1
|
Stegmüller J, Rodríguez Estévez M, Shu W, Gläser L, Myronovskyi M, Rückert-Reed C, Kalinowski J, Luzhetskyy A, Wittmann C. Systems metabolic engineering of the primary and secondary metabolism of Streptomyces albidoflavus enhances production of the reverse antibiotic nybomycin against multi-resistant Staphylococcus aureus. Metab Eng 2024; 81:123-143. [PMID: 38072358 DOI: 10.1016/j.ymben.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024]
Abstract
Nybomycin is an antibiotic compound with proven activity against multi-resistant Staphylococcus aureus, making it an interesting candidate for combating these globally threatening pathogens. For exploring its potential, sufficient amounts of nybomycin and its derivatives must be synthetized to fully study its effectiveness, safety profile, and clinical applications. As native isolates only accumulate low amounts of the compound, superior producers are needed. The heterologous cell factory S. albidoflavus 4N24, previously derived from the cluster-free chassis S. albidoflavus Del14, produced 860 μg L-1 of nybomycin, mainly in the stationary phase. A first round of strain development modulated expression of genes involved in supply of nybomycin precursors under control of the common Perm* promoter in 4N24, but without any effect. Subsequent studies with mCherry reporter strains revealed that Perm* failed to drive expression during the product synthesis phase but that use of two synthetic promoters (PkasOP* and P41) enabled strong constitutive expression during the entire process. Using PkasOP*, several rounds of metabolic engineering successively streamlined expression of genes involved in the pentose phosphate pathway, the shikimic acid pathway, supply of CoA esters, and nybomycin biosynthesis and export, which more than doubled the nybomycin titer to 1.7 mg L-1 in the sixth-generation strain NYB-6B. In addition, we identified the minimal set of nyb genes needed to synthetize the molecule using single-gene-deletion strains. Subsequently, deletion of the regulator nybW enabled nybomycin production to begin during the growth phase, further boosting the titer and productivity. Based on RNA sequencing along the created strain genealogy, we discovered that the nyb gene cluster was unfavorably downregulated in all advanced producers. This inspired removal of a part and the entire set of the four regulatory genes at the 3'-end nyb of the cluster. The corresponding mutants NYB-8 and NYB-9 exhibited marked further improvement in production, and the deregulated cluster was combined with all beneficial targets from primary metabolism. The best strain, S. albidoflavus NYB-11, accumulated up to 12 mg L-1 nybomycin, fifteenfold more than the basic strain. The absence of native gene clusters in the host and use of a lean minimal medium contributed to a selective production process, providing an important next step toward further development of nybomycin.
Collapse
Affiliation(s)
- Julian Stegmüller
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | | | - Wei Shu
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Lars Gläser
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Maksym Myronovskyi
- Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | | | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Andriy Luzhetskyy
- Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
2
|
Kim M, Oh JW, Jeong DW, Cho BH, Chang J, Shi X, Han SO. Biosynthesis of l-histidine from marine biomass-derived galactans in metabolically engineered Corynebacterium glutamicum. BIORESOURCE TECHNOLOGY 2024; 391:129963. [PMID: 37925085 DOI: 10.1016/j.biortech.2023.129963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
l-Histidine plays significant roles in the food and pharmaceutical industries, and its demand has been steadily increasing recently. As demand for l-histidine continues, the development of eco-friendly processes is required. To pursue this goal, D-galactose, a primary component of red algae, was employed as a carbon source for synthesizing l-histidine. To harness this marine biomass, κ-carrageenan was preferentially hydrolyzed to obtain D-galactose using κ-carrageenase (CgkA) and iduronate-2-sulfatase (IdsA3). Subsequently, l-histidine production was enhanced by modifying precursor pathways in Corynebacterium glutamicum. The resulting strain, TDPH6 exhibited a remarkable 2.15-fold increase in l-histidine production compared to TDP. Furthermore, a galactose utilization system was introduced and named TDPH6G2. During fermentation, this strain efficiently consumed 100 % of the D-galactose and synthesized 0.395 g/L of l-histidine. In conclusion, this study presents a sustainable approach to L-histidine synthesis by introducing a galactose utilization system into C. glutamicum.
Collapse
Affiliation(s)
- Minhye Kim
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jun Won Oh
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Da Woon Jeong
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea; Amtixbio CO., LTD., Seoul 01411, Republic of Korea
| | - Byeong-Hyeon Cho
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Joonhee Chang
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Xiaoyu Shi
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea; Institute of Life Science and Natural Resources, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
3
|
François JM. Progress advances in the production of bio-sourced methionine and its hydroxyl analogues. Biotechnol Adv 2023; 69:108259. [PMID: 37734648 DOI: 10.1016/j.biotechadv.2023.108259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/11/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
The essential sulphur-containing amino acid, methionine, is becoming a mass-commodity product with an annual production that exceeded 1,500,000 tons in 2018. This amino acid is today almost exclusively produced by chemical process from fossil resources. The environmental problems caused by this industrial process, and the expected scarcity of oil resources in the coming years, have recently accelerated the development of bioprocesses for producing methionine from renewable carbon feedstock. After a brief description of the chemical process and the techno-economic context that still justify the production of methionine by petrochemical processes, this review will present the current state of the art of biobased alternatives aiming at a sustainable production of this amino acid and its hydroxyl analogues from renewable carbon feedstock. In particular, this review will focus on three bio-based processes, namely a purely fermentative process based on the metabolic engineering of the natural methionine pathway, a mixed process combining the production of the O-acetyl/O-succinyl homoserine intermediate of this pathway by fermentation followed by an enzyme-based conversion of this intermediate into L-methionine and lately, a hybrid process in which the non-natural chemical synthon, 2,4-dihydroxybutyric acid, obtained by fermentation of sugars is converted by chemo-catalysis into hydroxyl methionine analogues. The industrial potential of these three bioprocesses, as well as the major technical and economic obstacles that remain to be overcome to reach industrial maturity are discussed. This review concludes by bringing up the assets of these bioprocesses to meet the challenge of the "green transition", with the accomplishment of the objective "zero carbon" by 2050 and how they can be part of a model of Bioeconomy enhancing local resources.
Collapse
Affiliation(s)
- Jean Marie François
- Toulouse Biotechnology Institute, UMR INSA -CNRS5504 and UMR INSA-INRAE 792, 135 avenue de Rangueil, 31077 Toulouse, France; Toulouse White Biotechnology, UMS INRAE-INSA-CNRS, 135 Avenue de Rangueil, 31077 Toulouse, France.
| |
Collapse
|
4
|
Baumann PT, Dal Molin M, Aring H, Krumbach K, Müller MF, Vroling B, van Summeren-Wesenhagen PV, Noack S, Marienhagen J. Beyond rational-biosensor-guided isolation of 100 independently evolved bacterial strain variants and comparative analysis of their genomes. BMC Biol 2023; 21:183. [PMID: 37667306 PMCID: PMC10478468 DOI: 10.1186/s12915-023-01688-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND In contrast to modern rational metabolic engineering, classical strain development strongly relies on random mutagenesis and screening for the desired production phenotype. Nowadays, with the availability of biosensor-based FACS screening strategies, these random approaches are coming back into fashion. In this study, we employ this technology in combination with comparative genome analyses to identify novel mutations contributing to product formation in the genome of a Corynebacterium glutamicum L-histidine producer. Since all known genetic targets contributing to L-histidine production have been already rationally engineered in this strain, identification of novel beneficial mutations can be regarded as challenging, as they might not be intuitively linkable to L-histidine biosynthesis. RESULTS In order to identify 100 improved strain variants that had each arisen independently, we performed > 600 chemical mutagenesis experiments, > 200 biosensor-based FACS screenings, isolated > 50,000 variants with increased fluorescence, and characterized > 4500 variants with regard to biomass formation and L-histidine production. Based on comparative genome analyses of these 100 variants accumulating 10-80% more L-histidine, we discovered several beneficial mutations. Combination of selected genetic modifications allowed for the construction of a strain variant characterized by a doubled L-histidine titer (29 mM) and product yield (0.13 C-mol C-mol-1) in comparison to the starting variant. CONCLUSIONS This study may serve as a blueprint for the identification of novel beneficial mutations in microbial producers in a more systematic manner. This way, also previously unexplored genes or genes with previously unknown contribution to the respective production phenotype can be identified. We believe that this technology has a great potential to push industrial production strains towards maximum performance.
Collapse
Affiliation(s)
- Philipp T Baumann
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, IBG-1: Biotechnology, 52425, Jülich, Germany
| | - Michael Dal Molin
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, IBG-1: Biotechnology, 52425, Jülich, Germany
- Department I of Internal Medicine, University of Cologne, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Hannah Aring
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, IBG-1: Biotechnology, 52425, Jülich, Germany
| | - Karin Krumbach
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, IBG-1: Biotechnology, 52425, Jülich, Germany
| | - Moritz-Fabian Müller
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, IBG-1: Biotechnology, 52425, Jülich, Germany
| | - Bas Vroling
- Bioprodict GmbH, Nieuwe Marktstraat 54E, 6511AA, Nijmegen, The Netherlands
| | | | - Stephan Noack
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, IBG-1: Biotechnology, 52425, Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, IBG-1: Biotechnology, 52425, Jülich, Germany.
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany.
| |
Collapse
|
5
|
Favilli L, Griffith CM, Schymanski EL, Linster CL. High-throughput Saccharomyces cerevisiae cultivation method for credentialing-based untargeted metabolomics. Anal Bioanal Chem 2023:10.1007/s00216-023-04724-5. [PMID: 37212869 DOI: 10.1007/s00216-023-04724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023]
Abstract
Identifying metabolites in model organisms is critical for many areas of biology, including unravelling disease aetiology or elucidating functions of putative enzymes. Even now, hundreds of predicted metabolic genes in Saccharomyces cerevisiae remain uncharacterized, indicating that our understanding of metabolism is far from complete even in well-characterized organisms. While untargeted high-resolution mass spectrometry (HRMS) enables the detection of thousands of features per analysis, many of these have a non-biological origin. Stable isotope labelling (SIL) approaches can serve as credentialing strategies to distinguish biologically relevant features from background signals, but implementing these experiments at large scale remains challenging. Here, we developed a SIL-based approach for high-throughput untargeted metabolomics in S. cerevisiae, including deep-48 well format-based cultivation and metabolite extraction, building on the peak annotation and verification engine (PAVE) tool. Aqueous and nonpolar extracts were analysed using HILIC and RP liquid chromatography, respectively, coupled to Orbitrap Q Exactive HF mass spectrometry. Of the approximately 37,000 total detected features, only 3-7% of the features were credentialed and used for data analysis with open-source software such as MS-DIAL, MetFrag, Shinyscreen, SIRIUS CSI:FingerID, and MetaboAnalyst, leading to the successful annotation of 198 metabolites using MS2 database matching. Comparable metabolic profiles were observed for wild-type and sdh1Δ yeast strains grown in deep-48 well plates versus the classical shake flask format, including the expected increase in intracellular succinate concentration in the sdh1Δ strain. The described approach enables high-throughput yeast cultivation and credentialing-based untargeted metabolomics, providing a means to efficiently perform molecular phenotypic screens and help complete metabolic networks.
Collapse
Affiliation(s)
- Lorenzo Favilli
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Avenue du Swing 6, Belvaux, L-4367, Luxembourg.
| | - Corey M Griffith
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Avenue du Swing 6, Belvaux, L-4367, Luxembourg
| | - Emma L Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Avenue du Swing 6, Belvaux, L-4367, Luxembourg
| | - Carole L Linster
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Avenue du Swing 6, Belvaux, L-4367, Luxembourg
| |
Collapse
|
6
|
Pauli S, Kohlstedt M, Lamber J, Weiland F, Becker J, Wittmann C. Systems metabolic engineering upgrades Corynebacterium glutamicum for selective high-level production of the chiral drug precursor and cell-protective extremolyte L-pipecolic acid. Metab Eng 2023; 77:100-117. [PMID: 36931556 DOI: 10.1016/j.ymben.2023.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
The nonproteinogenic cyclic metabolite l-pipecolic acid is a chiral precursor for the synthesis of various commercial drugs and functions as a cell-protective extremolyte and mediator of defense in plants, enabling high-value applications in the pharmaceutical, medical, cosmetic, and agrochemical markets. To date, the production of the compound is unfavorably fossil-based. Here, we upgraded the strain Corynebacterium glutamicum for l-pipecolic acid production using systems metabolic engineering. Heterologous expression of the l-lysine 6-dehydrogenase pathway, apparently the best route to be used in the microbe, yielded a family of strains that enabled successful de novo synthesis from glucose but approached a limit of performance at a yield of 0.18 mol mol-1. Detailed analysis of the producers at the transcriptome, proteome, and metabolome levels revealed that the requirements of the introduced route were largely incompatible with the cellular environment, which could not be overcome after several further rounds of metabolic engineering. Based on the gained knowledge, we based the strain design on l-l-lysine 6-aminotransferase instead, which enabled a substantially higher in vivo flux toward l-pipecolic acid. The tailormade producer C. glutamicum PIA-7 formed l-pipecolic acid up to a yield of 562 mmol mol-1, representing 75% of the theoretical maximum. Ultimately, the advanced mutant PIA-10B achieved a titer of 93 g L-1 in a fed-batch process on glucose, outperforming all previous efforts to synthesize this valuable molecule de novo and even approaching the level of biotransformation from l-lysine. Notably, the use of C. glutamicum allows the safe production of GRAS-designated l-pipecolic acid, providing extra benefit toward addressing the high-value pharmaceutical, medical, and cosmetic markets. In summary, our development sets a milestone toward the commercialization of biobased l-pipecolic acid.
Collapse
Affiliation(s)
- Sarah Pauli
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Jessica Lamber
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Fabia Weiland
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Judith Becker
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
7
|
Kranz A, Polen T, Kotulla C, Arndt A, Bosco G, Bussmann M, Chattopadhyay A, Cramer A, Davoudi CF, Degner U, Diesveld R, Freiherr von Boeselager R, Gärtner K, Gätgens C, Georgi T, Geraths C, Haas S, Heyer A, Hünnefeld M, Ishige T, Kabus A, Kallscheuer N, Kever L, Klaffl S, Kleine B, Kočan M, Koch-Koerfges A, Kraxner KJ, Krug A, Krüger A, Küberl A, Labib M, Lange C, Mack C, Maeda T, Mahr R, Majda S, Michel A, Morosov X, Müller O, Nanda AM, Nickel J, Pahlke J, Pfeifer E, Platzen L, Ramp P, Rittmann D, Schaffer S, Scheele S, Spelberg S, Schulte J, Schweitzer JE, Sindelar G, Sorger-Herrmann U, Spelberg M, Stansen C, Tharmasothirajan A, Ooyen JV, van Summeren-Wesenhagen P, Vogt M, Witthoff S, Zhu L, Eikmanns BJ, Oldiges M, Schaumann G, Baumgart M, Brocker M, Eggeling L, Freudl R, Frunzke J, Marienhagen J, Wendisch VF, Bott M. A manually curated compendium of expression profiles for the microbial cell factory Corynebacterium glutamicum. Sci Data 2022; 9:594. [PMID: 36182956 PMCID: PMC9526701 DOI: 10.1038/s41597-022-01706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/18/2022] [Indexed: 11/12/2022] Open
Abstract
Corynebacterium glutamicum is the major host for the industrial production of amino acids and has become one of the best studied model organisms in microbial biotechnology. Rational strain construction has led to an improvement of producer strains and to a variety of novel producer strains with a broad substrate and product spectrum. A key factor for the success of these approaches is detailed knowledge of transcriptional regulation in C. glutamicum. Here, we present a large compendium of 927 manually curated microarray-based transcriptional profiles for wild-type and engineered strains detecting genome-wide expression changes of the 3,047 annotated genes in response to various environmental conditions or in response to genetic modifications. The replicates within the 927 experiments were combined to 304 microarray sets ordered into six categories that were used for differential gene expression analysis. Hierarchical clustering confirmed that no outliers were present in the sets. The compendium provides a valuable resource for future fundamental and applied research with C. glutamicum and contributes to a systemic understanding of this microbial cell factory. Measurement(s) Gene Expression Analysis Technology Type(s) Two Color Microarray Factor Type(s) WT condition A vs. WT condition B • Plasmid-based gene overexpression in parental strain vs. parental strain with empty vector control • Deletion mutant vs. parental strain Sample Characteristic - Organism Corynebacterium glutamicum Sample Characteristic - Environment laboratory environment Sample Characteristic - Location Germany.
Collapse
Affiliation(s)
- Angela Kranz
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany.
- IBG-4: Bioinformatics, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Christian Kotulla
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Annette Arndt
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069, Ulm, Germany
| | - Graziella Bosco
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Michael Bussmann
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Ava Chattopadhyay
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Annette Cramer
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069, Ulm, Germany
| | - Cedric-Farhad Davoudi
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Ursula Degner
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Ramon Diesveld
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | | | - Kim Gärtner
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Cornelia Gätgens
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Tobias Georgi
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Christian Geraths
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Sabine Haas
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Antonia Heyer
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Max Hünnefeld
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Takeru Ishige
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Armin Kabus
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Nicolai Kallscheuer
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Larissa Kever
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Simon Klaffl
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Britta Kleine
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Martina Kočan
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Abigail Koch-Koerfges
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Kim J Kraxner
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Andreas Krug
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Aileen Krüger
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Andreas Küberl
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Mohamed Labib
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Christian Lange
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Christina Mack
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Tomoya Maeda
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Regina Mahr
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Stephan Majda
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Andrea Michel
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Xenia Morosov
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Olga Müller
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Arun M Nanda
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Jens Nickel
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Jennifer Pahlke
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Eugen Pfeifer
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Laura Platzen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Paul Ramp
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Doris Rittmann
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Steffen Schaffer
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Sandra Scheele
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Stephanie Spelberg
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Julia Schulte
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Jens-Eric Schweitzer
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Georg Sindelar
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Ulrike Sorger-Herrmann
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Markus Spelberg
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Corinna Stansen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Apilaasha Tharmasothirajan
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Jan van Ooyen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | | | - Michael Vogt
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Sabrina Witthoff
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Lingfeng Zhu
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Bernhard J Eikmanns
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069, Ulm, Germany
| | - Marco Oldiges
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Georg Schaumann
- SenseUp GmbH, c/o Campus Forschungszentrum, Wilhelm-Johnen-Strasse, D-52425, Jülich, Germany
| | - Meike Baumgart
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Melanie Brocker
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Lothar Eggeling
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Roland Freudl
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Julia Frunzke
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Jan Marienhagen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Biology & CeBiTec, Bielefeld University, Universitaetsstr. 25, D-33615, Bielefeld, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| |
Collapse
|
8
|
Li N, Zeng W, Zhou J, Xu S. O-Acetyl-L-homoserine production enhanced by pathway strengthening and acetate supplementation in Corynebacterium glutamicum. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:27. [PMID: 35287716 PMCID: PMC8922893 DOI: 10.1186/s13068-022-02114-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/29/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND O-Acetyl-L-homoserine (OAH) is an important potential platform chemical. However, low levels of production of OAH are greatly limiting its industrial application. Furthermore, as a common and safe amino acid-producing strain, Corynebacterium glutamicum has not yet achieved efficient production of OAH. RESULTS First, exogenous L-homoserine acetyltransferase was introduced into an L-homoserine-producing strain, resulting in the accumulation of 0.98 g/L of OAH. Second, by comparing different acetyl-CoA biosynthesis pathways and adding several feedstocks (acetate, citrate, and pantothenate), the OAH titer increased 2.3-fold to 3.2 g/L. Then, the OAH titer further increased by 62.5% when the expression of L-homoserine dehydrogenase and L-homoserine acetyltransferase was strengthened via strong promoters. Finally, the engineered strain produced 17.4 g/L of OAH in 96 h with acetate as the supplementary feedstock in a 5-L bioreactor. CONCLUSIONS This is the first report on the efficient production of OAH with C. glutamicum as the chassis, which would provide a good foundation for industrial production of OAH.
Collapse
Affiliation(s)
- Ning Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Weizhu Zeng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Sha Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China. .,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
9
|
Kim M, Jeong DW, Oh JW, Jeong HJ, Ko YJ, Park SE, Han SO. Efficient Synthesis of Food-Derived Antioxidant l-Ergothioneine by Engineered Corynebacterium glutamicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1516-1524. [PMID: 35088592 DOI: 10.1021/acs.jafc.1c07541] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
l-Ergothioneine (EGT) is a strong antioxidant used in industry, and it is commonly extracted from mushrooms; however, its production is limited. As an alternative, we developed metabolically engineered Corynebacterium glutamicum with reinforced sulfur assimilation and pentose phosphate pathways, which led to the accumulation of 45.0 and 63.2 mg/L EGT, respectively. Additionally, the overexpression of cysEKR resulted in further promoted EGT production in ET4 (66.5 mg/L) and ET7 (85.0 mg/L). Based on this result, we developed the strain ET11, in which all sulfur assimilatory, PP, and l-cysteine synthetic pathways were reinforced, and it synthesized 264.4 mg/L EGT. This study presents the first strategy for EGT synthesis that does not require precursor addition in C. glutamicum, and the production time was shortened. In addition, the synthesized EGT showed high radical scavenging activity (70.7%), thus confirming its antioxidant function. Consequently, this study showed the possibility of EGT commercialization by overcoming the limitations of industrial processes.
Collapse
Affiliation(s)
- Minhye Kim
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Da Woon Jeong
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jun Won Oh
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hyun Jin Jeong
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Young Jin Ko
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sung Eun Park
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
10
|
Shimizu K, Matsuoka Y. Feedback regulation and coordination of the main metabolism for bacterial growth and metabolic engineering for amino acid fermentation. Biotechnol Adv 2021; 55:107887. [PMID: 34921951 DOI: 10.1016/j.biotechadv.2021.107887] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022]
Abstract
Living organisms such as bacteria are often exposed to continuous changes in the nutrient availability in nature. Therefore, bacteria must constantly monitor the environmental condition, and adjust the metabolism quickly adapting to the change in the growth condition. For this, bacteria must orchestrate (coordinate and integrate) the complex and dynamically changing information on the environmental condition. In particular, the central carbon metabolism (CCM), monomer synthesis, and macromolecular synthesis must be coordinately regulated for the efficient growth. It is a grand challenge in bioscience, biotechnology, and synthetic biology to understand how living organisms coordinate the metabolic regulation systems. Here, we consider the integrated sensing of carbon sources by the phosphotransferase system (PTS), and the feed-forward/feedback regulation systems incorporated in the CCM in relation to the pool sizes of flux-sensing metabolites and αketoacids. We also consider the metabolic regulation of amino acid biosynthesis (as well as purine and pyrimidine biosyntheses) paying attention to the feedback control systems consisting of (fast) enzyme level regulation with (slow) transcriptional regulation. The metabolic engineering for the efficient amino acid production by bacteria such as Escherichia coli and Corynebacterium glutamicum is also discussed (in relation to the regulation mechanisms). The amino acid synthesis is important for determining the rate of ribosome biosynthesis. Thus, the growth rate control (growth law) is further discussed on the relationship between (p)ppGpp level and the ribosomal protein synthesis.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan; Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan.
| | - Yu Matsuoka
- Department of Fisheries Distribution and Management, National Fisheries University, Shimonoseki, Yamaguchi 759-6595, Japan
| |
Collapse
|
11
|
Stella RG, Baumann P, Lorke S, Münstermann F, Wirtz A, Wiechert J, Marienhagen J, Frunzke J. Biosensor-based isolation of amino acid-producing Vibrio natriegens strains. Metab Eng Commun 2021; 13:e00187. [PMID: 34824977 PMCID: PMC8605253 DOI: 10.1016/j.mec.2021.e00187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/19/2021] [Accepted: 11/07/2021] [Indexed: 12/28/2022] Open
Abstract
The marine bacterium Vibrio natriegens has recently been demonstrated to be a promising new host for molecular biology and next generation bioprocesses. V. natriegens is a Gram-negative, non-pathogenic slight-halophilic bacterium, with a high nutrient versatility and a reported doubling time of under 10 min. However, V. natriegens is not an established model organism yet, and further research is required to promote its transformation into a microbial workhorse. In this work, the potential of V. natriegens as an amino acid producer was investigated. First, the transcription factor-based biosensor LysG, from Corynebacterium glutamicum, was adapted for expression in V. natriegens to facilitate the detection of positively charged amino acids. A set of different biosensor variants were constructed and characterized, using the expression of a fluorescent protein as sensor output. After random mutagenesis, one of the LysG-based sensors was used to screen for amino acid producer strains. Here, fluorescence-activated cell sorting enabled the selective sorting of highly fluorescent cells, i.e. potential producer cells. Using this approach, individual L-lysine, L-arginine and L-histidine producers could be obtained producing up to 1 mM of the effector amino acid, extracellularly. Genome sequencing of the producer strains provided insight into the amino acid production metabolism of V. natriegens. This work demonstrates the successful expression and application of transcription factor-based biosensors in V. natriegens and provides insight into the underlying physiology, forming a solid basis for further development of this promising microbe.
Collapse
Affiliation(s)
- Roberto Giuseppe Stella
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Philipp Baumann
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Sophia Lorke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Felix Münstermann
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Astrid Wirtz
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Johanna Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
12
|
Schwentner A, Neugebauer H, Weinmann S, Santos H, Eikmanns BJ. Exploring the Potential of Corynebacterium glutamicum to Produce the Compatible Solute Mannosylglycerate. Front Bioeng Biotechnol 2021; 9:748155. [PMID: 34621731 PMCID: PMC8490865 DOI: 10.3389/fbioe.2021.748155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
The compatible solute mannosylglycerate (MG) has exceptional properties in terms of protein stabilization and protection under salt, heat, and freeze-drying stresses as well as against protein aggregation. Due to these characteristics, MG possesses large potential for clinical and biotechnological applications. To achieve efficient MG production, Corynebacterium glutamicum was equipped with a bifunctional MG synthase (encoded by mgsD and catalyzing the condensation of 3-phosphoglycerate and GDP-mannose to MG) from Dehalococcoides mccartyi. The resulting strain C. glutamicum (pEKEx3 mgsD) intracellularly accumulated about 111 mM MG (60 ± 9 mg gCDW -1) with 2% glucose as a carbon source. To enable efficient mannose metabolization, the native manA gene, encoding mannose 6-phosphate isomerase, was overexpressed. Combined overexpression of manA and mgsD from two plasmids in C. glutamicum resulted in intracellular MG accumulation of up to ca. 329 mM [corresponding to 177 mg g cell dry weight (CDW) -1] with glucose, 314 mM (168 mg gCDW -1) with glucose plus mannose, and 328 mM (176 mg gCDW -1) with mannose as carbon source(s), respectively. The product was successfully extracted from cells by using a cold water shock, resulting in up to 5.5 mM MG (1.48 g L-1) in supernatants. The two-plasmid system was improved by integrating the mgsD gene into the manA-bearing plasmid and the resulting strain showed comparable production but faster growth. Repeated cycles of growth/production and extraction of MG in a bacterial milking-like experiment showed that cells could be recycled, which led to a cumulative MG production of 19.9 mM (5.34 g L-1). The results show that the newly constructed C. glutamicum strain produces MG from glucose and mannose and that a cold water shock enables extraction of MG from the cytosol into the medium.
Collapse
Affiliation(s)
- Andreas Schwentner
- Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany
| | - Heiko Neugebauer
- Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany
| | - Serin Weinmann
- Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany
| | - Helena Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | |
Collapse
|
13
|
Siebert D, Altenbuchner J, Blombach B. A Timed Off-Switch for Dynamic Control of Gene Expression in Corynebacterium Glutamicum. Front Bioeng Biotechnol 2021; 9:704681. [PMID: 34395409 PMCID: PMC8358305 DOI: 10.3389/fbioe.2021.704681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Dynamic control of gene expression mainly relies on inducible systems, which require supplementation of (costly) inducer molecules. In contrast, synthetic regulatory circuits, which allow the timed shutdown of gene expression, are rarely available and therefore represent highly attractive tools for metabolic engineering. To achieve this, we utilized the VanR/P vanABK * regulatory system of Corynebacterium glutamicum, which consists of the transcriptional repressor VanR and a modified promoter of the vanABK operon (P vanABK *). VanR activity is modulated by one of the phenolic compounds ferulic acid, vanillin or vanillic acid, which are co-metabolized with d-glucose. Thus, gene expression in the presence of d-glucose is turned off if one of the effector molecules is depleted from the medium. To dynamically control the expression of the aceE gene, encoding the E1 subunit of the pyruvate dehydrogenase complex that is essential for growth on d-glucose, we replaced the native promoter by vanR/P vanABK * yielding C. glutamicum ΔP aceE ::vanR-P vanABK *. The biomass yield of this strain increased linearly with the supplemented amount of effector. After consumption of the phenolic compounds growth ceased, however, C. glutamicumΔP aceE ::vanR-P vanABK * continued to utilize the residual d-glucose to produce significant amounts of pyruvate, l-alanine, and l-valine. Interestingly, equimolar concentrations of the three phenolic compounds resulted in different biomass yields; and with increasing effector concentration, the product spectrum shifted from pyruvate over l-alanine to l-valine. To further test the suitability of the VanR/P vanABK * system, we overexpressed the l-valine biosynthesis genes ilvBNCE in C. glutamicum ΔP aceE ::vanR-P vanABK *, which resulted in efficient l-valine production with a yield of about 0.36 mol l-valine per mol d-glucose. These results demonstrate that the VanR/P vanABK * system is a valuable tool to control gene expression in C. glutamicum in a timed manner by the cheap and abundant phenolic compounds ferulic acid, vanillin, and vanillic acid.
Collapse
Affiliation(s)
- Daniel Siebert
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| | - Josef Altenbuchner
- Institute of Industrial Genetics, University of Stuttgart, Stuttgart, Germany
| | - Bastian Blombach
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| |
Collapse
|
14
|
Metabolic engineering of Vibrio natriegens. Essays Biochem 2021; 65:381-392. [PMID: 33835156 PMCID: PMC8314017 DOI: 10.1042/ebc20200135] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
Vibrio natriegens is emerging as a promising host for biotechnology which is basically due to the remarkable intrinsic properties such as the exceptionally high growth and substrate consumption rates. The facultatively anaerobic marine bacterium possesses a versatile metabolism, is able to utilize a variety of substrates as carbon and energy sources and is easy to handle in the lab. These features initiated the rapid development of genetic tools and resulted in extensive engineering of production strains in the past years. Although recent examples illustrate the potential of V. natriegens for biotechnology, a comprehensive understanding of the metabolism and its regulation is still lacking but essential to exploit the full potential of this bacterium. In this review, we summarize the current knowledge on the physiological traits and the genomic organization, provide an overview of the available genetic engineering tools and recent advances in metabolic engineering of V. natriegens. Finally, we discuss the obstacles which have to be overcome in order to establish V. natriegens as industrial production host.
Collapse
|
15
|
Becker J, Wittmann C. Metabolic Engineering of
Corynebacterium glutamicum. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Streamlining the Analysis of Dynamic 13C-Labeling Patterns for the Metabolic Engineering of Corynebacterium glutamicum as l-Histidine Production Host. Metabolites 2020; 10:metabo10110458. [PMID: 33198305 PMCID: PMC7696456 DOI: 10.3390/metabo10110458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
Today’s possibilities of genome editing easily create plentitudes of strain mutants that need to be experimentally qualified for configuring the next steps of strain engineering. The application of design-build-test-learn cycles requires the identification of distinct metabolic engineering targets as design inputs for subsequent optimization rounds. Here, we present the pool influx kinetics (PIK) approach that identifies promising metabolic engineering targets by pairwise comparison of up- and downstream 13C labeling dynamics with respect to a metabolite of interest. Showcasing the complex l-histidine production with engineered Corynebacterium glutamicuml-histidine-on-glucose yields could be improved to 8.6 ± 0.1 mol% by PIK analysis, starting from a base strain. Amplification of purA, purB, purH, and formyl recycling was identified as key targets only analyzing the signal transduction kinetics mirrored in the PIK values.
Collapse
|
17
|
Wu H, Tian D, Fan X, Fan W, Zhang Y, Jiang S, Wen C, Ma Q, Chen N, Xie X. Highly Efficient Production of l-Histidine from Glucose by Metabolically Engineered Escherichia coli. ACS Synth Biol 2020; 9:1813-1822. [PMID: 32470291 DOI: 10.1021/acssynbio.0c00163] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
l-Histidine is a functional amino acid with numerous therapeutic and ergogenic properties. It is one of the few amino acids that is not produced on a large scale by microbial fermentation due to the lack of an efficient microbial cell factory. In this study, we demonstrated the engineering of wild-type Escherichia coli to overproduce histidine from glucose. First, removal of transcription attenuation and histidine-mediated feedback inhibition resulted in 0.8 g/L histidine accumulation. Second, chromosome-based optimization of the expression levels of histidine biosynthesis genes led to a 4.75-fold increase in histidine titer. Third, strengthening phosphoribosyl pyrophosphate supply and rerouting the purine nucleotide biosynthetic pathway improved the histidine production to 8.2 g/L. Fourth, introduction of the NADH-dependent glutamate dehydrogenase from Bacillus subtilis and the lysine exporter from Corynebacterium glutamicum enabled the final strain HW6-3 to produce 11.8 g/L histidine. Finally, 66.5 g/L histidine was produced under fed-batch fermentation, with a yield of 0.23 g/g glucose and a productivity of 1.5 g/L/h. This is the highest titer and productivity of histidine ever reported from an engineered strain. Additionally, the metabolic strategies utilized here can be applied to engineering other microorganisms for the industrial production of histidine and related bioproducts.
Collapse
Affiliation(s)
- Heyun Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Daoguang Tian
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Xiaoguang Fan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Weiming Fan
- Zhejiang Zhenyuan Pharmaceutial Co., Ltd, Shaoxing, 312071, P. R. China
| | - Yue Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Shuai Jiang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Chenhui Wen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Qian Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Ning Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Xixian Xie
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| |
Collapse
|
18
|
Abstract
In an oxygenic environment, poorly soluble Fe3+ must be reduced to meet the cellular Fe2+ demand. This study demonstrates that elevated CO2/HCO3− levels accelerate chemical Fe3+ reduction through phenolic compounds, thus increasing intracellular Fe2+ availability. A number of biological environments are characterized by the presence of phenolic compounds and elevated HCO3− levels and include soil habitats and the human body. Fe2+ availability is of particular interest in the latter, as it controls the infectiousness of pathogens. Since the effect postulated here is abiotic, it generally affects the Fe2+ distribution in nature. Iron is a vital mineral for almost all living organisms and has a pivotal role in central metabolism. Despite its great abundance on earth, the accessibility for microorganisms is often limited, because poorly soluble ferric iron (Fe3+) is the predominant oxidation state in an aerobic environment. Hence, the reduction of Fe3+ is of essential importance to meet the cellular demand of ferrous iron (Fe2+) but might become detrimental as excessive amounts of intracellular Fe2+ tend to undergo the cytotoxic Fenton reaction in the presence of hydrogen peroxide. We demonstrate that the complex formation rate of Fe3+ and phenolic compounds like protocatechuic acid was increased by 46% in the presence of HCO3− and thus accelerated the subsequent redox reaction, yielding reduced Fe2+. Consequently, elevated CO2/HCO3− levels increased the intracellular Fe2+ availability, which resulted in at least 50% higher biomass-specific fluorescence of a DtxR-based Corynebacterium glutamicum reporter strain, and stimulated growth. Since the increased Fe2+ availability was attributed to the interaction of HCO3− and chemical iron reduction, the abiotic effect postulated in this study is of general relevance in geochemical and biological environments.
Collapse
|
19
|
Vassallo A, Palazzotto E, Renzone G, Botta L, Faddetta T, Scaloni A, Puglia AM, Gallo G. The Streptomyces coelicolor Small ORF trpM Stimulates Growth and Morphological Development and Exerts Opposite Effects on Actinorhodin and Calcium-Dependent Antibiotic Production. Front Microbiol 2020; 11:224. [PMID: 32140146 PMCID: PMC7042404 DOI: 10.3389/fmicb.2020.00224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/30/2020] [Indexed: 11/25/2022] Open
Abstract
In actinomycetes, antibiotic production is often associated with a morpho-physiological differentiation program that is regulated by complex molecular and metabolic networks. Many aspects of these regulatory circuits have been already elucidated and many others still deserve further investigations. In this regard, the possible role of many small open reading frames (smORFs) in actinomycete morpho-physiological differentiation is still elusive. In Streptomyces coelicolor, inactivation of the smORF trpM (SCO2038) – whose product modulates L-tryptophan biosynthesis – impairs production of antibiotics and morphological differentiation. Indeed, it was demonstrated that TrpM is able to interact with PepA (SCO2179), a putative cytosol aminopeptidase playing a key role in antibiotic production and sporulation. In this work, a S. coelicolor trpM knock-in (Sco-trpMKI) mutant strain was generated by cloning trpM into overexpressing vector to further investigate the role of trpM in actinomycete growth and morpho-physiological differentiation. Results highlighted that trpM: (i) stimulates growth and actinorhodin (ACT) production; (ii) decreases calcium-dependent antibiotic (CDA) production; (iii) has no effect on undecylprodigiosin production. Metabolic pathways influenced by trpM knock-in were investigated by combining two-difference in gel electrophoresis/nanoliquid chromatography coupled to electrospray linear ion trap tandem mass spectrometry (2D-DIGE/nanoLC-ESI-LIT-MS/MS) and by LC-ESI-MS/MS procedures, respectively. These analyses demonstrated that over-expression of trpM causes an over-representation of factors involved in protein synthesis and nucleotide metabolism as well as a down-representation of proteins involved in central carbon and amino acid metabolism. At the metabolic level, this corresponded to a differential accumulation pattern of different amino acids – including aromatic ones but tryptophan – and central carbon intermediates. PepA was also down-represented in Sco-trpMKI. The latter was produced as recombinant His-tagged protein and was originally proven having the predicted aminopeptidase activity. Altogether, these results highlight the stimulatory effect of trpM in S. coelicolor growth and ACT biosynthesis, which are elicited through the modulation of various metabolic pathways and PepA representation, further confirming the complexity of regulatory networks that control antibiotic production in actinomycetes.
Collapse
Affiliation(s)
- Alberto Vassallo
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, Palermo, Italy.,Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Emilia Palazzotto
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Giovanni Renzone
- Proteomic and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Luigi Botta
- Dipartimento di Ingegneria, Università di Palermo, Palermo, Italy
| | - Teresa Faddetta
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, Palermo, Italy
| | - Andrea Scaloni
- Proteomic and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Anna Maria Puglia
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, Palermo, Italy
| | - Giuseppe Gallo
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, Palermo, Italy
| |
Collapse
|
20
|
Hong Y, Ren J, Zhang X, Wang W, Zeng AP. Quantitative analysis of glycine related metabolic pathways for one-carbon synthetic biology. Curr Opin Biotechnol 2019; 64:70-78. [PMID: 31715494 DOI: 10.1016/j.copbio.2019.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 12/21/2022]
Abstract
Glycine is an essential one-carbon (C1) metabolite nested in a complex network of cellular metabolism. Glycine and its related metabolic pathways have important biochemical and biomedical implications and have thus been studied for a long time. However, quantitative and systems level knowledge about the interactions and regulations of the pathways are severely limited, especially for the purpose of reengineering the relevant pathways for C1-based biotechnological processes using synthetic biology and metabolic engineering approaches. In fact, quantitative analytic methods are missing for some of the key players of the glycine-related pathways, prominently the glycine cleavage system and folate cycle, particularly for intracellular processes under physiological conditions. Here, we pinpoint the existing gaps and highlight the need and challenges for future development.
Collapse
Affiliation(s)
- Yaeseong Hong
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073 Hamburg, Germany
| | - Jie Ren
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, 100029, Beijing, China
| | - Xinyi Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, 100029, Beijing, China
| | - Wei Wang
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073 Hamburg, Germany
| | - An-Ping Zeng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, 100029, Beijing, China; Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073 Hamburg, Germany.
| |
Collapse
|