1
|
Ferreira FM, Araujo DD, Dantas GM, Cunha LCC, Zeferino SP, Galas FB. Goal-directed therapy with continuous SvcO 2 monitoring in pediatric cardiac surgery: the PediaSat single-center randomized trial. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ELSEVIER) 2025; 75:844614. [PMID: 40158850 DOI: 10.1016/j.bjane.2025.844614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Low Cardiac Output Syndrome (LCOS) remains a significant perioperative challenge in pediatric cardiac surgery. This study evaluated whether a hemodynamic protocol aimed at optimizing continuous central venous Oxygen Saturation (SvcO2) using the PediaSat catheter could reduce postoperative complications in pediatric patients undergoing congenital heart surgery. METHODS Conducted at the Instituto do Coração in São Paulo, this randomized clinical trial compared a group receiving SvcO2-based goal-directed therapy via PediaSat (intervention) against conventional care (control). The main objective was assessing 24-hour lactate clearance post-surgery, with secondary outcomes including Vasoactive-Inotropic Score (VIS), Mechanical Ventilation (MV) duration, vasopressor use, and ICU/hospital stay lengths. RESULTS From July 13, 2014, to March 17, 2016, 391 patients were evaluated for eligibility. After applying inclusion and exclusion criteria, 65 patients were included and randomized ‒ 33 to the control group and 32 to the PediaSat group. There were no losses to follow-up in either group. Lactate clearance did not significantly differ between the intervention and control groups. However, the PediaSat group showed significantly shorter mechanical ventilation times, reduced vasopressor use, and shorter ICU stays. No significant differences were observed in hospital stay length or incidence of postoperative complications between the group. CONCLUSIONS While optimizing SvcO2 did not affect overall lactate clearance, it was associated with shorter MV duration, decreased vasopressor need, and shorter ICU stays in pediatric cardiac surgery patients. These findings highlight the potential benefits of continuous SvcO2 monitoring in postoperative care.
Collapse
Affiliation(s)
- Flavio M Ferreira
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - David D Araujo
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gustavo M Dantas
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Suely P Zeferino
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Filomena B Galas
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Chappell MC, Schaich CL, Busse LW, Files DC, Martin GS, Sevransky JE, Hinson JS, Rothman RE, Khanna AK, Vitamin C, Thiamine and Steroids in Sepsis (VICTAS) Investigators. Higher circulating ACE2 and DPP3 but reduced ACE and angiotensinogen in hyperreninemic sepsis patients. Clin Sci (Lond) 2025; 139:43-53. [PMID: 39699964 PMCID: PMC12053747 DOI: 10.1042/cs20242168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 12/21/2024]
Abstract
Sepsis and septic shock are global healthcare problems associated with high mortality rates. Activation of the renin-angiotensin-aldosterone system (RAAS) is an early event in sepsis, and elevated renin may be predictive of worse outcomes. In a subset of sepsis patients enrolled in the Vitamin C, Thiamine and Steroids in Sepsis (VICTAS) trial, elevated levels of active renin (median value > 189 pg/mL or 5.1 pM) at baseline (day 0) were strongly associated with mortality; however, corresponding plasma levels of the vasopressor hormone Angiotensin II were not substantially increased nor was Angiotensin II associated with disease severity. The current study assessed RAAS components that may impact the Angiotensin II response in control subjects, normal renin sepsis (NRS, renin < 5.1 pM) and high renin sepsis (HRS, renin > 5.1 pM) patients. NRS and HRS subjects exhibited a similar reduction in ACE (40%), but increased levels of ACE2 and DPP3. The ACE to DPP3 ratio was higher in controls but this relationship was reversed in both NRS and HRS subjects. Intact angiotensinogen was 50% lower in the HRS than control or NRS subjects, whereas the intact angiotensinogen to renin ratio was <10% of control or NRS subjects. We conclude that altered expression of ACE, ACE2, DPP3 and angiotensinogen may attenuate the expected increase in Angiotensin II, particularly in sepsis subjects with high renin concentrations.
Collapse
Affiliation(s)
- Mark C. Chappell
- Hypertension Center, Wake Forest University School of Medicine, Winston-Salem, NC
| | | | | | - D. Clark Files
- Department of Internal Medicine, Section of Pulmonary, Critical Care, Allergy, and Immunologic Diseases, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Greg S. Martin
- Pulmonary and Critical Care, Emory University School of Medicine, Atlanta, GA
| | | | | | | | - Ashish K. Khanna
- Hypertension Center, Wake Forest University School of Medicine, Winston-Salem, NC
- Department of Anesthesiology, Section on Critical Care Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
- Outcomes Research Consortium, Cleveland, OH
| | | |
Collapse
|
3
|
Orso D, Federici N, Lio C, Mearelli F, Bove T. Hemodynamic goals in sepsis and septic shock resuscitation: An umbrella review of systematic reviews and meta-analyses with trial sequential analysis. Aust Crit Care 2024; 37:818-826. [PMID: 38609748 DOI: 10.1016/j.aucc.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/03/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
OBJECTIVE The objective of this study was to verify whether any parameter among those used as the target for haemodynamic optimisation (e.g., mean arterial pressure, central venous oxygen saturation, systolic or diastolic dysfunction, CO2 gap, lactates, right ventricular dysfunction, and PvaCO2/CavO2 ratio) is correlated with mortality in an undifferentiated population with sepsis or septic shock. METHODS An umbrella review, searching MEDLINE, the Cochrane Database of Systematic Reviews, Health Technology Assessment Database, and the JBI Database of Systematic Reviews and Implementation Reports, was performed. We included systematic reviews and meta-analyses enrolling a population of unselected patients with sepsis or septic shock. The main outcome was mortality. Two authors conducted data extraction and risk-of-bias assessments independently. We used a random-effects model to pool binary and continuous data and summarised estimates of effect using equivalent odds ratios (eORs). We used the ROBIS tool to assess risk of bias and the assessment of multiple systematic reviews 2 score to assess global quality. DATA SYNTHESIS 17 systematic reviews and meta-analyses (15 828 patients) were included in the quantitative analysis. Diastolic dysfunction (eOR: 1.42; 95% confidence interval [CI]: 1.14-1.76), PvaCO2/CavO2 ratio (eOR: 2.15; 95% CI: 1.37-3.37), and CO2 gap (eOR: 1.86; 95% CI: 1.07-3.25) showed a significant correlation with mortality. Lactates were the parameter with highest inconsistency (I2 = 92%). Central venous oxygen saturation and right ventricle dysfunction showed significant statistical excess test of significance (p-value = 0.009 and 0.005, respectively). None of the considered parameters showed statistically significant publication bias. CONCLUSIONS According to this umbrella review, diastolic dysfunction is the haemodynamic variable that is most closely linked to the prognosis of septic patients. The PvaCO2/CavO2 ratio and the CO2gap are significantly related to the mortality of septic patients, but the poor quality of evidence or the low number of cases, studied so far, limit their clinical applicability. CLINICAL TRIAL REGISTRATION PROSPERO: International prospective register of systematic reviews, 2023, CRD42023432813 (Available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023432813).
Collapse
Affiliation(s)
- Daniele Orso
- Department of Anesthesia and Intensive Care Medicine, ASUFC University Hospital of Udine, Udine, Italy.
| | - Nicola Federici
- Department of Anesthesia and Intensive Care Medicine, ASUFC University Hospital of Udine, Udine, Italy
| | - Cristina Lio
- Department of Anesthesia and Intensive Care Medicine, ASUFC University Hospital of Udine, Udine, Italy; Department of Medical Sciences (DAME), University of Udine, Udine, Italy
| | - Filippo Mearelli
- Department of Internal Medicine, ASUGI University Hospital of Trieste, Trieste, Italy
| | - Tiziana Bove
- Department of Anesthesia and Intensive Care Medicine, ASUFC University Hospital of Udine, Udine, Italy; Department of Medical Sciences (DAME), University of Udine, Udine, Italy
| |
Collapse
|
4
|
Rai M, Carter SM, Shefali SA, Chawla G, Tennessen JM. Characterization of genetic and molecular tools for studying the endogenous expression of Lactate dehydrogenase in Drosophila melanogaster. PLoS One 2024; 19:e0287865. [PMID: 38170735 PMCID: PMC10763966 DOI: 10.1371/journal.pone.0287865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Drosophila melanogaster larval development relies on a specialized metabolic state that utilizes carbohydrates and other dietary nutrients to promote rapid growth. One unique feature of the larval metabolic program is that Lactate Dehydrogenase (Ldh) activity is highly elevated during this growth phase when compared to other stages of the fly life cycle, indicating that Ldh serves a key role in promoting juvenile development. Previous studies of larval Ldh activity have largely focused on the function of this enzyme at the whole animal level, however, Ldh expression varies significantly among larval tissues, raising the question of how this enzyme promotes tissue-specific growth programs. Here we characterize two transgene reporters and an antibody that can be used to study Ldh expression in vivo. We find that all three tools produce similar Ldh expression patterns. Moreover, these reagents demonstrate that the larval Ldh expression pattern is complex, suggesting the purpose of this enzyme varies across cell types. Overall, our studies validate a series of genetic and molecular reagents that can be used to study glycolytic metabolism in the fly.
Collapse
Affiliation(s)
- Madhulika Rai
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Sarah M. Carter
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Shefali A. Shefali
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Geetanjali Chawla
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institute of Eminence (SNIoE), Dadri, Uttar Pradesh, India
| | - Jason M. Tennessen
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| |
Collapse
|
5
|
Zhang F, Wang H, Liu L, Su T, Ji B. Machine learning model for the prediction of gram-positive and gram-negative bacterial bloodstream infection based on routine laboratory parameters. BMC Infect Dis 2023; 23:675. [PMID: 37817106 PMCID: PMC10566101 DOI: 10.1186/s12879-023-08602-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Bacterial bloodstream infection is responsible for the majority of cases of sepsis and septic shock. Early recognition of the causative pathogen is pivotal for administration of adequate empiric antibiotic therapy and for the survival of the patients. In this study, we developed a feasible machine learning (ML) model to predict gram-positive and gram-negative bacteremia based on routine laboratory parameters. METHODS Data for 2118 patients with bacteremia were obtained from the Medical Information Mart for Intensive Care dataset. Patients were randomly split into the training set and test set by stratified sampling, and 374 routine laboratory blood test variables were retrieved. Variables with missing values in more than 40% of the patients were excluded. Pearson correlation test was employed to eliminate redundant features. Five ML algorithms were used to build the model based on the selected features. Additionally, 132 patients with bacteremia who were treated at Qilu Hospital of Shandong University were included in an independent test cohort to evaluate the model. RESULTS After feature selection, 32 variables remained. All the five ML algorithms performed well in terms of discriminating between gram-positive and gram-negative bacteremia, but the performance of convolutional neural network (CNN) and random forest (RF) were better than other three algorithms. Consider of the interpretability of models, RF was chosen for further test (ROC-AUC = 0.768; 95%CI = 0.715-0.798, with a sensitivity of 75.20% and a specificity of 63.79%). To expand the application of the model, a decision tree (DT) was built utilizing the major variables, and it achieved an AUC of 0.679 (95%CI = 0.632-0.723), a sensitivity of 66%, and a specificity of 67.82% in the test cohort. When tested in the Qilu Hospital cohort, the ROC-AUC of the RF and DT models were 0.666 (95%CI = 0.579-0.746) and 0.615 (95%CI = 0.526-0.698), respectively. Finally, a software was developed to make the RF- and DT-based prediction models easily accessible. CONCLUSION The present ML-based models could effectively discriminate between gram-positive and gram-negative bacteremia based on routine laboratory blood test results. This simple model would be beneficial in terms of guiding timely antibiotic selection and administration in critically ill patients with bacteremia before their pathogen test results are available.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Hao Wang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Liyu Liu
- School of Control Science and Engineering, Shandong University, Jinan, 250061, Shandong, China
| | - Teng Su
- School of Control Science and Engineering, Shandong University, Jinan, 250061, Shandong, China
| | - Bing Ji
- School of Control Science and Engineering, Shandong University, Jinan, 250061, Shandong, China.
| |
Collapse
|
6
|
Rai M, Carter SM, Shefali SA, Chawla G, Tennessen JM. Characterization of genetic and molecular tools for studying the endogenous expression of Lactate dehydrogenase in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545165. [PMID: 37398276 PMCID: PMC10312709 DOI: 10.1101/2023.06.15.545165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Drosophila melanogaster larval development relies on a specialized metabolic state that utilizes carbohydrates and other dietary nutrients to promote rapid growth. One unique feature of the larval metabolic program is that Lactate Dehydrogenase (Ldh) activity is highly elevated during this growth phase when compared to other stages of the fly life cycle, indicating that Ldh serves a key role in promoting juvenile development. Previous studies of larval Ldh activity have largely focused on the function of this enzyme at the whole animal level, however, Ldh expression varies significantly among larval tissues, raising the question of how this enzyme promotes tissue-specific growth programs. Here we characterize two transgene reporters and an antibody that can be used to study Ldh expression in vivo . We find that all three tools produce similar Ldh expression patterns. Moreover, these reagents demonstrate that the larval Ldh expression pattern is complex, suggesting the purpose of this enzyme varies across cell types. Overall, our studies validate a series of genetic and molecular reagents that can be used to study glycolytic metabolism in the fly.
Collapse
Affiliation(s)
- Madhulika Rai
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Sarah M. Carter
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Geetanjali Chawla
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institute of Eminence (SNIoE), Dadri, Uttar Pradesh 201314, India
| | | |
Collapse
|
7
|
Gupta GS. The Lactate and the Lactate Dehydrogenase in Inflammatory Diseases and Major Risk Factors in COVID-19 Patients. Inflammation 2022; 45:2091-2123. [PMID: 35588340 PMCID: PMC9117991 DOI: 10.1007/s10753-022-01680-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/04/2022] [Accepted: 05/03/2022] [Indexed: 12/15/2022]
Abstract
Lactate dehydrogenase (LDH) is a terminating enzyme in the metabolic pathway of anaerobic glycolysis with end product of lactate from glucose. The lactate formation is crucial in the metabolism of glucose when oxygen is in inadequate supply. Lactate can also be formed and utilised by different cell types under fully aerobic conditions. Blood LDH is the marker enzyme, which predicts mortality in many conditions such as ARDS, serious COVID-19 and cancer patients. Lactate plays a critical role in normal physiology of humans including an energy source, a signaling molecule and a pH regulator. Depending on the pH, lactate exists as the protonated acidic form (lactic acid) at low pH or as sodium salt (sodium lactate) at basic pH. Lactate can affect the immune system and act as a signaling molecule, which can provide a "danger" signal for life. Several reports provide evidence that the serum lactate represents a chemical marker of severity of disease similar to LDH under inflammatory conditions. Since the mortality rate is much higher among COVID-19 patients, associated with high serum LDH, this article is aimed to review the LDH as a therapeutic target and lactate as potential marker for monitoring treatment response of inflammatory diseases. Finally, the review summarises various LDH inhibitors, which offer potential applications as therapeutic agents for inflammatory diseases, associated with high blood LDH. Both blood LDH and blood lactate are suggested as risk factors for the mortality of patients in serious inflammatory diseases.
Collapse
Affiliation(s)
- G S Gupta
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
8
|
Liu S, Kohler A, Langer R, Jakob MO, Salm L, Blank A, Beldi G, Jakob SM. Hepatic blood flow regulation but not oxygen extraction capability is impaired in prolonged experimental abdominal sepsis. Am J Physiol Gastrointest Liver Physiol 2022; 323:G348-G361. [PMID: 36044679 DOI: 10.1152/ajpgi.00109.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Impaired oxygen utilization has been proposed to play a significant role in sepsis-induced liver dysfunction, but its magnitude and temporal course during prolonged resuscitation is controversial. The aim of this study is to evaluate the capability of the liver to increase oxygen extraction in sepsis during repeated acute portal vein blood flow reduction. Twenty anesthetized and mechanically ventilated pigs with hepatic hemodynamic monitoring were randomized to fecal peritonitis or controls (n = 10, each). After 8-h untreated sepsis, the animals were resuscitated for three days. The ability to increase hepatic O2 extraction was evaluated by repeated, acute decreases in hepatic oxygen delivery (Do2) via reduction of portal flow. Blood samples for liver function and liver biopsies were obtained repeatedly. Although liver function tests, ATP content, and Do2 remained unaltered, there were signs of liver injury in blood samples and overt liver cell necrosis in biopsies. With acute portal vein occlusion, hepatic Do2 decreased more in septic animals compared with controls [max. decrease: 1.66 ± 0.68 mL/min/kg in sepsis vs. 1.19 ± 0.42 mL/min/kg in controls; portal venous flow (Qpv) reduction-sepsis interaction: P = 0.028]. Hepatic arterial buffer response (HABR) was impaired but recovered after 3-day resuscitation, whereas hepatic oxygen extraction increased similarly during the procedures in both groups (max. increase: 0.27 ± 0.13 in sepsis vs. 0.18 ± 0.09 in controls; all P > 0.05). Our data indicate maintained capacity of the liver to acutely increase O2 extraction, whereas blood flow regulation is transiently impaired with the potential to contribute to liver injury in sepsis.NEW & NOTEWORTHY The capacity to acutely increase hepatic O2 extraction with portal flow reduction is maintained in sepsis with accompanying liver injury, but hepatic blood flow regulation is impaired.
Collapse
Affiliation(s)
- Shengchen Liu
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Cardio-thoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Andreas Kohler
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rupert Langer
- Institute of Pathology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Manuel O Jakob
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lilian Salm
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Annika Blank
- Institute of Pathology, Triemlispital Zürich, Zürich, Switzerland
| | - Guido Beldi
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephan M Jakob
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Zainumi CM, Siregar GA, Wijaya DW, Ichwan M. Comparison enteral superoxide dismutase 1 IU and 5 IU from Cucumis melo L.C extract combined with gliadin as an antioxidant and anti-inflammatory in LPS-Induced sepsis model rats. Heliyon 2022; 8:e10236. [PMID: 36082333 PMCID: PMC9445283 DOI: 10.1016/j.heliyon.2022.e10236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/09/2022] [Accepted: 08/05/2022] [Indexed: 11/15/2022] Open
Abstract
Sepsis is a major cause of death in intensive care units whose development is supported by an imbalance of oxidative stress and antioxidant. Superoxide dismutase (SOD) is a primer endogen antioxidant that prevents reactive oxygen species (ROS). Extensive studies on animals and humans have examined Cucumis melo L.C, a cantaloupe rich in SOD, and its combination with gliadin. The studies aimed to determine the effect of enteral administration of Cucumis melo L.C. gliadin (CME-gliadin) 28 days before inducing sepsis in rats. This experimental study aimed to compare four groups of male Wistar rats, including negative and positive control rats and those supplemented with SOD CME-gliadin 1 IU/day and SOD CME-gliadin 5 IU/day. All rats were given the same standard, except the supplementation for 28 days. Sepsis was induced by intraperitoneal injection of LPS 10 mg/kg. Enteral administration of SOD – gliadin extract of CME-gliadin for 28 days was used as antioxidant prophylaxis against oxidative stress due to sepsis. The results showed that enteral administration of CME-gliadin of 1 IU/day and 5 IU/day significantly increased SOD levels based on examination after 14 and 28 days. Also, it significantly decreased MDA (p < 0.001), TNF-α (p < 0.001), and lactate levels in rats induced by sepsis. However, the increase in lactate levels was above >1.64 mmol/l, indicating a high mortality rate. There was no significant difference in SOD, MDA, TNF-α, and Lactate levels between SOD 1 IU and SOD 5 IU. This descriptive data show that SOD 5 IU has a better result in MDA, TNF-α, and Lactate levels than SOD 1 IU.
Collapse
Affiliation(s)
- Cut Meliza Zainumi
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
- Corresponding author.
| | - Gontar Alamsyah Siregar
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Dadik Wahyu Wijaya
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Muhammad Ichwan
- Department of Pharmacology and Therapeutic, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
10
|
Morris KP, Kapetanstrataki M, Wilkins B, Slater AJ, Ward V, Parslow RC. Lactate, Base Excess, and the Pediatric Index of Mortality: Exploratory Study of an International, Multicenter Dataset. Pediatr Crit Care Med 2022; 23:e268-e276. [PMID: 35213411 DOI: 10.1097/pcc.0000000000002904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To investigate the relationship between ICU admission blood lactate, base excess, and ICU mortality and to explore the effect of incorporating blood lactate into the Pediatric Index of Mortality. DESIGN Retrospective cohort study based on data prospectively collected on every PICU admission submitted to the U.K. Pediatric Intensive Care Audit Network and to the Australia and New Zealand Pediatric Intensive Care Registry. SETTING Thirty-three PICUs in the United Kingdom/Republic of Ireland and nine PICUs and 20 general ICUs in Australia and New Zealand. PATIENTS All ICU admissions between January 1, 2012, and December 31, 2015. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS One hundred twenty-three thousand two hundred fifty-two admissions were recorded in both datasets; 81,576 (66.2%) in the United Kingdom/Republic of Ireland and 41,676 (33.8%) in Australia and New Zealand. Of these 75,070 (61%) had a base excess recorded, 63,316 (51%) had a lactate recorded, and 60,876 (49%) had both base excess and lactate recorded. Median lactate value was 1.5 mmol/L (interquartile range, 1-2.4 mmol/L) (United Kingdom/Republic of Ireland: 1.5 [1-2.5]; Australia and New Zealand: 1.4 [1-2.3]). Children with a lactate recorded had a higher illness severity, were more likely to be invasively ventilated, admitted after cardiac surgery, and had a higher mortality rate, compared with admissions with no lactate recorded (p < 0.001). The relationship between lactate and mortality was stronger (odds ratio, 1.32; 95% CI, 1.31-1.34) than between absolute base excess and mortality (odds ratio, 1.13; 95% CI, 1.12-1.14). Addition of lactate to the Pediatric Index of Mortality score led to a small improvement in performance over addition of absolute base excess, whereas adding both lactate and absolute base excess achieved the best performance. CONCLUSIONS At PICU admission, blood lactate is more strongly associated with ICU mortality than absolute base excess. Adding lactate into the Pediatric Index of Mortality model may result in a small improvement in performance. Any improvement in Pediatric Index of Mortality performance must be balanced against the added burden of data capture when considering potential incorporation into the Pediatric Index of Mortality model.
Collapse
Affiliation(s)
- Kevin P Morris
- Paediatric Intensive Care Unit, Birmingham Children's Hospital, Birmingham, United Kingdom
- Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom
| | - Melpo Kapetanstrataki
- Division of Epidemiology and Biostatistics, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Barry Wilkins
- Paediatric Intensive Care Unit, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Anthony J Slater
- Paediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Victoria Ward
- Paediatric Intensive Care Unit, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Roger C Parslow
- Division of Epidemiology and Biostatistics, School of Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
11
|
Brüggenwirth IMA, van Leeuwen OB, Porte RJ, Martins PN. The Emerging Role of Viability Testing During Liver Machine Perfusion. Liver Transpl 2022; 28:876-886. [PMID: 33963657 DOI: 10.1002/lt.26092] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/30/2021] [Indexed: 12/23/2022]
Abstract
The transplant community continues to be challenged by the disparity between the need for liver transplantation and the shortage of suitable donor organs. At the same time, the number of unused donor livers continues to increase, most likely attributed to the worsening quality of these organs. To date, there is no reliable marker of liver graft viability that can predict good posttransplant outcomes. Ex situ machine perfusion offers additional data to assess the viability of donor livers before transplantation. Hence, livers initially considered unsuitable for transplantation can be assessed during machine perfusion in terms of appearance and consistency, hemodynamics, and metabolic and excretory function. In addition, postoperative complications such as primary nonfunction or posttransplant cholangiopathy may be predicted and avoided. A variety of viability criteria have been used in machine perfusion, and to date there is no widely accepted composition of criteria for clinical use. This review discusses potential viability markers for hepatobiliary function during machine perfusion, describes current limitations, and provides future recommendations for the use of viability criteria in clinical liver transplantation.
Collapse
Affiliation(s)
- Isabel M A Brüggenwirth
- Department of Surgery, Section of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Division of Organ Transplantation, Department of Surgery, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA
| | - Otto B van Leeuwen
- Department of Surgery, Section of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Robert J Porte
- Department of Surgery, Section of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Paulo N Martins
- Division of Organ Transplantation, Department of Surgery, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA
| |
Collapse
|
12
|
Serum Lactate and Mortality during Pediatric Admissions: Is 2 Really the Magic Number? J Pediatr Intensive Care 2022; 11:83-90. [PMID: 35734205 PMCID: PMC9208839 DOI: 10.1055/s-0042-1743180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/06/2021] [Indexed: 10/19/2022] Open
Abstract
The primary objective of this study was to determine if serum lactate level at the time of hospital admission can predict mortality in pediatric patients. A systematic review was conducted to identify studies that assessed the utility of serum lactate at the time of admission to predict mortality in pediatric patients. The areas under the curve from the receiver operator curve analyses were utilized to determine the pooled area under the curve. Additionally, standardized mean difference was compared between those who survived to discharge and those who did not. A total of 12 studies with 2,099 patients were included. Out of these, 357 (17%) experienced mortality. The pooled area under the curve for all patients was 0.74 (0.67-0.80, p < 0.01). The pooled analyses for all admissions were higher in those who experienced mortality (6.5 vs. 3.3 mmol/L) with a standardized mean difference of 2.60 (1.74-3.51, p < 0.01). The pooled area under the curve for cardiac surgery patients was 0.63 (0.53-0.72, p < 0.01). The levels for cardiac surgery patients were higher in those who experienced mortality (5.5 vs. 4.1 mmol/L) with a standardized mean difference of 1.80 (0.05-3.56, p = 0.04). Serum lactate at the time of admission can be valuable in identifying pediatric patients at greater risk for inpatient mortality. This remained the case when only cardiac surgery patients were included.
Collapse
|
13
|
Quantitative Assessment of Blood Lactate in Shock: Measure of Hypoxia or Beneficial Energy Source. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2608318. [PMID: 33150168 PMCID: PMC7603544 DOI: 10.1155/2020/2608318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
Blood lactate concentration predicts mortality in critically ill patients and is clinically used in the diagnosis, grading of severity, and monitoring response to therapy of septic shock. This paper summarizes available quantitative data to provide the first comprehensive description and critique of the accepted concepts of the physiology of lactate in health and shock, with particular emphasis on the controversy of whether lactate release is simply a manifestation of tissue hypoxia versus a purposeful transfer ("shuttle") of lactate between tissues. Basic issues discussed include (1) effect of nonproductive lactate-pyruvate exchange that artifactually enhances flux measurements obtained with labeled lactate, (2) heterogeneous tissue oxygen partial pressure (Krogh model) and potential for unrecognized hypoxia that exists in all tissues, and (3) pathophysiology that distinguishes septic from other forms of shock. Our analysis suggests that due to exchange artifacts, the turnover rate of lactate and the lactate clearance are only about 60% of the values of 1.05 mmol/min/70 kg and 1.5 L/min/70 kg, respectively, determined from the standard tracer kinetics. Lactate turnover reflects lactate release primarily from muscle, gut, adipose, and erythrocytes and uptake by the liver and kidney, primarily for the purpose of energy production (TCA cycle) while the remainder is used for gluconeogenesis (Cori cycle). The well-studied physiology of exercise-induced hyperlactatemia demonstrates massive release from the contracting muscle accompanied by an increased lactate clearance that may occur in recovering nonexercising muscle as well as the liver. The very limited data on lactate kinetics in shock patients suggests that hyperlactatemia reflects both decreased clearance and increased production, possibly primarily in the gut. Our analysis of available data in health and shock suggests that the conventional concept of tissue hypoxia can account for most blood lactate findings and there is no need to implicate a purposeful production of lactate for export to other organs.
Collapse
|
14
|
Kattan E, Hernández G, Ospina-Tascón G, Valenzuela ED, Bakker J, Castro R. A lactate-targeted resuscitation strategy may be associated with higher mortality in patients with septic shock and normal capillary refill time: a post hoc analysis of the ANDROMEDA-SHOCK study. Ann Intensive Care 2020; 10:114. [PMID: 32845407 PMCID: PMC7450018 DOI: 10.1186/s13613-020-00732-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/17/2020] [Indexed: 12/29/2022] Open
Abstract
Background Capillary refill time (CRT) may improve more rapidly than lactate in response to increments in systemic flow. Therefore, it can be assessed more frequently during septic shock (SS) resuscitation. Hyperlactatemia, in contrast, exhibits a slower recovery in SS survivors, probably explained by the delayed resolution of non-hypoperfusion-related sources. Thus, targeting lactate normalization may be associated with impaired outcomes. The ANDROMEDA-SHOCK trial compared CRT- versus lactate-targeted resuscitation in early SS. CRT-targeted resuscitation associated with lower mortality and organ dysfunction; mechanisms were not investigated. CRT was assessed every 30 min and lactate every 2 h during the 8-h intervention period, allowing a first comparison between groups at 2 h (T2). Our primary aim was to determine if SS patients evolving with normal CRT at T2 after randomization (T0) exhibited a higher mortality and organ dysfunction when allocated to the LT arm than when randomized to the CRT arm. Our secondary aim was to determine if those patients with normal CRT at T2 had received more therapeutic interventions when randomized to the LT arm. To address these issues, we performed a post hoc analysis of the ANDROMEDA-SHOCK dataset. Results Patients randomized to the lactate arm at T0, evolving with normal CRT at T2 exhibited significantly higher mortality than patients with normal CRT at T2 initially allocated to CRT (40 vs 23%, p = 0.009). These results replicated at T8 and T24. LT arm received significantly more resuscitative interventions (fluid boluses: 1000[500–2000] vs. 500[0–1500], p = 0.004; norepinephrine test in previously hypertensive patients: 43 (35) vs. 19 (19), p = 0.001; and inodilators: 16 (13) vs. 3 (3), p = 0.003). A multivariate logistic regression of patients with normal CRT at T2, including APACHE-II, baseline lactate, cumulative fluids administered since emergency admission, source of infection, and randomization group) confirmed that allocation to LT group was a statistically significant determinant of 28-day mortality (OR 3.3; 95%CI[1.5–7.1]); p = 0.003). Conclusions Septic shock patients with normal CRT at baseline received more therapeutic interventions and presented more organ dysfunction when allocated to the lactate group. This could associate with worse outcomes.
Collapse
Affiliation(s)
- Eduardo Kattan
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 362, Chile
| | - Glenn Hernández
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 362, Chile
| | - Gustavo Ospina-Tascón
- Department of Intensive Care Medicine, Fundación Valle del Lili, Universidad ICESI, Carrera 98 # 18-49, Cali, Colombia
| | - Emilio Daniel Valenzuela
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 362, Chile
| | - Jan Bakker
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 362, Chile.,Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Medical Center, 630 W 168th St, New York, USA.,Department Intensive Care Adults, Erasmus MC University Medical Center, Rotterdam, CA, The Netherlands.,Division of Pulmonary, and Critical Care Medicine, New York University-Langone, New York, USA
| | - Ricardo Castro
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 362, Chile.
| | | |
Collapse
|
15
|
Kattan E, Castro R, Vera M, Hernández G. Optimal target in septic shock resuscitation. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:789. [PMID: 32647714 PMCID: PMC7333135 DOI: 10.21037/atm-20-1120] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Septic shock presents a high risk of morbidity and mortality. Through therapeutic strategies, such as fluid administration and vasoactive agents, clinicians intend to rapidly restore tissue perfusion. Nonetheless, these interventions have narrow therapeutic margins. Adequate perfusion monitoring is paramount to avoid progressive hypoperfusion or detrimental over-resuscitation. During early stages of septic shock, macrohemodynamic derangements, such as hypovolemia and decreased cardiac output (CO) tend to predominate. However, during late septic shock, endothelial and coagulation dysfunction induce severe alterations of the microcirculation, making it more difficult to achieve tissue reperfusion. Multiple perfusion variables have been described in the literature, from bedside clinical examination to complex laboratory tests. Moreover, all of them present inherent flaws and limitations. After the ANDROMEDA-SHOCK trial, there is evidence that capillary refill time (CRT) is an interesting resuscitation target, due to its rapid kinetics and correlation with deep hypoperfusion markers. New concepts such as hemodynamic coherence and flow responsiveness may be used at the bedside to select the best treatment strategies at any time-point. A multimodal perfusion monitoring and an integrated analysis with macrohemodynamic parameters is mandatory to optimize the resuscitation of septic shock patients.
Collapse
Affiliation(s)
- Eduardo Kattan
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo Castro
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magdalena Vera
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Glenn Hernández
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
16
|
|
17
|
High mobility group box protein 1 neutralization therapy in ovine bacteremia: Lessons learned from an ovine septic shock model incorporating intensive care support. Exp Ther Med 2019; 18:3271-3280. [PMID: 31602200 PMCID: PMC6777221 DOI: 10.3892/etm.2019.7961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a highly complex and often fatal syndrome which varies widely in its clinical manifestations, and therapies that target the underlying uncontrolled immune status in sepsis are needed. The failure of preclinical approaches to provide significant sepsis survival benefit in the clinic is often attributed to inappropriate animal disease models. It has been demonstrated that high mobility group box protein 1 (HMGB1) blockade can reduce inflammation, mortality and morbidity in experimental sepsis without promoting immunosuppression. Within this study, we explored the use of ovine anti-HMGB1 antibodies in a model of ovine septic shock incorporating intensive care supports (OSSICS). Results: Septic sheep exhibited elevated levels of HMGB1 within 12 h after the induction of sepsis. In this study, sepsis was induced in six anaesthetized adult Border Leicester × Merino ewes via intravenous instillation of E. coli and sheep monitored according to intensive care unit standard protocols for 26 h, with the requirement for noradrenaline as the primary endpoint. Septic sheep exhibited a hyperdynamic circulation, renal dysfunction, deranged coagulation profile and severe metabolic acidosis. Sheep were assigned a severity of illness score, which increased over time. While a therapeutic effect of intravenous anti-HMGB1 antibody could not be observed in this model due to limited animal numbers, a reduced bacterial dose induced a septic syndrome of much lower severity. With modifications including a reduced bacterial dose, a longer timeframe and broad spectrum antibiotics, the OSSICS model may become a robust tool for preclinical assessment of sepsis therapeutics.
Collapse
|
18
|
Ospina-Tascón GA, Madriñán HJ. Combination of O 2 and CO 2-derived variables to detect tissue hypoxia in the critically ill patient. J Thorac Dis 2019; 11:S1544-S1550. [PMID: 31388459 DOI: 10.21037/jtd.2019.03.52] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Oxygen-derived parameters have been traditionally used to guide resuscitation during shock states. Nevertheless, normalization of venous oxygen saturation does not exclude the persistence of tissue hypoperfusion and tissue hypoxia. Combination of O2 and CO2-derived variables has consistently demonstrated to be related with clinical outcomes and its variations could anticipate changes in lactate and also predict fluid responsiveness in terms of oxygen consumption. Here we discuss the potential mechanisms leading to increase the venous-to-arterial CO2 (Cv-aCO2) to arterial-to-venous O2 content difference (Ca-vO2), i.e., the Cv-aCO2/Ca-vO2 ratio, its potential clinical application, limitations and uncertainties. Finally, although biologically plausible, the potential applications of the Cv-aCO2/Ca-vO2 ratio in the clinical practice require to be confirmed.
Collapse
Affiliation(s)
- Gustavo A Ospina-Tascón
- Department of Intensive Care, Fundación Valle del Lili University Hospital-Universidad Icesi, Cali, Colombia
| | - Humberto J Madriñán
- Department of Intensive Care, Fundación Valle del Lili University Hospital-Universidad Icesi, Cali, Colombia
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Microcirculatory alterations play a major role in the pathogenesis of shock. Monitoring tissue perfusion might be a relevant goal for shock resuscitation. The goal of this review was to revise the evidence supporting the monitoring of peripheral perfusion and microcirculation as goals of resuscitation. For this purpose, we mainly focused on skin perfusion and sublingual microcirculation. RECENT FINDINGS Although there are controversies about the reproducibility of capillary refill time in monitoring peripheral perfusion, it is a sound physiological variable and suitable for the ICU settings. In addition, observational studies showed its strong ability to predict outcome. Moreover, a preliminary study suggested that it might be a valuable goal for resuscitation. These results should be confirmed by the ongoing ANDROMEDA-SHOCK randomized controlled trial. On the other hand, the monitoring of sublingual microcirculation might also provide relevant physiological and prognostic information. On the contrary, methodological drawbacks mainly related to video assessment hamper its clinical implementation at the present time. SUMMARY Measurements of peripheral perfusion might be useful as goal of resuscitation. The results of the ANDROMEDA-SHOCK will clarify the role of skin perfusion as a guide for the treatment of shock. In contrast, the assessment of sublingual microcirculation mainly remains as a research tool.
Collapse
|
20
|
Bakker J. Lactate is THE target for early resuscitation in sepsis. Rev Bras Ter Intensiva 2018; 29:124-127. [PMID: 28977252 PMCID: PMC5496745 DOI: 10.5935/0103-507x.20170021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/05/2017] [Indexed: 12/16/2022] Open
Affiliation(s)
- Jan Bakker
- Department of Intensive Care Adults, Erasmus MC University Medical Center - Rotterdam, Netherlands.,Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Medical Center - New York, United States.,Division of Pulmonary, Sleep Medicine and Critical Care, New York University - Langone Medical Center - New York, United States.,Department of Intensive Care, Pontificia Universidad Catolica de Chile, Santiago, Chile
| |
Collapse
|
21
|
The ten pitfalls of lactate clearance in sepsis. Intensive Care Med 2018; 45:82-85. [PMID: 29754310 PMCID: PMC6334727 DOI: 10.1007/s00134-018-5213-x] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/05/2018] [Indexed: 12/22/2022]
|
22
|
Lalau JD, Kajbaf F, Protti A, Christensen MM, De Broe ME, Wiernsperger N. Metformin-associated lactic acidosis (MALA): Moving towards a new paradigm. Diabetes Obes Metab 2017; 19:1502-1512. [PMID: 28417525 DOI: 10.1111/dom.12974] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/03/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022]
Abstract
Although metformin has been used for over 60 years, the balance between the drug's beneficial and adverse effects is still subject to debate. Following an analysis of how cases of so-called "metformin-associated lactic acidosis" (MALA) are reported in the literature, the present article reviews the pitfalls to be avoided when assessing the purported association between metformin and lactic acidosis. By starting from pathophysiological considerations, we propose a new paradigm for lactic acidosis in metformin-treated patients. Metformin therapy does not necessarily induce metformin accumulation, just as metformin accumulation does not necessarily induce hyperlactatemia, and hyperlactatemia does not necessarily induce lactic acidosis. In contrast to the conventional view, MALA probably accounts for a smaller proportion of cases than either metformin-unrelated lactic acidosis or metformin-induced lactic acidosis. Lastly, this review highlights the need for substantial improvements in the reporting of cases of lactic acidosis in metformin-treated patients. Accordingly, we propose a check-list as a guide to clinical practice.
Collapse
Affiliation(s)
- Jean-Daniel Lalau
- Department of Endocrinology-Nutrition, Amiens University Hospital, Amiens, France
| | - Farshad Kajbaf
- Department of Endocrinology-Nutrition, Amiens University Hospital, Amiens, France
| | - Alessandro Protti
- Department of Anesthesia and Intensive Care, IRCCS Fondazione Ca' Granda, Maggiore Policlinico Hospital, Milan, Italy
| | - Mette M Christensen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Marc E De Broe
- Laboratory of Pathophysiology, University of Antwerp, Wilrijk, Belgium
| | | |
Collapse
|
23
|
Dell'Anna AM, Sandroni C, Lamanna I, Belloni I, Donadello K, Creteur J, Vincent JL, Taccone FS. Prognostic implications of blood lactate concentrations after cardiac arrest: a retrospective study. Ann Intensive Care 2017; 7:101. [PMID: 28986863 PMCID: PMC5630540 DOI: 10.1186/s13613-017-0321-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 09/19/2017] [Indexed: 01/12/2023] Open
Abstract
Background Elevated lactate concentration has been associated with increased mortality after out-of-hospital cardiac arrest (CA). We investigated the variables associated with high blood lactate concentrations and explored the relationship between blood lactate and neurological outcome in this setting. Methods This was a retrospective analysis of an institutional database that included all adult (> 18 years) patients admitted to a multidisciplinary Department of Intensive Care between January 2009 and January 2013 after resuscitation from CA. Blood lactate concentrations were collected at hospital admission and 6, 12, 24 and 48 h thereafter. Neurological outcome was evaluated 3 months post-CA using the Cerebral Performance Category (CPC) score: a CPC of 3–5 was used to define a poor outcome. Results Of the 236 patients included, 162 (69%) had a poor outcome. On admission, median lactate concentrations (5.3[2.9–9.0] vs. 2.5[1.5–5.5], p < 0.001) and cardiovascular sequential organ failure assessment (cSOFA) score (3[0–4] vs. 0[0–3], p = 0.003) were higher in patients with poor than in those with favourable outcomes. Lactate concentrations were higher in patients with poor outcomes at all time points. Lactate concentrations were similar in patients with out-of-hospital and in-hospital CA at all time points. After adjustment, high admission lactate was independently associated with a poor neurological outcome (OR 1.18, 95% CI 1.08–1.30; p < 0.001). In multivariable analysis, use of vasopressors and high PaO2 on admission, longer time to return of spontaneous circulation and altered renal function were associated with high admission lactate concentrations. Conclusions High lactate concentrations on admission were an independent predictor of poor neurological recovery post-CA, but the time course was not related to outcome. Prolonged resuscitation, use of vasopressors, high PaO2 and altered renal function were predictors of high lactate concentrations. Electronic supplementary material The online version of this article (doi:10.1186/s13613-017-0321-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antonio Maria Dell'Anna
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.,Department of Anesthesiology and Intensive Care, Catholic University School of Medicine, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Claudio Sandroni
- Department of Anesthesiology and Intensive Care, Catholic University School of Medicine, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Irene Lamanna
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - Ilaria Belloni
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - Katia Donadello
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.,Anaesthesia and Intensive Care B, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, AOUI-University Hospital Integrated Trust of Verona, P.le L.A. Scuro 10, 37134, Verona, Italy
| | - Jacques Creteur
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| |
Collapse
|
24
|
Corrêa TD, Pereira AJ, Brandt S, Vuda M, Djafarzadeh S, Takala J, Jakob SM. Time course of blood lactate levels, inflammation, and mitochondrial function in experimental sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:105. [PMID: 28499395 PMCID: PMC5429522 DOI: 10.1186/s13054-017-1691-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 05/02/2017] [Indexed: 12/14/2022]
Abstract
Background A decrease in blood lactate levels (Lac) >10% during the first hours of resuscitation in sepsis is associated with better outcomes, but the mechanisms are unclear. Our objective was to investigate the relationship between the time course of Lac, inflammatory response, and mitochondrial respiration during experimental sepsis. Methods Original data from two previously published studies were reanalyzed. In cohort 1, pigs were randomized to be resuscitated for 48 h starting at 6, 12, and 24 h, respectively, after fecal peritonitis induction (n = 8 each). Animals were categorized according to the decrease in Lac during the first 6 h of resuscitation (early if ≥10% [Lac ≥10%] or late if <10% or increased [Lac <10%]), and systemic hemodynamics, inflammatory parameters, and mitochondrial function were compared between groups. In a second group of animals with fecal peritonitis and 24 h of resuscitation (n = 16, cohort 2), abdominal regional Lac exchange was measured, and animals were categorized according to the decrease in Lac as in cohort 1. Results Overall mortality was 20% (4 of 20) in the Lac ≥10% group and 60% (12 of 20) in the Lac <10% group (p = 0.022). In cohort 1, systemic hemodynamics were similar in the Lac ≥10% (n = 13) and Lac <10% (n = 11) groups. Plasma interleukin-6 levels increased during unresuscitated sepsis and decreased during resusciation in both groups, but they were lower at study end in the Lac ≥10% group (p = 0.047). Complexes I and II maximal (state 3) and resting (state 4) isolated brain mitochondrial respiration at study end was higher in the Lac ≥10% group than in the Lac <10% group, whereas hepatic, myocardial, and skeletal muscle mitochondrial respiration was similar in both groups. In cohort 2, mesenteric, total hepatic, and renal blood flow at study end was higher in the Lac ≥10% group (n = 7) than in the Lac <10% group (n = 9), despite similar cardiac output. Hepatic lactate influx and uptake in the Lac ≥10% group were approximately 1.5 and 3 times higher, respectively, than in the Lac <10% group (p = 0.066 for both). Conclusions A decrease in Lac >10% during early resuscitation (6 h) after abdominal sepsis is associated with lower levels of plasma interleukin-6 and improved brain but not hepatic or muscle mitochondrial respiration. Blood flow redistribution to abdominal organs in animals with early decrease in Lac concentrations increases the potential to both deliver and extract Lac. Electronic supplementary material The online version of this article (doi:10.1186/s13054-017-1691-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thiago Domingos Corrêa
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland. .,Intensive Care Unit, Hospital Israelita Albert Einstein, Avenida Albert Einstein, 627/701, 5th floor, Sao Paulo, 05651-901, Brazil.
| | - Adriano José Pereira
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Intensive Care Unit, Hospital Israelita Albert Einstein, Avenida Albert Einstein, 627/701, 5th floor, Sao Paulo, 05651-901, Brazil
| | - Sebastian Brandt
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Madhusudanarao Vuda
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Siamak Djafarzadeh
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jukka Takala
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephan Mathias Jakob
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
25
|
Abstract
Hyperlactatemia is a strong predictor of mortality in diverse populations of critically ill patients. In this article, we will give an overview of how lactate is used in the intensive care unit. We describe the use of lactate as a predictor of outcome, as a marker to initiate therapy and to monitor adequacy of initiated treatments.
Collapse
Affiliation(s)
- Eva E Vink
- 1 Department of Pulmonology and Critical Care, Langone Medical Center, Bellevue Hospital, New York University, New York, NY, USA.,2 Department of Intensive Care Adults, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Jan Bakker
- 1 Department of Pulmonology and Critical Care, Langone Medical Center, Bellevue Hospital, New York University, New York, NY, USA.,2 Department of Intensive Care Adults, Erasmus MC University Medical Center, Rotterdam, the Netherlands.,3 Division of Pulmonary, Allergy and Critical Care, Columbia University College of Physicians and Surgeons, University Medical Center, New York, NY, USA.,4 Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
26
|
Alegría L, Vera M, Dreyse J, Castro R, Carpio D, Henriquez C, Gajardo D, Bravo S, Araneda F, Kattan E, Torres P, Ospina-Tascón G, Teboul JL, Bakker J, Hernández G. A hypoperfusion context may aid to interpret hyperlactatemia in sepsis-3 septic shock patients: a proof-of-concept study. Ann Intensive Care 2017; 7:29. [PMID: 28281216 PMCID: PMC5344869 DOI: 10.1186/s13613-017-0253-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/26/2017] [Indexed: 12/16/2022] Open
Abstract
Background
Persistent hyperlactatemia is particularly difficult to interpret in septic shock. Besides hypoperfusion, adrenergic-driven lactate production and impaired lactate clearance are important contributors. However, clinical recognition of different sources of hyperlactatemia is unfortunately not a common practice and patients are treated with the same strategy despite the risk of over-resuscitation in some. Indeed, pursuing additional resuscitation in non-hypoperfusion-related cases might lead to the toxicity of fluid overload and vasoactive drugs. We hypothesized that two different clinical patterns can be recognized in septic shock patients through a multimodal perfusion monitoring. Hyperlactatemic patients with a hypoperfusion context probably represent a more severe acute circulatory dysfunction, and the absence of a hypoperfusion context is eventually associated with a good outcome. We performed a retrospective analysis of a database of septic shock patients with persistent hyperlactatemia after initial resuscitation. Results We defined hypoperfusion context by the presence of a ScvO2 < 70%, or a P(cv-a)CO2 ≥6 mmHg, or a CRT ≥4 s together with hyperlactatemia. Ninety patients were included, of whom seventy exhibited a hypoperfusion-related pattern and 20 did not. Although lactate values were comparable at baseline (4.8 ± 2.8 vs. 4.7 ± 3.7 mmol/L), patients with a hypoperfusion context exhibited a more severe circulatory dysfunction with higher vasopressor requirements, and a trend to longer mechanical ventilation days, ICU stay, and more rescue therapies. Only one of the 20 hyperlactatemic patients without a hypoperfusion context died (5%) compared to 11 of the 70 with hypoperfusion-related hyperlactatemia (16%). Conclusions Two different clinical patterns among hyperlactatemic septic shock patients may be identified according to hypoperfusion context. Patients with hyperlactatemia plus low ScvO2, or high P(cv-a)CO2, or high CRT values exhibited a more severe circulatory dysfunction. This provides a starting point to launch further prospective studies to confirm if this approach can lead to a more selective resuscitation strategy.
Electronic supplementary material The online version of this article (doi:10.1186/s13613-017-0253-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leyla Alegría
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, 8320000, Chile
| | - Magdalena Vera
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, 8320000, Chile
| | - Jorge Dreyse
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, 8320000, Chile
| | - Ricardo Castro
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, 8320000, Chile
| | - David Carpio
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, 8320000, Chile
| | - Carolina Henriquez
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, 8320000, Chile
| | - Daniela Gajardo
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, 8320000, Chile
| | - Sebastian Bravo
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, 8320000, Chile
| | - Felipe Araneda
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, 8320000, Chile
| | - Eduardo Kattan
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, 8320000, Chile
| | | | - Gustavo Ospina-Tascón
- Intensive Care Medicine Department, Fundación Valle del Lili - Universidad ICESI, Cali, Colombia
| | - Jean-Louis Teboul
- Assistance Publique-Hôpitaux de Paris, Hôpitaux universitaires Paris-Sud, Hôpital de Bicêtre, Service de Réanimation Médicale, Le Kremlin-Bicêtre, France
| | - Jan Bakker
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, 8320000, Chile.,Department of Intensive Care Adults, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Glenn Hernández
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, 8320000, Chile.
| |
Collapse
|
27
|
Bakker J. Lactate levels and hemodynamic coherence in acute circulatory failure. Best Pract Res Clin Anaesthesiol 2016; 30:523-530. [PMID: 27931655 DOI: 10.1016/j.bpa.2016.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 12/18/2022]
Abstract
In this review, the relationship between changes in macrohemodynamics during the development and treatment of acute circulatory failure is discussed in the context of coherence with microcirculation and changes in lactate. In models of circulatory failure, coherence between changes in macrocirculatory and microcirculatory perfusion and coherence with subsequent changes in lactate levels are more or less preserved. However, in patients, particularly those with septic shock, these relationships are much less clear. As many factors influence the effect of circulatory failure and infection on microcirculation and on lactate levels, this should not be surprising. Resuscitation should therefore aim at adequate tissue perfusion where systemic hemodynamics, microcirculatory perfusion parameters, and lactate levels should be used in their relevant context. This results in treating the individual patient as an n = 1 experiment.
Collapse
Affiliation(s)
- Jan Bakker
- Columbia University Medical Center, Division of Pulmonary, Allergy, and Critical Care Medicine, 622 West 168th St, Room PH 8E-101, Office: PH 8-109, New York, NY 10032, USA; New York University, Department of Pulmonary and Critical Care, 462 First Avenue, New York, NY 10016, USA; Erasmus MC University Medical Center, Department of Intensive Care Adults, PO Box 2040-Room H-625, 3000 CA Rotterdam, Netherlands; Pontificia Universidad Católica de Chile, Department of Intensive Care, Diagonal Paraguay 362, 8330024 Santiago, Chile.
| |
Collapse
|
28
|
Vincent JL, Quintairos E Silva A, Couto L, Taccone FS. The value of blood lactate kinetics in critically ill patients: a systematic review. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:257. [PMID: 27520452 PMCID: PMC4983759 DOI: 10.1186/s13054-016-1403-5] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/01/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND The time course of blood lactate levels could be helpful to assess a patient's response to therapy. Although the focus of published studies has been largely on septic patients, many other studies have reported serial blood lactate levels in different groups of acutely ill patients. METHODS We performed a systematic search of PubMed, Science Direct, and Embase until the end of February 2016 plus reference lists of relevant publications. We selected all observational and interventional studies that evaluated the capacity of serial blood lactate concentrations to predict outcome. There was no restriction based on language. We excluded studies in pediatric populations, experimental studies, and studies that did not report changes in lactate values or all-cause mortality rates. We separated studies according to the type of patients included. We collected data on the number of patients, timing of lactate measurements, minimum lactate level needed for inclusion if present, and suggested time interval for predictive use. RESULTS A total of 96 studies met our criteria: 14 in general ICU populations, five in general surgical ICU populations, five in patients post cardiac surgery, 14 in trauma patients, 39 in patients with sepsis, four in patients with cardiogenic shock, eight in patients after cardiac arrest, three in patients with respiratory failure, and four in other conditions. A decrease in lactate levels over time was consistently associated with lower mortality rates in all subgroups of patients. Most studies reported changes over 6, 12 or 24 hrs, fewer used shorter time intervals. Lactate kinetics did not appear very different in patients with sepsis and other types of patients. A few studies suggested that therapy could be guided by these measurements. CONCLUSIONS The observation of a better outcome associated with decreasing blood lactate concentrations was consistent throughout the clinical studies, and was not limited to septic patients. In all groups, the changes are relatively slow, so that lactate measurements every 1-2 hrs are probably sufficient in most acute conditions. The value of lactate kinetics appears to be valid regardless of the initial value.
Collapse
Affiliation(s)
- Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.
| | - Amanda Quintairos E Silva
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - Lúcio Couto
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - Fabio S Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| |
Collapse
|
29
|
Hernández G, Tapia P, Alegría L, Soto D, Luengo C, Gomez J, Jarufe N, Achurra P, Rebolledo R, Bruhn A, Castro R, Kattan E, Ospina-Tascón G, Bakker J. Effects of dexmedetomidine and esmolol on systemic hemodynamics and exogenous lactate clearance in early experimental septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:234. [PMID: 27480413 PMCID: PMC4969982 DOI: 10.1186/s13054-016-1419-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/20/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Persistent hyperlactatemia during septic shock is multifactorial. Hypoperfusion-related anaerobic production and adrenergic-driven aerobic generation together with impaired lactate clearance have been implicated. An excessive adrenergic response could contribute to persistent hyperlactatemia and adrenergic modulation might be beneficial. We assessed the effects of dexmedetomidine and esmolol on hemodynamics, lactate generation, and exogenous lactate clearance during endotoxin-induced septic shock. METHODS Eighteen anesthetized and mechanically ventilated sheep were subjected to a multimodal hemodynamic/perfusion assessment including hepatic and portal vein catheterizations, total hepatic blood flow, and muscle microdialysis. After monitoring, all received a bolus and continuous infusion of endotoxin. After 1 h they were volume resuscitated, and then randomized to endotoxin-control, endotoxin-dexmedetomidine (sequential doses of 0.5 and 1.0 μg/k/h) or endotoxin-esmolol (titrated to decrease basal heart rate by 20 %) groups. Samples were taken at four time points, and exogenous lactate clearance using an intravenous administration of sodium L-lactate (1 mmol/kg) was performed at the end of the experiments. RESULTS Dexmedetomidine and esmolol were hemodynamically well tolerated. The dexmedetomidine group exhibited lower epinephrine levels, but no difference in muscle lactate. Despite progressive hypotension in all groups, both dexmedetomidine and esmolol were associated with lower arterial and portal vein lactate levels. Exogenous lactate clearance was significantly higher in the dexmedetomidine and esmolol groups. CONCLUSIONS Dexmedetomidine and esmolol were associated with lower arterial and portal lactate levels, and less impairment of exogenous lactate clearance in a model of septic shock. The use of dexmedetomidine and esmolol appears to be associated with beneficial effects on gut lactate generation and lactate clearance and exhibits no negative impact on systemic hemodynamics.
Collapse
Affiliation(s)
- Glenn Hernández
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, 8320000, Chile.
| | - Pablo Tapia
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, 8320000, Chile
| | - Leyla Alegría
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, 8320000, Chile
| | - Dagoberto Soto
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, 8320000, Chile
| | - Cecilia Luengo
- Unidad de Pacientes Críticos, Hospital Clínico Universidad de Chile Santos Dumont 999, Santiago, 8380000, Chile
| | - Jussara Gomez
- Universidade de Passo Fundo, Av. Brasil Leste, 285 - São José, Passo Fundo, RS, 99052-900, Brazil
| | - Nicolas Jarufe
- Departamento de Cirugía Digestiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, 8320000, Chile
| | - Pablo Achurra
- Departamento de Cirugía Digestiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, 8320000, Chile
| | - Rolando Rebolledo
- Departamento de Cirugía Digestiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, 8320000, Chile
| | - Alejandro Bruhn
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, 8320000, Chile
| | - Ricardo Castro
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, 8320000, Chile
| | - Eduardo Kattan
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, 8320000, Chile
| | - Gustavo Ospina-Tascón
- Intensive Care Medicine Department, Fundación Valle del Lili - Universidad ICESI, Avenida Simón Bolívar Carrera 98, Cali, 76001000, Colombia
| | - Jan Bakker
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, 8320000, Chile.,Department of Intensive Care Adults, Erasmus University Medical Center, PO Box 2040, Room H625, Rotterdam, CA, 3000, The Netherlands
| |
Collapse
|
30
|
|
31
|
Bakker J, de Backer D, Hernandez G. Lactate-guided resuscitation saves lives: we are not sure. Intensive Care Med 2016; 42:472-474. [PMID: 26831675 DOI: 10.1007/s00134-016-4220-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Jan Bakker
- Department Intensive Care Adults, Erasmus MC University Medical Center, Room H625, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Columbia University Medical Center, New York, USA.
| | - Daniel de Backer
- Université Libre de Bruxelles, Brussels, Belgium
- Department of Intensive Care, CHIREC Hospitals, Brussels, Belgium
| | - Glenn Hernandez
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
32
|
Shankar-Hari M, Bertolini G, Brunkhorst FM, Bellomo R, Annane D, Deutschman CS, Singer M. Judging quality of current septic shock definitions and criteria. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:445. [PMID: 26702879 PMCID: PMC4699344 DOI: 10.1186/s13054-015-1164-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Septic shock definitions are being revisited. We assess the feasibility, reliability, and validity characteristics of the current definitions and criteria of septic shock. Septic shock is conceptualised as cardiovascular dysfunction, tissue perfusion and cellular abnormalities caused by infection. Currently, for feasibility, septic shock is identified at the bedside by using either hypotension or a proxy for tissue perfusion/cellular abnormalities (e.g., hyperlactatemia). We propose that concurrent presence of cardiovascular dysfunction and perfusion/cellular abnormalities could improve validity of septic shock diagnosis, as we are more likely to identify a patient population with all elements of the illness concept. This epidemiological refinement should not affect clinical care and may aid study design to identify illness-specific biomarkers and interventions.
Collapse
Affiliation(s)
- Manu Shankar-Hari
- Department of Intensive Care Medicine, 1st Floor, East Wing, St Thomas' Hospital, Guy's and St Thomas' NHS Foundation Trust, Westminster Bridge Road, London, SE1 7EH, UK. .,Division of Asthma, Allergy and Lung Biology, King's College London, ᅟ, SE1 9RT, UK.
| | - Guido Bertolini
- Laboratory of Clinical Epidemiology and GiViTI Coordinating Centre, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Villa Camozzi, 24020, Ranica (Bergamo), Italy
| | - Frank M Brunkhorst
- Paul-Martini-Research Group for Clinical Sepsis Research, Center for Clinical Studies, Jena University Hospital, Salvador-Allende-Platz 29, Jena, 07737, Germany
| | - Rinaldo Bellomo
- Department of Intensive Care and Medicine, Austin Health, Heidelberg, Melbourne, VIC, 3084, Australia
| | - Djillali Annane
- Department of Intensive Care Medicine, Hôpital Raymond Poincaré (AP-HP), Laboratory of Cell Death, Inflammation & Infection, UMR1173 University of Versailles SQY & INSERM, 92380, Garches, France
| | - Clifford S Deutschman
- Departments of Pediatrics and Molecular Medicine, Hofstra-North Shore-Long Island Jewish-Hofstra School of Medicine, New Hyde Park, NY, 11040, USA.,Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, WC1E 6BT, UK
| |
Collapse
|
33
|
Corrêa TD, Takala J, Jakob SM. Is lactate clearance impaired in septic shock? Crit Care 2015; 19:306. [PMID: 26353812 PMCID: PMC4564963 DOI: 10.1186/s13054-015-1039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|