1
|
Shapiro MR, Tallon EM, Brown ME, Posgai AL, Clements MA, Brusko TM. Leveraging artificial intelligence and machine learning to accelerate discovery of disease-modifying therapies in type 1 diabetes. Diabetologia 2024:10.1007/s00125-024-06339-6. [PMID: 39694914 DOI: 10.1007/s00125-024-06339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/28/2024] [Indexed: 12/20/2024]
Abstract
Progress in developing therapies for the maintenance of endogenous insulin secretion in, or the prevention of, type 1 diabetes has been hindered by limited animal models, the length and cost of clinical trials, difficulties in identifying individuals who will progress faster to a clinical diagnosis of type 1 diabetes, and heterogeneous clinical responses in intervention trials. Classic placebo-controlled intervention trials often include monotherapies, broad participant populations and extended follow-up periods focused on clinical endpoints. While this approach remains the 'gold standard' of clinical research, efforts are underway to implement new approaches harnessing the power of artificial intelligence and machine learning to accelerate drug discovery and efficacy testing. Here, we review emerging approaches for repurposing agents used to treat diseases that share pathogenic pathways with type 1 diabetes and selecting synergistic combinations of drugs to maximise therapeutic efficacy. We discuss how emerging multi-omics technologies, including analysis of antigen processing and presentation to adaptive immune cells, may lead to the discovery of novel biomarkers and subsequent translation into antigen-specific immunotherapies. We also discuss the potential for using artificial intelligence to create 'digital twin' models that enable rapid in silico testing of personalised agents as well as dose determination. To conclude, we discuss some limitations of artificial intelligence and machine learning, including issues pertaining to model interpretability and bias, as well as the continued need for validation studies via confirmatory intervention trials.
Collapse
Affiliation(s)
- Melanie R Shapiro
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
- Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Erin M Tallon
- Division of Pediatric Endocrinology and Diabetes, Children's Mercy Kansas City, Kansas City, MO, USA
- Institute for Data Science and Informatics, University of Missouri-Columbia, Columbia, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Matthew E Brown
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
- Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Amanda L Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
- Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Mark A Clements
- Division of Pediatric Endocrinology and Diabetes, Children's Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.
- Diabetes Institute, University of Florida, Gainesville, FL, USA.
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Wych J, Brunner M, Stenson R, Chmura PJ, Danne T, Mander AP, Mathieu C, Dayan C, Pieber TR. Investigating the effect of verapamil on preservation of beta-cell function in adults with newly diagnosed type 1 diabetes mellitus (Ver-A-T1D): protocol for a randomised, double-blind, placebo-controlled, parallel-group, multicentre trial. BMJ Open 2024; 14:e091597. [PMID: 39613428 PMCID: PMC11605811 DOI: 10.1136/bmjopen-2024-091597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024] Open
Abstract
INTRODUCTION Type 1 diabetes mellitus (T1DM) is a disorder that arises following the selective autoimmune destruction of the insulin-producing beta cells. Beta-cell protective or beta-cell regenerative approaches have gained wider attention, and pharmacological approaches to protect the patient's own insulin-producing beta-cell mass have been proposed. Verapamil is an L-type calcium channel blocker that has been reported to effectively lowers beta-cell thioredoxin-interacting protein expression in rodent beta cells and islets, as well as in human islets, and thus promotes functional beta-cell mass. METHODS AND ANALYSIS The trial is a multicentre, randomised, double-blind, placebo-controlled trial in participants with T1DM, investigating the effect of verapamil on preservation of beta-cell function (Ver-A-T1D). A total of 120 participants will be randomised in a 2:1 ratio between 360 mg verapamil and placebo, administered orally once daily. T1DM patients aged ≥18 and <45 years will be eligible for recruitment within 6 weeks of diagnosis (defined as day of starting insulin therapy). The primary objective will be to determine the changes in stimulated C-peptide response during the first 2 hours of a mixed meal tolerance test at baseline and after 12 months for 360 mg verapamil administered orally once daily versus placebo. Secondary objectives include the effects of 360 mg verapamil on (1) fasting C-peptide, (2) dried blood spot C-peptide, (3) glycated haemoglobin, (4) daily total insulin dose, (5) time in range by intermittent continuous glucose monitoring measures, (6) other biomarkers related to immunological changes and beta-cell death and (6) safety (vital signs, ECG). ETHICS AND DISSEMINATION Ethics approval was sought from the research ethics committee of all participating countries. All participants provided written informed consent before joining the study. Ver-A-T1D received first regulatory and ethical approvals in Austria. The publication policy is set in the innovative approach towards understanding and arresting type 1 diabetes grant agreement (www.innodia.eu). TRIAL REGISTRATION NUMBER EudraCT, 2020-000435-45; ClinicalTrials.gov, NCT04545151. PROTOCOL VERSION Version 8.0 (08 November 2021).
Collapse
Affiliation(s)
- Julie Wych
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Martina Brunner
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Rachel Stenson
- Diabetes Research Group, Cardiff University, Cardiff, UK
| | - Piotr Jaroslaw Chmura
- Center for Protein Research, Kobenhavns Universitet Sundhedsvidenskabelige Fakultet, Kobenhavn, Denmark
| | - Thomas Danne
- Department of General Pediatrics Endocrinology/Diabetology & Clinical Research, Auf der Bult Children's Hospital, Hannover, Germany
| | | | | | - Colin Dayan
- Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | - Thomas R Pieber
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| |
Collapse
|
3
|
Quinn LM, Dias RP, Bidder C, Bhowmik S, Bumke K, Ganapathi J, Gorman S, Hind E, Karandikar S, Kumar K, Lipscomb N, McGovern S, Puthi VR, Randell T, Watts G, Narendran P. Presentation and characteristics of children with screen-detected type 1 diabetes: learnings from the ELSA general population pediatric screening study. BMJ Open Diabetes Res Care 2024; 12:e004480. [PMID: 39327068 PMCID: PMC11429353 DOI: 10.1136/bmjdrc-2024-004480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
INTRODUCTION We describe the identification and management of general population screen-detected type 1 diabetes (T1D) and share learnings for best practice. RESEARCH DESIGN AND METHODS Children diagnosed with T1D through a general population screening initiative, the EarLy Surveillance for Autoimmune diabetes (ELSA) study, were reviewed and described.Parents provided written, informed consent for inclusion in the case series. RESULTS 14 children with insulin requiring (stage 3) T1D are described. These cases offer unique insights into the features of screen-detected T1D. T1D is identified sooner through screening programs, characterized by absent/short symptom duration, median presenting glycated hemoglobin 6.6% (49 mmol/mol) and insulin requirements<0.5 units/kg/day. ELSA identified four children at stage 3 and another 4 progressed within 4 months of ELSA completion, including two single seropositive children. Six children developed stage 3 T1D prior to ELSA completion, including two children (14%, n=2/14) with diabetic ketoacidosis prior to confirmed antibody status. CONCLUSIONS There are three main learnings from this case series. First, T1D identified through screening is at an earlier stage of its natural history and requires personalized insulin regimens with lower total daily insulin doses. Second, single autoantibody seropositivity can rapidly progress to stage 3. Finally, insulin requirement can manifest at any stage of the T1D screening pathway, and therefore early education around symptom recognition is essential for families participating in screening programs.
Collapse
Affiliation(s)
- Lauren M Quinn
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Renuka P Dias
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- Department of Paediatric Endocrinology, Birmingham Women’s and Children’s Hospitals NHS Foundation Trust, Birmingham, UK
| | - Christopher Bidder
- Department of Child health, Swansea Bay University Health Board, Morriston Hospital, Swansea, UK
| | | | - Kerstin Bumke
- Paediatric Department, University Hospital Wishaw, Wishaw, UK
| | | | - Shaun Gorman
- Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Edward Hind
- North Hampshire Hospital, Basingstoke, Hampshire, UK
| | | | - Kiran Kumar
- Burton Hospitals NHS Foundation Trust, Derby, UK
| | - Nicholas Lipscomb
- Department of Paediatrics, South West Acute Hospital, Enniskillen, UK
| | | | - Vijith R Puthi
- Department of Paediatrics, Peterborough City Hospital, Peterborough, UK
| | | | | | - Parth Narendran
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Department of Diabetes, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
4
|
Phillip M, Achenbach P, Addala A, Albanese-O'Neill A, Battelino T, Bell KJ, Besser REJ, Bonifacio E, Colhoun HM, Couper JJ, Craig ME, Danne T, de Beaufort C, Dovc K, Driscoll KA, Dutta S, Ebekozien O, Larsson HE, Feiten DJ, Frohnert BI, Gabbay RA, Gallagher MP, Greenbaum CJ, Griffin KJ, Hagopian W, Haller MJ, Hendrieckx C, Hendriks E, Holt RIG, Hughes L, Ismail HM, Jacobsen LM, Johnson SB, Kolb LE, Kordonouri O, Lange K, Lash RW, Lernmark Å, Libman I, Lundgren M, Maahs DM, Marcovecchio ML, Mathieu C, Miller KM, O'Donnell HK, Oron T, Patil SP, Pop-Busui R, Rewers MJ, Rich SS, Schatz DA, Schulman-Rosenbaum R, Simmons KM, Sims EK, Skyler JS, Smith LB, Speake C, Steck AK, Thomas NPB, Tonyushkina KN, Veijola R, Wentworth JM, Wherrett DK, Wood JR, Ziegler AG, DiMeglio LA. Consensus guidance for monitoring individuals with islet autoantibody-positive pre-stage 3 type 1 diabetes. Diabetologia 2024; 67:1731-1759. [PMID: 38910151 PMCID: PMC11410955 DOI: 10.1007/s00125-024-06205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Given the proven benefits of screening to reduce diabetic ketoacidosis (DKA) likelihood at the time of stage 3 type 1 diabetes diagnosis, and emerging availability of therapy to delay disease progression, type 1 diabetes screening programmes are being increasingly emphasised. Once broadly implemented, screening initiatives will identify significant numbers of islet autoantibody-positive (IAb+) children and adults who are at risk of (confirmed single IAb+) or living with (multiple IAb+) early-stage (stage 1 and stage 2) type 1 diabetes. These individuals will need monitoring for disease progression; much of this care will happen in non-specialised settings. To inform this monitoring, JDRF in conjunction with international experts and societies developed consensus guidance. Broad advice from this guidance includes the following: (1) partnerships should be fostered between endocrinologists and primary-care providers to care for people who are IAb+; (2) when people who are IAb+ are initially identified there is a need for confirmation using a second sample; (3) single IAb+ individuals are at lower risk of progression than multiple IAb+ individuals; (4) individuals with early-stage type 1 diabetes should have periodic medical monitoring, including regular assessments of glucose levels, regular education about symptoms of diabetes and DKA, and psychosocial support; (5) interested people with stage 2 type 1 diabetes should be offered trial participation or approved therapies; and (6) all health professionals involved in monitoring and care of individuals with type 1 diabetes have a responsibility to provide education. The guidance also emphasises significant unmet needs for further research on early-stage type 1 diabetes to increase the rigour of future recommendations and inform clinical care.
Collapse
Affiliation(s)
- Moshe Phillip
- Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Technical University Munich, Klinikum Rechts Der Isar, Munich, Germany
| | - Ananta Addala
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Tadej Battelino
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolism, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Kirstine J Bell
- Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Rachel E J Besser
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre Human Genetics, Nuffield Department of Medicine Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Ezio Bonifacio
- Center for Regenerative Therapies Dresden, Faculty of Medicine, Technical University of Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, Helmholtz Centre Munich at the University Clinic Carl Gustav Carus of TU Dresden and Faculty of Medicine, Dresden, Germany
| | - Helen M Colhoun
- The Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Department of Public Health, NHS Fife, Kirkcaldy, UK
| | - Jennifer J Couper
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Division of Paediatrics, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Maria E Craig
- Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Discipline of Paediatrics & Child Health, School of Clinical Medicine, UNSW Medicine & Health, Sydney, NSW, Australia
| | | | - Carine de Beaufort
- International Society for Pediatric and Adolescent Diabetes (ISPAD), Berlin, Germany
- Diabetes & Endocrine Care Clinique Pédiatrique (DECCP), Clinique Pédiatrique/Centre Hospitalier (CH) de Luxembourg, Luxembourg City, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Klemen Dovc
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolism, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Kimberly A Driscoll
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
- Department of Pediatrics, University of Florida Diabetes Institute, Gainesville, FL, USA
| | | | | | - Helena Elding Larsson
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Department of Pediatrics, Skåne University Hospital, Malmö and Lund, Sweden
| | | | - Brigitte I Frohnert
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | - Carla J Greenbaum
- Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, WA, USA
| | - Kurt J Griffin
- Sanford Research, Sioux Falls, SD, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - William Hagopian
- Pacific Northwest Diabetes Research Institute, University of Washington, Seattle, WA, USA
| | - Michael J Haller
- Department of Pediatrics, University of Florida Diabetes Institute, Gainesville, FL, USA
- Division of Endocrinology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Christel Hendrieckx
- School of Psychology, Deakin University, Geelong, VIC, Australia
- The Australian Centre for Behavioural Research in Diabetes, Diabetes Victoria, Carlton, VIC, Australia
- Institute for Health Transformation, Deakin University, Geelong, VIC, Australia
| | - Emile Hendriks
- Department of Paediatrics, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Richard I G Holt
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Heba M Ismail
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Laura M Jacobsen
- Division of Endocrinology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Suzanne B Johnson
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Leslie E Kolb
- Association of Diabetes Care & Education Specialists, Chicago, IL, USA
| | | | - Karin Lange
- Medical Psychology, Hannover Medical School, Hannover, Germany
| | | | - Åke Lernmark
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Ingrid Libman
- Division of Pediatric Endocrinology and Diabetes, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Markus Lundgren
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Department of Pediatrics, Kristianstad Hospital, Kristianstad, Sweden
| | - David M Maahs
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - M Loredana Marcovecchio
- Department of Pediatrics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Chantal Mathieu
- Department of Endocrinology, UZ Gasthuisberg, KU Leuven, Leuven, Belgium
| | | | - Holly K O'Donnell
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tal Oron
- Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shivajirao P Patil
- Department of Family Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Rodica Pop-Busui
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Marian J Rewers
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Desmond A Schatz
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Rifka Schulman-Rosenbaum
- Division of Endocrinology, Long Island Jewish Medical Center, Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, USA
| | - Kimber M Simmons
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily K Sims
- Division of Pediatric Endocrinology and Diabetology, Herman B Wells Center for Pediatric Research, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jay S Skyler
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Laura B Smith
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Cate Speake
- Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, WA, USA
| | - Andrea K Steck
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Ksenia N Tonyushkina
- Division of Endocrinology and Diabetes, Baystate Children's Hospital and University of Massachusetts Chan Medical School - Baystate, Springfield, MA, USA
| | - Riitta Veijola
- Research Unit of Clinical Medicine, Department of Pediatrics, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - John M Wentworth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Diane K Wherrett
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jamie R Wood
- Department of Pediatric Endocrinology, Rainbow Babies and Children's Hospital, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Technical University Munich, Klinikum Rechts Der Isar, Munich, Germany
| | - Linda A DiMeglio
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
5
|
Vatanen T, de Beaufort C, Marcovecchio ML, Overbergh L, Brunak S, Peakman M, Mathieu C, Knip M. Gut microbiome shifts in people with type 1 diabetes are associated with glycaemic control: an INNODIA study. Diabetologia 2024; 67:1930-1942. [PMID: 38832971 PMCID: PMC11410864 DOI: 10.1007/s00125-024-06192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/23/2024] [Indexed: 06/06/2024]
Abstract
AIMS/HYPOTHESIS The gut microbiome is implicated in the disease process leading to clinical type 1 diabetes, but less is known about potential changes in the gut microbiome after the diagnosis of type 1 diabetes and implications in glucose homeostasis. We aimed to analyse potential associations between the gut microbiome composition and clinical and laboratory data during a 2 year follow-up of people with newly diagnosed type 1 diabetes, recruited to the Innovative approaches to understanding and arresting type 1 diabetes (INNODIA) study. In addition, we analysed the microbiome composition in initially unaffected family members, who progressed to clinical type 1 diabetes during or after their follow-up for 4 years. METHODS We characterised the gut microbiome composition of 98 individuals with newly diagnosed type 1 diabetes (ND cohort) and 194 autoantibody-positive unaffected family members (UFM cohort), representing a subgroup of the INNODIA Natural History Study, using metagenomic sequencing. Participants from the ND cohort attended study visits within 6 weeks from the diagnosis and 3, 6, 12 and 24 months later for stool sample collection and laboratory tests (HbA1c, C-peptide, diabetes-associated autoantibodies). Participants from the UFM cohort were assessed at baseline and 6, 12, 18, 24 and 36 months later. RESULTS We observed a longitudinal increase in 21 bacterial species in the ND cohort but not in the UFM cohort. The relative abundance of Faecalibacterium prausnitzii was inversely associated with the HbA1c levels at diagnosis (p=0.0019). The rate of the subsequent disease progression in the ND cohort, as assessed by change in HbA1c, C-peptide levels and insulin dose, was associated with the abundance of several bacterial species. Individuals with rapid decrease in C-peptide levels in the ND cohort had the lowest gut microbiome diversity. Nineteen individuals who were diagnosed with type 1 diabetes in the UFM cohort had increased abundance of Sutterella sp. KLE1602 compared with the undiagnosed UFM individuals (p=1.2 × 10-4). CONCLUSIONS/INTERPRETATION Our data revealed associations between the gut microbiome composition and the disease progression in individuals with recent-onset type 1 diabetes. Future mechanistic studies as well as animal studies and human trials are needed to further validate the significance and causality of these associations.
Collapse
Affiliation(s)
- Tommi Vatanen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Liggins Institute, University of Auckland, Auckland, New Zealand.
| | - Carine de Beaufort
- Paediatric Endocrinology and Diabetology (DECCP), Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Lut Overbergh
- Katholieke Universiteit Leuven/Universitaire Ziekenhuizen, Leuven, Belgium
| | - Soren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mark Peakman
- Immunology & Inflammation Research Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Chantal Mathieu
- Department of Chronic Diseases and Metabolism, Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- New Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland.
| |
Collapse
|
6
|
Phillip M, Achenbach P, Addala A, Albanese-O’Neill A, Battelino T, Bell KJ, Besser RE, Bonifacio E, Colhoun HM, Couper JJ, Craig ME, Danne T, de Beaufort C, Dovc K, Driscoll KA, Dutta S, Ebekozien O, Elding Larsson H, Feiten DJ, Frohnert BI, Gabbay RA, Gallagher MP, Greenbaum CJ, Griffin KJ, Hagopian W, Haller MJ, Hendrieckx C, Hendriks E, Holt RI, Hughes L, Ismail HM, Jacobsen LM, Johnson SB, Kolb LE, Kordonouri O, Lange K, Lash RW, Lernmark Å, Libman I, Lundgren M, Maahs DM, Marcovecchio ML, Mathieu C, Miller KM, O’Donnell HK, Oron T, Patil SP, Pop-Busui R, Rewers MJ, Rich SS, Schatz DA, Schulman-Rosenbaum R, Simmons KM, Sims EK, Skyler JS, Smith LB, Speake C, Steck AK, Thomas NP, Tonyushkina KN, Veijola R, Wentworth JM, Wherrett DK, Wood JR, Ziegler AG, DiMeglio LA. Consensus Guidance for Monitoring Individuals With Islet Autoantibody-Positive Pre-Stage 3 Type 1 Diabetes. Diabetes Care 2024; 47:1276-1298. [PMID: 38912694 PMCID: PMC11381572 DOI: 10.2337/dci24-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024]
Abstract
Given the proven benefits of screening to reduce diabetic ketoacidosis (DKA) likelihood at the time of stage 3 type 1 diabetes diagnosis, and emerging availability of therapy to delay disease progression, type 1 diabetes screening programs are being increasingly emphasized. Once broadly implemented, screening initiatives will identify significant numbers of islet autoantibody-positive (IAb+) children and adults who are at risk for (confirmed single IAb+) or living with (multiple IAb+) early-stage (stage 1 and stage 2) type 1 diabetes. These individuals will need monitoring for disease progression; much of this care will happen in nonspecialized settings. To inform this monitoring, JDRF, in conjunction with international experts and societies, developed consensus guidance. Broad advice from this guidance includes the following: 1) partnerships should be fostered between endocrinologists and primary care providers to care for people who are IAb+; 2) when people who are IAb+ are initially identified, there is a need for confirmation using a second sample; 3) single IAb+ individuals are at lower risk of progression than multiple IAb+ individuals; 4) individuals with early-stage type 1 diabetes should have periodic medical monitoring, including regular assessments of glucose levels, regular education about symptoms of diabetes and DKA, and psychosocial support; 5) interested people with stage 2 type 1 diabetes should be offered trial participation or approved therapies; and 6) all health professionals involved in monitoring and care of individuals with type 1 diabetes have a responsibility to provide education. The guidance also emphasizes significant unmet needs for further research on early-stage type 1 diabetes to increase the rigor of future recommendations and inform clinical care.
Collapse
Affiliation(s)
- Moshe Phillip
- Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Technical University Munich, Klinikum Rechts Der Isar, Munich, Germany
| | - Ananta Addala
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA
| | | | - Tadej Battelino
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolism, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Kirstine J. Bell
- Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Rachel E.J. Besser
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre Human Genetics, Nuffield Department of Medicine Oxford National Institute for Health and Care Research Biomedical Research Centre, University of Oxford, Oxford, U.K
- Department of Paediatrics, University of Oxford, Oxford, U.K
| | - Ezio Bonifacio
- Center for Regenerative Therapies Dresden, Faculty of Medicine, Technical University of Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, Helmholtz Centre Munich at the University Clinic Carl Gustav Carus of Technical University of Dresden, and Faculty of Medicine, Technical University of Dresden, Dresden, Germany
| | - Helen M. Colhoun
- The Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, U.K
- Department of Public Health, NHS Fife, Kirkcaldy, U.K
| | - Jennifer J. Couper
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Division of Paediatrics, Women’s and Children’s Hospital, Adelaide, South Australia, Australia
| | - Maria E. Craig
- Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Discipline of Paediatrics & Child Health, School of Clinical Medicine, UNSW Medicine & Health, Sydney, New South Wales, Australia
| | | | - Carine de Beaufort
- International Society for Pediatric and Adolescent Diabetes (ISPAD), Berlin, Germany
- Diabetes & Endocrine Care Clinique Pédiatrique (DECCP), Clinique Pédiatrique/Centre Hospitalier (CH) de Luxembourg, Luxembourg City, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Klemen Dovc
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolism, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Kimberly A. Driscoll
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL
- Department of Pediatrics, University of Florida Diabetes Institute, Gainesville, FL
| | | | | | - Helena Elding Larsson
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Department of Pediatrics, Skåne University Hospital, Malmö and Lund, Sweden
| | | | - Brigitte I. Frohnert
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | | | - Carla J. Greenbaum
- Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, WA
| | - Kurt J. Griffin
- Sanford Research, Sioux Falls, SD
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD
| | - William Hagopian
- Pacific Northwest Diabetes Research Institute, University of Washington, Seattle, WA
| | - Michael J. Haller
- Department of Pediatrics, University of Florida Diabetes Institute, Gainesville, FL
- Division of Endocrinology, University of Florida College of Medicine, Gainesville, FL
| | - Christel Hendrieckx
- School of Psychology, Deakin University, Geelong, Victoria, Australia
- The Australian Centre for Behavioural Research in Diabetes, Diabetes Victoria, Carlton, Victoria, Australia
- Institute for Health Transformation, Deakin University, Geelong, Victoria, Australia
| | - Emile Hendriks
- Department of Paediatrics, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, U.K
| | - Richard I.G. Holt
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, U.K
- National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, U.K
| | | | - Heba M. Ismail
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Laura M. Jacobsen
- Division of Endocrinology, University of Florida College of Medicine, Gainesville, FL
| | - Suzanne B. Johnson
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL
| | - Leslie E. Kolb
- Association of Diabetes Care & Education Specialists, Chicago, IL
| | | | - Karin Lange
- Medical Psychology, Hannover Medical School, Hannover, Germany
| | | | - Åke Lernmark
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Ingrid Libman
- Division of Pediatric Endocrinology and Diabetes, University of Pittsburgh, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, PA
| | - Markus Lundgren
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Department of Pediatrics, Kristianstad Hospital, Kristianstad, Sweden
| | - David M. Maahs
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | | | - Chantal Mathieu
- Department of Endocrinology, UZ Gasthuisberg, KU Leuven, Leuven, Belgium
| | | | - Holly K. O’Donnell
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Tal Oron
- Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shivajirao P. Patil
- Department of Family Medicine, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Rodica Pop-Busui
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI
| | - Marian J. Rewers
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | | | - Rifka Schulman-Rosenbaum
- Division of Endocrinology, Long Island Jewish Medical Center, Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY
| | - Kimber M. Simmons
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Emily K. Sims
- Division of Pediatric Endocrinology and Diabetology, Herman B Wells Center for Pediatric Research, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Jay S. Skyler
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Laura B. Smith
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Cate Speake
- Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, WA
| | - Andrea K. Steck
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Nicholas P.B. Thomas
- National Institute of Health and Care Research Clinical Research Network Thames Valley and South Midlands, Oxford, U.K
| | - Ksenia N. Tonyushkina
- Division of Endocrinology and Diabetes, Baystate Children’s Hospital and University of Massachusetts Chan Medical School–Baystate, Springfield, MA
| | - Riitta Veijola
- Research Unit of Clinical Medicine, Department of Pediatrics, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - John M. Wentworth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Diane K. Wherrett
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jamie R. Wood
- Department of Pediatric Endocrinology, Rainbow Babies and Children's Hospital, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Technical University Munich, Klinikum Rechts Der Isar, Munich, Germany
| | - Linda A. DiMeglio
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
7
|
Sebastiani G, Grieco GE, Bruttini M, Auddino S, Mori A, Toniolli M, Fignani D, Licata G, Aiello E, Nigi L, Formichi C, Fernandez-Tajes J, Pugliese A, Evans-Molina C, Overbergh L, Tree T, Peakman M, Mathieu C, Dotta F. A set of circulating microRNAs belonging to the 14q32 chromosome locus identifies two subgroups of individuals with recent-onset type 1 diabetes. Cell Rep Med 2024; 5:101591. [PMID: 38838677 PMCID: PMC11228666 DOI: 10.1016/j.xcrm.2024.101591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/02/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Circulating microRNAs (miRNAs) are linked to the onset and progression of type 1 diabetes mellitus (T1DM), thus representing potential disease biomarkers. In this study, we employed a multiplatform sequencing approach to analyze circulating miRNAs in an extended cohort of prospectively evaluated recent-onset T1DM individuals from the INNODIA consortium. Our findings reveal that a set of miRNAs located within T1DM susceptibility chromosomal locus 14q32 distinguishes two subgroups of individuals. To validate our results, we conducted additional analyses on a second cohort of T1DM individuals, confirming the identification of these subgroups, which we have named cluster A and cluster B. Remarkably, cluster B T1DM individuals, who exhibit increased expression of a set of 14q32 miRNAs, show better glycemic control and display a different blood immunomics profile. Our findings suggest that this set of circulating miRNAs can identify two different T1DM subgroups with distinct blood immunomics at baseline and clinical outcomes during follow-up.
Collapse
Affiliation(s)
- Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Marco Bruttini
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy; Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| | - Stefano Auddino
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Alessia Mori
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy; Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| | - Mattia Toniolli
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Elena Aiello
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | | | - Alberto Pugliese
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases and the Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lut Overbergh
- Katholieke Universiteit Leuven/Universitaire Ziekenhuizen, Leuven, Belgium
| | - Timothy Tree
- Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Mark Peakman
- Immunology & Inflammation Research Therapeutic Area, Sanofi, Boston, MA, USA
| | - Chantal Mathieu
- Katholieke Universiteit Leuven/Universitaire Ziekenhuizen, Leuven, Belgium
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy; Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy.
| |
Collapse
|
8
|
Marcovecchio ML, Hendriks AEJ, Delfin C, Battelino T, Danne T, Evans ML, Johannesen J, Kaur S, Knip M, Overbergh L, Pociot F, Todd JA, Van der Schueren B, Wicker LS, Peakman M, Mathieu C. The INNODIA Type 1 Diabetes Natural History Study: a European cohort of newly diagnosed children, adolescents and adults. Diabetologia 2024; 67:995-1008. [PMID: 38517484 PMCID: PMC11058619 DOI: 10.1007/s00125-024-06124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/24/2024] [Indexed: 03/24/2024]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes is an heterogenous condition. Characterising factors explaining differences in an individual's clinical course and treatment response will have important clinical and research implications. Our aim was to explore type 1 diabetes heterogeneity, as assessed by clinical characteristics, autoantibodies, beta cell function and glycaemic outcomes, during the first 12 months from diagnosis, and how it relates to age at diagnosis. METHODS Data were collected from the large INNODIA cohort of individuals (aged 1.0-45.0 years) newly diagnosed with type 1 diabetes, followed 3 monthly, to assess clinical characteristics, C-peptide, HbA1c and diabetes-associated antibodies, and their changes, during the first 12 months from diagnosis, across three age groups: <10 years; 10-17 years; and ≥18 years. RESULTS The study population included 649 individuals (57.3% male; age 12.1±8.3 years), 96.9% of whom were positive for one or more diabetes-related antibodies. Baseline (IQR) fasting C-peptide was 242.0 (139.0-382.0) pmol/l (AUC 749.3 [466.2-1106.1] pmol/l × min), with levels increasing with age (p<0.001). Over time, C-peptide remained lower in participants aged <10 years but it declined in all age groups. In parallel, glucose levels progressively increased. Lower baseline fasting C-peptide, BMI SD score and presence of diabetic ketoacidosis at diagnosis were associated with lower stimulated C-peptide over time. HbA1c decreased during the first 3 months (p<0.001), whereas insulin requirement increased from 3 months post diagnosis (p<0.001). CONCLUSIONS/INTERPRETATION In this large cohort with newly diagnosed type 1 diabetes, we identified age-related differences in clinical and biochemical variables. Of note, C-peptide was lower in younger children but there were no main age differences in its rate of decline.
Collapse
Affiliation(s)
- M Loredana Marcovecchio
- Department of Paediatrics, University of Cambridge, Cambridge, UK.
- Department of Paediatric Diabetes and Endocrinology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - A Emile J Hendriks
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Department of Paediatric Diabetes and Endocrinology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Carl Delfin
- Department of Pharmacometrics, Novo Nordisk A/S, Søborg, Denmark
| | - Tadej Battelino
- Department of Endocrinology, Diabetes and Metabolism, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Thomas Danne
- Centre for Paediatric Endocrinology, Diabetology, and Clinical Research, Auf Der Bult Children's Hospital, Hannover, Germany
| | - Mark L Evans
- Wellcome MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jesper Johannesen
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Paediatrics, Copenhagen University Hospital, Herlev, Denmark; Institute of Health and Medical Sciences, University of Copenhagen, Herlev, Denmark
| | - Simranjeet Kaur
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Paediatrics, Copenhagen University Hospital, Herlev, Denmark; Institute of Health and Medical Sciences, University of Copenhagen, Herlev, Denmark
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Pediatric Research Center, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Lut Overbergh
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Paediatrics, Copenhagen University Hospital, Herlev, Denmark; Institute of Health and Medical Sciences, University of Copenhagen, Herlev, Denmark
| | - John A Todd
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Bart Van der Schueren
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Linda S Wicker
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mark Peakman
- Immunology & Inflammation Research Therapeutic Area, Sanofi, MA, USA
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Krogvold L, Mynarek IM, Ponzi E, Mørk FB, Hessel TW, Roald T, Lindblom N, Westman J, Barker P, Hyöty H, Ludvigsson J, Hanssen KF, Johannesen J, Dahl-Jørgensen K. Pleconaril and ribavirin in new-onset type 1 diabetes: a phase 2 randomized trial. Nat Med 2023; 29:2902-2908. [PMID: 37789144 PMCID: PMC10667091 DOI: 10.1038/s41591-023-02576-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
Previous studies showed a low-grade enterovirus infection in the pancreatic islets of patients with newly diagnosed type 1 diabetes (T1D). In the Diabetes Virus Detection (DiViD) Intervention, a phase 2, placebo-controlled, randomized, parallel group, double-blind trial, 96 children and adolescents (aged 6-15 years) with new-onset T1D received antiviral treatment with pleconaril and ribavirin (n = 47) or placebo (n = 49) for 6 months, with the aim of preserving β cell function. The primary endpoint was the mean stimulated C-peptide area under the curve (AUC) 12 months after the initiation of treatment (less than 3 weeks after diagnosis) using a mixed linear model. The model used longitudinal log-transformed serum C-peptide AUCs at baseline, at 3 months, 6 months and 1 year. The primary endpoint was met with the serum C-peptide AUC being higher in the pleconaril and ribavirin treatment group compared to the placebo group at 12 months (average marginal effect = 0.057 in the linear mixed model; 95% confidence interval = 0.004-0.11, P = 0.037). The treatment was well tolerated. The results show that antiviral treatment may preserve residual insulin production in children and adolescent with new-onset T1D. This provides a rationale for further evaluating antiviral strategies in the prevention and treatment of T1D. European Union Drug Regulating Authorities Clinical Trials identifier: 2015-003350-41 .
Collapse
Affiliation(s)
- Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Ida Maria Mynarek
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Erica Ponzi
- Clinical Trial Unit, Oslo University Hospital, Oslo, Norway
| | - Freja Barrett Mørk
- Steno Diabetes Center Copenhagen, Herlev University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Witzner Hessel
- Steno Diabetes Center Copenhagen, Herlev University Hospital, Copenhagen, Denmark
| | - Trine Roald
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | | | | | - Peter Barker
- National Institute for Health and Care Research Cambridge Biomedical Research Centre, Core Biochemistry Assay Laboratory, Cambridge, UK
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | | | | | - Jesper Johannesen
- Steno Diabetes Center Copenhagen, Herlev University Hospital, Copenhagen, Denmark
| | - Knut Dahl-Jørgensen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.
- Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
10
|
Moulder R, Välikangas T, Hirvonen MK, Suomi T, Brorsson CA, Lietzén N, Bruggraber SFA, Overbergh L, Dunger DB, Peakman M, Chmura PJ, Brunak S, Schulte AM, Mathieu C, Knip M, Elo LL, Lahesmaa R. Targeted serum proteomics of longitudinal samples from newly diagnosed youth with type 1 diabetes distinguishes markers of disease and C-peptide trajectory. Diabetologia 2023; 66:1983-1996. [PMID: 37537394 PMCID: PMC10542287 DOI: 10.1007/s00125-023-05974-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/06/2023] [Indexed: 08/05/2023]
Abstract
AIMS/HYPOTHESIS There is a growing need for markers that could help indicate the decline in beta cell function and recognise the need and efficacy of intervention in type 1 diabetes. Measurements of suitably selected serum markers could potentially provide a non-invasive and easily applicable solution to this challenge. Accordingly, we evaluated a broad panel of proteins previously associated with type 1 diabetes in serum from newly diagnosed individuals during the first year from diagnosis. To uncover associations with beta cell function, comparisons were made between these targeted proteomics measurements and changes in fasting C-peptide levels. To further distinguish proteins linked with the disease status, comparisons were made with measurements of the protein targets in age- and sex-matched autoantibody-negative unaffected family members (UFMs). METHODS Selected reaction monitoring (SRM) mass spectrometry analyses of serum, targeting 85 type 1 diabetes-associated proteins, were made. Sera from individuals diagnosed under 18 years (n=86) were drawn within 6 weeks of diagnosis and at 3, 6 and 12 months afterwards (288 samples in total). The SRM data were compared with fasting C-peptide/glucose data, which was interpreted as a measure of beta cell function. The protein data were further compared with cross-sectional SRM measurements from UFMs (n=194). RESULTS Eleven proteins had statistically significant associations with fasting C-peptide/glucose. Of these, apolipoprotein L1 and glutathione peroxidase 3 (GPX3) displayed the strongest positive and inverse associations, respectively. Changes in GPX3 levels during the first year after diagnosis indicated future fasting C-peptide/glucose levels. In addition, differences in the levels of 13 proteins were observed between the individuals with type 1 diabetes and the matched UFMs. These included GPX3, transthyretin, prothrombin, apolipoprotein C1 and members of the IGF family. CONCLUSIONS/INTERPRETATION The association of several targeted proteins with fasting C-peptide/glucose levels in the first year after diagnosis suggests their connection with the underlying changes accompanying alterations in beta cell function in type 1 diabetes. Moreover, the direction of change in GPX3 during the first year was indicative of subsequent fasting C-peptide/glucose levels, and supports further investigation of this and other serum protein measurements in future studies of beta cell function in type 1 diabetes.
Collapse
Affiliation(s)
- Robert Moulder
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Tommi Välikangas
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - M Karoliina Hirvonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Caroline A Brorsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niina Lietzén
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | | | - Lut Overbergh
- Katholieke Universiteit Leuven/Universitaire Ziekenhuizen, Leuven, Belgium
| | - David B Dunger
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Mark Peakman
- Immunology & Inflammation Research Therapeutic Area, Sanofi, Boston, MA, USA
| | - Piotr J Chmura
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Soren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Chantal Mathieu
- Katholieke Universiteit Leuven/Universitaire Ziekenhuizen, Leuven, Belgium
| | - Mikael Knip
- Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
11
|
Sassi G, Licata G, Ventriglia G, Wouters A, Lemaitre P, Seurinck R, Mori A, Grieco GE, Bissenova S, Ellis D, Caluwaerts S, Rottiers P, Vandamme N, Mathieu C, Dotta F, Gysemans C, Sebastiani G. A Plasma miR-193b-365 Signature Combined With Age and Glycemic Status Predicts Response to Lactococcus lactis-Based Antigen-Specific Immunotherapy in New-Onset Type 1 Diabetes. Diabetes 2023; 72:1470-1482. [PMID: 37494666 PMCID: PMC10545562 DOI: 10.2337/db22-0852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/10/2023] [Indexed: 07/28/2023]
Abstract
Immunomodulation combined with antigen therapy holds great promise to arrest autoimmune type 1 diabetes, but clinical translation is hampered by a lack of prognostic biomarkers. Low-dose anti-CD3 plus Lactococcus lactis bacteria secreting proinsulin and IL-10 reversed new-onset disease in nonobese diabetic (NOD) mice, yet some mice were resistant to the therapy. Using miRNA profiling, six miRNAs (i.e., miR-34a-5p, miR-125a-3p, miR-193b-3p, miR-328, miR-365-3p, and miR-671-3p) were identified as differentially expressed in plasma of responder versus nonresponder mice before study entry. After validation and stratification in an independent cohort, plasma miR-193b-3p and miR-365-3p, combined with age and glycemic status at study entry, had the best power to predict, with high sensitivity and specificity, poor response to the therapy. These miRNAs were highly abundant in pancreas-infiltrating neutrophils and basophils with a proinflammatory and activated phenotype. Here, a set of miRNAs and disease-associated parameters are presented as a predictive signature for the L. lactis-based immunotherapy outcome in new-onset type 1 diabetes, hence allowing targeted recruitment of trial participants and accelerated trial execution. ARTICLE HIGHLIGHTS Low-dose anti-CD3 combined with oral gavage of genetically modified Lactococcus lactis bacteria secreting human proinsulin and IL-10 holds great promise to arrest autoimmune type 1 diabetes, but the absence of biomarkers predicting therapeutic success hampers clinical translation. A set of cell-free circulation miRNAs together with age and glycemia at baseline predicts a poor response after L. lactis-based immunotherapy in nonobese mice with new-onset diabetes. Pancreas-infiltrating neutrophils and basophils are identified as potential cellular sources of discovered miRNAs. The prognostic signature could guide targeted recruitment of patients with newly diagnosed type 1 diabetes in clinical trials with the L. lactis-based immunotherapy.
Collapse
Affiliation(s)
- Gabriele Sassi
- Clinical and Experimental Endocrinology, Chrometa, KU Leuven, Leuven, Belgium
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS, Toscana Life Science, Siena, Italy
| | - Giuliana Ventriglia
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS, Toscana Life Science, Siena, Italy
| | - Amber Wouters
- Clinical and Experimental Endocrinology, Chrometa, KU Leuven, Leuven, Belgium
| | - Pierre Lemaitre
- Clinical and Experimental Endocrinology, Chrometa, KU Leuven, Leuven, Belgium
| | - Ruth Seurinck
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Alessia Mori
- Tuscany Centre for Precision Medicine, Siena, Italy
| | - Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS, Toscana Life Science, Siena, Italy
| | - Samal Bissenova
- Clinical and Experimental Endocrinology, Chrometa, KU Leuven, Leuven, Belgium
| | - Darcy Ellis
- Clinical and Experimental Endocrinology, Chrometa, KU Leuven, Leuven, Belgium
| | | | | | - Niels Vandamme
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- VIB Single Cell Core, Leuven–Ghent, Ghent, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Chrometa, KU Leuven, Leuven, Belgium
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS, Toscana Life Science, Siena, Italy
- Tuscany Centre for Precision Medicine, Siena, Italy
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, Chrometa, KU Leuven, Leuven, Belgium
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS, Toscana Life Science, Siena, Italy
| |
Collapse
|
12
|
Limbert C, von dem Berge T, Danne T. Personalizing Early-Stage Type 1 Diabetes in Children. Diabetes Care 2023; 46:1747-1749. [PMID: 37729506 DOI: 10.2337/dci23-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/13/2023] [Indexed: 09/22/2023]
Affiliation(s)
- Catarina Limbert
- Unit of Paediatric Endocrinology and Diabetes, Hospital Dona Estefânia, Lisbon, Portugal
- Comprehensive Health Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | | | - Thomas Danne
- Children's Hospital AUF DER BULT, Hannover, Germany
- Hannover Medical School, Hannover, Germany
| |
Collapse
|
13
|
Suomi T, Starskaia I, Kalim UU, Rasool O, Jaakkola MK, Grönroos T, Välikangas T, Brorsson C, Mazzoni G, Bruggraber S, Overbergh L, Dunger D, Peakman M, Chmura P, Brunak S, Schulte AM, Mathieu C, Knip M, Lahesmaa R, Elo LL. Gene expression signature predicts rate of type 1 diabetes progression. EBioMedicine 2023; 92:104625. [PMID: 37224769 DOI: 10.1016/j.ebiom.2023.104625] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/06/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Type 1 diabetes is a complex heterogenous autoimmune disease without therapeutic interventions available to prevent or reverse the disease. This study aimed to identify transcriptional changes associated with the disease progression in patients with recent-onset type 1 diabetes. METHODS Whole-blood samples were collected as part of the INNODIA study at baseline and 12 months after diagnosis of type 1 diabetes. We used linear mixed-effects modelling on RNA-seq data to identify genes associated with age, sex, or disease progression. Cell-type proportions were estimated from the RNA-seq data using computational deconvolution. Associations to clinical variables were estimated using Pearson's or point-biserial correlation for continuous and dichotomous variables, respectively, using only complete pairs of observations. FINDINGS We found that genes and pathways related to innate immunity were downregulated during the first year after diagnosis. Significant associations of the gene expression changes were found with ZnT8A autoantibody positivity. Rate of change in the expression of 16 genes between baseline and 12 months was found to predict the decline in C-peptide at 24 months. Interestingly and consistent with earlier reports, increased B cell levels and decreased neutrophil levels were associated with the rapid progression. INTERPRETATION There is considerable individual variation in the rate of progression from appearance of type 1 diabetes-specific autoantibodies to clinical disease. Patient stratification and prediction of disease progression can help in developing more personalised therapeutic strategies for different disease endotypes. FUNDING A full list of funding bodies can be found under Acknowledgments.
Collapse
Affiliation(s)
- Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Inna Starskaia
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland; Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Ubaid Ullah Kalim
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Maria K Jaakkola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Toni Grönroos
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Tommi Välikangas
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Caroline Brorsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gianluca Mazzoni
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Lut Overbergh
- Katholieke Universiteit Leuven/Universitaire Ziekenhuizen, Leuven, Belgium
| | - David Dunger
- Department of Paediatrics, University of Cambridge, Cambridge, England, UK
| | - Mark Peakman
- Immunology & Inflammation Research Therapeutic Area, Sanofi, MA, USA
| | - Piotr Chmura
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Chantal Mathieu
- Katholieke Universiteit Leuven/Universitaire Ziekenhuizen, Leuven, Belgium
| | - Mikael Knip
- Paediatric Research Centre, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Tampere Centre for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland; Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland.
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland; Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland.
| |
Collapse
|
14
|
Fyvie MJ, Gillespie KM. The importance of biomarker development for monitoring type 1 diabetes progression rate and therapeutic responsiveness. Front Immunol 2023; 14:1158278. [PMID: 37256143 PMCID: PMC10225507 DOI: 10.3389/fimmu.2023.1158278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/28/2023] [Indexed: 06/01/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune condition of children and adults in which immune cells target insulin-producing pancreatic β-cells for destruction. This results in a chronic inability to regulate blood glucose levels. The natural history of T1D is well-characterized in childhood. Evidence of two or more autoantibodies to the islet antigens insulin, GAD, IA-2 or ZnT8 in early childhood is associated with high risk of developing T1D in the future. Prediction of risk is less clear in adults and, overall, the factors controlling the progression rate from multiple islet autoantibody positivity to onset of symptoms are not fully understood. An anti-CD3 antibody, teplizumab, was recently shown to delay clinical progression to T1D in high-risk individuals including adults and older children. This represents an important proof of concept for those at risk of future T1D. Given their role in risk assessment, islet autoantibodies might appear to be the most obvious biomarkers to monitor efficacy. However, monitoring islet autoantibodies in clinical trials has shown only limited effects, although antibodies to the most recently identified autoantigen, tetraspanin-7, have not yet been studied in this context. Measurements of beta cell function remain fundamental to assessing efficacy and different models have been proposed, but improved biomarkers are required for both progression studies before onset of diabetes and in therapeutic monitoring. In this mini-review, we consider some established and emerging predictive and prognostic biomarkers, including markers of pancreatic function that could be integrated with metabolic markers to generate improved strategies to measure outcomes of therapeutic intervention.
Collapse
Affiliation(s)
| | - Kathleen M. Gillespie
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
15
|
Ghalwash M, Anand V, Lou O, Martin F, Rewers M, Ziegler AG, Toppari J, Hagopian WA, Veijola R. Islet autoantibody screening in at-risk adolescents to predict type 1 diabetes until young adulthood: a prospective cohort study. THE LANCET. CHILD & ADOLESCENT HEALTH 2023; 7:261-268. [PMID: 36681087 PMCID: PMC10038928 DOI: 10.1016/s2352-4642(22)00350-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Screening for islet autoantibodies in children and adolescents identifies individuals who will later develop type 1 diabetes, allowing patient and family education to prevent diabetic ketoacidosis at onset and to enable consideration of preventive therapies. We aimed to assess whether islet autoantibody screening is effective for predicting type 1 diabetes in adolescents aged 10-18 years with an increased risk of developing type 1 diabetes. METHODS Data were harmonised from prospective studies from Finland (the Diabetes Prediction and Prevention study), Germany (the BABYDIAB study), and the USA (Diabetes Autoimmunity Study in the Young and the Diabetes Evaluation in Washington study). Autoantibodies against insulin, glutamic acid decarboxylase, and insulinoma-associated protein 2 were measured at each follow-up visit. Children who were lost to follow-up or diagnosed with type 1 diabetes before 10 years of age were excluded. Inverse probability censoring weighting was used to include data from remaining participants. Sensitivity and the positive predictive value of these autoantibodies, tested at one or two ages, to predict type 1 diabetes by the age of 18 years were the main outcomes. FINDINGS Of 20 303 children with an increased type 1 diabetes risk, 8682 were included for the analysis with inverse probability censoring weighting. 1890 were followed up to 18 years of age or developed type 1 diabetes between the ages of 10 years and 18 years, and their median follow-up was 18·3 years (IQR 14·5-20·3). 442 (23·4%) of 1890 adolescents were positive for at least one islet autoantibody, and 262 (13·9%) developed type 1 diabetes. Time from seroconversion to diabetes diagnosis increased by 0·64 years (95% CI 0·34-0·95) for each 1-year increment of diagnosis age (Pearson's correlation coefficient 0·88, 95% CI 0·50-0·97, p=0·0020). The median interval between the last prediagnostic sample and diagnosis was 0·3 years (IQR 0·1-1·3) in the 227 participants who were autoantibody positive and 6·8 years (1·6-9·9) for the 35 who were autoantibody negative. Single screening at the age of 10 years was 90% (95% CI 86-95) sensitive, with a positive predictive value of 66% (60-72) for clinical diabetes. Screening at two ages (10 years and 14 years) increased sensitivity to 93% (95% CI 89-97) but lowered the positive predictive value to 55% (49-60). INTERPRETATION Screening of adolescents at risk for type 1 diabetes only once at 10 years of age for islet autoantibodies was highly effective to detect type 1 diabetes by the age of 18 years, which in turn could enable prevention of diabetic ketoacidosis and participation in secondary prevention trials. FUNDING JDRF International.
Collapse
Affiliation(s)
- Mohamed Ghalwash
- Center for Computational Health, IBM Research, Yorktown Heights, NY, USA; Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Vibha Anand
- Center for Computational Health, IBM Research, Cambridge, MA, USA
| | | | | | - Marian Rewers
- Barbara Davis Center for Diabetes, University of Colorado, Denver, CO, USA
| | - Anette-G Ziegler
- Forschergruppe Diabetes and Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany der TU München, Munich, Germany
| | - Jorma Toppari
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Centre for Population Health Research, University of Turku, Turku, Finland; Department of Pediatrics, Turku University Hospital, Turku, Finland
| | | | - Riitta Veijola
- Department of Pediatrics, Research Unit of Clinical Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.
| |
Collapse
|
16
|
Kordonouri O, Reschke F, Danne T. Teplizumab approval for type 1 diabetes in the USA. Lancet Diabetes Endocrinol 2023; 11:77-78. [PMID: 36623521 DOI: 10.1016/s2213-8587(22)00391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023]
Affiliation(s)
- Olga Kordonouri
- Diabetes Center, Children's Hospital "Auf Der Bult", D-30173 Hannover, Germany
| | - Felix Reschke
- Diabetes Center, Children's Hospital "Auf Der Bult", D-30173 Hannover, Germany
| | - Thomas Danne
- Diabetes Center, Children's Hospital "Auf Der Bult", D-30173 Hannover, Germany.
| |
Collapse
|
17
|
Anderson RL, DiMeglio LA, Mander AP, Dayan CM, Linsley PS, Herold KC, Marinac M, Ahmed ST. Innovative Designs and Logistical Considerations for Expedited Clinical Development of Combination Disease-Modifying Treatments for Type 1 Diabetes. Diabetes Care 2022; 45:2189-2201. [PMID: 36150059 PMCID: PMC9911317 DOI: 10.2337/dc22-0308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023]
Abstract
It has been 100 years since the life-saving discovery of insulin, yet daily management of type 1 diabetes (T1D) remains challenging. Even with closed-loop systems, the prevailing need for persons with T1D to attempt to match the kinetics of insulin activity with the kinetics of carbohydrate metabolism, alongside dynamic life factors affecting insulin requirements, results in the need for frequent interventions to adjust insulin dosages or consume carbohydrates to correct mismatches. Moreover, peripheral insulin dosing leaves the liver underinsulinized and hyperglucagonemic and peripheral tissues overinsulinized relative to their normal physiologic roles in glucose homeostasis. Disease-modifying therapies (DMT) to preserve and/or restore functional β-cell mass with controlled or corrected autoimmunity would simplify exogenous insulin need, thereby reducing disease mortality, morbidity, and management burdens. However, identifying effective DMTs for T1D has proven complex. There is some consensus that combination DMTs are needed for more meaningful clinical benefit. Other complexities are addressable with more innovative trial designs and logistics. While no DMT has yet been approved for marketing, existing regulatory guidance provides opportunities to further "de-risk" development. The T1D development ecosystem can accelerate progress by using more innovative ways for testing DMTs for T1D. This perspective outlines suggestions for accelerating evaluation of candidate T1D DMTs, including combination therapies, by use of innovative trial designs, enhanced logistical coordination of efforts, and regulatory guidance for expedited development, combination therapies, and adaptive designs.
Collapse
Affiliation(s)
| | - Linda A. DiMeglio
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Adrian P. Mander
- Centre for Trials Research, Cardiff University School of Medicine, Cardiff, U.K
| | - Colin M. Dayan
- Centre for Endocrine and Diabetes Science, Cardiff University School of Medicine, Cardiff, U.K
| | - Peter S. Linsley
- Systems Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Kevan C. Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT
| | | | - Simi T. Ahmed
- New York Stem Cell Foundation Research Institute, New York, NY
| |
Collapse
|