1
|
M'madi SA, Diarra AZ, Bérenger JM, Almeras L, Parola P. Efficiency of MALDI-TOF MS at identifying and discriminating immature stages of cimex lectularius and cimex hemipterus bed bugs. Sci Rep 2024; 14:28694. [PMID: 39562593 PMCID: PMC11577014 DOI: 10.1038/s41598-024-78024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
Over the last two decades, an increase in bed bug infestations has been observed worldwide. Although their definitive role as vectors of infectious agents has not yet been demonstrated, bed bugs have a direct effect on human health through dermatological reactions to their bites and psychological disorders linked to domestic infestations. In this study, the effectiveness of using MALDI-TOF MS to correctly identify these two bed bug species at immature stages was assessed, as well as it effectiveness as discriminating between the immature stages (IS) of C. lectularius and C. hemipterus and their associated developmental stages. A total of 305 specimens were subjected to MALDI-TOF MS analysis, including 153 C. lectularius (28 eggs and 25 nymphs per stage from IS1 to IS5) and 152 C. hemipterus (27 eggs and 25 nymphs per stage from IS1 to IS5). ). MALDI-TOF MS analysis enabled us to obtain 84.97% (130/153) of high-quality MS spectra in terms of reproducibility and profile intensity. Twenty-four spectra including two per stage, from egg to IS5, and per bed bug species - were added to our in-house MS reference arthropod spectra database. All specimens were correctly identified at the species level, independently of the developmental stage, with log score values (LSVs) ranging from 1.75 to 2.79 (mean = 2.29 ± 0.12) and 1.81 to 2.71 (mean = 2.37 ± 0.03) for C. lectularius and C. hemipterus, respectively. MALDI-TOF MS correctly classified 53,33% (104/195) of the Cimex at the correct immature stage. Conversely, an accurate comparison of the profiles with a Genetic Algorithm model underlined that grouping the immature stages in two groups, early (IS1-IS2) and late (IS3-IS4-IS5), made it possible to obtain a cross validation (CV) and recognition capability (RC) greater than 92% and 94%, respectively, for both species. This study holds great promise for the management of bed bug infestations.
Collapse
Affiliation(s)
- Saidou Ahamada M'madi
- Aix Marseille University, SSA, RITMES, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Adama Zan Diarra
- IHU-Méditerranée Infection, Marseille, France
- MINES, IRD, Marseille, France
| | - Jean-Michel Bérenger
- Aix Marseille University, SSA, RITMES, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Lionel Almeras
- Aix Marseille University, SSA, RITMES, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Philippe Parola
- Aix Marseille University, SSA, RITMES, Marseille, France.
- IHU-Méditerranée Infection, Marseille, France.
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
| |
Collapse
|
2
|
Costa MM, Corbel V, Ben Hamouda R, Almeras L. MALDI-TOF MS Profiling and Its Contribution to Mosquito-Borne Diseases: A Systematic Review. INSECTS 2024; 15:651. [PMID: 39336619 PMCID: PMC11432722 DOI: 10.3390/insects15090651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
Mosquito-borne diseases are responsible for hundreds of thousands of deaths per year. The identification and control of the vectors that transmit pathogens to humans are crucial for disease prevention and management. Currently, morphological classification and molecular analyses via DNA barcoding are the standard methods used for vector identification. However, these approaches have several limitations. In the last decade, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as an innovative technology in biological sciences and is now considered as a relevant tool for the identification of pathogens and arthropods. Beyond species identification, this tool is also valuable for determining various life traits of arthropod vectors. The purpose of the present systematic review was to highlight the contribution of MALDI-TOF MS to the surveillance and control of mosquito-borne diseases. Published articles from January 2003 to August 2024 were retrieved, focusing on different aspects of mosquito life traits that could be determinants in disease transmission and vector management. The screening of the scientific literature resulted in the selection of 54 published articles that assessed MALDI-TOF MS profiling to study various mosquito biological factors, such species identification, life expectancy, gender, trophic preferences, microbiota, and insecticide resistance. Although a large majority of the selected articles focused on species identification, the present review shows that MALDI-TOF MS profiling is promising for rapidly identifying various mosquito life traits, with high-throughput capacity, reliability, and low cost. The strengths and weaknesses of this proteomic tool for vector control and surveillance are discussed.
Collapse
Affiliation(s)
- Monique Melo Costa
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.M.C.); (R.B.H.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Vincent Corbel
- Institut de Recherche pour le Développement (IRD), MIVEGEC, Univ. Montpellier, CNRS, IRD, 911 Av. Agropolis, 34394 Montpellier, France;
- Laboratório de Fisiologia e Controle de Artrópodes Vetores (Laficave), Fundação Oswaldo Cruz (FIOCRUZ), Instituto Oswaldo Cruz (IOC), Avenida Brasil, 4365 Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Refka Ben Hamouda
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.M.C.); (R.B.H.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Lionel Almeras
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.M.C.); (R.B.H.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| |
Collapse
|
3
|
Almeras L, Costa MM, Amalvict R, Guilliet J, Dusfour I, David JP, Corbel V. Potential of MALDI-TOF MS biotyping to detect deltamethrin resistance in the dengue vector Aedes aegypti. PLoS One 2024; 19:e0303027. [PMID: 38728353 PMCID: PMC11086877 DOI: 10.1371/journal.pone.0303027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Insecticide resistance in mosquitoes is spreading worldwide and represents a growing threat to vector control. Insecticide resistance is caused by different mechanisms including higher metabolic detoxication, target-site modification, reduced penetration and behavioral changes that are not easily detectable with simple diagnostic methods. Indeed, most molecular resistance diagnostic tools are costly and labor intensive and then difficult to use for routine monitoring of insecticide resistance. The present study aims to determine whether mosquito susceptibility status against the pyrethroid insecticides (mostly used for mosquito control) could be established by the protein signatures of legs and/or thoraxes submitted to MALDI-TOF Mass Spectrometry (MS). The quality of MS spectra for both body parts was controlled to avoid any bias due to unconformity protein profiling. The comparison of MS profiles from three inbreeds Ae. aegypti lines from French Guiana (IRF, IR03, IR13), with distinct deltamethrin resistance genotype / phenotype and the susceptible reference laboratory line BORA (French Polynesia), showed different protein signatures. On both body parts, the analysis of whole protein profiles revealed a singularity of BORA line compared to the three inbreeding lines from French Guiana origin, suggesting that the first criteria of differentiation is the geographical origin and/or the breeding history rather than the insecticide susceptibility profile. However, a deeper analysis of the protein profiles allowed to identify 10 and 11 discriminating peaks from leg and thorax spectra, respectively. Among them, a specific peak around 4870 Da was detected in legs and thoraxes of pyrethroid resistant lines compared to the susceptible counterparts hence suggesting that MS profiling may be promising to rapidly distinguish resistant and susceptible phenotypes. Further work is needed to confirm the nature of this peak as a deltamethrin resistant marker and to validate the routine use of MS profiling to track insecticide resistance in Ae. aegypti field populations.
Collapse
Affiliation(s)
- Lionel Almeras
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Unité Parasitologie et Entomologie, Marseille, 13005, France
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, 13005, France
| | - Monique Melo Costa
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Unité Parasitologie et Entomologie, Marseille, 13005, France
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, 13005, France
| | - Rémy Amalvict
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Unité Parasitologie et Entomologie, Marseille, 13005, France
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, 13005, France
- Centre National de Référence du Paludisme, Marseille, 13005, France
| | - Joseph Guilliet
- Laboratoire d’Ecologie Alpine, UMR UGA-USMB-CNRS 5553, Université Grenoble Alpes, Grenoble, 38041, France
| | - Isabelle Dusfour
- Institut Pasteur de la Guyane, Vectopôle Amazonien Emile Abonnenc, Unité de Contrôle et Adaptation des Vecteurs, Cayenne, France
| | - Jean-Philippe David
- Laboratoire d’Ecologie Alpine, UMR UGA-USMB-CNRS 5553, Université Grenoble Alpes, Grenoble, 38041, France
| | - Vincent Corbel
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
- Laboratório de Fisiologia e Controle de Artrópodes Vetores (Laficave), Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (FIOCRUZ), Avenida Brasil, Rio de Janeiro–RJ, Brazil
| |
Collapse
|
4
|
Rossel S, Peters J, Charzinski N, Eichsteller A, Laakmann S, Neumann H, Martínez Arbizu P. A universal tool for marine metazoan species identification: towards best practices in proteomic fingerprinting. Sci Rep 2024; 14:1280. [PMID: 38218969 PMCID: PMC10787734 DOI: 10.1038/s41598-024-51235-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Proteomic fingerprinting using MALDI-TOF mass spectrometry is a well-established tool for identifying microorganisms and has shown promising results for identification of animal species, particularly disease vectors and marine organisms. And thus can be a vital tool for biodiversity assessments in ecological studies. However, few studies have tested species identification across different orders and classes. In this study, we collected data from 1246 specimens and 198 species to test species identification in a diverse dataset. We also evaluated different specimen preparation and data processing approaches for machine learning and developed a workflow to optimize classification using random forest. Our results showed high success rates of over 90%, but we also found that the size of the reference library affects classification error. Additionally, we demonstrated the ability of the method to differentiate marine cryptic-species complexes and to distinguish sexes within species.
Collapse
Affiliation(s)
- Sven Rossel
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), 26382, Wilhelmshaven, Germany.
| | - Janna Peters
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg am Meer, 20146, Hamburg, Germany
| | - Nele Charzinski
- Marine Biodiversity Research, Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Angelina Eichsteller
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), 26382, Wilhelmshaven, Germany
- Marine Biodiversity Research, Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Silke Laakmann
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), 26129, Oldenburg, Germany
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Hermann Neumann
- Institute for Sea Fisheries, Thuenen Institute, 27572, Bremerhaven, Germany
| | - Pedro Martínez Arbizu
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), 26382, Wilhelmshaven, Germany
- Marine Biodiversity Research, Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| |
Collapse
|
5
|
Benyahia H, Parola P, Almeras L. Evolution of MALDI-TOF MS Profiles from Lice and Fleas Preserved in Alcohol over Time. INSECTS 2023; 14:825. [PMID: 37887837 PMCID: PMC10607003 DOI: 10.3390/insects14100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
MALDI-TOF is now considered a relevant tool for the identification of arthropods, including lice and fleas. However, the duration and conditions of storage, such as in ethanol, which is frequently used to preserve these ectoparasites, could impede their classification. The purpose of the present study was to assess the stability of MS profiles from Pediculus humanus corporis lice and Ctenocephalides felis fleas preserved in alcohol from one to four years and kinetically submitted to MALDI-TOF MS. A total of 469 cephalothoraxes from lice (n = 170) and fleas (n = 299) were tested. The reproducibility of the MS profiles was estimated based on the log score values (LSVs) obtained for query profiles compared to the reference profiles included in the MS database. Only MS spectra from P. humanus corporis and C. felis stored in alcohol for less than one year were included in the reference MS database. Approximately 75% of MS spectra from lice (75.2%, 94/125) and fleas (74.4%, 122/164) specimens stored in alcohol for 12 to 48 months, queried against the reference MS database, obtained relevant identification. An accurate analysis revealed a significant decrease in the proportion of identification for both species stored for more than 22 months in alcohol. It was hypothesized that incomplete drying was responsible for MS spectra variations. Then, 45 lice and 60 fleas were subjected to longer drying periods from 12 to 24 h. The increase in the drying period improved the proportion of relevant identification for lice (95%) and fleas (80%). This study highlighted that a correct rate of identification by MS could be obtained for lice and fleas preserved in alcohol for up to four years on the condition that the drying period was sufficiently long for accurate identification.
Collapse
Affiliation(s)
- Hanene Benyahia
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France; (H.B.); (P.P.)
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France; (H.B.); (P.P.)
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Lionel Almeras
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France; (H.B.); (P.P.)
- IHU Méditerranée Infection, 13005 Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France
| |
Collapse
|
6
|
Cannet A, Simon-Chane C, Histace A, Akhoundi M, Romain O, Souchaud M, Jacob P, Sereno D, Gouagna LC, Bousses P, Mathieu-Daude F, Sereno D. Wing Interferential Patterns (WIPs) and machine learning for the classification of some Aedes species of medical interest. Sci Rep 2023; 13:17628. [PMID: 37848666 PMCID: PMC10582169 DOI: 10.1038/s41598-023-44945-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023] Open
Abstract
Hematophagous insects belonging to the Aedes genus are proven vectors of viral and filarial pathogens of medical interest. Aedes albopictus is an increasingly important vector because of its rapid worldwide expansion. In the context of global climate change and the emergence of zoonotic infectious diseases, identification tools with field application are required to strengthen efforts in the entomological survey of arthropods with medical interest. Large scales and proactive entomological surveys of Aedes mosquitoes need skilled technicians and/or costly technical equipment, further puzzled by the vast amount of named species. In this study, we developed an automatic classification system of Aedes species by taking advantage of the species-specific marker displayed by Wing Interferential Patterns. A database holding 494 photomicrographs of 24 Aedes spp. from which those documented with more than ten pictures have undergone a deep learning methodology to train a convolutional neural network and test its accuracy to classify samples at the genus, subgenus, and species taxonomic levels. We recorded an accuracy of 95% at the genus level and > 85% for two (Ochlerotatus and Stegomyia) out of three subgenera tested. Lastly, eight were accurately classified among the 10 Aedes sp. that have undergone a training process with an overall accuracy of > 70%. Altogether, these results demonstrate the potential of this methodology for Aedes species identification and will represent a tool for the future implementation of large-scale entomological surveys.
Collapse
Affiliation(s)
- Arnaud Cannet
- Direction des affaires sanitaires et sociales de la Nouvelle-Calédonie, Nouméa, France
| | | | - Aymeric Histace
- ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000, Cergy, France
| | | | | | - Marc Souchaud
- ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000, Cergy, France
| | - Pierre Jacob
- ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000, Cergy, France
- Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, 33400, Talence, France
| | - Darian Sereno
- InterTryp, Univ Montpellier, IRD-CIRAD, Infectiology Medical Entomology and One Health Research Group, Montpellier, France
| | | | | | - Françoise Mathieu-Daude
- MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
- Institut Louis Malardé, Tahiti, French Polynesia
| | - Denis Sereno
- InterTryp, Univ Montpellier, IRD-CIRAD, Infectiology Medical Entomology and One Health Research Group, Montpellier, France.
- MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France.
| |
Collapse
|
7
|
Rossel S, Peters J, Laakmann S, Martínez Arbizu P, Holst S. Potential of MALDI-TOF MS-based proteomic fingerprinting for species identification of Cnidaria across classes, species, regions and developmental stages. Mol Ecol Resour 2023; 23:1620-1631. [PMID: 37417794 DOI: 10.1111/1755-0998.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/01/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
Morphological identification of cnidarian species can be difficult throughout all life stages due to the lack of distinct morphological characters. Moreover, in some cnidarian taxa genetic markers are not fully informative, and in these cases combinations of different markers or additional morphological verifications may be required. Proteomic fingerprinting based on MALDI-TOF mass spectra was previously shown to provide reliable species identification in different metazoans including some cnidarian taxa. For the first time, we tested the method across four cnidarian classes (Staurozoa, Scyphozoa, Anthozoa, Hydrozoa) and included different scyphozoan life-history stages (polyp, ephyra, medusa) in our dataset. Our results revealed reliable species identification based on MALDI-TOF mass spectra across all taxa with species-specific clusters for all 23 analysed species. In addition, proteomic fingerprinting was successful for distinguishing developmental stages, still by retaining a species specific signal. Furthermore, we identified the impact of different salinities in different regions (North Sea and Baltic Sea) on proteomic fingerprints to be negligible. In conclusion, the effects of environmental factors and developmental stages on proteomic fingerprints seem to be low in cnidarians. This would allow using reference libraries built up entirely of adult or cultured cnidarian specimens for the identification of their juvenile stages or specimens from different geographic regions in future biodiversity assessment studies.
Collapse
Affiliation(s)
- Sven Rossel
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Wilhelmshaven, Germany
| | - Janna Peters
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Hamburg, Germany
| | - Silke Laakmann
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
| | - Pedro Martínez Arbizu
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Wilhelmshaven, Germany
| | - Sabine Holst
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Hamburg, Germany
| |
Collapse
|
8
|
Identification of Neotropical Culex Mosquitoes by MALDI-TOF MS Profiling. Trop Med Infect Dis 2023; 8:tropicalmed8030168. [PMID: 36977169 PMCID: PMC10055718 DOI: 10.3390/tropicalmed8030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
The mosquito (Diptera: Culicidae) fauna of French Guiana encompasses 242 species, of which nearly half of them belong to the genus Culex. Whereas several species of Culex are important vectors of arboviruses, only a limited number of studies focus on them due to the difficulties to morphologically identify field-caught females. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been reported as a promising method for the identification of mosquitoes. Culex females collected in French Guiana were morphologically identified and dissected. Abdomens were used for molecular identification using the COI (cytochrome oxidase 1) gene. Legs and thorax of 169 specimens belonging to 13 Culex species, (i.e., Cx. declarator, Cx. nigripalpus, Cx. quinquefasciatus, Cx. usquatus, Cx. adamesi, Cx. dunni, Cx. eastor, Cx. idottus, Cx. pedroi, Cx. phlogistus, Cx. portesi, Cx. rabanicolus and Cx. spissipes) were then submitted to MALDI-TOF MS analysis. A high intra-species reproducibility and inter-species specificity of MS spectra for each mosquito body part tested were obtained. A corroboration of the specimen identification was revealed between MALDI-TOF MS, morphological and molecular results. MALDI-TOF MS protein profiling proves to be a suitable tool for identification of neotropical Culex species and will permit the enhancement of knowledge on this highly diverse genus.
Collapse
|
9
|
Rossel S, Kaiser P, Bode-Dalby M, Renz J, Laakmann S, Auel H, Hagen W, Arbizu PM, Peters J. Proteomic fingerprinting enables quantitative biodiversity assessments of species and ontogenetic stages in Calanus congeners (Copepoda, Crustacea) from the Arctic Ocean. Mol Ecol Resour 2023; 23:382-395. [PMID: 36114815 DOI: 10.1111/1755-0998.13714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 01/04/2023]
Abstract
Species identification is pivotal in biodiversity assessments and proteomic fingerprinting by MALDI-TOF mass spectrometry has already been shown to reliably identify calanoid copepods to species level. However, MALDI-TOF data may contain more information beyond mere species identification. In this study, we investigated different ontogenetic stages (copepodids C1-C6 females) of three co-occurring Calanus species from the Arctic Fram Strait, which cannot be identified to species level based on morphological characters alone. Differentiation of the three species based on mass spectrometry data was without any error. In addition, a clear stage-specific signal was detected in all species, supported by clustering approaches as well as machine learning using Random Forest. More complex mass spectra in later ontogenetic stages as well as relative intensities of certain mass peaks were found as the main drivers of stage distinction in these species. Through a dilution series, we were able to show that this did not result from the higher amount of biomass that was used in tissue processing of the larger stages. Finally, the data were tested in a simulation for application in a real biodiversity assessment by using Random Forest for stage classification of specimens absent from the training data. This resulted in a successful stage-identification rate of almost 90%, making proteomic fingerprinting a promising tool to investigate polewards shifts of Atlantic Calanus species and, in general, to assess stage compositions in biodiversity assessments of Calanoida, which can be notoriously difficult using conventional identification methods.
Collapse
Affiliation(s)
- Sven Rossel
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg Research Institute, Wilhelmshaven, Germany
| | - Patricia Kaiser
- Universität Bremen, BreMarE - Bremen Marine Ecology, Marine Zoology, Bremen, Germany
| | - Maya Bode-Dalby
- Universität Bremen, BreMarE - Bremen Marine Ecology, Marine Zoology, Bremen, Germany
| | - Jasmin Renz
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg Research Institute, Hamburg, Germany
| | - Silke Laakmann
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany.,Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
| | - Holger Auel
- Universität Bremen, BreMarE - Bremen Marine Ecology, Marine Zoology, Bremen, Germany
| | - Wilhelm Hagen
- Universität Bremen, BreMarE - Bremen Marine Ecology, Marine Zoology, Bremen, Germany
| | - Pedro Martínez Arbizu
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg Research Institute, Wilhelmshaven, Germany
| | - Janna Peters
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg Research Institute, Hamburg, Germany
| |
Collapse
|
10
|
Huynh LN, Tran LB, Nguyen HS, Ho VH, Parola P, Nguyen XQ. Mosquitoes and Mosquito-Borne Diseases in Vietnam. INSECTS 2022; 13:1076. [PMID: 36554986 PMCID: PMC9781666 DOI: 10.3390/insects13121076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Mosquito-borne diseases pose a significant threat to humans in almost every part of the world. Key factors such as global warming, climatic conditions, rapid urbanisation, frequent human relocation, and widespread deforestation significantly increase the number of mosquitoes and mosquito-borne diseases in Vietnam, and elsewhere around the world. In southeast Asia, and notably in Vietnam, national mosquito control programmes contribute to reducing the risk of mosquito-borne disease transmission, however, malaria and dengue remain a threat to public health. The aim of our review is to provide a complete checklist of all Vietnamese mosquitoes that have been recognised, as well as an overview of mosquito-borne diseases in Vietnam. A total of 281 mosquito species of 42 subgenera and 22 genera exist in Vietnam. Of those, Anopheles, Aedes, and Culex are found to be potential vectors for mosquito-borne diseases. Major mosquito-borne diseases in high-incidence areas of Vietnam include malaria, dengue, and Japanese encephalitis. This review may be useful to entomological researchers for future surveys of Vietnamese mosquitoes and to decision-makers responsible for vector control tactics.
Collapse
Affiliation(s)
- Ly Na Huynh
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), MoH Vietnam, Zone 8, Nhon Phu Ward, Quy Nhon City 590000, Vietnam
| | - Long Bien Tran
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), MoH Vietnam, Zone 8, Nhon Phu Ward, Quy Nhon City 590000, Vietnam
| | - Hong Sang Nguyen
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), MoH Vietnam, Zone 8, Nhon Phu Ward, Quy Nhon City 590000, Vietnam
| | - Van Hoang Ho
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), MoH Vietnam, Zone 8, Nhon Phu Ward, Quy Nhon City 590000, Vietnam
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Xuan Quang Nguyen
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), MoH Vietnam, Zone 8, Nhon Phu Ward, Quy Nhon City 590000, Vietnam
| |
Collapse
|
11
|
Cannet A, Simon-Chane C, Akhoundi M, Histace A, Romain O, Souchaud M, Jacob P, Delaunay P, Sereno D, Bousses P, Grebaut P, Geiger A, de Beer C, Kaba D, Sereno D. Wing Interferential Patterns (WIPs) and machine learning, a step toward automatized tsetse (Glossina spp.) identification. Sci Rep 2022; 12:20086. [PMID: 36418429 PMCID: PMC9684539 DOI: 10.1038/s41598-022-24522-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
A simple method for accurately identifying Glossina spp in the field is a challenge to sustain the future elimination of Human African Trypanosomiasis (HAT) as a public health scourge, as well as for the sustainable management of African Animal Trypanosomiasis (AAT). Current methods for Glossina species identification heavily rely on a few well-trained experts. Methodologies that rely on molecular methodologies like DNA barcoding or mass spectrometry protein profiling (MALDI TOFF) haven't been thoroughly investigated for Glossina sp. Nevertheless, because they are destructive, costly, time-consuming, and expensive in infrastructure and materials, they might not be well adapted for the survey of arthropod vectors involved in the transmission of pathogens responsible for Neglected Tropical Diseases, like HAT. This study demonstrates a new type of methodology to classify Glossina species. In conjunction with a deep learning architecture, a database of Wing Interference Patterns (WIPs) representative of the Glossina species involved in the transmission of HAT and AAT was used. This database has 1766 pictures representing 23 Glossina species. This cost-effective methodology, which requires mounting wings on slides and using a commercially available microscope, demonstrates that WIPs are an excellent medium to automatically recognize Glossina species with very high accuracy.
Collapse
Affiliation(s)
- Arnaud Cannet
- Direction des affaires sanitaires et sociales de la Nouvelle-Calédonie, Nouméa, New Caledonia France
| | - Camille Simon-Chane
- grid.424458.b0000 0001 2287 8330ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000 Cergy, France
| | - Mohammad Akhoundi
- grid.413780.90000 0000 8715 2621Parasitology-Mycology, Hôpital Avicenne, AP-HP, Bobigny, France
| | - Aymeric Histace
- grid.424458.b0000 0001 2287 8330ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000 Cergy, France
| | - Olivier Romain
- grid.424458.b0000 0001 2287 8330ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000 Cergy, France
| | - Marc Souchaud
- grid.424458.b0000 0001 2287 8330ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000 Cergy, France
| | - Pierre Jacob
- grid.424458.b0000 0001 2287 8330ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000 Cergy, France
| | - Pascal Delaunay
- grid.462370.40000 0004 0620 5402Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Université de Nice-Sophia Antipolis, Nice, France ,grid.413770.6Parasitologie-Mycologie, Hôpital de L’Archet, Centre Hospitalier Universitaire de Nice, (CHU), Nice, France ,grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Darian Sereno
- grid.121334.60000 0001 2097 0141InterTryp, Univ Montpellier, IRD-CIRAD, Parasitology Infectiology and Public Health Research Group, Montpellier, France
| | - Philippe Bousses
- grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Pascal Grebaut
- grid.121334.60000 0001 2097 0141InterTryp, Univ Montpellier, IRD-CIRAD, Parasitology Infectiology and Public Health Research Group, Montpellier, France
| | - Anne Geiger
- grid.121334.60000 0001 2097 0141InterTryp, Univ Montpellier, IRD-CIRAD, Parasitology Infectiology and Public Health Research Group, Montpellier, France
| | - Chantel de Beer
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Center of Nuclear Techniques in Food and Agriculture, Vienna, Austria ,grid.428711.90000 0001 2173 1003Epidemiology, Parasites & Vectors, Agricultural Research Council - Onderstepoort Veterinary Research (ARC-OVR), Onderstepoort, South Africa
| | - Dramane Kaba
- grid.452477.7Institut Pierre Richet, Institut National de Santé Publique, Abidjian, Côte d’Ivoire
| | - Denis Sereno
- grid.121334.60000 0001 2097 0141InterTryp, Univ Montpellier, IRD-CIRAD, Parasitology Infectiology and Public Health Research Group, Montpellier, France ,grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
12
|
Sánchez-Juanes F, Calvo Sánchez N, Belhassen García M, Vieira Lista C, Román RM, Álamo Sanz R, Muro Álvarez A, Muñoz Bellido JL. Applications of MALDI-TOF Mass Spectrometry to the Identification of Parasites and Arthropod Vectors of Human Diseases. Microorganisms 2022; 10:2300. [PMID: 36422371 PMCID: PMC9695109 DOI: 10.3390/microorganisms10112300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 08/27/2023] Open
Abstract
Arthropod vectors and parasites are identified morphologically or, more recently, by molecular methods. Both methods are time consuming and require expertise and, in the case of molecular methods, specific devices. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) identification of bacteria has meant a major change in clinical microbiology laboratories because of its simplicity, speed and specificity, and its capacity to identify microorganisms, in some cases, directly from the sample (urine cultures, blood cultures). Recently, MALDI-TOF MS has been shown as useful for the identification of some parasites. On the other hand, the identification of vector arthropods and the control of their populations is essential for the control of diseases transmitted by arthropods, and in this aspect, it is crucial to have fast, simple and reliable methods for their identification. Ticks are blood-sucking arthropods with a worldwide distribution, that behave as efficient vectors of a wide group of human and animal pathogens, including bacteria, protozoa, viruses, and even helminths. They are capable of parasitizing numerous species of mammals, birds and reptiles. They constitute the second group of vectors of human diseases, after mosquitoes. MALDI-TOF MS has been shown as useful for the identification of different tick species, such as Ixodes, Rhipicephalus and Amblyomma. Some studies even suggest the possibility of being able to determine, through MALDI-TOF MS, if the arthropod is a carrier of certain microorganisms. Regarding mosquitoes, the main group of vector arthropods, the possibility of using MALDI-TOF MS for the identification of different species of Aedes and Anopheles has also been demonstrated. In this review, we address the possibilities of this technology for the identification of parasites and arthropod vectors, its characteristics, advantages and possible limitations.
Collapse
Affiliation(s)
- Fernando Sánchez-Juanes
- Department of Biochemistry and Molecular Biology, University of Salamanca, 37007 Salamanca, Spain
- Department of Microbiology, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Noelia Calvo Sánchez
- Department of Microbiology, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Moncef Belhassen García
- Department of Medicine-Infectious Diseases, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación en Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
| | - Carmen Vieira Lista
- Centro de Investigación en Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, 37008 Salamanca, Spain
| | - Raul Manzano Román
- Centro de Investigación en Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, 37008 Salamanca, Spain
| | - Rufino Álamo Sanz
- Public Health Information Service, Consejería de Sanidad, Junta de Castilla y León, 47007 Valladolid, Spain
| | - Antonio Muro Álvarez
- Centro de Investigación en Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
| | - Juan Luis Muñoz Bellido
- Department of Microbiology, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación en Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
| |
Collapse
|
13
|
Nebbak A, Almeras L, Parola P, Bitam I. Mosquito Vectors (Diptera: Culicidae) and Mosquito-Borne Diseases in North Africa. INSECTS 2022; 13:962. [PMID: 36292910 PMCID: PMC9604161 DOI: 10.3390/insects13100962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Mosquitoes (Diptera: Culicidae) are of significant public health importance because of their ability to transmit major diseases to humans and animals, and are considered as the world's most deadly arthropods. In recent decades, climate change and globalization have promoted mosquito-borne diseases' (MBDs) geographic expansion to new areas, such as North African countries, where some of these MBDs were unusual or even unknown. In this review, we summarize the latest data on mosquito vector species distribution and MBDs affecting both human and animals in North Africa, in order to better understand the risks associated with the introduction of new invasive mosquito species such as Aedes albopictus. Currently, 26 mosquito species confirmed as pathogen vectors occur in North Africa, including Aedes (five species), Culex (eight species), Culiseta (one species) and Anopheles (12 species). These 26 species are involved in the circulation of seven MBDs in North Africa, including two parasitic infections (malaria and filariasis) and five viral infections (WNV, RVF, DENV, SINV and USUV). No bacterial diseases have been reported so far in this area. This review may guide research studies to fill the data gaps, as well as helping with developing effective vector surveillance and controlling strategies by concerned institutions in different involved countries, leading to cooperative and coordinate vector control measures.
Collapse
Affiliation(s)
- Amira Nebbak
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 384, Zone Industrielle, Bou-Ismail 42004, Algeria
| | - Lionel Almeras
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Philippe Parola
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Idir Bitam
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- École Supérieure en Sciences de l’Aliment et des Industries Agroalimentaire d’Alger, Oued Smar 16059, Algeria
| |
Collapse
|
14
|
Gajahin Gamage NT, Miyashita R, Takahashi K, Asakawa S, Senevirathna JDM. Proteomic Applications in Aquatic Environment Studies. Proteomes 2022; 10:proteomes10030032. [PMID: 36136310 PMCID: PMC9505238 DOI: 10.3390/proteomes10030032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Genome determines the unique individualities of organisms; however, proteins play significant roles in the generation of the colorful life forms below water. Aquatic systems are usually complex and multifaceted and can take on unique modifications and adaptations to environmental changes by altering proteins at the cellular level. Proteomics is an essential strategy for exploring aquatic ecosystems due to the diverse involvement of proteins, proteoforms, and their complexity in basic and advanced cellular functions. Proteomics can expedite the analysis of molecular mechanisms underlying biological processes in an aquatic environment. Previous proteomic studies on aquatic environments have mainly focused on pollution assessments, ecotoxicology, their role in the food industry, and extraction and identification of natural products. Aquatic protein biomarkers have been comprehensively reported and are currently extensively applied in the pharmaceutical and medical industries. Cellular- and molecular-level responses of organisms can be used as indicators of environmental changes and stresses. Conversely, environmental changes are expedient in predicting aquatic health and productivity, which are crucial for ecosystem management and conservation. Recent advances in proteomics have contributed to the development of sustainable aquaculture, seafood safety, and high aquatic food production. Proteomic approaches have expanded to other aspects of the aquatic environment, such as protein fingerprinting for species identification. In this review, we encapsulated current proteomic applications and evaluated the potential strengths, weaknesses, opportunities, and threats of proteomics for future aquatic environmental studies. The review identifies both pros and cons of aquatic proteomics and projects potential challenges and recommendations. We postulate that proteomics is an emerging, powerful, and integrated omics approach for aquatic environmental studies.
Collapse
Affiliation(s)
- Nadeeka Thushari Gajahin Gamage
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Rina Miyashita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazutaka Takahashi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Jayan Duminda Mahesh Senevirathna
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
- Correspondence:
| |
Collapse
|
15
|
Bamou R, Costa MM, Diarra AZ, Martins AJ, Parola P, Almeras L. Enhanced procedures for mosquito identification by MALDI-TOF MS. Parasit Vectors 2022; 15:240. [PMID: 35773735 PMCID: PMC9248115 DOI: 10.1186/s13071-022-05361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/05/2022] [Indexed: 11/15/2022] Open
Abstract
Background In the last decade, an innovative approach has emerged for arthropod identification based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Increasing interest in applying the original technique for arthropod identification has led to the development of a variety of procedures for sample preparation and selection of body parts, among others. However, the absence of a consensual strategy hampers direct inter-study comparisons. Moreover, these different procedures are confusing to new users. Establishing optimized procedures and standardized protocols for mosquito identification by MALDI-TOF MS is therefore a necessity, and would notably enable the sharing of reference MS databases. Here, we assess the optimal conditions for mosquito identification using MALDI-TOF MS profiling. Methods Three homogenization methods, two of which were manual and one automatic, were used on three distinct body parts (legs, thorax, head) of two mosquito laboratory strains, Anopheles coluzzii and Aedes aegypti, and the results evaluated. The reproducibility of MS profiles, identification rate with relevant scores and the suitability of procedures for high-throughput analyses were the main criteria for establishing optimized guidelines. Additionally, the consequences of blood-feeding and geographical origin were evaluated using both laboratory strains and field-collected mosquitoes. Results Relevant score values for mosquito identification were obtained for all the three body parts assayed using MALDI-TOF MS profiling; however, the thorax and legs were the most suitable specimens, independently of homogenization method or species. Although the manual homogenization methods were associated with a high rate of identification on the three body parts, this homogenization mode is not adaptable to the processing of a large number of samples. Therefore, the automatic homogenization procedure was selected as the reference homogenization method. Blood-feeding status did not hamper the identification of mosquito species, despite the presence of MS peaks from original blood in the MS profiles of the three body parts tested from both species. Finally, a significant improvement in identification scores was obtained for field-collected specimens when MS spectra of species from the same geographical area were added to the database. Conclusion The results of the current study establish guidelines for the selection of mosquito anatomic parts and modality of sample preparation (e.g. homogenization) for future specimen identification by MALDI-TOF MS profiling. These standardized operational protocols could be used as references for creating an international MS database. Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05361-0.
Collapse
Affiliation(s)
- Roland Bamou
- Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Monique Melo Costa
- Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Adama Zan Diarra
- Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Ademir Jesus Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.,Laboratório Misto Internacional "Sentinela", FIOCRUZ, IRD, Universidade de Brasília (UnB), Rio de Janeiro, RJ, Brazil
| | - Philippe Parola
- Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Lionel Almeras
- Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME, Marseille, France. .,IHU Méditerranée Infection, Marseille, France. .,Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.
| |
Collapse
|
16
|
Abdellahoum Z, Nebbak A, Lafri I, Kaced A, Bouhenna MM, Bachari K, Boumegoura A, Agred R, Boudchicha RH, Smadi MA, Maurin M, Bitam I. Identification of Algerian field-caught mosquito vectors by MALDI-TOF MS. Vet Parasitol Reg Stud Reports 2022; 31:100735. [PMID: 35569916 DOI: 10.1016/j.vprsr.2022.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Vector-borne diseases represent a real threats worldwide, in reason of the lack of vaccine and cure for some diseases. Among arthropod vectors, mosquitoes are described to be the most dangerous animal on earth, resulting in an estimated 725,000 deaths per year due to their borne diseases. Geographical position of Algeria makes this country a high risk area for emerging and re-emerging diseases, such as dengue coming from north (Europe) and malaria from south (Africa). To prevent these threats, rapid and continuous surveillance of mosquito vectors is essential. For this purpose we aimed in this study to create a mosquito vectors locale database using MALDI-TOF mass spectrometry technology for rapid identification of these arthropods. This methodology was validated by testing 211 mosquitoes, including four species (Aedes albopictus, Culex pipiens, Culex quinquefasciatus, and Culiseta longiareolata), in two northern wilayahs of Algeria (Algiers and Bejaia). Species determination by MALDI TOF MS was highly concordant with reference phenotypic and genetic methods. Using this MALDI-TOF MS tool will allow better surveillance of mosquito species able to transmit mosquito borne diseases in Algeria.
Collapse
Affiliation(s)
- Zakaria Abdellahoum
- Laboratoire Biodiversité et Environnement: Interaction Génome, Faculté des Sciences Biologique, Université des Sciences et de la Technologie Houari Boumediene, Alger 16111, Algeria
| | - Amira Nebbak
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle, BP 284 Bou-Ismail, Tipaza, Algeria
| | - Ismail Lafri
- Laboratoire des Biotechnologies Liées à la Reproduction Animale, Institut des Sciences Vétérinaires, Université Blida 1, BP 270 Blida, Algeria.
| | - Amel Kaced
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle, BP 284 Bou-Ismail, Tipaza, Algeria
| | - Mustapha Mounir Bouhenna
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle, BP 284 Bou-Ismail, Tipaza, Algeria
| | - Khaldoun Bachari
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle, BP 284 Bou-Ismail, Tipaza, Algeria
| | - Ali Boumegoura
- National Centre for Biotechnology Research, Ali Mendjli Nouvelle Ville, UV 03, BP E73 Constantine, Algeria.
| | - Rym Agred
- National Centre for Biotechnology Research, Ali Mendjli Nouvelle Ville, UV 03, BP E73 Constantine, Algeria.
| | - Rima Hind Boudchicha
- National Centre for Biotechnology Research, Ali Mendjli Nouvelle Ville, UV 03, BP E73 Constantine, Algeria.
| | - Mustapha Adnane Smadi
- National Centre for Biotechnology Research, Ali Mendjli Nouvelle Ville, UV 03, BP E73 Constantine, Algeria; Veterinary and Agricultural Sciences Institute, Department of Veterinary Sciences, University of Batna 1, Batna, Algeria
| | - Max Maurin
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, 38043 Grenoble, France; Centre National de la Recherche Scientifique, TIMC-IMAG, UMR5525, Université Grenoble Alpes, 38400, Saint Martin d'Heres, France.
| | - Idir Bitam
- Laboratoire Biodiversité et Environnement: Interaction Génome, Faculté des Sciences Biologique, Université des Sciences et de la Technologie Houari Boumediene, Alger 16111, Algeria; Ecole Supérieure des Sciences de l'Aliment et des Industries Alimentaires, Alger 16004, Algeria
| |
Collapse
|
17
|
Hamlili FZ, Bérenger JM, Diarra AZ, Parola P. Molecular and MALDI-TOF MS identification of swallow bugs Cimex hirundinis (Heteroptera: Cimicidae) and endosymbionts in France. Parasit Vectors 2021; 14:587. [PMID: 34838119 PMCID: PMC8627032 DOI: 10.1186/s13071-021-05073-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/16/2021] [Indexed: 01/07/2023] Open
Abstract
Background The Cimicidae are obligatory blood-feeding ectoparasites of medical and veterinary importance. We aim in the current study to assess the ability of MALDI-TOF MS to identify Cimex hirundinis swallow bugs collected in house martin nests. Methods Swallow bugs were picked out from abandoned nests of house martin swallows and identified morphologically to the species level. The bugs were randomly selected, dissected and then subjected to MALDI-TOF MS and molecular analyses. Results A total of 65 adults and 50 nymphs were used in the attempt to determine whether this tool could identify the bug species and discriminate their developmental stages. Five adults and four nymphs of C. hirundinis specimens were molecularly identified to update our MS homemade arthropod database. BLAST analysis of COI gene sequences from these C. hirundinis revealed 98.66–99.12% identity with the corresponding sequences of C. hirundinis of the GenBank. The blind test against the database supplemented with MS reference spectra showed 100% (57/57) C. hirundinis adults and 100% (46/46) C. hirundinis nymphs were reliably identified and in agreement with morphological identification with logarithmic score values between 1.922 and 2.665. Ninety-nine percent of C. hirundinis specimens tested were positive for Wolbachia spp. The sequencing results revealed that they were identical to Wolbachia massiliensis, belonging to the new T-supergroup strain and previously isolated from C. hemipterus. Conclusions We report for the first time to our knowledge a case of human infestation by swallow bugs (C. hirundinis) in France. We also show the usefulness of MALDI-TOF MS in the rapid identification of C. hirundinis specimens and nymphs with minimal sample requirements. We phylogenetically characterized the novel Wolbachia strain (W. massiliensis) infecting C. hirundinis and compared it to other recognized Wolbachia clades. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05073-x.
Collapse
Affiliation(s)
- Fatima Zohra Hamlili
- IHU-Méditerranée Infection, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Jean-Michel Bérenger
- IHU-Méditerranée Infection, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Adama Zan Diarra
- IHU-Méditerranée Infection, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Philippe Parola
- IHU-Méditerranée Infection, Marseille, France. .,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.
| |
Collapse
|
18
|
Hamlili FZ, Thiam F, Laroche M, Diarra AZ, Doucouré S, Gaye PM, Fall CB, Faye B, Sokhna C, Sow D, Parola P. MALDI-TOF mass spectrometry for the identification of freshwater snails from Senegal, including intermediate hosts of schistosomes. PLoS Negl Trop Dis 2021; 15:e0009725. [PMID: 34516582 PMCID: PMC8489727 DOI: 10.1371/journal.pntd.0009725] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 10/04/2021] [Accepted: 08/12/2021] [Indexed: 11/19/2022] Open
Abstract
Freshwater snails of the genera Biomphalaria, Bulinus, and Oncomelania are intermediate hosts of schistosomes that cause human schistosomiasis, one of the most significant infectious neglected diseases in the world. Identification of freshwater snails is usually based on morphology and potentially DNA-based methods, but these have many drawbacks that hamper their use. MALDI-TOF MS has revolutionised clinical microbiology and has emerged in the medical entomology field. This study aims to evaluate MALDI-TOF MS profiling for the identification of both frozen and ethanol-stored snail species using protein extracts from different body parts. A total of 530 field specimens belonging to nine species (Biomphalaria pfeifferi, Bulinus forskalii, Bulinus senegalensis, Bulinus truncatus, Bulinus globosus, Bellamya unicolor, Cleopatra bulimoides, Lymnaea natalensis, Melanoides tuberculata) and 89 laboratory-reared specimens, including three species (Bi. pfeifferi, Bu. forskalii, Bu. truncatus) were used for this study. For frozen snails, the feet of 127 field and 74 laboratory-reared specimens were used to validate the optimised MALDI-TOF MS protocol. The spectral analysis yielded intra-species reproducibility and inter-species specificity which resulted in the correct identification of all the specimens in blind queries, with log-score values greater than 1.7. In a second step, we demonstrated that MALDI-TOF MS could also be used to identify ethanol-stored snails using proteins extracted from the foot using a specific database including a large number of ethanol preserved specimens. This study shows for the first time that MALDI-TOF MS is a reliable tool for the rapid identification of frozen and ethanol-stored freshwater snails without any malacological expertise.
Collapse
Affiliation(s)
- Fatima Zohra Hamlili
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Fatou Thiam
- VITROME, Campus International IRD-UCAD de l’IRD, Dakar, Senegal
- Laboratoire de Parasitologie-Helminthologie, Département de Biologie Animale, Faculté des Sciences et Techniques, UCAD, Dakar, Senegal
| | - Maureen Laroche
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Adama Zan Diarra
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | | | - Papa Mouhamadou Gaye
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- VITROME, Campus International IRD-UCAD de l’IRD, Dakar, Senegal
- Laboratoire de Parasitologie-Helminthologie, Département de Biologie Animale, Faculté des Sciences et Techniques, UCAD, Dakar, Senegal
| | - Cheikh Binetou Fall
- Service de Parasitologie-Mycologie, Faculté de médecine, Université Cheikh Anta Diop, Dakar, Senegal
| | - Babacar Faye
- Service de Parasitologie-Mycologie, Faculté de médecine, Université Cheikh Anta Diop, Dakar, Senegal
| | - Cheikh Sokhna
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- VITROME, Campus International IRD-UCAD de l’IRD, Dakar, Senegal
| | - Doudou Sow
- VITROME, Campus International IRD-UCAD de l’IRD, Dakar, Senegal
- Service de Parasitologie-Mycologie, UFR Sciences de la Santé, Université Gaston Berger de Saint Louis, Senegal
| | - Philippe Parola
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| |
Collapse
|
19
|
Short-Term Selection to Diflubenzuron and Bacillus thuringiensis Var. Israelensis Differentially Affects the Winter Survival of Culex pipiens f. Pipiens and Culex pipiens f. Molestus (Diptera: Culicidae). INSECTS 2021; 12:insects12060527. [PMID: 34204105 PMCID: PMC8228153 DOI: 10.3390/insects12060527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary In Europe, Culex pipiens (Diptera: Culicidae) mosquito, the prime vector of West Nile virus, consists of two forms, named pipiens and molestus, that exhibit substantial differences in their biology, including overwintering behavior. Diflubenzuron (DFB) and Bacillus thuringiensis var. israelensis (Bti) are among the most widely used larvicides which pose major concerns for resistance development. In temperate areas, winter represents a very challenging period for the survival of many insects, including mosquitoes, and therefore potential fitness costs associated with insecticide selection may reduce their overwintering success. In this context, we investigated how short-term selection of Cx. pipiens f. pipiens and molestus forms to DFB and Bti affect their overwintering success. Our findings revealed that selection to both larvicides induced a high fitness cost in terms of reduced winter survival of Cx. pipiens f. molestus but not of pipiens form, suggesting potential differences in the persistence of the selected individuals in the wild from year to year. Abstract The Culex pipiens (Diptera: Culicidae) mosquito is of high medical importance as it is considered the prime vector of West Nile virus. In Europe, this species consists of two forms, named pipiens and molestus, that exhibit substantial differences in their overwintering biology. Diflubenzuron (DFB) and Bacillus thuringiensis var. israelensis (Bti) are two of the most used larvicides in mosquito control, including that of Culex pipiens. The high dependency on these two larvicides poses major concerns for resistance development. The evolution and stability of resistance to insecticides has been associated with fitness costs that may be manifested under stressful conditions, such as the winter period. This study investigated how short-term selection of pipiens and molestus forms to both larvicides affect their overwintering success. Larvae from each form were subjected to the same selective pressure (80% mortality) for three successive generations with DFB and Bti. At the end of this process, the winter survival between the selected populations and the controls (colonies without selection) was determined for each form. Selection to both larvicides significantly reduced the winter survival rates of molestus but not of pipiens form, indicating potential differences in the persistence of the selected individuals from year to year between the two forms.
Collapse
|
20
|
Benyahia H, Ouarti B, Diarra AZ, Boucheikhchoukh M, Meguini MN, Behidji M, Benakhla A, Parola P, Almeras L. Identification of Lice Stored in Alcohol Using MALDI-TOF MS. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1126-1133. [PMID: 33346344 DOI: 10.1093/jme/tjaa266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 06/12/2023]
Abstract
Lice pose major public and veterinary health problems with economic consequences. Their identification is essential and requires the development of an innovative strategy. MALDI-TOF MS has recently been proposed as a quick, inexpensive, and accurate tool for the identification of arthropods. Alcohol is one of the most frequently used storage methods and makes it possible to store samples for long periods at room temperature. Several recent studies have reported that alcohol alters protein profiles resulting from MS analysis. After preliminary studies on frozen lice, the purpose of this research was to evaluate the influence of alcohol preservation on the accuracy of lice identification by MALDI-TOF MS. To this end, lice stored in alcohol for variable periods were submitted for MS analysis and sample preparation protocols were optimized. The reproducibility and specificity of the MS spectra obtained on both these arthropod families allowed us to implement the reference MS spectra database (DB) with protein profiles of seven lice species stored in alcohol. Blind tests revealed a correct identification of 93.9% of Pediculus humanus corporis (Linnaeus, 1758) and 98.4% of the other lice species collected in the field. This study demonstrated that MALDI-TOF MS could be successfully used for the identification of lice stored in alcohol for different lengths of time.
Collapse
Affiliation(s)
- Hanene Benyahia
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Basma Ouarti
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Mehdi Boucheikhchoukh
- Department of Veterinary Sciences, Chadli Bendjedid University, El-Tarf, 36000, Algeria
| | - Mohamed Nadir Meguini
- Institute of Veterinary and Agronomic Sciences, Mohamed Cherif Messaadia University, Souk-Ahras, Algeria
| | - Makhlouf Behidji
- Institute of Veterinary and Agronomic Sciences, Mohamed Cherif Messaadia University, Souk-Ahras, Algeria
| | - Ahmed Benakhla
- Department of Veterinary Sciences, Chadli Bendjedid University, El-Tarf, 36000, Algeria
| | - Philippe Parola
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Lionel Almeras
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
21
|
Sevestre J, Diarra AZ, Laroche M, Almeras L, Parola P. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: an emerging tool for studying the vectors of human infectious diseases. Future Microbiol 2021; 16:323-340. [PMID: 33733821 DOI: 10.2217/fmb-2020-0145] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Arthropod vectors have historically been identified morphologically, and more recently using molecular biology methods. However, both of these methods are time-consuming and require specific expertise and equipment. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, which has revolutionized the routine identification of microorganisms in clinical microbiology laboratories, was recently successfully applied to the identification of arthropod vectors. Since then, the robustness of this identification technique has been confirmed, extended to a large panel of arthropod vectors, and assessed for detecting blood feeding behavior and identifying the infection status in regard to certain pathogenic agents. In this study, we summarize the state-of-the-art of matrix-assisted laser desorption ionization time-of-flight mass spectrometry applied to the identification of arthropod vectors (ticks, mosquitoes, phlebotomine sand-flies, fleas, triatomines, lice and Culicoides), their trophic preferences and their ability to discriminate between infection statuses.
Collapse
Affiliation(s)
- Jacques Sevestre
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Adama Z Diarra
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Maureen Laroche
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Lionel Almeras
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,Département Microbiologie et Maladies Infectieuses, Unité Parasitologie et Entomologie, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Philippe Parola
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| |
Collapse
|
22
|
Gittens RA, Almanza A, Bennett KL, Mejía LC, Sanchez-Galan JE, Merchan F, Kern J, Miller MJ, Esser HJ, Hwang R, Dong M, De León LF, Álvarez E, Loaiza JR. Proteomic fingerprinting of Neotropical hard tick species (Acari: Ixodidae) using a self-curated mass spectra reference library. PLoS Negl Trop Dis 2020; 14:e0008849. [PMID: 33108372 PMCID: PMC7647123 DOI: 10.1371/journal.pntd.0008849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/06/2020] [Accepted: 10/02/2020] [Indexed: 02/01/2023] Open
Abstract
Matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry is an analytical method that detects macromolecules that can be used for proteomic fingerprinting and taxonomic identification in arthropods. The conventional MALDI approach uses fresh laboratory-reared arthropod specimens to build a reference mass spectra library with high-quality standards required to achieve reliable identification. However, this may not be possible to accomplish in some arthropod groups that are difficult to rear under laboratory conditions, or for which only alcohol preserved samples are available. Here, we generated MALDI mass spectra of highly abundant proteins from the legs of 18 Neotropical species of adult field-collected hard ticks, several of which had not been analyzed by mass spectrometry before. We then used their mass spectra as fingerprints to identify each tick species by applying machine learning and pattern recognition algorithms that combined unsupervised and supervised clustering approaches. Both Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) classification algorithms were able to identify spectra from different tick species, with LDA achieving the best performance when applied to field-collected specimens that did have an existing entry in a reference library of arthropod protein spectra. These findings contribute to the growing literature that ascertains mass spectrometry as a rapid and effective method to complement other well-established techniques for taxonomic identification of disease vectors, which is the first step to predict and manage arthropod-borne pathogens.
Collapse
Affiliation(s)
- Rolando A. Gittens
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama, Republic of Panama
- Centro de Neurociencias, INDICASAT AIP, Panama, Republic of Panama
| | - Alejandro Almanza
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama, Republic of Panama
| | - Kelly L. Bennett
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama, Republic of Panama
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
| | - Luis C. Mejía
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama, Republic of Panama
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
| | - Javier E. Sanchez-Galan
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama, Republic of Panama
- Grupo de Investigación en Biotecnología, Bioinformática y Biología de Sistemas, Facultad de Ingeniería de Sistemas Computacionales, Universidad Tecnológica de Panamá, Panama, Republic of Panama
| | - Fernando Merchan
- Grupo de Investigación en Sistemas de Comunicaciones Digitales Avanzados, Facultad de Ingeniería Eléctrica, Universidad Tecnológica de Panamá, Panama, Republic of Panama
| | - Jonathan Kern
- Grupo de Investigación en Sistemas de Comunicaciones Digitales Avanzados, Facultad de Ingeniería Eléctrica, Universidad Tecnológica de Panamá, Panama, Republic of Panama
- ENSEIRB-MATMECA–Bordeaux INP, France
| | - Matthew J. Miller
- Department of Anthropology, Pennsylvania State University, University Park, PA, United States of America
- University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK, United States of America
| | - Helen J. Esser
- Department of Environmental Sciences, Wageningen University, Wageningen, the Netherlands
| | - Robert Hwang
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
| | - May Dong
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
| | - Luis F. De León
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama, Republic of Panama
- Department of Biology, University of Massachusetts Boston, Boston, MA, United States of America
| | - Eric Álvarez
- Programa Centroamericano de Maestría en Entomología, Universidad de Panamá, Panama, Republic of Panama
| | - Jose R. Loaiza
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama, Republic of Panama
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
- Programa Centroamericano de Maestría en Entomología, Universidad de Panamá, Panama, Republic of Panama
| |
Collapse
|
23
|
Rossel S, Barco A, Kloppmann M, Martínez Arbizu P, Huwer B, Knebelsberger T. Rapid species level identification of fish eggs by proteome fingerprinting using MALDI-TOF MS. J Proteomics 2020; 231:103993. [PMID: 32971306 DOI: 10.1016/j.jprot.2020.103993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/27/2020] [Accepted: 09/18/2020] [Indexed: 11/29/2022]
Abstract
Quantifying spawning biomass of commercially relevant fish species is important to generate fishing quotas. This will mostly rely on the annual or daily production of fish eggs. However, these have to be identified precisely to species level to obtain a reliable estimate of offspring production of the different species. Because morphological identification can be very difficult, recent developments are heading towards application of molecular tools. Methods such as COI barcoding have long handling times and cause high costs for single specimen identifications. In order to test MALDI-TOF MS, a rapid and cost-effective alternative for species identification, we identified fish eggs using COI barcoding and used the same specimens to set up a MALDI-TOF MS reference library. This library, constructed from two different MALDI-TOF MS instruments, was then used to identify unknown eggs from a different sampling occasion. By using a line of evidence from hierarchical clustering and different supervised identification approaches we obtained concordant species identifications for 97.5% of the unknown fish eggs, proving MALDI-TOF MS a good tool for rapid species level identification of fish eggs. At the same time we point out the necessity of adjusting identification scores of supervised methods for identification to optimize identification success. SIGNIFICANCE: Fish products are commercially highly important and many societies rely on them as a major food resource. Over many decades stocks of various relevant fish species have been reduced due to unregulated overfishing. Nowadays, to avoid overfishing and threatening of important fish species, fish stocks are regularly monitored. One component of this monitoring is the monitoring of spawning stock sizes. Whereas this is highly dependent on correct species identification of fish eggs, morphological identification is difficult because of lack of morphological features.
Collapse
Affiliation(s)
- Sven Rossel
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Südstrand 44, 26382 Wilhelmshaven, Germany.
| | - Andrea Barco
- biome-ID, Südstrand 44, 26382 Wilhelmshaven, Germany
| | - Matthias Kloppmann
- Thünen Institut für Seefischerei, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - Pedro Martínez Arbizu
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Südstrand 44, 26382 Wilhelmshaven, Germany
| | - Bastian Huwer
- Technical University of Denmark, National Institute of Aquatic Resources, Kemitorvet, Bygning 202, 2800 Kgs. Lyngby, Denmark
| | | |
Collapse
|
24
|
Kamber T, Koekemoer LL, Mathis A. Loop-mediated isothermal amplification (LAMP) assays for Anopheles funestus group and Anopheles gambiae complex species. MEDICAL AND VETERINARY ENTOMOLOGY 2020; 34:295-301. [PMID: 32154608 DOI: 10.1111/mve.12437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Species of the genus Anopheles vary with regard to their vector capacity for Plasmodium spp., the causative agent of malaria, and their accurate identification is often required. Loop-mediated isothermal amplification (LAMP) is a rapid, simple and low-cost method for specific DNA amplification. Primers for LAMP assays specific for the Anopheles funestus group and Anopheles gambiae complex species as well as for the species Anopheles arabiensis, An. funestus, An. gambiae s.s/Anopheles coluzzii (major vectors) and Anopheles rivulorum (minor vector) were designed targeting specific genome or rDNA internal transcribed spacer regions. Reaction conditions (buffer composition, primer concentrations, incubation time) were evaluated and the specificities of the assays confirmed with DNA from non-target Anopheles species. DNA release from the mosquitoes is achieved simply by heating them for 5 min in water. An aliquot of the DNA solutions is transferred to the reaction tube using disposable inoculation loops. The outcome of the LAMP amplifications after 1 h incubation at 65 °C can easily be visualized by a colour change visible to the naked eye. The assays are operable under field conditions requiring only basic equipment (portable heat block programmable at 65 and 80 °C, cooler for master mixes).
Collapse
Affiliation(s)
- T Kamber
- Institute of Parasitology, National Centre for Vector Entomology, Zürich, Switzerland
| | - L L Koekemoer
- Wits Research Institute for Malaria, SAMRC Collaborating Centre for Multidisciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - A Mathis
- Institute of Parasitology, National Centre for Vector Entomology, Zürich, Switzerland
| |
Collapse
|
25
|
Briolant S, Costa MM, Nguyen C, Dusfour I, Pommier de Santi V, Girod R, Almeras L. Identification of French Guiana anopheline mosquitoes by MALDI-TOF MS profiling using protein signatures from two body parts. PLoS One 2020; 15:e0234098. [PMID: 32817616 PMCID: PMC7444543 DOI: 10.1371/journal.pone.0234098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/23/2020] [Indexed: 01/17/2023] Open
Abstract
In French Guiana, the malaria, a parasitic infection transmitted by Anopheline mosquitoes, remains a disease of public health importance. To prevent malaria transmission, the main effective way remains Anopheles control. For an effective control, accurate Anopheles species identification is indispensable to distinguish malaria vectors from non-vectors. Although, morphological and molecular methods are largely used, an innovative tool, based on protein pattern comparisons, the Matrix Assisted Laser Desorption / Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) profiling, emerged this last decade for arthropod identification. However, the limited mosquito fauna diversity of reference MS spectra remains one of the main drawback for its large usage. The aim of the present study was then to create and to share reference MS spectra for the identification of French Guiana Anopheline species. A total of eight distinct Anopheles species, among which four are malaria vectors, were collected in 6 areas. To improve Anopheles identification, two body parts, legs and thoraxes, were independently submitted to MS for the creation of respective reference MS spectra database (DB). This study underlined that double checking by MS enhanced the Anopheles identification confidence and rate of reliable classification. The sharing of this reference MS spectra DB should make easier Anopheles species monitoring in endemic malaria area to help malaria vector control or elimination programs.
Collapse
Affiliation(s)
- Sébastien Briolant
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), IHU—Méditerranée Infection, Marseille, France
| | - Monique Melo Costa
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), IHU—Méditerranée Infection, Marseille, France
| | - Christophe Nguyen
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), IHU—Méditerranée Infection, Marseille, France
| | - Isabelle Dusfour
- Unite d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | | | - Romain Girod
- Unite d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Lionel Almeras
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), IHU—Méditerranée Infection, Marseille, France
- * E-mail:
| |
Collapse
|
26
|
Ouarti B, Laroche M, Righi S, Meguini MN, Benakhla A, Raoult D, Parola P. Development of MALDI-TOF mass spectrometry for the identification of lice isolated from farm animals. ACTA ACUST UNITED AC 2020; 27:28. [PMID: 32351208 PMCID: PMC7191974 DOI: 10.1051/parasite/2020026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/11/2020] [Indexed: 12/18/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is now routinely used for the rapid identification of microorganisms isolated from clinical samples and has been recently successfully applied to the identification of arthropods. In the present study, this proteomics tool was used to identify lice collected from livestock and poultry in Algeria. The MALDI-TOF MS spectra of 408 adult specimens were measured for 14 species, including Bovicola bovis, B. ovis, B. caprae, Haematopinus eurysternus, Linognathus africanus, L. vituli, Solenopotes capillatus, Menacanthus stramineus, Menopon gallinae, Chelopistes meleagridis, Goniocotes gallinae, Goniodes gigas, Lipeurus caponis and laboratory reared Pediculus humanus corporis. Good quality spectra were obtained for 305 samples. Spectral analysis revealed intra-species reproducibility and inter-species specificity that were consistent with the morphological classification. A blind test of 248 specimens was performed against the in-lab database upgraded with new spectra and validated using molecular tools. With identification percentages ranging from 76% to 100% alongside high identification scores (mean = 2.115), this study proposes MALDI-TOF MS as an effective tool for discriminating lice species.
Collapse
Affiliation(s)
- Basma Ouarti
- Aix Marseille Univ., IRD, AP-HM, SSA, VITROME, 13005 Marseille, France - IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Maureen Laroche
- Aix Marseille Univ., IRD, AP-HM, SSA, VITROME, 13005 Marseille, France - IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Souad Righi
- Université Chadli Bendjdid, Département des sciences Vétérinaire, 36000 El Tarf, Algeria
| | - Mohamed Nadir Meguini
- Université Chadli Bendjdid, Département des sciences Vétérinaire, 36000 El Tarf, Algeria - Institut des Sciences Vétérinaire et Agronomiques, Université Mohamed Cherif Messaadia, 41000 Souk-Ahras, Algeria
| | - Ahmed Benakhla
- Université Chadli Bendjdid, Département des sciences Vétérinaire, 36000 El Tarf, Algeria
| | - Didier Raoult
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France - Aix Marseille Univ., IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Philippe Parola
- Aix Marseille Univ., IRD, AP-HM, SSA, VITROME, 13005 Marseille, France - IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
27
|
Nebbak A, Almeras L. Identification of Aedes mosquitoes by MALDI-TOF MS biotyping using protein signatures from larval and pupal exuviae. Parasit Vectors 2020; 13:161. [PMID: 32238178 PMCID: PMC7110738 DOI: 10.1186/s13071-020-04029-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/24/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) biotyping is an innovative strategy, applied successfully for the identification of numerous arthropod families including mosquitoes. The effective mosquito identification using this emerging tool was demonstrated possible at different steps of their life-cycle, including eggs, immature and adult stages. Unfortunately, for species identification by MS, the euthanasia of the mosquito specimen is required. METHODS To avoid mosquito euthanasia, the present study assessed whether aedine mosquitoes could be identified by MALDI-TOF MS biotyping, using their respective exuviae. In this way, exuviae from the fourth-instar and pupal stages of Aedes albopictus and Aedes aegypti were submitted to MALDI-TOF MS analysis. RESULTS Reproducible and specific MS spectra according to aedine species and stage of exuviae were observed which were objectified by cluster analyses, composite correlation index (CCI) tool and principal components analysis (PCA). The query of our reference MS spectra database (DB) upgraded with MS spectra of exuviae from fourth-instar larvae and pupae of both Aedes species revealed that 100% of the samples were correctly classified at the species and stage levels. Among them, 93.8% (135/144) of the MS profiles reached the threshold log score value (LSV > 1.8) for reliable identification. CONCLUSIONS The extension of reference MS spectra DB to exuviae from fourth-instar and pupal stages made now possible the identification of mosquitoes throughout their life-cycle at aquatic and aerial stages. The exuviae presenting the advantage to avoid specimen euthanasia, allowing to perform complementary analysis on alive mosquitoes.
Collapse
Affiliation(s)
- Amira Nebbak
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, Marseille, France.,Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle, BP 384 Bou-Ismail, Tipaza, Algérie
| | - Lionel Almeras
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, Marseille, France. .,Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005, Marseille, France. .,IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
28
|
Feucherolles M, Poppert S, Utzinger J, Becker SL. MALDI-TOF mass spectrometry as a diagnostic tool in human and veterinary helminthology: a systematic review. Parasit Vectors 2019; 12:245. [PMID: 31101120 PMCID: PMC6525464 DOI: 10.1186/s13071-019-3493-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/06/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has become a widely used technique for the rapid and accurate identification of bacteria, mycobacteria and certain fungal pathogens in the clinical microbiology laboratory. Thus far, only few attempts have been made to apply the technique in clinical parasitology, particularly regarding helminth identification. METHODS We systematically reviewed the scientific literature on studies pertaining to MALDI-TOF MS as a diagnostic technique for helminths (cestodes, nematodes and trematodes) of medical and veterinary importance. Readily available electronic databases (i.e. PubMed/MEDLINE, ScienceDirect, Cochrane Library, Web of Science and Google Scholar) were searched from inception to 10 October 2018, without restriction on year of publication or language. The titles and abstracts of studies were screened for eligibility by two independent reviewers. Relevant articles were read in full and included in the systematic review. RESULTS A total of 84 peer-reviewed articles were considered for the final analysis. Most papers reported on the application of MALDI-TOF for the study of Caenorhabditis elegans, and the technique was primarily used for identification of specific proteins rather than entire pathogens. Since 2015, a small number of studies documented the successful use of MALDI-TOF MS for species-specific identification of nematodes of human and veterinary importance, such as Trichinella spp. and Dirofilaria spp. However, the quality of available data and the number of examined helminth samples was low. CONCLUSIONS Data on the use of MALDI-TOF MS for the diagnosis of helminths are scarce, but recent evidence suggests a potential role for a reliable identification of nematodes. Future research should explore the diagnostic accuracy of MALDI-TOF MS for identification of (i) adult helminths, larvae and eggs shed in faecal samples; and (ii) helminth-related proteins that are detectable in serum or body fluids of infected individuals.
Collapse
Affiliation(s)
- Maureen Feucherolles
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation, Belvaux, Luxembourg
| | - Sven Poppert
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany.
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
29
|
Nebbak A, Willcox AC, Koumare S, Berenger JM, Raoult D, Parola P, Fontaine A, Briolant S, Almeras L. Longitudinal monitoring of environmental factors at Culicidae larval habitats in urban areas and their association with various mosquito species using an innovative strategy. PEST MANAGEMENT SCIENCE 2019; 75:923-934. [PMID: 30178568 DOI: 10.1002/ps.5196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND To prevent the risk of mosquito-borne disease outbreaks, larval source management remains the most sustainable and effective mosquito control strategy. The present study aimed to determine the influence of environmental characteristics of mosquito larval habitats in an urban area of Marseille, France. Fourteen sites containing water were monitored every 2 weeks from May to October 2015 for mosquito species occurrence and larval density, and environmental parameters were measured at each visit. Rapid and accurate species identification of mosquito larvae was performed using an innovative MALDI-TOF MS method. RESULTS A total of 6753 larvae (L1-L4) and pupae were collected, of which 35.8% (n = 2418) were speciated using MALDI-TOF MS. Correct identifications were obtained for 2259 specimens (93.4%). A total of five mosquito species were found, including Aedes (Ae.) albopictus, Culex (Cx.) p. pipiens, Cx. hortensis, Cx. impudicus, and Culiseta (Cs.) longiareolata. Larvae of the Culex genus were predominant in both density and distribution. Small, shaded pools of shallow water favored Ae. albopictus colonization, whereas the wide distribution of Cx. p. pipiens demonstrated that this species was weakly influenced by environmental changes. CONCLUSIONS The present work confirms that MALDI-TOF MS is a useful tool for mosquito speciation and suggests that understanding the environmental factors associated with the occurrence and density of mosquito species at the larval stage in Marseille may aid in the future implementation of mosquito control programs. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Amira Nebbak
- IHU-Méditerranée Infection, Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Alexandra C Willcox
- IHU-Méditerranée Infection, Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sekou Koumare
- IHU-Méditerranée Infection, Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
- Malaria Research and Training Center, Faculté de médecine, Université de Bamako, Bamako, Mali
| | - Jean-Michel Berenger
- IHU-Méditerranée Infection, Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Didier Raoult
- IHU-Méditerranée Infection, Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Philippe Parola
- IHU-Méditerranée Infection, Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Albin Fontaine
- IHU-Méditerranée Infection, Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Sébastien Briolant
- IHU-Méditerranée Infection, Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Lionel Almeras
- IHU-Méditerranée Infection, Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| |
Collapse
|
30
|
Karger A, Bettin B, Gethmann JM, Klaus C. Whole animal matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry of ticks - Are spectra of Ixodes ricinus nymphs influenced by environmental, spatial, and temporal factors? PLoS One 2019; 14:e0210590. [PMID: 30645604 PMCID: PMC6333373 DOI: 10.1371/journal.pone.0210590] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/25/2018] [Indexed: 01/07/2023] Open
Abstract
In the recent years matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has become a useful tool to characterize arthropod species and their different stages of development. It was reported for sand flies and mosquitoes at immature stages and also assumed for ticks that geographic location can have a subtle influence on MALDI-TOF mass spectra which allows the discrimination of animals with specific local variations of the MALDI-TOF MS phenotype. It is so far uncertain, however, if these mass-spectrometric differences are based on genetic variation or on spectral features which depend on environmental or temporal features. The aim of this study was to analyze the influence of the geographic location, environmental factors and the season of the year on the MALDI-TOF mass spectra of Ixodes (I.) ricinus nymphs and if spectral variation would allow to draw conclusions with respect to the tick’s provenience or conditions that influence the tick life cycle. Application of multivariate statistical models on spectra of ticks collected in different seasons and different habitats and locations within Germany showed that the impact of the location seemed to be small while season and habitat seemed to have stronger impact on the MALDI-TOF mass spectra. Possibilities and limitations of MALDI-TOF mass spectra to draw conclusions on the tick life cycle are discussed.
Collapse
Affiliation(s)
- Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Barbara Bettin
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Joern M. Gethmann
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Christine Klaus
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
- * E-mail:
| |
Collapse
|
31
|
Vega-Rúa A, Pagès N, Fontaine A, Nuccio C, Hery L, Goindin D, Gustave J, Almeras L. Improvement of mosquito identification by MALDI-TOF MS biotyping using protein signatures from two body parts. Parasit Vectors 2018; 11:574. [PMID: 30390691 PMCID: PMC6215610 DOI: 10.1186/s13071-018-3157-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/17/2018] [Indexed: 11/22/2022] Open
Abstract
Background Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry technology (MALDI-TOF MS) is an innovative tool that has been shown to be effective for the identification of numerous arthropod groups including mosquitoes. A critical step in the implementation of MALDI-TOF MS identification is the creation of spectra databases (DB) for the species of interest. Mosquito legs were the body part most frequently used to create identification DB. However, legs are one of the most fragile mosquito compartments, which can put identification at risk. Here, we assessed whether mosquito thoraxes could also be used as a relevant body part for mosquito species identification using a MALDI-TOF MS biotyping strategy; we propose a double DB query strategy to reinforce identification success. Methods Thoraxes and legs from 91 mosquito specimens belonging to seven mosquito species collected in six localities from Guadeloupe, and two laboratory strains, Aedes aegypti BORA and Aedes albopictus Marseille, were dissected and analyzed by MALDI-TOF MS. Molecular identification using cox1 gene sequencing was also conducted on representative specimens to confirm their identification. Results MS profiles obtained with both thoraxes and legs were highly compartment-specific, species-specific and species-reproducible, allowing high identification scores (log-score values, LSVs) when queried against the in-house MS reference spectra DB (thorax LSVs range: 2.260–2.783, leg LSVs range: 2.132–2.753). Conclusions Both thoraxes and legs could be used for a double DB query in order to reinforce the success and accuracy of MALDI-TOF MS identification. Electronic supplementary material The online version of this article (10.1186/s13071-018-3157-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anubis Vega-Rúa
- Laboratory of Vector Control Research, Environment and Health Unit, Institut Pasteur de la Guadeloupe, 97183, Les Abymes, Guadeloupe, France.
| | - Nonito Pagès
- CIRAD, UMR ASTRE, F-97170, Petit Bourg, Guadeloupe, France.,ASTRE, CIRAD, INRA, University of Montpellier, Montpellier, France
| | - Albin Fontaine
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), IHU - Méditerranée Infection, 19-21 bd Jean Moulin, 13385, Marseille, cedex 5, France
| | - Christopher Nuccio
- Aix Marseille Université, INSERM, SSA, IRBA, MCT, 13005, Marseille, France
| | - Lyza Hery
- Laboratory of Vector Control Research, Environment and Health Unit, Institut Pasteur de la Guadeloupe, 97183, Les Abymes, Guadeloupe, France
| | - Daniella Goindin
- Laboratory of Vector Control Research, Environment and Health Unit, Institut Pasteur de la Guadeloupe, 97183, Les Abymes, Guadeloupe, France
| | - Joel Gustave
- Vector Control Service of Guadeloupe, Regional Health Agency, Airport Zone South Raizet, 97139, Les Abymes, Guadeloupe, France
| | - Lionel Almeras
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), IHU - Méditerranée Infection, 19-21 bd Jean Moulin, 13385, Marseille, cedex 5, France
| |
Collapse
|
32
|
Chabriere E, Bassène H, Drancourt M, Sokhna C. MALDI-TOF MS and point of care are disruptive diagnostic tools in Africa. New Microbes New Infect 2018; 26:S83-S88. [PMID: 30402248 PMCID: PMC6205576 DOI: 10.1016/j.nmni.2018.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
We review reviewing our experience of point-of-care and mass spectrometry in Senegal as two disruptive technologies promoting the rapid diagnosis of infection, permitting better medical management of patients.
Collapse
Affiliation(s)
- E. Chabriere
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - H. Bassène
- Aix Marseille Université, IRD, APHM, VITROME, IHU-Méditerranée Infection, Marseille, France
- VITROME, Campus International IRD-UCAD de Hann, Dakar, Senegal
| | - M. Drancourt
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - C. Sokhna
- Aix Marseille Université, IRD, APHM, VITROME, IHU-Méditerranée Infection, Marseille, France
- VITROME, Campus International IRD-UCAD de Hann, Dakar, Senegal
| |
Collapse
|
33
|
Abstract
Australian mosquito species significantly impact human health through nuisance biting and the transmission of endemic and exotic pathogens. Surveillance programmes designed to provide an early warning of mosquito-borne disease risk require reliable identification of mosquitoes. This study aimed to investigate the viability of Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) as a rapid and inexpensive approach to the identification of Australian mosquitoes and was validated using a three-step taxonomic approach. A total of 300 mosquitoes representing 21 species were collected from south-eastern New South Wales and morphologically identified. The legs from the mosquitoes were removed and subjected to MALDI-TOF MS analysis. Fifty-eight mosquitoes were sequenced at the cytochrome c oxidase subunit I (cox1) gene region and genetic relationships were analysed. We create the first MALDI-TOF MS spectra database of Australian mosquito species including 19 species. We clearly demonstrate the accuracy of MALDI-TOF MS for identification of Australian mosquitoes. It is especially useful for assessing gaps in the effectiveness of DNA barcoding by differentiating closely related taxa. Indeed, cox1 DNA barcoding was not able to differentiate members of the Culex pipiens group, Cx. quinquefasciatus and Cx. pipiens molestus, but these specimens were correctly identified using MALDI-TOF MS.
Collapse
|
34
|
Niare S, Tandina F, Davoust B, Doumbo O, Raoult D, Parola P, Almeras L. Accurate identification of Anopheles gambiae Giles trophic preferences by MALDI-TOF MS. INFECTION GENETICS AND EVOLUTION 2018; 63:410-419. [DOI: 10.1016/j.meegid.2017.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 01/25/2023]
|
35
|
Tandina F, Doumbo O, Yaro AS, Traoré SF, Parola P, Robert V. Mosquitoes (Diptera: Culicidae) and mosquito-borne diseases in Mali, West Africa. Parasit Vectors 2018; 11:467. [PMID: 30103823 PMCID: PMC6090629 DOI: 10.1186/s13071-018-3045-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 08/01/2018] [Indexed: 11/16/2022] Open
Abstract
Mosquito-borne diseases cause major human diseases in almost every part of the world. In West Africa, and notably in Mali, vector control measures help reduce the impact of mosquito-borne diseases, although malaria remains a threat to both morbidity and mortality. The most recent overview article on mosquitoes in Mali was published in 1961, with a total of 88 species. Our present review focuses on mosquitoes of medical importance among which the Anopheles vectors of Plasmodium and filaria, as well as the Culex and Aedes vectors of arboviruses. It aims to provide a concise update of the literature on Culicidae, covering the ecological areas in which the species are found but also the transmitted pathogens and recent innovative tools for vector surveys. This review highlights the recent introduction of invasive mosquito species, including Aedes albopictus and Culex neavei. The comprehensive list of mosquito species currently recorded includes 106 species (28 species of the Anophelinae and 78 species of the Culicinae). There are probable gaps in our knowledge concerning mosquitoes of the subfamily Culicinae and northern half of Mali because most studies have been carried out on the genus Anopheles and have taken place in the southern part of the country. It is hoped that this review may be useful to decision makers responsible for vector control strategies and to researchers for future surveys on mosquitoes, particularly the vectors of emerging arboviruses.
Collapse
Affiliation(s)
- Fatalmoudou Tandina
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, Faculty of Sciences and Techniques, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ogobara Doumbo
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, Faculty of Sciences and Techniques, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Alpha Seydou Yaro
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, Faculty of Sciences and Techniques, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Sékou F. Traoré
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, Faculty of Sciences and Techniques, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Vincent Robert
- MIVEGEC Unit, IRD-CNRS-Univ. Montpellier, Montpellier, France
| |
Collapse
|
36
|
Malaria, tuberculosis and HIV: what's new? Contribution of the Institut Hospitalo-Universitaire Méditerranée Infection in updated data. New Microbes New Infect 2018; 26:S23-S30. [PMID: 30402240 PMCID: PMC6205578 DOI: 10.1016/j.nmni.2018.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 11/22/2022] Open
Abstract
The Institut Hospitalo-Universitaire Méditerranée Infection is positioned for the diagnosis, prevention and treatment of the ‘big three’ killer diseases: malaria, tuberculosis and HIV. We implemented the use of new diagnostic samples such as stools and new diagnostic tests such as mass spectrometry for the dual identification of vectors and pathogens. Furthermore, advances in the prevention and treatment of malaria and tuberculosis are reviewed, along with advances in the understanding of the role of microbiota in the resistance to HIV infection. These achievements represent a major step towards a better management of the ‘big three’ diseases worldwide.
Collapse
|
37
|
Boucheikhchoukh M, Laroche M, Aouadi A, Dib L, Benakhla A, Raoult D, Parola P. MALDI-TOF MS identification of ticks of domestic and wild animals in Algeria and molecular detection of associated microorganisms. Comp Immunol Microbiol Infect Dis 2018; 57:39-49. [PMID: 30017077 DOI: 10.1016/j.cimid.2018.05.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/04/2018] [Accepted: 05/09/2018] [Indexed: 11/26/2022]
Abstract
Recent studies have reported the reliability of MALDI-TOF MS for arthropod identification, including fresh or alcohol-preserved ticks based on leg-derived mass spectra. The aim of this study was to evaluate the performance of MALDI-TOF MS for the identification of alcohol-preserved Algerian ticks collected from different domestic and wild hosts. Secondly, we conducted a molecular survey to detect the presence of bacterial DNA in all ticks that were previously subjected to MALDI-TOF MS. A total of 2635 ixodid and 1401 argasid ticks belonging to 9 distinct species were collected in nine different regions of northeastern Algeria. The legs of 230 specimens were subjected to MALDI-TOF MS assays. Spectral analysis revealed intra-species similarity and inter-species specificity for the MS spectra, which was consistent with the morphological identification. Blind tests against the in-lab database revealed that 93.48% of the tested specimens were correctly identified. The accuracy of the morphological and MALDI-TOF MS identifications was validated by sequencing the 12S ribosomal RNA gene (rRNA) for 33 specimens and all the ticks were correctly identified. The quantitative PCR screening showed that for 219 tested ticks, 15 were positive for Rickettsia spp., 8 for Borrelia spp. and 17 for Anaplasmataceae. The PCR tests were negative for Coxiella burnetii and Bartonella spp. This study supports MALDI-TOF MS being a reliable tool for the identification of arthropods and brings new data that sheds light on tick species diversity and tick-borne diseases in Algeria.
Collapse
Affiliation(s)
- Mehdi Boucheikhchoukh
- Université Chadli Bendjdid, Département des Sciences Vétérinaires, El Tarf, 36000, Algeria.
| | - Maureen Laroche
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France.
| | - Atef Aouadi
- Université Chadli Bendjdid, Département des Sciences Vétérinaires, El Tarf, 36000, Algeria; Université Cherif Messaadia, Département des Sciences Vétérinaires, Souk Ahras, 41000, Algeria.
| | - Loubna Dib
- Université Chadli Bendjdid, Département des Sciences Vétérinaires, El Tarf, 36000, Algeria.
| | - Ahmed Benakhla
- Université Chadli Bendjdid, Département des Sciences Vétérinaires, El Tarf, 36000, Algeria.
| | - Didier Raoult
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France.
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
38
|
Mewara A, Sharma M, Kaura T, Zaman K, Yadav R, Sehgal R. Rapid identification of medically important mosquitoes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Parasit Vectors 2018; 11:281. [PMID: 29720246 PMCID: PMC5932809 DOI: 10.1186/s13071-018-2854-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/17/2018] [Indexed: 11/30/2022] Open
Abstract
Background Accurate and rapid identification of dipteran vectors is integral for entomological surveys and is a vital component of control programs for mosquito-borne diseases. Conventionally, morphological features are used for mosquito identification, which suffer from biological and geographical variations and lack of standardization. We used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for protein profiling of mosquito species from North India with the aim of creating a MALDI-TOF MS database and evaluating it. Methods Mosquito larvae were collected from different rural and urban areas and reared to adult stages. The adult mosquitoes of four medically important genera, Anopheles, Aedes, Culex and Armigerus, were morphologically identified to the species level and confirmed by ITS2-specific PCR sequencing. The cephalothoraces of the adult specimens were subjected to MALDI-TOF analysis and the signature peak spectra were selected for creation of database, which was then evaluated to identify 60 blinded mosquito specimens. Results Reproducible MALDI-TOF MS spectra spanning over 2–14 kDa m/z range were produced for nine mosquito species: Anopheles (An. stephensi, An. culicifacies and An. annularis); Aedes (Ae. aegypti and Ae. albopictus); Culex (Cx. quinquefasciatus, Cx. vishnui and Cx. tritaenorhynchus); and Armigerus (Ar. subalbatus). Genus- and species-specific peaks were identified to create the database and a score of > 1.8 was used to denote reliable identification. The average numbers of peaks obtained were 55–60 for Anopheles, 80–100 for Aedes, 30–60 for Culex and 45–50 peaks for Armigeres species. Of the 60 coded samples, 58 (96.67%) were correctly identified by MALDI-TOF MS with a score > 1.8, while there were two unreliable identifications (both Cx. quinquefasciatus with scores < 1.8). Conclusions MALDI-TOF MS appears to be a pragmatic technique for accurate and rapid identification of mosquito species. The database needs to be expanded to include species from different geographical regions and also different life-cycle stages to fully harness the technique for entomological surveillance programs. Electronic supplementary material The online version of this article (10.1186/s13071-018-2854-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abhishek Mewara
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India.
| | - Megha Sharma
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Taruna Kaura
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Kamran Zaman
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Rakesh Yadav
- Medical Microbiology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| |
Collapse
|
39
|
El Hamzaoui B, Laroche M, Almeras L, Bérenger JM, Raoult D, Parola P. Detection of Bartonella spp. in fleas by MALDI-TOF MS. PLoS Negl Trop Dis 2018; 12:e0006189. [PMID: 29451890 PMCID: PMC5833284 DOI: 10.1371/journal.pntd.0006189] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/01/2018] [Accepted: 12/22/2017] [Indexed: 12/14/2022] Open
Abstract
Background Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has recently emerged in the field of entomology as a promising method for the identification of arthropods and the detection of associated pathogens. Methodology/Principal findings An experimental model of Ctenocephalides felis (cat fleas) infected with Bartonella quintana and Bartonella henselae was developed to evaluate the efficacy of MALDI-TOF MS in distinguishing infected from uninfected fleas, and its ability to distinguish fleas infected with Bartonella quintana from fleas infected with Bartonella henselae. For B. quintana, two groups of fleas received three successive blood meals, infected or not. A total of 140 fleas (100 exposed fleas and 40 control fleas) were engorged on human blood, infected or uninfected with B. quintana. Regarding the second pathogen, two groups of fleas (200 exposed fleas and 40 control fleas) were fed in the same manner with human blood, infected or not with Bartonella henselae. Fleas were dissected longitudinally; one-half was used for assessment of B. quintana and B. henselae infectious status by real-time PCR, and the second half was subjected to MALDI-TOF MS analysis. Comparison of MS spectra from infected fleas and uninfected fleas revealed distinct MS profiles. Blind queries against our MALDI-TOF MS arthropod database, upgraded with reference spectra from B. quintana and B. henselae infected fleas but also non-infected fleas, provided the correct classification for 100% of the different categories of specimens tested on the first model of flea infection with Bartonella quintana. As for Bartonella henselae, 81% of exposed qPCR-positive fleas, 96% of exposed qPCR-negative fleas and 100% of control fleas were correctly identified on the second model of flea infection. MALDI-TOF MS successfully differentiated Bartonella spp.-infected and uninfected fleas and was also able to correctly differentiate fleas infected with Bartonella quintana and fleas infected with Bartonella henselae. MALDI-TOF MS correctly identified flea species as well as their infectious status, consistent with the results of real-time PCR. Conclusions/Significance MALDI-TOF is a promising tool for identification of the infection status of fleas infected with Bartonella spp., which allows new possibilities for fast and accurate diagnosis in medical entomology and vector surveillance. Fleas are known vectors of human infectious diseases. Identification of fleas and their associated pathogens is essential for the prevention of flea-borne diseases. Currently, the morphological identification of arthropods based on dichotomous keys, as well as molecular techniques, are the most common approaches for arthropod identification and entomological surveillance. In recent years, MALDI-TOF MS has revolutionized clinical microbiology in enabling the rapid identification of bacteria and fungi by comparing the protein profiles obtained to a database. This proteomic approach has recently been used for arthropod identification and pathogen detection. Here, we developed an experimental model to test MALDI-TOF's ability to differentiate fleas infected with human pathogens, Bartonella quintana and Bartonella henselae, from uninfected fleas.
Collapse
Affiliation(s)
- Basma El Hamzaoui
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection. 19–21 Boulevard Jean Moulin, Marseille, France
| | - Maureen Laroche
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection. 19–21 Boulevard Jean Moulin, Marseille, France
| | - Lionel Almeras
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection. 19–21 Boulevard Jean Moulin, Marseille, France
- Unité de Parasitologie et entomologie, Département des maladies infectieuses, Institut de Recherche Biomédicale des Armées, IHU Méditerranée Infection, Marseille, France
| | - Jean-Michel Bérenger
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection. 19–21 Boulevard Jean Moulin, Marseille, France
| | - Didier Raoult
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection. 19–21 Boulevard Jean Moulin, Marseille, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection. 19–21 Boulevard Jean Moulin, Marseille, France
- * E-mail:
| |
Collapse
|
40
|
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been recently described as an innovative and effective tool for identifying arthropods and mosquito blood meal sources. To test this approach in the context of an entomological survey in the field, mosquitoes were collected from five ecologically distinct areas of Mali. We successfully analysed the blood meals from 651 mosquito abdomens crushed on Whatman filter paper (WFPs) in the field using MALDI-TOF MS. The legs of 826 mosquitoes were then submitted for MALDI-TOF MS analysis in order to identify the different mosquito species. Eight mosquito species were identified, including Anopheles gambiae Giles, Anopheles coluzzii, Anopheles arabiensis, Culex quinquefasciatus, Culex neavei, Culex perexiguus, Aedes aegypti and Aedes fowleri in Mali. The field mosquitoes for which MALDI-TOF MS did not provide successful identification were not previously available in our database. These specimens were subsequently molecularly identified. The WFP blood meal sources found in this study were matched against human blood (n = 619), chicken blood (n = 9), cow blood (n = 9), donkey blood (n = 6), dog blood (n = 5) and sheep blood (n = 3). This study reinforces the fact that MALDI-TOF MS is a promising tool for entomological surveys.
Collapse
|
41
|
Halada P, Hlavackova K, Dvorak V, Volf P. Identification of immature stages of phlebotomine sand flies using MALDI-TOF MS and mapping of mass spectra during sand fly life cycle. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 93:47-56. [PMID: 29248738 DOI: 10.1016/j.ibmb.2017.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
The aim of the study was to evaluate the potential of matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) for the species identification of sand flies at different developmental stages and map changes in their protein profiles during the course of whole life cycle. Specimens of six different species from laboratory colonies at larval and pupal stages were examined using MALDI-TOF MS. The protein profiles of larvae were stable from the L2 to L4 developmental stages and clearly distinguishable at the species level. In a validation study, 123 larvae of the six species were queried against reference database resulting in 93% correct species identification (log score values higher than 2.0). The spectra generated from sand fly pupae allow species identification as well and surprisingly, in contrast to biting midges and mosquitoes, they did not change during this developmental stage. For adults, thorax was revealed as the optimal body part for sample preparation yielding reproducible spectra regardless age and diet. Only variations were uncovered for freshly engorged females profiles of which were affected by blood signals first two days post bloodmeal. The findings demonstrate that in addition to adult species differentiation MALDI-TOF MS may also serve as a rapid and effective tool for species identification of juvenile stages of phlebotomine sand flies.
Collapse
Affiliation(s)
- Petr Halada
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Kristyna Hlavackova
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 43, Czech Republic.
| | - Vit Dvorak
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 43, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 43, Czech Republic
| |
Collapse
|
42
|
Nebbak A, El Hamzaoui B, Berenger JM, Bitam I, Raoult D, Almeras L, Parola P. Comparative analysis of storage conditions and homogenization methods for tick and flea species for identification by MALDI-TOF MS. MEDICAL AND VETERINARY ENTOMOLOGY 2017; 31:438-448. [PMID: 28722283 DOI: 10.1111/mve.12250] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/21/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
Ticks and fleas are vectors for numerous human and animal pathogens. Controlling them, which is important in combating such diseases, requires accurate identification, to distinguish between vector and non-vector species. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was applied to the rapid identification of arthropods. The growth of this promising tool, however, requires guidelines to be established. To this end, standardization protocols were applied to species of Rhipicephalus sanguineus (Ixodida: Ixodidae) Latreille and Ctenocephalides felis felis (Siphonaptera: Pulicidae) Bouché, including the automation of sample homogenization using two homogenizer devices, and varied sample preservation modes for a period of 1-6 months. The MS spectra were then compared with those obtained from manual pestle grinding, the standard homogenization method. Both automated methods generated intense, reproducible MS spectra from fresh specimens. Frozen storage methods appeared to represent the best preservation mode, for up to 6 months, while storage in ethanol is also possible, with some caveats for tick specimens. Carnoy's buffer, however, was shown to be less compatible with MS analysis for the purpose of identifying ticks or fleas. These standard protocols for MALDI-TOF MS arthropod identification should be complemented by additional MS spectrum quality controls, to generalize their use in monitoring arthropods of medical interest.
Collapse
Affiliation(s)
- A Nebbak
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Laboratoire de Biodiversité et Environnement: Interactions génomes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab Ezzouar, Algeria
| | - B El Hamzaoui
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - J-M Berenger
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - I Bitam
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Laboratoire de Biodiversité et Environnement: Interactions génomes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab Ezzouar, Algeria
| | - D Raoult
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - L Almeras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - P Parola
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
43
|
Nebbak A, Willcox AC, Bitam I, Raoult D, Parola P, Almeras L. Standardization of sample homogenization for mosquito identification using an innovative proteomic tool based on protein profiling. Proteomics 2017; 16:3148-3160. [PMID: 27862981 DOI: 10.1002/pmic.201600287] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/19/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022]
Abstract
The rapid spread of vector-borne diseases demands the development of an innovative strategy for arthropod monitoring. The emergence of MALDI-TOF MS as a rapid, low-cost, and accurate tool for arthropod identification is revolutionizing medical entomology. However, as MS spectra from an arthropod can vary according to the body part selected, the sample homogenization method used and the mode and duration of sample storage, standardization of protocols is indispensable prior to the creation and sharing of an MS reference spectra database. In the present study, manual grinding of Anopheles gambiae Giles and Aedes albopictus mosquitoes at the adult and larval (L3) developmental stages was compared to automated homogenization. Settings for each homogenizer were optimized, and glass powder was found to be the best sample disruptor based on its ability to create reproducible and intense MS spectra. In addition, the suitability of common arthropod storage conditions for further MALDI-TOF MS analysis was kinetically evaluated. The conditions that best preserved samples for accurate species identification by MALDI-TOF MS were freezing at -20°C or in liquid nitrogen for up to 6 months. The optimized conditions were objectified based on the reproducibility and stability of species-specific MS profiles. The automation and standardization of mosquito sample preparation methods for MALDI-TOF MS analyses will popularize the use of this innovative tool for the rapid identification of arthropods with medical interest.
Collapse
Affiliation(s)
- Amira Nebbak
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France.,Laboratoire de Biodiversité et Environnement : Interactions génomes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab Ezzouar, Algiers, Algeria
| | - Alexandra C Willcox
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France.,Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Idir Bitam
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France.,Laboratoire de Biodiversité et Environnement : Interactions génomes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab Ezzouar, Algiers, Algeria
| | - Didier Raoult
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
| | - Philippe Parola
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
| | - Lionel Almeras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France.,Unité Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| |
Collapse
|
44
|
Boyer PH, Boulanger N, Nebbak A, Collin E, Jaulhac B, Almeras L. Assessment of MALDI-TOF MS biotyping for Borrelia burgdorferi sl detection in Ixodes ricinus. PLoS One 2017; 12:e0185430. [PMID: 28950023 PMCID: PMC5614582 DOI: 10.1371/journal.pone.0185430] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 09/12/2017] [Indexed: 12/27/2022] Open
Abstract
Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has been demonstrated to be useful for tick identification at the species level. More recently, this tool has been successfully applied for the detection of bacterial pathogens directly in tick vectors. The present work has assessed the detection of Borrelia burgdorferi sensu lato in Ixodes ricinus tick vector by MALDI-TOF MS. To this aim, experimental infection model of I. ricinus ticks by B. afzelii was carried out and specimens collected in the field were also included in the study. Borrelia infectious status of I. ricinus ticks was molecularly controlled using half-idiosome to classify specimens. Among the 39 ticks engorged on infected mice, 14 were confirmed to be infected by B. afzelii. For field collection, 14.8% (n = 12/81) I. ricinus ticks were validated molecularly as infected by B. burgdorferi sl. To determine the body part allowing the detection of MS protein profile changes between non-infected and B. afzelii infected specimens, ticks were dissected in three compartments (i.e. 4 legs, capitulum and half-idiosome) prior to MS analysis. Highly reproducible MS spectra were obtained for I. ricinus ticks according to the compartment tested and their infectious status. However, no MS profile change was found when paired body part comparison between non-infected and B. afzelii infected specimens was made. Statistical analyses did not succeed to discover, per body part, specific MS peaks distinguishing Borrelia-infected from non-infected ticks whatever their origins, laboratory reared or field collected. Despite the unsuccessful of MALDI-TOF MS to classify tick specimens according to their B. afzelii infectious status, this proteomic tool remains a promising method for rapid, economic and accurate identification of tick species. Moreover, the singularity of MS spectra between legs and half-idiosome of I. ricinus could be used to reinforce this proteomic identification by submission of both these compartments to MS.
Collapse
Affiliation(s)
- Pierre H. Boyer
- Early Bacterial Virulence: Lyme borreliosis Group, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBP EA 7290, Strasbourg, France
| | - Nathalie Boulanger
- Early Bacterial Virulence: Lyme borreliosis Group, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBP EA 7290, Strasbourg, France
- French National Reference Center for Borrelia, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- * E-mail:
| | - Amira Nebbak
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection 19–21 Boulevard Jean Moulin, Marseille, France
- Laboratoire de Biodiversité et Environnement: Interactions génomes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab Ezzouar, Algiers, Algeria
| | - Elodie Collin
- Early Bacterial Virulence: Lyme borreliosis Group, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBP EA 7290, Strasbourg, France
| | - Benoit Jaulhac
- Early Bacterial Virulence: Lyme borreliosis Group, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBP EA 7290, Strasbourg, France
- French National Reference Center for Borrelia, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Lionel Almeras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection 19–21 Boulevard Jean Moulin, Marseille, France
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| |
Collapse
|
45
|
Raharimalala FN, Andrianinarivomanana TM, Rakotondrasoa A, Collard JM, Boyer S. Usefulness and accuracy of MALDI-TOF mass spectrometry as a supplementary tool to identify mosquito vector species and to invest in development of international database. MEDICAL AND VETERINARY ENTOMOLOGY 2017; 31:289-298. [PMID: 28426182 DOI: 10.1111/mve.12230] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/12/2016] [Accepted: 02/02/2017] [Indexed: 06/07/2023]
Abstract
Arthropod-borne diseases are important causes of morbidity and mortality. The identification of vector species relies mainly on morphological features and/or molecular biology tools. The first method requires specific technical skills and may result in misidentifications, and the second method is time-consuming and expensive. The aim of the present study is to assess the usefulness and accuracy of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as a supplementary tool with which to identify mosquito vector species and to invest in the creation of an international database. A total of 89 specimens belonging to 10 mosquito species were selected for the extraction of proteins from legs and for the establishment of a reference database. A blind test with 123 mosquitoes was performed to validate the MS method. Results showed that: (a) the spectra obtained in the study with a given species differed from the spectra of the same species collected in another country, which highlights the need for an international database; (b) MALDI-TOF MS is an accurate method for the rapid identification of mosquito species that are referenced in a database; (c) MALDI-TOF MS allows the separation of groups or complex species, and (d) laboratory specimens undergo a loss of proteins compared with those isolated in the field. In conclusion, MALDI-TOF MS is a useful supplementary tool for mosquito identification and can help inform vector control.
Collapse
Affiliation(s)
- F N Raharimalala
- Unit of Medical Entomology, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | | | - A Rakotondrasoa
- Unit of Experimental Bacteriology, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - J M Collard
- Unit of Experimental Bacteriology, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - S Boyer
- Unit of Medical Entomology, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| |
Collapse
|
46
|
MALDI-TOF MS protein profiling for the rapid identification of Chagas disease triatomine vectors and application to the triatomine fauna of French Guiana. Parasitology 2017; 145:665-675. [PMID: 28768559 DOI: 10.1017/s0031182017001342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Triatomines are haematophagous insects involved in the transmission of Trypanosoma cruzi, the aetiological agent of Chagas disease. The vector competence of these arthropods can be highly variable, depending on the species. A precise identification is therefore crucial for the epidemiological surveillance of T. cruzi and the determination of at-risk human populations. To circumvent the difficulties of morphological identification and the lack of comprehensiveness of the GenBank database, we hereby propose an alternative method for triatomine identification. The femurs of the median legs of triatomines from eight different species from French Guiana were subjected to matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) analysis. Method evaluation was performed on fresh specimens and was applied to dry specimens collected between 1991 and 2003. Femur-derived protein extracts provided reproducible spectra within the same species along with significant interspecies heterogeneity. Validation of the study by blind test analysis provided 100% correct identification of the specimens in terms of the species, sex and developmental stage. MALDI-TOF mass spectrometry appears to be a powerful tool for triatomine identification, which is a major step forward in the fight against Chagas disease.
Collapse
|
47
|
Abstract
In recent years, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as an efficient tool for arthropod identification. Its application for field monitoring of adult mosquitoes was demonstrated, but identification of larvae has been limited to laboratory-reared specimens. Study aim was to test the success of MALDI-TOF MS in correctly identifying mosquito larvae collected in the field. Collections were performed at 13 breeding sites in urban areas of Marseille, a city in the South of France. A total of 559 larvae were collected. Of these, 73 were accurately morphologically identified, with confirmation either by molecular identification (n = 31) or analysis with MALDI-TOF MS (n = 31) and 11 were tested using both methods. The larvae identified belonged to six species including Culiseta longiareolata, Culex pipiens pipiens, Culex hortensis, Aedes albopictus, Ochlerotatus caspius and Anopheles maculipennis. A high intra-species reproducibility and inter-species specificity of whole larva MS spectra was obtained and was independent of breeding site. More than 92% of the remaining 486 larvae were identified in blind tests against the MS spectra database. Identification rates were lower for early and pupal stages, which is attributed to lower protein abundance and metamorphosis, respectively. The suitability of MALDI-TOF MS for mosquito larvae identification from the field has been confirmed.
Collapse
|
48
|
Diarra AZ, Almeras L, Laroche M, Berenger JM, Koné AK, Bocoum Z, Dabo A, Doumbo O, Raoult D, Parola P. Molecular and MALDI-TOF identification of ticks and tick-associated bacteria in Mali. PLoS Negl Trop Dis 2017; 11:e0005762. [PMID: 28742123 PMCID: PMC5542699 DOI: 10.1371/journal.pntd.0005762] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/03/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022] Open
Abstract
Ticks are considered the second vector of human and animal diseases after mosquitoes. Therefore, identification of ticks and associated pathogens is an important step in the management of these vectors. In recent years, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been reported as a promising method for the identification of arthropods including ticks. The objective of this study was to improve the conditions for the preparation of tick samples for their identification by MALDI-TOF MS from field-collected ethanol-stored Malian samples and to evaluate the capacity of this technology to distinguish infected and uninfected ticks. A total of 1,333 ticks were collected from mammals in three distinct sites from Mali. Morphological identification allowed classification of ticks into 6 species including Amblyomma variegatum, Hyalomma truncatum, Hyalomma marginatum rufipes, Rhipicephalus (Boophilus) microplus, Rhipicephalus evertsi evertsi and Rhipicephalus sanguineus sl. Among those, 471 ticks were randomly selected for molecular and proteomic analyses. Tick legs submitted to MALDI-TOF MS revealed a concordant morpho/molecular identification of 99.6%. The inclusion in our MALDI-TOF MS arthropod database of MS reference spectra from ethanol-preserved tick leg specimens was required to obtain reliable identification. When tested by molecular tools, 76.6%, 37.6%, 20.8% and 1.1% of the specimens tested were positive for Rickettsia spp., Coxiella burnetii, Anaplasmataceae and Borrelia spp., respectively. These results support the fact that MALDI-TOF is a reliable tool for the identification of ticks conserved in alcohol and enhances knowledge about the diversity of tick species and pathogens transmitted by ticks circulating in Mali.
Collapse
Affiliation(s)
- Adama Zan Diarra
- Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Marseille, France
- Malaria Research and Training Center, Département d’Epidémiologie des Affections Parasitaires, Faculté de Médecine et d’Odontostomatologie, Faculté de Pharmacie, USTTB, Bamako, Mali
| | - Lionel Almeras
- Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Marseille, France
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Maureen Laroche
- Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Marseille, France
| | - Jean-Michel Berenger
- Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Marseille, France
| | - Abdoulaye K. Koné
- Malaria Research and Training Center, Département d’Epidémiologie des Affections Parasitaires, Faculté de Médecine et d’Odontostomatologie, Faculté de Pharmacie, USTTB, Bamako, Mali
| | | | - Abdoulaye Dabo
- Malaria Research and Training Center, Département d’Epidémiologie des Affections Parasitaires, Faculté de Médecine et d’Odontostomatologie, Faculté de Pharmacie, USTTB, Bamako, Mali
| | - Ogobara Doumbo
- Malaria Research and Training Center, Département d’Epidémiologie des Affections Parasitaires, Faculté de Médecine et d’Odontostomatologie, Faculté de Pharmacie, USTTB, Bamako, Mali
| | - Didier Raoult
- Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Marseille, France
| | - Philippe Parola
- Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Marseille, France
- * E-mail:
| |
Collapse
|
49
|
Estrada-Peña A, D’Amico G, Palomar A, Dupraz M, Fonville M, Heylen D, Habela M, Hornok S, Lempereur L, Madder M, Núncio M, Otranto D, Pfaffle M, Plantard O, Santos-Silva M, Sprong H, Vatansever Z, Vial L, Mihalca A. A comparative test of ixodid tick identification by a network of European researchers. Ticks Tick Borne Dis 2017; 8:540-546. [DOI: 10.1016/j.ttbdis.2017.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 10/20/2022]
|
50
|
Murugaiyan J, Roesler U. MALDI-TOF MS Profiling-Advances in Species Identification of Pests, Parasites, and Vectors. Front Cell Infect Microbiol 2017; 7:184. [PMID: 28555175 PMCID: PMC5430024 DOI: 10.3389/fcimb.2017.00184] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/27/2017] [Indexed: 12/20/2022] Open
Abstract
Invertebrate pests and parasites of humans, animals, and plants continue to cause serious diseases and remain as a high treat to agricultural productivity and storage. The rapid and accurate species identification of the pests and parasites are needed for understanding epidemiology, monitoring outbreaks, and designing control measures. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as a rapid, cost effective, and high throughput technique of microbial species identification in modern diagnostic laboratories. The development of soft ionization techniques and the release of commercial pattern matching software platforms has resulted in the exponential growth of applications in higher organisms including parasitology. The present review discusses the proof-of-principle experiments and various methods of MALDI MS profiling in rapid species identification of both laboratory and field isolates of pests, parasites and vectors.
Collapse
Affiliation(s)
- Jayaseelan Murugaiyan
- Institute of Animal Hygiene and Environmental Health, Centre for Infectious Medicine, Freie Universität BerlinBerlin, Germany
| | - Uwe Roesler
- Institute of Animal Hygiene and Environmental Health, Centre for Infectious Medicine, Freie Universität BerlinBerlin, Germany
| |
Collapse
|