1
|
Steichen S, Deshpande A, Mosey M, Loob J, Douchi D, Knoshaug EP, Brown S, Nielsen R, Weissman J, Carrillo LR, Laurens LML. Central transcriptional regulator controls photosynthetic growth and carbon storage in response to high light. Nat Commun 2024; 15:4842. [PMID: 38844786 PMCID: PMC11156908 DOI: 10.1038/s41467-024-49090-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Carbon capture and biochemical storage are some of the primary drivers of photosynthetic yield and productivity. To elucidate the mechanisms governing carbon allocation, we designed a photosynthetic light response test system for genetic and metabolic carbon assimilation tracking, using microalgae as simplified plant models. The systems biology mapping of high light-responsive photophysiology and carbon utilization dynamics between two variants of the same Picochlorum celeri species, TG1 and TG2 elucidated metabolic bottlenecks and transport rates of intermediates using instationary 13C-fluxomics. Simultaneous global gene expression dynamics showed 73% of the annotated genes responding within one hour, elucidating a singular, diel-responsive transcription factor, closely related to the CCA1/LHY clock genes in plants, with significantly altered expression in TG2. Transgenic P. celeri TG1 cells expressing the TG2 CCA1/LHY gene, showed 15% increase in growth rates and 25% increase in storage carbohydrate content, supporting a coordinating regulatory function for a single transcription factor.
Collapse
Affiliation(s)
- Seth Steichen
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Arnav Deshpande
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Megan Mosey
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Jessica Loob
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Damien Douchi
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Eric P Knoshaug
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Stuart Brown
- ExxonMobil Technology and Engineering Co. (EMTEC), CLD286 Annandale, 1545 Route 22 East, Annandale, NJ, 08801, USA
| | - Robert Nielsen
- ExxonMobil Technology and Engineering Co. (EMTEC), CLD286 Annandale, 1545 Route 22 East, Annandale, NJ, 08801, USA
| | - Joseph Weissman
- ExxonMobil Technology and Engineering Co. (EMTEC), CLD286 Annandale, 1545 Route 22 East, Annandale, NJ, 08801, USA
| | - L Ruby Carrillo
- ExxonMobil Technology and Engineering Co. (EMTEC), CLD286 Annandale, 1545 Route 22 East, Annandale, NJ, 08801, USA
| | - Lieve M L Laurens
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.
| |
Collapse
|
2
|
Karikomi M, Katayama N, Osanai T. Pyruvate kinase 2 from Synechocystis sp. PCC 6803 increased substrate affinity via glucose-6-phosphate and ribose-5-phosphate for phosphoenolpyruvate consumption. PLANT MOLECULAR BIOLOGY 2024; 114:60. [PMID: 38758412 PMCID: PMC11101554 DOI: 10.1007/s11103-023-01401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/30/2023] [Indexed: 05/18/2024]
Abstract
Pyruvate kinase (Pyk, EC 2.7.1.40) is a glycolytic enzyme that generates pyruvate and adenosine triphosphate (ATP) from phosphoenolpyruvate (PEP) and adenosine diphosphate (ADP), respectively. Pyk couples pyruvate and tricarboxylic acid metabolisms. Synechocystis sp. PCC 6803 possesses two pyk genes (encoded pyk1, sll0587 and pyk2, sll1275). A previous study suggested that pyk2 and not pyk1 is essential for cell viability; however, its biochemical analysis is yet to be performed. Herein, we biochemically analyzed Synechocystis Pyk2 (hereafter, SyPyk2). The optimum pH and temperature of SyPyk2 were 7.0 and 55 °C, respectively, and the Km values for PEP and ADP under optimal conditions were 1.5 and 0.053 mM, respectively. SyPyk2 is activated in the presence of glucose-6-phosphate (G6P) and ribose-5-phosphate (R5P); however, it remains unaltered in the presence of adenosine monophosphate (AMP) or fructose-1,6-bisphosphate. These results indicate that SyPyk2 is classified as PykA type rather than PykF, stimulated by sugar monophosphates, such as G6P and R5P, but not by AMP. SyPyk2, considering substrate affinity and effectors, can play pivotal roles in sugar catabolism under nonphotosynthetic conditions.
Collapse
Affiliation(s)
- Masahiro Karikomi
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-Ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Noriaki Katayama
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-Ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Takashi Osanai
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-Ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
3
|
Li Z, Li S, Chen L, Sun T, Zhang W. Fast-growing cyanobacterial chassis for synthetic biology application. Crit Rev Biotechnol 2024; 44:414-428. [PMID: 36842999 DOI: 10.1080/07388551.2023.2166455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/19/2022] [Accepted: 12/28/2022] [Indexed: 02/28/2023]
Abstract
Carbon neutrality by 2050 has become one of the most urgent challenges the world faces today. To address the issue, it is necessary to develop and promote new technologies related with CO2 recycling. Cyanobacteria are the only prokaryotes performing oxygenic photosynthesis, capable of fixing CO2 into biomass under sunlight and serving as one of the most important primary producers on earth. Notably, recent progress on synthetic biology has led to utilizing model cyanobacteria such as Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 as chassis for "light-driven autotrophic cell factories" to produce several dozens of biofuels and various fine chemicals directly from CO2. However, due to the slow growth rate and low biomass accumulation in the current chassis, the productivity for most products is still lower than the threshold necessary for large-scale commercial application, raising the importance of developing high-efficiency cyanobacterial chassis with fast growth and/or higher biomass accumulation capabilities. In this article, we critically reviewed recent progresses on identification, systems biology analysis, and engineering of fast-growing cyanobacterial chassis. Specifically, fast-growing cyanobacteria identified in recent years, such as S. elongatus UTEX 2973, S. elongatus PCC 11801, S. elongatus PCC 11802 and Synechococcus sp. PCC 11901 was comparatively analyzed. In addition, the progresses on their recent application in converting CO2 into chemicals, and genetic toolboxes developed for these new cyanobacterial chassis were discussed. Finally, the article provides insights into future challenges and perspectives on the synthetic biology application of cyanobacterial chassis.
Collapse
Affiliation(s)
- Zhixiang Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
| | - Shubin Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, P.R. China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
4
|
Chen Z, Yuan ZW, Luo WX, Wu X, Pan JL, Yin YQ, Shao HC, Xu K, Li WZ, Hu YL, Wang Z, Gao KS, Chen XW. UV-A radiation increases biomass yield by enhancing energy flow and carbon assimilation in the edible cyanobacterium Nostoc sphaeroides. Appl Environ Microbiol 2024; 90:e0211023. [PMID: 38391210 PMCID: PMC10952460 DOI: 10.1128/aem.02110-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Ultraviolet (UV) A radiation (315-400 nm) is the predominant component of solar UV radiation that reaches the Earth's surface. However, the underlying mechanisms of the positive effects of UV-A on photosynthetic organisms have not yet been elucidated. In this study, we investigated the effects of UV-A radiation on the growth, photosynthetic ability, and metabolome of the edible cyanobacterium Nostoc sphaeroides. Exposures to 5-15 W m-2 (15-46 µmol photons m-2 s-1) UV-A and 4.35 W m-2 (20 μmol photons m-2 s-1) visible light for 16 days significantly increased the growth rate and biomass production of N. sphaeroides cells by 18%-30% and 15%-56%, respectively, compared to the non-UV-A-acclimated cells. Additionally, the UV-A-acclimated cells exhibited a 1.8-fold increase in the cellular nicotinamide adenine dinucleotide phosphate (NADP) pool with an increase in photosynthetic capacity (58%), photosynthetic efficiency (24%), QA re-oxidation, photosystem I abundance, and cyclic electron flow (87%), which further led to an increase in light-induced NADPH generation (31%) and ATP content (83%). Moreover, the UV-A-acclimated cells showed a 2.3-fold increase in ribulose-1,5-bisphosphate carboxylase/oxygenase activity, indicating an increase in their carbon-fixing capacity. Gas chromatography-mass spectrometry-based metabolomics further revealed that UV-A radiation upregulated the energy-storing carbon metabolism, as evidenced by the enhanced accumulation of sugars, fatty acids, and citrate in the UV-A-acclimated cells. Therefore, our results demonstrate that UV-A radiation enhances energy flow and carbon assimilation in the cyanobacterium N. sphaeroides.IMPORTANCEUltraviolet (UV) radiation exerts harmful effects on photo-autotrophs; however, several studies demonstrated the positive effects of UV radiation, especially UV-A radiation (315-400 nm), on primary productivity. Therefore, understanding the underlying mechanisms associated with the promotive effects of UV-A radiation on primary productivity can facilitate the application of UV-A for CO2 sequestration and lead to the advancement of photobiological sciences. In this study, we used the cyanobacterium Nostoc sphaeroides, which has an over 1,700-year history of human use as food and medicine, to explore its photosynthetic acclimation response to UV-A radiation. As per our knowledge, this is the first study to demonstrate that UV-A radiation increases the biomass yield of N. sphaeroides by enhancing energy flow and carbon assimilation. Our findings provide novel insights into UV-A-mediated photosynthetic acclimation and provide a scientific basis for the application of UV-A radiation for optimizing light absorption capacity and enhancing CO2 sequestration in the frame of a future CO2 neutral, circular, and sustainable bioeconomy.
Collapse
Affiliation(s)
- Zhen Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Zu-Wen Yuan
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Wei-Xin Luo
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Xun Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Jin-Long Pan
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Yong-Qi Yin
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Hai-Chen Shao
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Kui Xu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Wei-Zhi Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Yuan-Liang Hu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Zhe Wang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd., Daye, Hubei, China
| | - Kun-Shan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| | - Xiong-Wen Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| |
Collapse
|
5
|
Hudson EP. The Calvin Benson cycle in bacteria: New insights from systems biology. Semin Cell Dev Biol 2024; 155:71-83. [PMID: 37002131 DOI: 10.1016/j.semcdb.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/21/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Abstract
The Calvin Benson cycle in phototrophic and chemolithoautotrophic bacteria has ecological and biotechnological importance, which has motivated study of its regulation. I review recent advances in our understanding of how the Calvin Benson cycle is regulated in bacteria and the technologies used to elucidate regulation and modify it, and highlight differences between and photoautotrophic and chemolithoautotrophic models. Systems biology studies have shown that in oxygenic phototrophic bacteria, Calvin Benson cycle enzymes are extensively regulated at post-transcriptional and post-translational levels, with multiple enzyme activities connected to cellular redox status through thioredoxin. In chemolithoautotrophic bacteria, regulation is primarily at the transcriptional level, with effector metabolites transducing cell status, though new methods should now allow facile, proteome-wide exploration of biochemical regulation in these models. A biotechnological objective is to enhance CO2 fixation in the cycle and partition that carbon to a product of interest. Flux control of CO2 fixation is distributed over multiple enzymes, and attempts to modulate gene Calvin cycle gene expression show a robust homeostatic regulation of growth rate, though the synthesis rates of products can be significantly increased. Therefore, de-regulation of cycle enzymes through protein engineering may be necessary to increase fluxes. Non-canonical Calvin Benson cycles, if implemented with synthetic biology, could have reduced energy demand and enzyme loading, thus increasing the attractiveness of these bacteria for industrial applications.
Collapse
Affiliation(s)
- Elton P Hudson
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
6
|
Lee SY, Lee JS, Sim SJ. Cost-effective production of bioplastic polyhydroxybutyrate via introducing heterogeneous constitutive promoter and elevating acetyl-Coenzyme A pool of rapidly growing cyanobacteria. BIORESOURCE TECHNOLOGY 2024; 394:130297. [PMID: 38185449 DOI: 10.1016/j.biortech.2023.130297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Bioplastic production using cyanobacteria can be an effective strategy to cope with environmental problems caused by using petroleum-based plastics. Synechococcus elongatus UTEX 2973 with heterogeneous phaCAB can produce bioplastic polyhydroxybutyrate (PHB) with a high CO2 uptake rate. For cost-effective production of PHB in S. elongatus UTEX 2973, phaCAB was expressed by the constitutive Pcpc560, resulting in the production of 226 mg/L of PHB by only photoautotrophic cultivation without the addition of inducer. Several culture conditions were applied to increase PHB productivity, and when acetate was supplied at a concentration of 1 g/L as an organic carbon source, productivity significantly increased resulting in 607.2 mg/L of PHB and additive cost reduction of more than 300 times was achieved compared to IPTG. Consequently, these results suggest the possibility of cyanobacteria as an agent that can economically produce PHB and as a solution to the problem of petroleum-based plastics.
Collapse
Affiliation(s)
- So Young Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jeong Seop Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Song X, Ju Y, Chen L, Zhang W. Construction of Xylose-Utilizing Cyanobacterial Chassis for Bioproduction Under Photomixotrophic Conditions. Methods Mol Biol 2024; 2760:57-75. [PMID: 38468082 DOI: 10.1007/978-1-0716-3658-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Xylose is a major component of lignocellulose and the second most abundant sugar present in nature after glucose; it, therefore, has been considered to be a promising renewable resource for the production of biofuels and chemicals. However, no natural cyanobacterial strain is known capable of utilizing xylose. Here, we take the fast-growing cyanobacteria Synechococcus elongatus UTEX 2973 as an example to develop the synthetic biology-based methodology of constructing a new xylose-utilizing cyanobacterial chassis with increased acetyl-CoA for bioproduction.
Collapse
Affiliation(s)
- Xinyu Song
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, People's Republic of China
- Key Laboratory of Systems Bioengineering and Frontier Science Center of Synthetic Biology, The Ministry of Education of China, Tianjin University, Tianjin, People's Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, People's Republic of China
| | - Yue Ju
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, People's Republic of China
- Key Laboratory of Systems Bioengineering and Frontier Science Center of Synthetic Biology, The Ministry of Education of China, Tianjin University, Tianjin, People's Republic of China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, People's Republic of China
- Key Laboratory of Systems Bioengineering and Frontier Science Center of Synthetic Biology, The Ministry of Education of China, Tianjin University, Tianjin, People's Republic of China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, People's Republic of China.
- Key Laboratory of Systems Bioengineering and Frontier Science Center of Synthetic Biology, The Ministry of Education of China, Tianjin University, Tianjin, People's Republic of China.
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, People's Republic of China.
| |
Collapse
|
8
|
Wang B, Zuniga C, Guarnieri MT, Zengler K, Betenbaugh M, Young JD. Metabolic engineering of Synechococcus elongatus 7942 for enhanced sucrose biosynthesis. Metab Eng 2023; 80:12-24. [PMID: 37678664 DOI: 10.1016/j.ymben.2023.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/28/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
The capability of cyanobacteria to produce sucrose from CO2 and light has a remarkable societal and biotechnological impact since sucrose can serve as a carbon and energy source for a variety of heterotrophic organisms and can be converted into value-added products. However, most metabolic engineering efforts have focused on understanding local pathway alterations that drive sucrose biosynthesis and secretion in cyanobacteria rather than analyzing the global flux re-routing that occurs following induction of sucrose production by salt stress. Here, we investigated global metabolic flux alterations in a sucrose-secreting (cscB-overexpressing) strain relative to its wild-type Synechococcus elongatus 7942 parental strain. We used targeted metabolomics, 13C metabolic flux analysis (MFA), and genome-scale modeling (GSM) as complementary approaches to elucidate differences in cellular resource allocation by quantifying metabolic profiles of three cyanobacterial cultures - wild-type S. elongatus 7942 without salt stress (WT), wild-type with salt stress (WT/NaCl), and the cscB-overexpressing strain with salt stress (cscB/NaCl) - all under photoautotrophic conditions. We quantified the substantial rewiring of metabolic fluxes in WT/NaCl and cscB/NaCl cultures relative to WT and identified a metabolic bottleneck limiting carbon fixation and sucrose biosynthesis. This bottleneck was subsequently mitigated through heterologous overexpression of glyceraldehyde-3-phosphate dehydrogenase in an engineered sucrose-secreting strain. Our study also demonstrates that combining 13C-MFA and GSM is a useful strategy to both extend the coverage of MFA beyond central metabolism and to improve the accuracy of flux predictions provided by GSM.
Collapse
Affiliation(s)
- Bo Wang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Cristal Zuniga
- Department of Pediatrics, University of California, San Diego, CA, 92093, USA; Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Michael T Guarnieri
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, CA, 92093, USA; Department of Bioengineering, University of California, San Diego, CA, 92093, USA; Center for Microbiome Innovation, University of California, San Diego, CA, 92093, USA
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
9
|
Jaiswal D, Nenwani M, Wangikar PP. Isotopically non-stationary 13 C metabolic flux analysis of two closely related fast-growing cyanobacteria, Synechococcus elongatus PCC 11801 and 11802. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:558-573. [PMID: 37219374 DOI: 10.1111/tpj.16316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Synechococcus elongatus PCC 11801 and 11802 are closely related cyanobacterial strains that are fast-growing and tolerant to high light and temperature. These strains hold significant promise as chassis for photosynthetic production of chemicals from carbon dioxide. A detailed quantitative understanding of the central carbon pathways would be a reference for future metabolic engineering studies with these strains. We conducted isotopic non-stationary 13 C metabolic flux analysis to quantitively assess the metabolic potential of these two strains. This study highlights key similarities and differences in the central carbon flux distribution between these and other model/non-model strains. The two strains demonstrated a higher Calvin-Benson-Bassham (CBB) cycle flux coupled with negligible flux through the oxidative pentose phosphate pathway and the photorespiratory pathway and lower anaplerosis fluxes under photoautotrophic conditions. Interestingly, PCC 11802 shows the highest CBB cycle and pyruvate kinase flux values among those reported in cyanobacteria. The unique tricarboxylic acid (TCA) cycle diversion in PCC 11801 makes it ideal for the large-scale production of TCA cycle-derived chemicals. Additionally, dynamic labeling transients were measured for intermediates of amino acid, nucleotide, and nucleotide sugar metabolism. Overall, this study provides the first detailed metabolic flux maps of S. elongatus PCC 11801 and 11802, which may aid metabolic engineering efforts in these strains.
Collapse
Affiliation(s)
- Damini Jaiswal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Minal Nenwani
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
10
|
Geffen O, Achaintre D, Treves H. 13CO 2-labelling and Sampling in Algae for Flux Analysis of Photosynthetic and Central Carbon Metabolism. Bio Protoc 2023; 13:e4808. [PMID: 37719071 PMCID: PMC10501915 DOI: 10.21769/bioprotoc.4808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 09/19/2023] Open
Abstract
The flux in photosynthesis can be studied by performing 13CO2 pulse labelling and analysing the temporal labelling kinetics of metabolic intermediates using gas or liquid chromatography linked to mass spectrometry. Metabolic flux analysis (MFA) is the primary approach for analysing metabolic network function and quantifying intracellular metabolic fluxes. Different MFA approaches differ based on the metabolic state (steady vs. non-steady state) and the use of stable isotope tracers. The main methodology used to investigate metabolic systems is metabolite steady state associated with stable isotope labelling experiments. Specifically, in biological systems like photoautotrophic organisms, isotopic non-stationary 113C metabolic flux analysis at metabolic steady state with transient isotopic labelling (13C-INST-MFA) is required. The common requirement for metabolic steady state, alongside its very short half-timed reactions, complicates robust MFA of photosynthetic metabolism. While custom gas chambers design has addressed these challenges in various model plants, no similar tools were developed for liquid photosynthetic cultures (e.g., algae, cyanobacteria), where diffusion and equilibration of inorganic carbon species in the medium entails a new dimension of complexity. Recently, a novel tailor-made microfluidics labelling system has been introduced, supplying short 13CO2 pulses at steady state, and resolving fluxes across most photosynthetic metabolic pathways in algae. The system involves injecting algal cultures and medium containing pre-equilibrated inorganic 13C into a microfluidic mixer, followed by rapid metabolic quenching, enabling precise seconds-level label pulses. This was complemented by a 13CO2-bubbling-based open labelling system (photobioreactor), allowing long pulses (minutes-hours) required for investigating fluxes into central C metabolism and major products. This combined labelling procedure provides a comprehensive fluxome cover for most algal photosynthetic and central C metabolism pathways, thus allowing comparative flux analyses across algae and plants.
Collapse
Affiliation(s)
- Or Geffen
- School of Plant Sciences and Food Security, Faculty of Biology, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - David Achaintre
- School of Plant Sciences and Food Security, Faculty of Biology, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Haim Treves
- School of Plant Sciences and Food Security, Faculty of Biology, Tel-Aviv University, Tel Aviv-Yafo, Israel
- Plant Metabolism Group, Faculty of Biology, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
11
|
Burnap RL. Cyanobacterial Bioenergetics in Relation to Cellular Growth and Productivity. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:25-64. [PMID: 36764956 DOI: 10.1007/10_2022_215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Cyanobacteria, the evolutionary originators of oxygenic photosynthesis, have the capability to convert CO2, water, and minerals into biomass using solar energy. This process is driven by intricate bioenergetic mechanisms that consist of interconnected photosynthetic and respiratory electron transport chains coupled. Over the last few decades, advances in physiochemical analysis, molecular genetics, and structural analysis have enabled us to gain a more comprehensive understanding of cyanobacterial bioenergetics. This includes the molecular understanding of the primary energy conversion mechanisms as well as photoprotective and other dissipative mechanisms that prevent photodamage when the rates of photosynthetic output, primarily in the form of ATP and NADPH, exceed the rates that cellular assimilatory processes consume these photosynthetic outputs. Despite this progress, there is still much to learn about the systems integration and the regulatory circuits that control expression levels for optimal cellular abundance and activity of the photosynthetic complexes and the cellular components that convert their products into biomass. With an improved understanding of these regulatory principles and mechanisms, it should be possible to optimally modify cyanobacteria for enhanced biotechnological purposes.
Collapse
Affiliation(s)
- Robert L Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
12
|
Chen AY, Ku JT, Tsai TP, Hung JJ, Hung BC, Lan EI. Metabolic Engineering Design Strategies for Increasing Carbon Fluxes Relevant for Biosynthesis in Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:105-144. [PMID: 37093259 DOI: 10.1007/10_2023_218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Cyanobacteria are promising microbial cell factories for the direct production of biochemicals and biofuels from CO2. Through genetic and metabolic engineering, they can be modified to produce a variety of both natural and non-natural compounds. To enhance the yield of these products, various design strategies have been developed. In this chapter, strategies used to enhance metabolic fluxes towards common precursors used in biosynthesis, including pyruvate, acetyl-CoA, malonyl-CoA, TCA cycle intermediates, and aromatics, are discussed. Additionally, strategies related to cofactor availability and mixotrophic conditions for bioproduction are also summarize.
Collapse
Affiliation(s)
- Arvin Y Chen
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Jason T Ku
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Teresa P Tsai
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Jenny J Hung
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Billy C Hung
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Ethan I Lan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan.
| |
Collapse
|
13
|
Photobiological production of high-value pigments via compartmentalized co-cultures using Ca-alginate hydrogels. Sci Rep 2022; 12:22163. [PMID: 36550285 PMCID: PMC9780300 DOI: 10.1038/s41598-022-26437-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Engineered cyanobacterium Synechococcus elongatus can use light and CO2 to produce sucrose, making it a promising candidate for use in co-cultures with heterotrophic workhorses. However, this process is challenged by the mutual stresses generated from the multispecies microbial culture. Here we demonstrate an ecosystem where S. elongatus is freely grown in a photo-bioreactor (PBR) containing an engineered heterotrophic workhorse (either β-carotene-producing Yarrowia lipolytica or indigoidine-producing Pseudomonas putida) encapsulated in calcium-alginate hydrogel beads. The encapsulation prevents growth interference, allowing the cyanobacterial culture to produce high sucrose concentrations enabling the production of indigoidine and β-carotene in the heterotroph. Our experimental PBRs yielded an indigoidine titer of 7.5 g/L hydrogel and a β-carotene titer of 1.3 g/L hydrogel, amounts 15-22-fold higher than in a comparable co-culture without encapsulation. Moreover, 13C-metabolite analysis and protein overexpression tests indicated that the hydrogel beads provided a favorable microenvironment where the cell metabolism inside the hydrogel was comparable to that in a free culture. Finally, the heterotroph-containing hydrogels were easily harvested and dissolved by EDTA for product recovery, while the cyanobacterial culture itself could be reused for the next batch of immobilized heterotrophs. This co-cultivation and hydrogel encapsulation system is a successful demonstration of bioprocess optimization under photobioreactor conditions.
Collapse
|
14
|
Czajka JJ, Banerjee D, Eng T, Menasalvas J, Yan C, Munoz NM, Poirier BC, Kim YM, Baker SE, Tang YJ, Mukhopadhyay A. Tuning a high performing multiplexed-CRISPRi Pseudomonas putida strain to further enhance indigoidine production. Metab Eng Commun 2022; 15:e00206. [PMID: 36158112 PMCID: PMC9494242 DOI: 10.1016/j.mec.2022.e00206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, a 14-gene edited Pseudomonas putida KT2440 strain for heterologous indigoidine production was examined using three distinct omic datasets. Transcriptomic data indicated that CRISPR/dCpf1-interference (CRISPRi) mediated multiplex repression caused global gene expression changes, implying potential undesirable changes in metabolic flux. 13C-metabolic flux analysis (13C-MFA) revealed that the core P. putida flux network after CRISPRi repression was conserved, with moderate reduction of TCA cycle and pyruvate shunt activity along with glyoxylate shunt activation during glucose catabolism. Metabolomic results identified a change in intracellular TCA metabolites and extracellular metabolite secretion profiles (sugars and succinate overflow) in the engineered strains. These omic analyses guided further strain engineering, with a random mutagenesis screen first identifying an optimal ribosome binding site (RBS) for Cpf1 that enabled stronger product-substrate pairing (1.6-fold increase). Then, deletion strains were constructed with excision of the PHA operon (ΔphaAZC-IID) resulting in a 2.2-fold increase in indigoidine titer over the optimized Cpf1-RBS construct at the end of the growth phase (∼6 h). The maximum indigoidine titer (at 72 h) in the ΔphaAZC-IID strain had a 1.5-fold and 1.8-fold increase compared to the optimized Cpf1-RBS construct and the original strain, respectively. Overall, this study demonstrated that integration of omic data types is essential for understanding responses to complex metabolic engineering designs and directly quantified the effect of such modifications on central metabolism.
Collapse
Affiliation(s)
- Jeffrey J Czajka
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Deepanwita Banerjee
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Thomas Eng
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Javier Menasalvas
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Chunsheng Yan
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Nathalie Munoz Munoz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.,Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Brenton C Poirier
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.,Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Young-Mo Kim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.,Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Scott E Baker
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
15
|
Xiao Z, Tan AX, Xu V, Jun YS, Tang YJ. Mineral-hydrogel composites for mitigating harmful algal bloom and supplying phosphorous for photo-biorefineries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157533. [PMID: 35878849 PMCID: PMC9755271 DOI: 10.1016/j.scitotenv.2022.157533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Harmful algal blooms (HAB) are a major environmental concern in eutrophic aquatic systems. To mitigate HABs and recover the phosphorus that drives algal growth, this study developed hydrogel composites seeded with calcium phosphate and wollastonite particles, which first adsorb phosphate (P) and then precipitate it as calcium phosphate. Using a fast-growing cyanobacterium, Synechococcus elongatus 2973, as a model microalga, we found that the mineral-hydrogel composites reduced dissolved P in BG11 media from 5.1 mg/L to 0.31 mg/L, initially reducing the biomass growth rate by up to 73 % and ultimately reducing the total biomass concentration by 75 %. When applied to municipal wastewater and agricultural run-off, the composites removed 96 % and 91 % of the dissolved P, respectively. Moreover, when the recovered P-enriched composites were reused as a slow-release bio-compatible fertilizer in a photobioreactor, they effectively supported algal growth without blocking light and interfering with photosynthesis. The P-enriched composites could tune the P concentration in the culture medium and significantly promote algal lipid accumulation. This study demonstrates the mineral-hydrogel composites' potential to treat point sources of P pollution and subsequently facilitate photoautotrophic biofuel production as a nutrient, effectively recycling the captured P.
Collapse
Affiliation(s)
- Zhengyang Xiao
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Albern X Tan
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Vincent Xu
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Young-Shin Jun
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA.
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA.
| |
Collapse
|
16
|
Qiao W, Xu S, Liu Z, Fu X, Zhao H, Shi S. Challenges and opportunities in C1-based biomanufacturing. BIORESOURCE TECHNOLOGY 2022; 364:128095. [PMID: 36220528 DOI: 10.1016/j.biortech.2022.128095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The intensifying impact of green-house gas (GHG) emission on environment and climate change has attracted increasing attention, and biorefinery represents one of the most effective routes for reducing GHG emissions from human activities. However, this requires a shift for microbial fermentation from the current use of sugars to the use of biomass, and even better to the primary fixation of single carbon (C1) compounds. Here how microorganisms can be engineered for fixation and conversion of C1 compounds into metabolites that can serve as fuels and platform chemicals are reviewed. Meanwhile, key factors for utilization of these different pathways are discussed, followed by challenges and barriers for the development of C1-based biorefinery.
Collapse
Affiliation(s)
- Weibo Qiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shijie Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoying Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
17
|
Bender ML, Zhu XG, Falkowski P, Ma F, Griffin K. On the rate of phytoplankton respiration in the light. PLANT PHYSIOLOGY 2022; 190:267-279. [PMID: 35652738 PMCID: PMC9434318 DOI: 10.1093/plphys/kiac254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The rate of algal and cyanobacterial respiration in the light is an important ecophysiological term that remains to be completely characterized and quantified. To address this issue, we exploited process-specific decarboxylation rates from flux balance analysis and isotopically nonstationary metabolic flux analysis. Our study, based on published data, suggested that decarboxylation is about 22% of net CO2 assimilation when the tricarboxylic acid cycle is completely open (characterized by the commitment of alpha ketoglutarate to amino acid synthesis and very low rates of succinate formation). This estimate was supported by calculating the decarboxylation rates required to synthesize the major components of biomass (proteins, lipids, and carbohydrates) at their typical abundance. Of the 22 CO2 molecules produced by decarboxylation (normalized to net assimilation = 100), approximately 13 were from pyruvate and 3 were from isocitrate. The remaining six units of decarboxylation were in the amino acid synthesis pathways outside the tricarboxylic acid cycle. A small additional flux came from photorespiration, decarboxylations of six phosphogluconate in the oxidative pentose phosphate pathway, and decarboxylations in the syntheses of lower-abundance compounds, including pigments and ribonucleic acids. This general approach accounted for the high decarboxylation rates in algae and cyanobacteria compared to terrestrial plants. It prompts a simple speculation for the origin of the Kok effect and helps constrain the photoautotrophic respiration rate, in the light, in the euphotic zone of the ocean and lakes.
Collapse
Affiliation(s)
| | - Xin-Guang Zhu
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Paul Falkowski
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Fangfang Ma
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Kevin Griffin
- Department of Earth and Environmental Sciences, Columbia University, Palisades, New York 10964, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York 10027, USA
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, USA
| |
Collapse
|
18
|
Guo L, Sun L, Huo YX. Toward bioproduction of oxo chemicals from C1 feedstocks using isobutyraldehyde as an example. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:80. [PMID: 35945564 PMCID: PMC9361566 DOI: 10.1186/s13068-022-02178-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022]
Abstract
AbstractOxo chemicals are valuable chemicals for synthesizing a wide array of industrial and consumer products. However, producing of oxo chemicals is predominately through the chemical process called hydroformylation, which requires petroleum-sourced materials and generates abundant greenhouse gas. Current concerns on global climate change have renewed the interest in reducing greenhouse gas emissions and recycling the plentiful greenhouse gas. A carbon–neutral manner in this regard is producing oxo chemicals biotechnologically using greenhouse gas as C1 feedstocks. Exemplifying isobutyraldehyde, this review demonstrates the significance of using greenhouse gas for oxo chemicals production. We highlight the current state and the potential of isobutyraldehyde synthesis with a special focus on the in vivo and in vitro scheme of C1-based biomanufacturing. Specifically, perspectives and scenarios toward carbon– and nitrogen–neutral isobutyraldehyde production are proposed. In addition, key challenges and promising approaches for enhancing isobutyraldehyde bioproduction are thoroughly discussed. This study will serve as a reference case in exploring the biotechnological potential and advancing oxo chemicals production derived from C1 feedstocks.
Collapse
|
19
|
Li T, Pang N, He L, Xu Y, Fu X, Tang Y, Shachar-Hill Y, Chen S. Re-Programing Glucose Catabolism in the Microalga Chlorella sorokiniana under Light Condition. Biomolecules 2022; 12:biom12070939. [PMID: 35883494 PMCID: PMC9313030 DOI: 10.3390/biom12070939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
The microalga Chlorella sorokiniana has attracted much attention for lipid production and wastewater treatment. It can perform photosynthesis and organic carbon utilization concurrently. To understand its phototrophic metabolism, a biomass compositional analysis, a 13C metabolic flux analysis, and metabolite pool size analyses were performed. Under dark condition, the oxidative pentose phosphate pathway (OPP) was the major route for glucose catabolism (88% carbon flux) and a cyclic OPP–glycolytic route for glucose catabolism was formed. Under light condition, fluxes in the glucose catabolism, tricarboxylic acid (TCA) cycle, and anaplerotic reaction (CO2 fixation via phosphoenolpyruvate carboxylase) were all suppressed. Meanwhile, the RuBisCO reaction became active and the ratio of its carbon fixation to glucose carbon utilization was determined as 7:100. Moreover, light condition significantly reduced the pool sizes of sugar phosphate metabolites (such as E4P, F6P, and S7P) and promoted biomass synthesis (which reached 0.155 h−1). In addition, light condition increased glucose consumption rates, leading to higher ATP and NADPH production and a higher protein content (43% vs. 30%) in the biomass during the exponential growth phase.
Collapse
Affiliation(s)
- Tingting Li
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China;
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA;
| | - Na Pang
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA;
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; (Y.X.); (Y.S.-H.)
| | - Lian He
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO 63130, USA; (L.H.); (Y.T.)
| | - Yuan Xu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; (Y.X.); (Y.S.-H.)
| | - Xinyu Fu
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA;
| | - Yinjie Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO 63130, USA; (L.H.); (Y.T.)
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; (Y.X.); (Y.S.-H.)
| | - Shulin Chen
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA;
- Correspondence: ; Tel.: +509-335-3743; Fax: +509-335-2722
| |
Collapse
|
20
|
Wang B, Young JD. 13C-Isotope-Assisted Assessment of Metabolic Quenching During Sample Collection from Suspension Cell Cultures. Anal Chem 2022; 94:7787-7794. [PMID: 35613318 DOI: 10.1021/acs.analchem.1c05338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metabolomics and fluxomics are core approaches to directly profile and interrogate cellular metabolism in response to various genetic or environmental perturbations. In order to accurately measure the abundance and isotope enrichment of intracellular metabolites, cell culture samples must be rapidly harvested and cold quenched to preserve the in vivo metabolic state of the cells at the time of sample collection. When dealing with suspension cultures, this process is complicated by the need to separate the liquid culture media from cellular biomass prior to metabolite extraction. Here, we examine the efficacy of several commonly used metabolic quenching methods, using the model cyanobacterium Synechocystis sp. PCC 6803 as an example. Multiple 13C-labeled compounds, including 13C-bicarbonate, 13C-glucose, and 13C-glutamine, were used as tracers during the sample collection and the cold-quenching process to assess the extent of metabolic turnover after cells were harvested from culture flasks. We show that the combination of rapid filtration followed by 100% cold (-80 °C) methanol quenching exhibits the highest quenching efficiency, while mixing cell samples with a partially frozen 30% methanol slurry (-24 °C) followed by centrifugation is slightly less effective at quenching metabolism but enables less laborious sample processing. By contrast, rapidly mixing the cells with a saline ice slurry (∼0 °C) is less effective, as indicated by high isotope-labeling rates after sample harvest, while mixing the cells with 60% cold methanol (-65 °C) prior to centrifugation causes significant metabolite loss. This study demonstrates a rigorous, quantitative, and broadly applicable method for assessing the metabolic quenching efficacy of protocols used for sample collection in metabolomics and fluxomics studies.
Collapse
Affiliation(s)
- Bo Wang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
21
|
Yao J, Wang J, Ju Y, Dong Z, Song X, Chen L, Zhang W. Engineering a Xylose-Utilizing Synechococcus elongatus UTEX 2973 Chassis for 3-Hydroxypropionic Acid Biosynthesis under Photomixotrophic Conditions. ACS Synth Biol 2022; 11:678-688. [PMID: 35119824 DOI: 10.1021/acssynbio.1c00364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Photomixotrophic cultivation of cyanobacteria is considered a promising strategy to achieve both high cell density and product accumulation, since cyanobacteria can obtain carbon and energy sources from organic matter in addition to those obtained from CO2 and sunlight. Acetyl coenzyme A (acetyl-CoA) is a key precursor used for the biosynthesis of a wide variety of important value-added chemicals. However, the acetyl-CoA content in cyanobacteria is typically low under photomixotrophic conditions, which limits the productivity of the derived chemicals. In this study, a xylose utilization pathway from Escherichia coli was first engineered into fast-growing Synechococcus elongatus UTEX 2973 (hereafter Synechococcus 2973), enabling the xylose based photomixotrophy. Metabolomics analysis of the engineered strain showed that the utilization of xylose enhanced the carbon flow to the oxidative pentose phosphate (OPP) pathway, along with an increase in the intracellular abundance of metabolites such as fructose-6-phosphate (F6P), fructose-1,6-bisphosphate (FBP), ribose-5-phosphate (R5P), erythrose-4-phosphate (E4P), and glyceraldehyde-3-phosphate (G3P). Then, the native glycolytic pathway was rewired via heterologous phosphoketolase (Pkt) gene expression, combined with phosphofructokinase (Pfk) gene knockout and fructose-1,6-bisphosphatase (Fbp) gene overexpression, to drive more carbon flux from xylose to acetyl-CoA. Finally, a heterologous 3-hydroxypropionic acid (3-HP) biosynthetic pathway was introduced. The results showed that 3-HP biosynthesis was improved by up to approximately 4.1-fold (from 22.5 mg/L to 91.3 mg/L) compared with the engineered strain without a rewired metabolism under photomixotrophic conditions and up to approximately 14-fold compared with the strain under photoautotrophic conditions. Using 3-HP as a "proof-of-molecule", our results demonstrated that this strategy could be applied to improve the intracellular pool of acetyl-CoA for the photomixotrophic production of value-added chemicals that require acetyl-CoA as a precursor in a cyanobacterial chassis.
Collapse
Affiliation(s)
- Jiaqi Yao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Jin Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Yue Ju
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Zhengxin Dong
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Xinyu Song
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
22
|
Jaiswal D, Nenwani M, Mishra V, Wangikar PP. Probing the metabolism of γ-glutamyl peptides in cyanobacteria via metabolite profiling and 13 C labeling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:708-726. [PMID: 34727398 DOI: 10.1111/tpj.15564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacteria are attractive model organisms for the study of photosynthesis and diurnal metabolism and as hosts for photoautotrophic production of chemicals. Exposure to bright light or environmental pollutants and a diurnal lifestyle of these prokaryotes may result in significant oxidative stress. Glutathione is a widely studied γ-glutamyl peptide that plays a key role in managing oxidative stress and detoxification of xenobiotics in cyanobacteria. The functional role and biosynthesis pathways of this tripeptide have been studied in detail in various phyla, including cyanobacteria. However, other γ-glutamyl peptides remain largely unexplored. We use an integrated approach to identify a number of γ-glutamyl peptides based on signature mass fragments and mass shifts in them in 13 C and 15 N enriched metabolite extracts. The newly identified compounds include γ-glutamyl dipeptides and derivatives of glutathione. Carbon backbones of the former turn over much faster than that of glutathione, suggesting that they follow a distinct biosynthesis pathway. Further, transients of isotopic 13 C enrichment show positional labeling in these peptides, which allows us to delineate the alternative biosynthesis pathways. Importantly, the amino acid of γ-glutamyl dipeptides shows much faster turnover compared to the glutamate moiety. The significant accumulation of γ-glutamyl dipeptides under slow-growth conditions combined with the results from dynamic 13 C labeling suggests that these compounds may act as reservoirs of amino acids in cyanobacteria.
Collapse
Affiliation(s)
- Damini Jaiswal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Minal Nenwani
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Vivek Mishra
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
23
|
Zheng AO, Sher A, Fridman D, Musante CJ, Young JD. Pool size measurements improve precision of flux estimates but increase sensitivity to unmodeled reactions outside the core network in isotopically nonstationary metabolic flux analysis (INST-MFA). Biotechnol J 2022; 17:e2000427. [PMID: 35085426 DOI: 10.1002/biot.202000427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/08/2022]
Abstract
Metabolic flux analysis (MFA) involves model-based estimation of metabolic reaction rates (i.e., fluxes) and, in some cases, metabolite content (i.e., pool sizes) from experimental measurements. Applying MFA to biological data helps determine the fate of substrates and the activity of specific pathways within metabolic networks. However, reliably estimating fluxes by using simplified "core" models to predict the dynamics of larger metabolic networks remains a challenge. One point of uncertainty relates to the advantages and potential pitfalls of including pool size measurements as experimental inputs for isotopically nonstationary MFA (INST-MFA). Here, we directly assessed the role of pool sizes using various core models and simulated datasets. To investigate the effects of pool size measurements on INST-MFA, we assessed the accuracy and precision of flux estimates obtained using different subsets of data (e.g., with or without pool size measurements) and simple network models that either matched or differed from the true network. The inclusion of pool size measurements provided incremental improvements to the precision of the flux estimates. However, adding pool size measurements increased the sensitivity of the flux solution to unmodeled reactions outside the core network. These results were confirmed using a large E. coli model that is representative of realistic metabolic networks examined in MFA studies. Our findings indicate that accurate flux estimates can be obtained in the absence of pool size measurements, even when using core models that lack full network coverage. Addition of pool size measurements to INST-MFA datasets may reveal the activity of non-core reactions that influence the labeling dynamics and therefore necessitate network expansion in order to reconcile all available data to the model. Our findings also emphasize the key role that goodness-of-fit testing plays in assessing the quality of model fits obtained with INST-MFA. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Amy O Zheng
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Anna Sher
- Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA
| | | | - Cynthia J Musante
- Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
24
|
Sengupta A, Liu D, Pakrasi HB. CRISPR-Cas mediated genome engineering of cyanobacteria. Methods Enzymol 2022; 676:403-432. [DOI: 10.1016/bs.mie.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Chu KL, Koley S, Jenkins LM, Bailey SR, Kambhampati S, Foley K, Arp JJ, Morley SA, Czymmek KJ, Bates PD, Allen DK. Metabolic flux analysis of the non-transitory starch tradeoff for lipid production in mature tobacco leaves. Metab Eng 2022; 69:231-248. [PMID: 34920088 PMCID: PMC8761171 DOI: 10.1016/j.ymben.2021.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/12/2021] [Accepted: 12/11/2021] [Indexed: 12/19/2022]
Abstract
The metabolic plasticity of tobacco leaves has been demonstrated via the generation of transgenic plants that can accumulate over 30% dry weight as triacylglycerols. In investigating the changes in carbon partitioning in these high lipid-producing (HLP) leaves, foliar lipids accumulated stepwise over development. Interestingly, non-transient starch was observed to accumulate with plant age in WT but not HLP leaves, with a drop in foliar starch concurrent with an increase in lipid content. The metabolic carbon tradeoff between starch and lipid was studied using 13CO2-labeling experiments and isotopically nonstationary metabolic flux analysis, not previously applied to the mature leaves of a crop. Fatty acid synthesis was investigated through assessment of acyl-acyl carrier proteins using a recently derived quantification method that was extended to accommodate isotopic labeling. Analysis of labeling patterns and flux modeling indicated the continued production of unlabeled starch, sucrose cycling, and a significant contribution of NADP-malic enzyme to plastidic pyruvate production for the production of lipids in HLP leaves, with the latter verified by enzyme activity assays. The results suggest an inherent capacity for a developmentally regulated carbon sink in tobacco leaves and may in part explain the uniquely successful leaf lipid engineering efforts in this crop.
Collapse
Affiliation(s)
- Kevin L Chu
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Somnath Koley
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Lauren M Jenkins
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Sally R Bailey
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA; United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | | | - Kevin Foley
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Jennifer J Arp
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Stewart A Morley
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA; United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Kirk J Czymmek
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA; United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA.
| |
Collapse
|
26
|
Treves H, Küken A, Arrivault S, Ishihara H, Hoppe I, Erban A, Höhne M, Moraes TA, Kopka J, Szymanski J, Nikoloski Z, Stitt M. Carbon flux through photosynthesis and central carbon metabolism show distinct patterns between algae, C 3 and C 4 plants. NATURE PLANTS 2022; 8:78-91. [PMID: 34949804 PMCID: PMC8786664 DOI: 10.1038/s41477-021-01042-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/09/2021] [Indexed: 05/26/2023]
Abstract
Photosynthesis-related pathways are regarded as a promising avenue for crop improvement. Whilst empirical studies have shown that photosynthetic efficiency is higher in microalgae than in C3 or C4 crops, the underlying reasons remain unclear. Using a tailor-made microfluidics labelling system to supply 13CO2 at steady state, we investigated in vivo labelling kinetics in intermediates of the Calvin Benson cycle and sugar, starch, organic acid and amino acid synthesis pathways, and in protein and lipids, in Chlamydomonas reinhardtii, Chlorella sorokiniana and Chlorella ohadii, which is the fastest growing green alga on record. We estimated flux patterns in these algae and compared them with published and new data from C3 and C4 plants. Our analyses identify distinct flux patterns supporting faster growth in photosynthetic cells, with some of the algae exhibiting faster ribulose 1,5-bisphosphate regeneration and increased fluxes through the lower glycolysis and anaplerotic pathways towards the tricarboxylic acid cycle, amino acid synthesis and lipid synthesis than in higher plants.
Collapse
Affiliation(s)
- Haim Treves
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany.
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel.
| | - Anika Küken
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany
- Bioinformatics group, University of Potsdam, Potsdam, Germany
| | | | - Hirofumi Ishihara
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Ines Hoppe
- Bioinformatics group, University of Potsdam, Potsdam, Germany
| | - Alexander Erban
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Melanie Höhne
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Thiago Alexandre Moraes
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany
- Crop Science Centre, University of Cambridge, Cambridge, UK
| | - Joachim Kopka
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Jedrzej Szymanski
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, OT Gatersleben, Germany
| | - Zoran Nikoloski
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany
- Bioinformatics group, University of Potsdam, Potsdam, Germany
| | - Mark Stitt
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
27
|
Pathania R, Srivastava A, Srivastava S, Shukla P. Metabolic systems biology and multi-omics of cyanobacteria: Perspectives and future directions. BIORESOURCE TECHNOLOGY 2022; 343:126007. [PMID: 34634665 DOI: 10.1016/j.biortech.2021.126007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacteria are oxygenic photoautotrophs whose metabolism contains key biochemical pathways to fix atmospheric CO2 and synthesize various metabolites. The development of bioengineering tools has enabled the manipulation of cyanobacterial chassis to produce various valuable bioproducts photosynthetically. However, effective utilization of cyanobacteria as photosynthetic cell factories needs a detailed understanding of their metabolism and its interaction with other cellular processes. Implementing systems and synthetic biology tools has generated a wealth of information on various metabolic pathways. However, to design effective engineering strategies for further improvement in growth, photosynthetic efficiency, and enhanced production of target biochemicals, in-depth knowledge of their carbon/nitrogen metabolism, pathway fluxe distribution, genetic regulation and integrative analyses are necessary. In this review, we discuss the recent advances in the development of genome-scale metabolic models (GSMMs), omics analyses (metabolomics, transcriptomics, proteomics, fluxomics), and integrative modeling approaches to showcase the current understanding of cyanobacterial metabolism.
Collapse
Affiliation(s)
- Ruchi Pathania
- Systems Biology for Biofuels Group, International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Amit Srivastava
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Shireesh Srivastava
- Systems Biology for Biofuels Group, International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi 110067, India; DBT-ICGEB Center for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Pratyoosh Shukla
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
28
|
Dookeran ZA, Nielsen DR. Systematic Engineering of Synechococcus elongatus UTEX 2973 for Photosynthetic Production of l-Lysine, Cadaverine, and Glutarate. ACS Synth Biol 2021; 10:3561-3575. [PMID: 34851612 DOI: 10.1021/acssynbio.1c00492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amino acids and related targets are typically produced by well-characterized heterotrophs including Corynebacterium glutamicum and Escherichia coli. Cyanobacteria offer an opportunity to supplant these sugar-intensive processes by instead directly utilizing atmospheric CO2 and sunlight. Synechococcus elongatus UTEX 2973 (hereafter UTEX 2973) is a particularly promising photoautotrophic platform due to its fast growth rate. Here, we first engineered UTEX 2973 to overproduce l-lysine (hereafter lysine), after which both cadaverine and glutarate production were achieved through further pathway engineering. To facilitate metabolic engineering, the relative activities of a subset of previously uncharacterized promoters were investigated, in each case, while also comparing the effects of both chromosomal (from neutral site NS3) and episomal (from pAM4788) expressions. Using these parts, lysine overproduction in UTEX 2973 was engineered by introducing a feedback-resistant copy of aspartate kinase (encoded by lysCfbr) and a lysine exporter (encoded by ybjE), both from E. coli. While chromosomal expression resulted in lysine production up to just 325.3 ± 14.8 mg/L after 120 h, this was then increased to 556.3 ± 62.3 mg/L via plasmid-based expression, also surpassing prior reports of photoautotrophic lysine bioproduction. Lastly, additional products of interest were then targeted by modularly extending the lysine pathway to glutarate and cadaverine, two 5-carbon, bioplastic monomers. By this approach, glutarate has so far been produced at final titers reaching 67.5 ± 2.2 mg/L by 96 h, whereas cadaverine has been produced at up to 55.3 ± 6.7 mg/L. Overcoming pathway and/or transport bottlenecks, meanwhile, will be important to improving upon these initial outputs.
Collapse
Affiliation(s)
- Zachary A. Dookeran
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, P.O. Box 876106, Tempe, Arizona 85287-6106, United States
| | - David R. Nielsen
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, P.O. Box 876106, Tempe, Arizona 85287-6106, United States
| |
Collapse
|
29
|
Jaiswal D, Sahasrabuddhe D, Wangikar PP. Cyanobacteria as cell factories: the roles of host and pathway engineering and translational research. Curr Opin Biotechnol 2021; 73:314-322. [PMID: 34695729 DOI: 10.1016/j.copbio.2021.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 11/03/2022]
Abstract
Cyanobacteria, a group of photoautotrophic prokaryotes, are attractive hosts for the sustainable production of chemicals from carbon dioxide and sunlight. However, the rates, yields, and titers have remained well below those needed for commercial deployment. We argue that the following areas will be central to the development of cyanobacterial cell factories: engineered and well-characterized host strains, model-guided pathway design, and advanced synthetic biology tools. Although several foundational studies report improved strain properties, translational research will be needed to develop engineered hosts and deploy them for metabolic engineering. Further, the recent developments in metabolic modeling and synthetic biology of cyanobacteria will enable nimble strategies for strain improvement with the complete cycle of design, build, test, and learn.
Collapse
Affiliation(s)
- Damini Jaiswal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Deepti Sahasrabuddhe
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
30
|
Tong T, Chen X, Hu G, Wang XL, Liu GQ, Liu L. Engineering microbial metabolic energy homeostasis for improved bioproduction. Biotechnol Adv 2021; 53:107841. [PMID: 34610353 DOI: 10.1016/j.biotechadv.2021.107841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/25/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Metabolic energy (ME) homeostasis is essential for the survival and proper functioning of microbial cell factories. However, it is often disrupted during bioproduction because of inefficient ME supply and excessive ME consumption. In this review, we propose strategies, including reinforcement of the capacity of ME-harvesting systems in autotrophic microorganisms; enhancement of the efficiency of ME-supplying pathways in heterotrophic microorganisms; and reduction of unessential ME consumption by microbial cells, to address these issues. This review highlights the potential of biotechnology in the engineering of microbial ME homeostasis and provides guidance for the higher efficient bioproduction of microbial cell factories.
Collapse
Affiliation(s)
- Tian Tong
- Hunan Provincial Key Laboratory for Forestry Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China; International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiao-Ling Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China; International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| | - Gao-Qiang Liu
- Hunan Provincial Key Laboratory for Forestry Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China; International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
31
|
Yu King Hing N, Aryal UK, Morgan JA. Probing Light-Dependent Regulation of the Calvin Cycle Using a Multi-Omics Approach. FRONTIERS IN PLANT SCIENCE 2021; 12:733122. [PMID: 34671374 PMCID: PMC8521058 DOI: 10.3389/fpls.2021.733122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Photoautotrophic microorganisms are increasingly explored for the conversion of atmospheric carbon dioxide into biomass and valuable products. The Calvin-Benson-Bassham (CBB) cycle is the primary metabolic pathway for net CO2 fixation within oxygenic photosynthetic organisms. The cyanobacteria, Synechocystis sp. PCC 6803, is a model organism for the study of photosynthesis and a platform for many metabolic engineering efforts. The CBB cycle is regulated by complex mechanisms including enzymatic abundance, intracellular metabolite concentrations, energetic cofactors and post-translational enzymatic modifications that depend on the external conditions such as the intensity and quality of light. However, the extent to which each of these mechanisms play a role under different light intensities remains unclear. In this work, we conducted non-targeted proteomics in tandem with isotopically non-stationary metabolic flux analysis (INST-MFA) at four different light intensities to determine the extent to which fluxes within the CBB cycle are controlled by enzymatic abundance. The correlation between specific enzyme abundances and their corresponding reaction fluxes is examined, revealing several enzymes with uncorrelated enzyme abundance and their corresponding flux, suggesting flux regulation by mechanisms other than enzyme abundance. Additionally, the kinetics of 13C labeling of CBB cycle intermediates and estimated inactive pool sizes varied significantly as a function of light intensity suggesting the presence of metabolite channeling, an additional method of flux regulation. These results highlight the importance of the diverse methods of regulation of CBB enzyme activity as a function of light intensity, and highlights the importance of considering these effects in future kinetic models.
Collapse
Affiliation(s)
- Nathaphon Yu King Hing
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
| | - Uma K. Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN, United States
| | - John A. Morgan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
32
|
Cui J, Sun T, Chen L, Zhang W. Salt-Tolerant Synechococcus elongatus UTEX 2973 Obtained via Engineering of Heterologous Synthesis of Compatible Solute Glucosylglycerol. Front Microbiol 2021; 12:650217. [PMID: 34084156 PMCID: PMC8168540 DOI: 10.3389/fmicb.2021.650217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/25/2021] [Indexed: 01/08/2023] Open
Abstract
The recently isolated cyanobacterium Synechococcus elongatus UTEX 2973 (Syn2973) is characterized by a faster growth rate and greater tolerance to high temperature and high light, making it a good candidate chassis for autotrophic photosynthetic microbial cell factories. However, Syn2973 is sensitive to salt stress, making it urgently important to improve the salt tolerance of Syn2973 for future biotechnological applications. Glucosylglycerol, a compatible solute, plays an important role in resisting salt stress in moderate and marine halotolerant cyanobacteria. In this study, the salt tolerance of Syn2973 was successfully improved by introducing the glucosylglycerol (GG) biosynthetic pathway (OD750 improved by 24% at 60 h). In addition, the salt tolerance of Syn2973 was further enhanced by overexpressing the rate-limiting step of glycerol-3-phosphate dehydrogenase and downregulating the gene rfbA, which encodes UDP glucose pyrophosphorylase. Taken together, these results indicate that the growth of the end-point strain M-2522-GgpPS-drfbA was improved by 62% compared with the control strain M-pSI-pSII at 60 h under treatment with 0.5 M NaCl. Finally, a comparative metabolomic analysis between strains M-pSI-pSII and M-2522-GgpPS-drfbA was performed to characterize the carbon flux in the engineered M-2522-GgpPS-drfbA strain, and the results showed that more carbon flux was redirected from ADP-GLC to GG synthesis. This study provides important engineering strategies to improve salt tolerance and GG production in Syn2973 in the future.
Collapse
Affiliation(s)
- Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| |
Collapse
|
33
|
Roh H, Lee JS, Choi HI, Sung YJ, Choi SY, Woo HM, Sim SJ. Improved CO 2-derived polyhydroxybutyrate (PHB) production by engineering fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 for potential utilization of flue gas. BIORESOURCE TECHNOLOGY 2021; 327:124789. [PMID: 33556769 DOI: 10.1016/j.biortech.2021.124789] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Industrial application of cyanobacterial poly-β-hydroxybutyrate (PHB) production from CO2 is currently challenged by slow growth rate and low photoautotrophic PHB productivity of existing cyanobacteria species. Herein, a novel PHB-producing cyanobacterial strain was developed by harnessing fast-growing cyanobacteria Synechococcus elongatus UTEX 2973 with introduction of heterologous phaCAB genes. Under photoautotrophic condition, the engineered strain produced 420 mg L-1 (16.7% of dry cell weight) with the highest specific productivity of 75.2 mg L-1 d-1. When compared with a native PHB producer Synechocystis PCC 6803 under nitrogen deprivation, the engineered strain exhibited 2.4-fold higher PHB productivity. The performance of the engineered strain was further demonstrated in large scale cultivation using photobioreactor and outdoor cultivation employing industrial flue gas as the sole carbon source. This study can provide a promising solution to address petroleum-based plastic waste and contribute to CO2 mitigation.
Collapse
Affiliation(s)
- Hyejin Roh
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Jeong Seop Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Hong Il Choi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Young Joon Sung
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Sun Young Choi
- SOL inc, 2BK Tower 2F, 28 Beopwon-ro 11-gil, Songpa-gu, Seoul, Seoul 0583, South Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, South Korea; BioFoundry Research Center, Institute of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, South Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
34
|
Cui J, Xie Y, Sun T, Chen L, Zhang W. Deciphering and engineering photosynthetic cyanobacteria for heavy metal bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:144111. [PMID: 33352345 DOI: 10.1016/j.scitotenv.2020.144111] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/22/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Environmental pollution caused by heavy metals has received worldwide attentions due to their ubiquity, poor degradability and easy bioaccumulation in host cells. As one potential solution, photosynthetic cyanobacteria have been considered as promising remediation chassis and widely applied in various bioremediation processes of heavy-metals. Meanwhile, deciphering resistant mechanisms and constructing tolerant chassis towards heavy metals could greatly contribute to the successful application of the cyanobacteria-based bioremediation in the future. In this review, first we summarized recent application of cyanobacteria in heavy metals bioremediation using either live or dead cells. Second, resistant mechanisms and strategies for enhancing cyanobacterial bioremediation of heavy metals were discussed. Finally, potential challenges and perspectives for improving bioremediation of heavy metals by cyanobacteria were presented.
Collapse
Affiliation(s)
- Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Yaru Xie
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China; Law School of Tianjin University, Tianjin 300072, PR China.
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China.
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China; Law School of Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
35
|
Xie Y, Chen L, Sun T, Zhang W. Deciphering and engineering high-light tolerant cyanobacteria for efficient photosynthetic cell factories. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Mitigation of host cell mutations and regime shift during microbial fermentation: a perspective from flux memory. Curr Opin Biotechnol 2020; 66:227-235. [DOI: 10.1016/j.copbio.2020.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/01/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022]
|
37
|
Mukherjee B, Madhu S, Wangikar PP. The role of systems biology in developing non-model cyanobacteria as hosts for chemical production. Curr Opin Biotechnol 2020; 64:62-69. [DOI: 10.1016/j.copbio.2019.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 11/16/2022]
|
38
|
Biological insights into non-model microbial hosts through stable-isotope metabolic flux analysis. Curr Opin Biotechnol 2020; 64:32-38. [DOI: 10.1016/j.copbio.2019.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/16/2022]
|
39
|
Obata T. Toward an evaluation of metabolite channeling in vivo. Curr Opin Biotechnol 2020; 64:55-61. [DOI: 10.1016/j.copbio.2019.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/25/2022]
|
40
|
Cheah YE, Xu Y, Sacco SA, Babele PK, Zheng AO, Johnson CH, Young JD. Systematic identification and elimination of flux bottlenecks in the aldehyde production pathway of Synechococcus elongatus PCC 7942. Metab Eng 2020; 60:56-65. [PMID: 32222320 PMCID: PMC7217728 DOI: 10.1016/j.ymben.2020.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/27/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
Isotopically nonstationary metabolic flux analysis (INST-MFA) provides a versatile platform to quantitatively assess in vivo metabolic activities of autotrophic systems. By applying INST-MFA to recombinant aldehyde-producing cyanobacteria, we identified metabolic alterations that correlated with increased strain performance in order to guide rational metabolic engineering. We identified four reactions adjacent to the pyruvate node that varied significantly with increasing aldehyde production: pyruvate kinase (PK) and acetolactate synthase (ALS) fluxes were directly correlated with product formation, while pyruvate dehydrogenase (PDH) and phosphoenolpyruvate carboxylase (PPC) fluxes were inversely correlated. Overexpression of enzymes for PK or ALS did not result in further improvements to the previous best-performing strain, while downregulation of PDH expression (through antisense RNA expression) or PPC flux (through expression of the reverse reaction, phosphoenolpyruvate carboxykinase) provided significant improvements. These results illustrate the potential of INST-MFA to enable a systematic approach for iterative identification and removal of pathway bottlenecks in autotrophic host cells.
Collapse
Affiliation(s)
- Yi Ern Cheah
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yao Xu
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Sarah A Sacco
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Piyoosh K Babele
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Amy O Zheng
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Carl Hirschie Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
41
|
Photosynthetic Co-Production of Succinate and Ethylene in A Fast-Growing Cyanobacterium, Synechococcus elongatus PCC 11801. Metabolites 2020; 10:metabo10060250. [PMID: 32560048 PMCID: PMC7345232 DOI: 10.3390/metabo10060250] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
Cyanobacteria are emerging as hosts for photoautotrophic production of chemicals. Recent studies have attempted to stretch the limits of photosynthetic production, typically focusing on one product at a time, possibly to minimise the additional burden of product separation. Here, we explore the simultaneous production of two products that can be easily separated: ethylene, a gaseous product, and succinate, an organic acid that accumulates in the culture medium. This was achieved by expressing a single copy of the ethylene forming enzyme (efe) under the control of PcpcB, the inducer-free super-strong promoter of phycocyanin β subunit. We chose the recently reported, fast-growing and robust cyanobacterium, Synechococcus elongatus PCC 11801, as the host strain. A stable recombinant strain was constructed using CRISPR-Cpf1 in a first report of markerless genome editing of this cyanobacterium. Under photoautotrophic conditions, the recombinant strain shows specific productivities of 338.26 and 1044.18 μmole/g dry cell weight/h for ethylene and succinate, respectively. These results compare favourably with the reported productivities for individual products in cyanobacteria that are highly engineered. Metabolome profiling and 13C labelling studies indicate carbon flux redistribution and suggest avenues for further improvement. Our results show that S. elongatus PCC 11801 is a promising candidate for metabolic engineering.
Collapse
|
42
|
Zhang Z, Liu Z, Meng Y, Chen Z, Han J, Wei Y, Shen T, Yi Y, Xie X. Parallel isotope differential modeling for instationary 13C fluxomics at the genome scale. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:103. [PMID: 32523616 PMCID: PMC7278083 DOI: 10.1186/s13068-020-01737-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND A precise map of the metabolic fluxome, the closest surrogate to the physiological phenotype, is becoming progressively more important in the metabolic engineering of photosynthetic organisms for biofuel and biomass production. For photosynthetic organisms, the state-of-the-art method for this purpose is instationary 13C fluxomics, which has arisen as a sibling of transcriptomics or proteomics. Instationary 13C data processing requires solving high-dimensional nonlinear differential equations and leads to large computational and time costs when its scope is expanded to a genome-scale metabolic network. RESULT Here, we present a parallelized method to model instationary 13C labeling data. The elementary metabolite unit (EMU) framework is reorganized to allow treating individual mass isotopomers and breaking up of their networks into strongly connected components (SCCs). A variable domain parallel algorithm is introduced to process ordinary differential equations in a parallel way. 15-fold acceleration is achieved for constant-step-size modeling and ~ fivefold acceleration for adaptive-step-size modeling. CONCLUSION This algorithm is universally applicable to isotope granules such as EMUs and cumomers and can substantially accelerate instationary 13C fluxomics modeling. It thus has great potential to be widely adopted in any instationary 13C fluxomics modeling.
Collapse
Affiliation(s)
- Zhengdong Zhang
- College of Mathematics and Information Science, Guiyang University, Guiyang, Guizhou China
- Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang, Guizhou China
| | - Zhentao Liu
- College of Computer Science and Technology, Guizhou University, Guiyang, Guizhou China
| | - Yafei Meng
- College of Mathematics and Information Science, Guiyang University, Guiyang, Guizhou China
| | - Zhen Chen
- School of Mathematics and Sciences, Guizhou Normal University, Guiyang, Guizhou China
| | - Jiayu Han
- School of Mathematics and Sciences, Guizhou Normal University, Guiyang, Guizhou China
| | - Yimin Wei
- School of Mathematics Sciences and Key Laboratory of Mathematics for Nonlinear Sciences, Fudan University, Shanghai, China
| | - Tie Shen
- Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang, Guizhou China
| | - Yin Yi
- College of Life Science, Guizhou Normal University, Guiyang, Guizhou China
| | - Xiaoyao Xie
- Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang, Guizhou China
| |
Collapse
|
43
|
Cui J, Sun T, Li S, Xie Y, Song X, Wang F, Chen L, Zhang W. Improved Salt Tolerance and Metabolomics Analysis of Synechococcus elongatus UTEX 2973 by Overexpressing Mrp Antiporters. Front Bioeng Biotechnol 2020; 8:500. [PMID: 32528943 PMCID: PMC7264159 DOI: 10.3389/fbioe.2020.00500] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/29/2020] [Indexed: 11/20/2022] Open
Abstract
The fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 (Syn2973) is a promising candidate for photosynthetic microbial factory. Seawater utilization is necessary for large-scale cultivation of Syn2973 in the future. However, Syn2973 is sensitive to salt stress, making it necessary to improve its salt tolerance. In this study, 21 exogenous putative transporters were individually overexpressed in Syn2973 to evaluate their effects on salt tolerance. The results showed the overexpression of three Mrp antiporters significantly improved the salt tolerance of Syn2973. Notably, overexpressing the Mrp antiporter from Synechococcus sp. PCC 7002 improved cell growth by 57.7% under 0.4 M NaCl condition. In addition, the metabolomics and biomass composition analyses revealed the possible mechanisms against salt stress in both Syn2973 and the genetically engineered strain. The study provides important engineering strategies to improve salt tolerance of Syn2973 and is valuable for understanding mechanisms of salt tolerance in cyanobacteria.
Collapse
Affiliation(s)
- Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Frontier Science Center for Synthetic Biology, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Shubin Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Frontier Science Center for Synthetic Biology, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Yaru Xie
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Frontier Science Center for Synthetic Biology, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Xinyu Song
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Fangzhong Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Frontier Science Center for Synthetic Biology, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Frontier Science Center for Synthetic Biology, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| |
Collapse
|
44
|
Sake CL, Newman DM, Boyle NR. Evaluation of quenching methods for metabolite recovery in photoautotrophic Synechococcus sp. PCC 7002. Biotechnol Prog 2020; 36:e3015. [PMID: 32388924 DOI: 10.1002/btpr.3015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/07/2020] [Accepted: 05/05/2020] [Indexed: 12/29/2022]
Abstract
The first step of many metabolomics studies is quenching, a technique vital for rapidly halting metabolism and ensuring that the metabolite profile remains unchanging during sample processing. The most widely used approach is to plunge the sample into prechilled cold methanol; however, this led to significant metabolite loss in Synecheococcus sp. PCC 7002. Here we describe our analysis of the impacts of cold methanol quenching on the model marine cyanobacterium Synechococcus sp. PCC 7002, as well as our brief investigation of alternative quenching methods. We tested several methods including cold methanol, cold saline, and two filtration approaches. Targeted central metabolites were extracted and metabolomic profiles were generated using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results indicate that cold methanol quenching induces dramatic metabolite leakage in Synechococcus, resulting in a majority of central metabolites being lost prior to extraction. Alternatively, usage of a chilled saline quenching solution mitigates metabolite leakage and improves sample recovery without sacrificing rapid quenching of cellular metabolism. Finally, we illustrate that metabolite leakage can be assessed, and subsequently accounted for, in order to determine absolute metabolite pool sizes; however, our results show that metabolite leakage is inconsistent across various metabolite pools and therefore must be determined for each individually measured metabolite.
Collapse
Affiliation(s)
- Cara L Sake
- Chemical & Biological Engineering , Colorado School of Mines, Golden, Colorado, USA
| | - Darrian M Newman
- Chemical & Biological Engineering , Colorado School of Mines, Golden, Colorado, USA
| | - Nanette R Boyle
- Chemical & Biological Engineering , Colorado School of Mines, Golden, Colorado, USA
| |
Collapse
|
45
|
Ng I, Keskin BB, Tan S. A Critical Review of Genome Editing and Synthetic Biology Applications in Metabolic Engineering of Microalgae and Cyanobacteria. Biotechnol J 2020; 15:e1900228. [DOI: 10.1002/biot.201900228] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/07/2020] [Indexed: 12/13/2022]
Affiliation(s)
- I‐Son Ng
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| | - Batuhan Birol Keskin
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| | - Shih‐I Tan
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| |
Collapse
|
46
|
Lin PC, Zhang F, Pakrasi HB. Enhanced production of sucrose in the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Sci Rep 2020; 10:390. [PMID: 31942010 PMCID: PMC6962321 DOI: 10.1038/s41598-019-57319-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/28/2019] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are attractive microbial hosts for production of chemicals using light and CO2. However, their low productivity of chemicals is a major challenge for commercial applications. This is mostly due to their relatively slow growth rate and carbon partitioning toward biomass rather than products. Many cyanobacterial strains synthesize sucrose as an osmoprotectant to cope with salt stress environments. In this study, we harnessed the photosynthetic machinery of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 to produce sucrose under salt stress conditions and investigated if the high efficiency of photosynthesis can enhance the productivity of sucrose. By expressing the sucrose transporter CscB, Synechococcus 2973 produced 8 g L-1 of sucrose with a highest productivity of 1.9 g L-1 day-1 under salt stress conditions. The salt stress activated the sucrose biosynthetic pathway mostly via upregulating the sps gene, which encodes the rate-limiting sucrose-phosphate synthase enzyme. To alleviate the demand on high concentrations of salt for sucrose production, we further overexpressed the sucrose synthesis genes in Synechococcus 2973. The engineered strain produced sucrose with a productivity of 1.1 g L-1 day-1 without the need of salt induction. The engineered Synechococcus 2973 in this study demonstrated the highest productivity of sucrose in cyanobacteria.
Collapse
Affiliation(s)
- Po-Cheng Lin
- Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Fuzhong Zhang
- Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, MO, 63130, USA.
| |
Collapse
|
47
|
Jaiswal D, Sengupta A, Sengupta S, Madhu S, Pakrasi HB, Wangikar PP. A Novel Cyanobacterium Synechococcus elongatus PCC 11802 has Distinct Genomic and Metabolomic Characteristics Compared to its Neighbor PCC 11801. Sci Rep 2020; 10:191. [PMID: 31932622 PMCID: PMC6957532 DOI: 10.1038/s41598-019-57051-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/20/2019] [Indexed: 11/09/2022] Open
Abstract
Cyanobacteria, a group of photosynthetic prokaryotes, are attractive hosts for biotechnological applications. It is envisaged that future biorefineries will deploy engineered cyanobacteria for the conversion of carbon dioxide to useful chemicals via light-driven, endergonic reactions. Fast-growing, genetically amenable, and stress-tolerant cyanobacteria are desirable as chassis for such applications. The recently reported strains such as Synechococcus elongatus UTEX 2973 and PCC 11801 hold promise, but additional strains may be needed for the ongoing efforts of metabolic engineering. Here, we report a novel, fast-growing, and naturally transformable cyanobacterium, S. elongatus PCC 11802, that shares 97% genome identity with its closest neighbor S. elongatus PCC 11801. The new isolate has a doubling time of 2.8 h at 1% CO2, 1000 µmole photons.m-2.s-1 and grows faster under high CO2 and temperature compared to PCC 11801 thus making it an attractive host for outdoor cultivations and eventual applications in the biorefinery. Furthermore, S. elongatus PCC 11802 shows higher levels of key intermediate metabolites suggesting that this strain might be better suited for achieving high metabolic flux in engineered pathways. Importantly, metabolite profiles suggest that the key enzymes of the Calvin cycle are not repressed under elevated CO2 in the new isolate, unlike its closest neighbor.
Collapse
Affiliation(s)
- Damini Jaiswal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Annesha Sengupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Shinjinee Sengupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Swati Madhu
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
- DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
- Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
48
|
Quantifying Methane and Methanol Metabolism of " Methylotuvimicrobium buryatense" 5GB1C under Substrate Limitation. mSystems 2019; 4:4/6/e00748-19. [PMID: 31822604 PMCID: PMC6906744 DOI: 10.1128/msystems.00748-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Methanotrophic metabolism has been under investigation for decades using biochemical and genetic approaches. Recently, a further step has been taken toward understanding methanotrophic metabolism in a quantitative manner by means of flux balance analysis (FBA), a mathematical approach that predicts fluxes constrained by mass balance and a few experimental measurements. However, no study has previously been undertaken to experimentally quantitate the complete methanotrophic central metabolism. The significance of this study is to fill such a gap by performing 13C INST-MFA on a fast-growing methanotroph. Our quantitative insights into the methanotrophic carbon and energy metabolism will pave the way for future FBA studies and set the stage for rational design of methanotrophic strains for industrial applications. Further, the experimental strategies can be applied to other methane or methanol utilizers, and the results will offer a unique and quantitative perspective of diverse methylotrophic metabolism. Methanotrophic bacteria are a group of prokaryotes capable of using methane as their sole carbon and energy source. Although efforts have been made to simulate and elucidate their metabolism via computational approaches or 13C tracer analysis, major gaps still exist in our understanding of methanotrophic metabolism at the systems level. Particularly, direct measurements of system-wide fluxes are required to understand metabolic network function. Here, we quantified the central metabolic fluxes of a type I methanotroph, “Methylotuvimicrobium buryatense” 5GB1C, formerly Methylomicrobium buryatense 5GB1C, via 13C isotopically nonstationary metabolic flux analysis (INST-MFA). We performed labeling experiments on chemostat cultures by switching substrates from 12C to 13C input. Following the switch, we measured dynamic changes of labeling patterns and intracellular pool sizes of several intermediates, which were later used for data fitting and flux calculations. Through computational optimizations, we quantified methane and methanol metabolism at two growth rates (0.1 h−1 and 0.05 h−1). The resulting flux maps reveal a core consensus central metabolic flux phenotype across different growth conditions: a strong ribulose monophosphate cycle, a preference for the Embden-Meyerhof-Parnas pathway as the primary glycolytic pathway, and a tricarboxylic acid cycle showing small yet significant fluxes. This central metabolic consistency is further supported by a good linear correlation between fluxes at the two growth rates. Specific differences between methane and methanol growth observed previously are maintained under substrate limitation, albeit with smaller changes. The substrate oxidation and glycolysis pathways together contribute over 80% of total energy production, while other pathways play less important roles. IMPORTANCE Methanotrophic metabolism has been under investigation for decades using biochemical and genetic approaches. Recently, a further step has been taken toward understanding methanotrophic metabolism in a quantitative manner by means of flux balance analysis (FBA), a mathematical approach that predicts fluxes constrained by mass balance and a few experimental measurements. However, no study has previously been undertaken to experimentally quantitate the complete methanotrophic central metabolism. The significance of this study is to fill such a gap by performing 13C INST-MFA on a fast-growing methanotroph. Our quantitative insights into the methanotrophic carbon and energy metabolism will pave the way for future FBA studies and set the stage for rational design of methanotrophic strains for industrial applications. Further, the experimental strategies can be applied to other methane or methanol utilizers, and the results will offer a unique and quantitative perspective of diverse methylotrophic metabolism.
Collapse
|
49
|
Babele PK, Young JD. Applications of stable isotope-based metabolomics and fluxomics toward synthetic biology of cyanobacteria. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 12:e1472. [PMID: 31816180 DOI: 10.1002/wsbm.1472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/24/2019] [Accepted: 11/16/2019] [Indexed: 12/17/2022]
Abstract
Unique features of cyanobacteria (e.g., photosynthesis and nitrogen fixation) make them potential candidates for production of biofuels and other value-added biochemicals. As prokaryotes, they can be readily engineered using synthetic and systems biology tools. Metabolic engineering of cyanobacteria for the synthesis of desired compounds requires in-depth knowledge of central carbon and nitrogen metabolism, pathway fluxes, and their regulation. Metabolomics and fluxomics offer the comprehensive analysis of metabolism by directly characterizing the biochemical activities of cells. This information is acquired by measuring the abundance of key metabolites and their rates of interconversion, which can be achieved by labeling cells with stable isotopes, quantifying metabolite pool sizes and isotope incorporation by gas chromatography/liquid chromatography-mass spectrometry GC/LC-MS or nuclear magnetic resonance (NMR), and mathematical modeling to estimate in vivo metabolic fluxes. Herein, we review progress that has been made to adapt metabolomics and fluxomics tools to examine model cyanobacterial species. We summarize the application of metabolic flux analysis (MFA) strategies to identify metabolic bottlenecks that can be targeted to boost cell growth, improve stress tolerance, or enhance biochemical production in cyanobacteria. Despite the advances in metabolomics, fluxomics, and other synthetic and systems biology tools during the past years, further efforts are required to increase our understanding of cyanobacterial metabolism in order to create efficient photosynthetic hosts for the production of value-added compounds. This article is categorized under: Laboratory Methods and Technologies > Metabolomics Biological Mechanisms > Metabolism Analytical and Computational Methods > Analytical Methods.
Collapse
Affiliation(s)
- Piyoosh Kumar Babele
- Chemical & Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - Jamey D Young
- Chemical & Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee.,Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
50
|
Photosynthetic conversion of CO2 to hyaluronic acid by engineered strains of the cyanobacterium Synechococcus sp. PCC 7002. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101702] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|