus and, as aconsequence, points to known drugs that can be repurposed to fight viral infection and collateral damages that can exacerbate various disease conditions in COVID-19.
Collapse
Affiliation(s)
- Esen Sokullu
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montréal, Canada
| | - Maxime Pinard
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montréal, Canada
| | - Marie-Soleil Gauthier
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montréal, Canada
| | - Benoit Coulombe
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montréal, Canada.,Department of Biochemistry, Molecular Medicine Université de Montréal
| |
Collapse
|
30
|
Kalra RS, Kumar V, Dhanjal JK, Garg S, Li X, Kaul SC, Sundar D, Wadhwa R. COVID19-inhibitory activity of withanolides involves targeting of the host cell surface receptor ACE2: insights from computational and biochemical assays. J Biomol Struct Dyn 2021; 40:7885-7898. [PMID: 33797339 PMCID: PMC8022344 DOI: 10.1080/07391102.2021.1902858] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SARS-CoV-2 outbreak in China in December 2019 and its spread as worldwide pandemic has been a major global health crisis. Extremely high infection and mortality rate has severely affected all sectors of life and derailed the global economy. While drug and vaccine development have been prioritized and have made significant progression, use of phytochemicals and herbal constituents is deemed as a low-cost, safer and readily available alternative. We investigated therapeutic efficacy of eight withanolides (derived from Ashwagandha) against the angiotensin-converting enzyme 2 (ACE2) proteins, a target cell surface receptor for SARS-CoV-2 and report results on the (i) computational analyses including binding affinity and stable interactions with ACE2, occupancy of ACE2 residues in making polar and nonpolar interactions with different withanolides/ligands and (2) in vitro mRNA and protein analyses using human cancer (A549, MCF7 and HSC3) cells. We found that among all withanolides, Withaferin-A, Withanone, Withanoside-IV and Withanoside-V significantly inhibited the ACE2 expression. Analysis of withanolides-rich aqueous extracts derived from Ashwagandha leaves and stem showed a higher ACE2 inhibitory potency of stem-derived extracts. Taken together, we demonstrated the inhibitory potency of Ashwagandha withanolides and its aqueous extracts against ACE2. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Rajkumar Singh Kalra
- Cellular and Molecular Biotechnology Research Institute, AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Japan
| | - Vipul Kumar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| | - Jaspreet Kaur Dhanjal
- Cellular and Molecular Biotechnology Research Institute, AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Japan
| | - Sukant Garg
- Cellular and Molecular Biotechnology Research Institute, AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Japan
| | - Xiaoshuai Li
- Cellular and Molecular Biotechnology Research Institute, AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Japan
| | - Sunil C Kaul
- Cellular and Molecular Biotechnology Research Institute, AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Japan
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| | - Renu Wadhwa
- Cellular and Molecular Biotechnology Research Institute, AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Japan
| |
Collapse
|
31
|
Anand AV, Balamuralikrishnan B, Kaviya M, Bharathi K, Parithathvi A, Arun M, Senthilkumar N, Velayuthaprabhu S, Saradhadevi M, Al-Dhabi NA, Arasu MV, Yatoo MI, Tiwari R, Dhama K. Medicinal Plants, Phytochemicals, and Herbs to Combat Viral Pathogens Including SARS-CoV-2. Molecules 2021; 26:1775. [PMID: 33809963 PMCID: PMC8004635 DOI: 10.3390/molecules26061775] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome corona virus-2 (SARS-CoV-2), is the most important health issue, internationally. With no specific and effective antiviral therapy for COVID-19, new or repurposed antiviral are urgently needed. Phytochemicals pose a ray of hope for human health during this pandemic, and a great deal of research is concentrated on it. Phytochemicals have been used as antiviral agents against several viruses since they could inhibit several viruses via different mechanisms of direct inhibition either at the viral entry point or the replication stages and via immunomodulation potentials. Recent evidence also suggests that some plants and its components have shown promising antiviral properties against SARS-CoV-2. This review summarizes certain phytochemical agents along with their mode of actions and potential antiviral activities against important viral pathogens. A special focus has been given on medicinal plants and their extracts as well as herbs which have shown promising results to combat SARS-CoV-2 infection and can be useful in treating patients with COVID-19 as alternatives for treatment under phytotherapy approaches during this devastating pandemic situation.
Collapse
Affiliation(s)
- Arumugam Vijaya Anand
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India; (M.K.); (K.B.); (A.P.)
| | | | - Mohandass Kaviya
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India; (M.K.); (K.B.); (A.P.)
| | - Kathirvel Bharathi
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India; (M.K.); (K.B.); (A.P.)
| | - Aluru Parithathvi
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India; (M.K.); (K.B.); (A.P.)
| | - Meyyazhagan Arun
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India;
| | - Nachiappan Senthilkumar
- Institute of Forest Genetics and Tree Breeding (IFGTB), Forest Campus, Cowley Brown Road, RS Puram, Coimbatore 641002, India;
| | | | | | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (N.A.A.-D.); (M.V.A.)
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (N.A.A.-D.); (M.V.A.)
- Xavier Research Foundation, St. Xavier’s College, Palayamkottai, Thirunelveli 627002, India
| | - Mohammad Iqbal Yatoo
- Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 190006, India;
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India;
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
| |
Collapse
|
32
|
O'Donovan SM, Imami A, Eby H, Henkel ND, Creeden JF, Asah S, Zhang X, Wu X, Alnafisah R, Taylor RT, Reigle J, Thorman A, Shamsaei B, Meller J, McCullumsmith RE. Identification of candidate repurposable drugs to combat COVID-19 using a signature-based approach. Sci Rep 2021; 11:4495. [PMID: 33627767 PMCID: PMC7904823 DOI: 10.1038/s41598-021-84044-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/21/2021] [Indexed: 02/08/2023] Open
Abstract
The COVID-19 pandemic caused by the novel SARS-CoV-2 is more contagious than other coronaviruses and has higher rates of mortality than influenza. Identification of effective therapeutics is a crucial tool to treat those infected with SARS-CoV-2 and limit the spread of this novel disease globally. We deployed a bioinformatics workflow to identify candidate drugs for the treatment of COVID-19. Using an "omics" repository, the Library of Integrated Network-Based Cellular Signatures (LINCS), we simultaneously probed transcriptomic signatures of putative COVID-19 drugs and publicly available SARS-CoV-2 infected cell lines to identify novel therapeutics. We identified a shortlist of 20 candidate drugs: 8 are already under trial for the treatment of COVID-19, the remaining 12 have antiviral properties and 6 have antiviral efficacy against coronaviruses specifically, in vitro. All candidate drugs are either FDA approved or are under investigation. Our candidate drug findings are discordant with (i.e., reverse) SARS-CoV-2 transcriptome signatures generated in vitro, and a subset are also identified in transcriptome signatures generated from COVID-19 patient samples, like the MEK inhibitor selumetinib. Overall, our findings provide additional support for drugs that are already being explored as therapeutic agents for the treatment of COVID-19 and identify promising novel targets that are worthy of further investigation.
Collapse
Affiliation(s)
- Sinead M O'Donovan
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Ali Imami
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Hunter Eby
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Nicholas D Henkel
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Justin Fortune Creeden
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Sophie Asah
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Xiaolu Zhang
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Xiaojun Wu
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Rawan Alnafisah
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - R Travis Taylor
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH, USA
| | - James Reigle
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alexander Thorman
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Behrouz Shamsaei
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jarek Meller
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Electrical Engineering and Computing Systems, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Informatics, Nicolaus Copernicus University, Torun, Poland
| | - Robert E McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA.
- Neurosciences Institute, Promedica, Toledo, OH, USA.
| |
Collapse
|
33
|
Thorat SA, Poojari P, Kaniyassery A, Kiran KR, Satyamoorthy K, Mahato KK, Muthusamy A. Red laser-mediated alterations in seed germination, growth, pigments and withanolide content of Ashwagandha [Withania somnifera (L.) Dunal]. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112144. [PMID: 33556702 DOI: 10.1016/j.jphotobiol.2021.112144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/14/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022]
Abstract
Withania somnifera (L.) Dunal, generally well-known as Ashwagandha, is part of Indian traditional medicinal systems like Ayurveda, Siddha, and Unani for over 3000 years for treating an array of disorders. The chief bioactive component of this plant is the withanolides, a group of C28-steroidal lactone triterpenoids. These compounds are present in very low concentrations and hence cell culture methods have been used to enhance their production. Low-level laser irradiation has been reported to have elicited the seed germination, agronomical characters, biosynthesis of bioactive compounds in some plants. Therefore, the objective of the study was to investigate the effect of red (He-Ne) laser irradiation on seed germination, growth characters, pigment contents and withanolide content in W. somnifera. The seeds were inoculated onto two different combinations of Murashige and Skoog (MS) media and incubated for germination. The highest germination percentage was observed in ½ MS with pH 6.5 and GA3 presoaking followed by ½ MS with different pH. Four different doses of Helium-Neon (He-Ne) laser (10, 15, 20 and 25 J/cm2) were used to irradiate the seeds at 632.8 nm and germinated in vitro on ½ MS with pH 6.5. The maximum germination percentage, 63.88% was noted from seeds irradiated with 25 J/cm2 (P = 0.04). The highest total length of 13.33 cm was observed in the seedlings irradiated with 25 J/cm2 groups (P = 0.008). The highest total chlorophyll content of 329.5 μg/g fresh weight (FW) was observed for seedlings irradiated with 15 J/cm2 (P = 0.02) and the highest carotenoid content of 49.6 μg/g FW was observed for 25 J/cm2 treated seedlings. Further, primary root length was measured and found to be highest (11.14 cm) in seedlings irradiated with 10 J/cm2 and the highest number of lateral roots were observed for 15 and 25 J/cm2 groups. The significant amount of Withanolide A (WA) 0.52 μg/g dry weight (DW) and 0.60 μg/g DW was noted in 15 (P = 0.01) and 20 J/cm2 (P = 0.002) groups, respectively than control. The present investigation thus reveals the positive impact of red laser on the germination of seeds, growth characters and withanolide contents under in vitro environment.
Collapse
Affiliation(s)
- Sachin Ashok Thorat
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Poornima Poojari
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Arya Kaniyassery
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kodsara Ramachandra Kiran
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Planetarium Complex, Manipal 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Annamalai Muthusamy
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
34
|
Afewerky HK, Ayodeji AE, Tiamiyu BB, Orege JI, Okeke ES, Oyejobi AO, Bate PNN, Adeyemi SB. Critical review of the Withania somnifera (L.) Dunal: ethnobotany, pharmacological efficacy, and commercialization significance in Africa. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2021; 45:176. [PMID: 34697529 PMCID: PMC8529567 DOI: 10.1186/s42269-021-00635-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/08/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Withania somnifera (L.) Dunal (W. somnifera) is a herb commonly known by its English name as Winter Cherry. Africa is indigenous to many medicinal plants and natural products. However, there is inadequate documentation of medicinal plants, including W. somnifera, in Africa. There is, therefore, a need for a comprehensive compilation of research outcomes of this reviewed plant as used in traditional medicine in different regions of Africa. METHODOLOGY Scientific articles and publications were scooped and sourced from high-impact factor journals and filtered with relevant keywords on W. somnifera. Scientific databases, including GBIF, PubMed, NCBI, Google Scholar, Research Gate, Science Direct, SciFinder, and Web of Science, were accessed to identify the most influential articles and recent breakthroughs published on the contexts of ethnography, ethnomedicinal uses, phytochemistry, pharmacology, and commercialization of W. somnifera. RESULTS This critical review covers the W. somnifera ethnography, phytochemistry, and ethnomedicinal usage to demonstrate the use of the plant in Africa and elsewhere to prevent or alleviate several pathophysiological conditions, including cardiovascular, neurodegenerative, reproductive impotence, as well as other chronic diseases. CONCLUSION W. somnifera is reportedly safe for administration in ethnomedicine as several research outcomes confirmed its safety status. The significance of commercializing this plant in Africa for drug development is herein thoroughly covered to provide the much-needed highlights towards its cultivations economic benefit to Africa.
Collapse
Affiliation(s)
- Henok Kessete Afewerky
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- School of Allied Health Professions, Asmara College of Health Sciences, 00291 Asmara, Eritrea
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
| | - Ayeni Emmanuel Ayodeji
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Pharmacognosy and Drug Development, Ahmadu Bello University Zaria, PMB 1044, Kaduna, 800211 Nigeria
| | - Bashir Bolaji Tiamiyu
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin, 240001 Nigeria
| | - Joshua Iseoluwa Orege
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Industrial Chemistry, Ekiti State University, PMB 5363, Ado-Ekiti, 362001 Nigeria
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Emmanuel Sunday Okeke
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Biochemistry, FBS and Natural Science Unit, SGS, University of Nigeria, Nsukka, 410001 Nigeria
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Aanuoluwapo Opeyemi Oyejobi
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Petuel Ndip Ndip Bate
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Guangzhou Institute of Biomedicine and Health, Guangzhou, 510530 China
| | - Sherif Babatunde Adeyemi
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin, 240001 Nigeria
- C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Bardoli-Mahuva Road, Bardoli, Surat, Gujarat 394350 India
| |
Collapse
|
35
|
Zhang Y, Tang LV. Overview of Targets and Potential Drugs of SARS-CoV-2 According to the Viral Replication. J Proteome Res 2021; 20:49-59. [PMID: 33347311 PMCID: PMC7770889 DOI: 10.1021/acs.jproteome.0c00526] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Indexed: 01/18/2023]
Abstract
Since the novel coronavirus pandemic, people around the world have been touched in varying degrees, and this pandemic has raised a major global health concern. As there is no effective drug or vaccine, it is urgent to find therapeutic drugs that can serve to deal with the current epidemic situation in all countries and regions. We searched drugs and response measures for SARS-CoV-2 in the PubMed database, and then updated the potential targets and therapeutic drugs from the perspective of the viral replication cycle. The drug research studies of the viral replication cycle are predominantly focused on the process of the virus entering cells, proteases, and RdRp. The inhibitors of the virus entry to cells and RdRp, such as Arbidol, remdesivir, favipiravir, EIDD-2081, and ribavirin, are in clinical trials, while most of the protease inhibitors are mainly calculated by molecular docking technology, which needs in vivo and in vitro experiments to prove the effect for SARS-CoV-2. This review summarizes the drugs targeting the viral replication process and provides a basis and directions for future drug development and reuse on the protein level of COVID-19.
Collapse
Affiliation(s)
- Yi Zhang
- Institute
of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang V. Tang
- Institute
of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
36
|
Behl T, Sharma A, Sharma L, Sehgal A, Zengin G, Brata R, Fratila O, Bungau S. Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives. Biomedicines 2020; 8:E571. [PMID: 33291236 PMCID: PMC7762146 DOI: 10.3390/biomedicines8120571] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Withaferin A (WA), a manifold studied, C28-steroidal lactone withanolide found in Withania somnifera. Given its unique beneficial effects, it has gathered attention in the era of modern science. Cancer, being considered a "hopeless case and the leading cause of death worldwide, and the available conventional therapies have many lacunae in the form of side effects. The poly pharmaceutical natural compound, WA treatment, displayed attenuation of various cancer hallmarks by altering oxidative stress, promoting apoptosis, and autophagy, inhibiting cell proliferation, reducing angiogenesis, and metastasis progression. The cellular proteins associated with antitumor pathways were also discussed. WA structural modifications attack multiple signal transduction pathways and enhance the therapeutic outcomes in various diseases. Moreover, it has shown validated pharmacological effects against multiple neurodegenerative diseases by inhibiting acetylcholesterinases and butyrylcholinesterases enzyme activity, antidiabetic activity by upregulating adiponectin and preventing the phosphorylation of peroxisome proliferator-activated receptors (PPARγ), cardioprotective activity by AMP-activated protein kinase (AMPK) activation and suppressing mitochondrial apoptosis. The current review is an extensive survey of various WA associated disease targets, its pharmacokinetics, synergistic combination, modifications, and biological activities.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India; (A.S.); (L.S.)
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India; (A.S.); (L.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42250, Turkey;
| | - Roxana Brata
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (R.B.); (O.F.)
| | - Ovidiu Fratila
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (R.B.); (O.F.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
37
|
Kashyap VK, Dhasmana A, Yallapu MM, Chauhan SC, Jaggi M. Withania somnifera as a potential future drug molecule for COVID-19. FUTURE DRUG DISCOVERY 2020; 2:FDD50. [PMID: 33269342 PMCID: PMC7702281 DOI: 10.4155/fdd-2020-0024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 01/22/2023] Open
Affiliation(s)
- Vivek K Kashyap
- Department of Immunology & Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology & Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M Yallapu
- Department of Immunology & Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C Chauhan
- Department of Immunology & Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology & Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|