1
|
Kandel A, Li L, Wang Y, Tuo W, Xiao Z. Differentiation and Regulation of Bovine Th2 Cells In Vitro. Cells 2024; 13:738. [PMID: 38727273 PMCID: PMC11083891 DOI: 10.3390/cells13090738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Bovine Th2 cells have usually been characterized by IL4 mRNA expression, but it is unclear whether their IL4 protein expression corresponds to transcription. We found that grass-fed healthy beef cattle, which had been regularly exposed to parasites on the grass, had a low frequency of IL4+ Th2 cells during flow cytometry, similar to animals grown in feedlots. To assess the distribution of IL4+ CD4+ T cells across tissues, samples from the blood, spleen, abomasal (draining), and inguinal lymph nodes were examined, which revealed limited IL4 protein detection in the CD4+ T cells across the examined tissues. To determine if bovine CD4+ T cells may develop into Th2 cells, naïve cells were stimulated with anti-bovine CD3 under a Th2 differentiation kit in vitro. The cells produced primarily IFNγ proteins, with only a small fraction (<10%) co-expressing IL4 proteins. Quantitative PCR confirmed elevated IFNγ transcription but no significant change in IL4 transcription. Surprisingly, GATA3, the master regulator of IL4, was highest in naïve CD4+ T cells but was considerably reduced following differentiation. To determine if the differentiated cells were true Th2 cells, an unbiased proteomic assay was carried out. The assay identified 4212 proteins, 422 of which were differently expressed compared to those in naïve cells. Based on these differential proteins, Th2-related upstream components were predicted, including CD3, CD28, IL4, and IL33, demonstrating typical Th2 differentiation. To boost IL4 expression, T cell receptor (TCR) stimulation strength was reduced by lowering anti-CD3 concentrations. Consequently, weak TCR stimulation essentially abolished Th2 expansion and survival. In addition, extra recombinant bovine IL4 (rbIL4) was added during Th2 differentiation, but, despite enhanced expansion, the IL4 level remained unaltered. These findings suggest that, while bovine CD4+ T cells can respond to Th2 differentiation stimuli, the bovine IL4 pathway is not regulated in the same way as in mice and humans. Furthermore, Ostertagia ostertagi (OO) extract, a gastrointestinal nematode in cattle, inhibited signaling via CD3, CD28, IL4, and TLRs/MYD88, indicating that external pathogens can influence bovine Th2 differentiation. In conclusion, though bovine CD4+ T cells can respond to IL4-driven differentiation, IL4 expression is not a defining feature of differentiated bovine Th2 cells.
Collapse
Affiliation(s)
- Anmol Kandel
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| | - Lei Li
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA;
| | - Zhengguo Xiao
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| |
Collapse
|
2
|
Zwanenburg L, Borloo J, Decorte B, Bunte MJM, Mokhtari S, Serna S, Reichardt NC, Seys LJM, van Diepen A, Schots A, Wilbers RHP, Hokke CH, Claerebout E, Geldhof P. Plant-based production of a protective vaccine antigen against the bovine parasitic nematode Ostertagia ostertagi. Sci Rep 2023; 13:20488. [PMID: 37993516 PMCID: PMC10665551 DOI: 10.1038/s41598-023-47480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
The development of effective recombinant vaccines against parasitic nematodes has been challenging and so far mostly unsuccessful. This has also been the case for Ostertagia ostertagi, an economically important abomasal nematode in cattle, applying recombinant versions of the protective native activation-associated secreted proteins (ASP). To gain insight in key elements required to trigger a protective immune response, the protein structure and N-glycosylation of the native ASP and a non-protective Pichia pastoris recombinant ASP were compared. Both antigens had a highly comparable protein structure, but different N-glycan composition. After mimicking the native ASP N-glycosylation via the expression in Nicotiana benthamiana plants, immunisation of calves with these plant-produced recombinants resulted in a significant reduction of 39% in parasite egg output, comparable to the protective efficacy of the native antigen. This study provides a valuable workflow for the development of recombinant vaccines against other parasitic nematodes.
Collapse
Affiliation(s)
- Laurens Zwanenburg
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Jimmy Borloo
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Bregt Decorte
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Myrna J M Bunte
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sanaz Mokhtari
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sonia Serna
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia San Sebastián, Spain
- CIBER-BBN, Paseo Miramón 194, 20014, San Sebastian, Spain
| | - Niels-C Reichardt
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia San Sebastián, Spain
- CIBER-BBN, Paseo Miramón 194, 20014, San Sebastian, Spain
| | - Leen J M Seys
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Arjen Schots
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Ruud H P Wilbers
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Edwin Claerebout
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Peter Geldhof
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| |
Collapse
|
3
|
Unger H, Kangethe RT, Liaqat F, Viljoen GJ. Advances in Irradiated Livestock Vaccine Research and Production Addressing the Unmet Needs for Farmers and Veterinary Services in FAO/IAEA Member States. Front Immunol 2022; 13:853874. [PMID: 35418985 PMCID: PMC8997582 DOI: 10.3389/fimmu.2022.853874] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
The Animal Production and Health section (APH) of the Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture at the International Atomic Energy Agency has over the last 58 years provided technical and scientific support to more than 100 countries through co-ordinated research activities and technical co-operation projects in peaceful uses of nuclear technologies. A key component of this support has been the development of irradiated vaccines targeting diseases that are endemic to participating countries. APH laboratories has over the last decade developed new techniques and has put in place a framework that allows researchers from participating member states to develop relevant vaccines targeting local diseases while using irradiation as a tool for improving livestock resources.
Collapse
Affiliation(s)
- Hermann Unger
- Animal Production and Health Section, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Richard T Kangethe
- Animal Production and Health Section, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Fatima Liaqat
- Animal Production and Health Section, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Gerrit J Viljoen
- Animal Production and Health Section, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria
| |
Collapse
|
4
|
Springer A, von Holtum C, von Samson-Himmelstjerna G, Strube C. Immunization Trials with Recombinant Major Sperm Protein of the Bovine Lungworm Dictyocaulus viviparus. Pathogens 2022; 11:pathogens11010055. [PMID: 35056003 PMCID: PMC8779484 DOI: 10.3390/pathogens11010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 02/01/2023] Open
Abstract
The lungworm Dictyocaulus viviparus is one of the most economically important bovine parasites in temperate climate regions. Following infection, D. viviparus induces a temporary protective immunity, and a vaccine based on attenuated, infective larvae is commercially available. However, due to several disadvantages of the live vaccine, the development of a recombinant subunit vaccine is highly desirable. Therefore, the major sperm protein (MSP), which is essential for the parasite’s reproduction, was tested as a recombinantly Escherichia coli-expressed glutathione-S-transferase (GST)-fused vaccine antigen in immunization trials with two different adjuvants, Quil A and Al(OH)3. Calves (N = 4 per group) were immunized on study day (SD) 0, 21 and 42 and given a challenge infection on SD 63–65. The two control groups received only the respective adjuvant. Based on geometric means (GM), a 53.64% reduction in larvae per female worm was observed in the rMSP Quil A group vs. its control group (arithmetic means (AM): 54.43%), but this difference was not statistically significant. In the rMSP Al(OH)3 group, the mean number of larvae per female worm was even higher than in the respective control group (GM: 9.24%, AM: 14.14%). Furthermore, male and female worm burdens and the absolute number of larvae did not differ significantly, while the Al(OH)3 control group harbored significantly longer worms than the vaccinated group. Vaccinated animals showed a rise in rMSP-specific antibodies, particularly IgG and its subclass IgG1, and the native protein was detected by immunoblots. Although rMSP alone did not lead to significantly reduced worm fecundity, it might still prove useful as part of a multi-component vaccine.
Collapse
|
5
|
Noack S, Harrington J, Carithers DS, Kaminsky R, Selzer PM. Heartworm disease - Overview, intervention, and industry perspective. Int J Parasitol Drugs Drug Resist 2021; 16:65-89. [PMID: 34030109 PMCID: PMC8163879 DOI: 10.1016/j.ijpddr.2021.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Dirofilaria immitis, also known as heartworm, is a major parasitic threat for dogs and cats around the world. Because of its impact on the health and welfare of companion animals, heartworm disease is of huge veterinary and economic importance especially in North America, Europe, Asia and Australia. Within the animal health market many different heartworm preventive products are available, all of which contain active components of the same drug class, the macrocyclic lactones. In addition to compliance issues, such as under-dosing or irregular treatment intervals, the occurrence of drug-resistant heartworms within the populations in the Mississippi River areas adds to the failure of preventive treatments. The objective of this review is to provide an overview of the disease, summarize the current disease control measures and highlight potential new avenues and best practices for treatment and prevention.
Collapse
Affiliation(s)
- Sandra Noack
- Boehringer Ingelheim Animal Health, Binger Str. 173, 55216, Ingelheim am Rhein, Germany
| | - John Harrington
- Boehringer Ingelheim Animal Health, 1730 Olympic Drive, 30601, Athens, GA, USA
| | - Douglas S Carithers
- Boehringer Ingelheim Animal Health, 3239 Satellite Blvd, 30096, Duluth, GA, USA
| | - Ronald Kaminsky
- paraC Consulting, Altenstein 13, 79685, Häg-Ehrsberg, Germany
| | - Paul M Selzer
- Boehringer Ingelheim Animal Health, Binger Str. 173, 55216, Ingelheim am Rhein, Germany.
| |
Collapse
|
6
|
Wu PX, Cui XJ, Cao MX, Lv LH, Dong HM, Xiao SW, Liu JZ, Hu YH. Evaluation on two types of paramyosin vaccines for the control of Haemaphysalis longicornis infestations in rabbits. Parasit Vectors 2021; 14:309. [PMID: 34099029 PMCID: PMC8185926 DOI: 10.1186/s13071-021-04812-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Haemaphysalis longicornis is an obligate hematophagous ectoparasite that transmits a variety of pathogens causing life-threatening diseases in humans and animals. Paramyosin (Pmy) is not only an invertebrate-specific myofibrillar protein but also an important immunomodulatory protein. Therefore, it is one of the ideal candidate antigens for vaccines. METHODS We conducted two vaccine trials to evaluate the protective efficacy of Pmy recombinant protein (rPmy) and peptide vaccine (KLH-LEE). Each rabbit was immunized with three doses of rPmy or KLH-LEE adjuvanted with Freund's complete/incomplete at 500 μg/dose at 2-week intervals before challenge with 40 female H. longicornis/rabbit. PBS plus adjuvant, Trx or KLH was used as control group. The antibodies of rabbits were detected by ELISA. Then, female ticks were fed on the rabbits until detachment. RESULTS ELISA results showed that both vaccines induced rabbits to produce antibodies. Compared with the Trx group, the engorgement weight, oviposition and hatchability of the rPmy group decreased by 8.87%, 26.83% and 38.86%, respectively. On the other hand, engorgement weight, oviposition and hatchability of female ticks in the KLH-LEE group correspondingly resulted in 27.03%, 53.15% and 38.40% reduction compared with that of the KLH group. Considering the cumulative effect of vaccination on the evaluated parameters, results showed 60.37% efficacy of the rPmy vaccine formulation and 70.86% efficacy in the KLH-LEE group. CONCLUSIONS Pmy and particularly epitope LEE have potential for further development of an effective candidate vaccine to protect the host against tick infection. GRAPHIC ABSTARCT.
Collapse
Affiliation(s)
- Pin-Xing Wu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 East Road of 2nd South Ring, Shijiazhuang, 050024, People's Republic of China
| | - Xue-Jiao Cui
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 East Road of 2nd South Ring, Shijiazhuang, 050024, People's Republic of China
| | - Mi-Xue Cao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 East Road of 2nd South Ring, Shijiazhuang, 050024, People's Republic of China
| | - Li-Hong Lv
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 East Road of 2nd South Ring, Shijiazhuang, 050024, People's Republic of China
| | - Hong-Meng Dong
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 East Road of 2nd South Ring, Shijiazhuang, 050024, People's Republic of China
| | - Shu-Wen Xiao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 East Road of 2nd South Ring, Shijiazhuang, 050024, People's Republic of China
| | - Jing-Ze Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 East Road of 2nd South Ring, Shijiazhuang, 050024, People's Republic of China.
| | - Yong-Hong Hu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 East Road of 2nd South Ring, Shijiazhuang, 050024, People's Republic of China.
| |
Collapse
|
7
|
Rooney J, Cortés A, Scotti R, Price DRG, Bartley Y, Fairlie-Clarke K, McNeilly TN, Nisbet AJ, Cantacessi C. Vaccination against the brown stomach worm, Teladorsagia circumcincta, followed by parasite challenge, induces inconsistent modifications in gut microbiota composition of lambs. Parasit Vectors 2021; 14:189. [PMID: 33823914 PMCID: PMC8025363 DOI: 10.1186/s13071-021-04688-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/16/2021] [Indexed: 01/04/2023] Open
Abstract
Background Growing evidence points towards a role of gastrointestinal (GI) helminth parasites of ruminants in modifying the composition of the host gut flora, with likely repercussions on the pathophysiology of worm infection and disease, and on animal growth and productivity. However, a thorough understanding of the mechanisms governing helminth-microbiota interactions and of their impact on host health and welfare relies on reproducibility and replicability of findings. To this aim, in this study, we analysed quantitative and qualitative fluctuations in the faecal microbiota composition of lambs vaccinated against, and experimentally infected with, the parasitic GI nematode Teladorsagia circumcincta over the course of two separate trials performed over two consecutive years. Methods Two trials were conducted under similar experimental conditions in 2017 and 2018, respectively. In each trial, lambs were randomly assigned to one of the following experimental groups: (i) vaccinated/infected, (ii) unvaccinated/infected and (iii) unvaccinated/uninfected. Faecal samples collected from individual animals were subjected to DNA extraction followed by high-throughput sequencing of the V3-V4 region of the bacterial 16S rRNA gene and bioinformatics and biostatistical analyses of sequence data. Results Substantial differences in the populations of bacteria affected by immunisation against and infection by T. circumcincta were detected when comparing data from the two trials. Nevertheless, the abundance of Prevotella spp. was significantly linked to helminth infection in both trials. Conclusions Despite the largely conflicting findings between the two trials, our data revealed that selected gut microbial populations are consistently affected by T. circumcincta infection and/or vaccination. Nevertheless, our study calls for caution when interpreting data generated from in vivo helminth-microbiome interaction studies that may be influenced by several intrinsic and extrinsic host-, parasite- and environment-related factors.![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04688-4.
Collapse
Affiliation(s)
- James Rooney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Alba Cortés
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.,Departament de Farmàcia I Tecnologia Farmacèutica I Parasitologia, Facultat de Farmàcia, Universitat de València, Valencia, Spain
| | - Riccardo Scotti
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Daniel R G Price
- Vaccines and Diagnostics Department, Moredun Research Institute, Edinburgh, UK
| | - Yvonne Bartley
- Vaccines and Diagnostics Department, Moredun Research Institute, Edinburgh, UK
| | | | - Tom N McNeilly
- Disease Control Department, Moredun Research Institute, Edinburgh, UK
| | - Alasdair J Nisbet
- Vaccines and Diagnostics Department, Moredun Research Institute, Edinburgh, UK
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Naz S, Ahmad S, Walton S, Abbasi SW. Multi-epitope based vaccine design against Sarcoptes scabiei paramyosin using immunoinformatics approach. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Claerebout E, Geldhof P. Helminth Vaccines in Ruminants: From Development to Application. Vet Clin North Am Food Anim Pract 2020; 36:159-171. [PMID: 32029181 PMCID: PMC7125739 DOI: 10.1016/j.cvfa.2019.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Edwin Claerebout
- Faculty of Veterinary Medicine, Laboratory of Parasitology, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Peter Geldhof
- Faculty of Veterinary Medicine, Laboratory of Parasitology, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| |
Collapse
|
10
|
Sakthivel D, Swan J, Preston S, Shakif-Azam MD, Faou P, Jiao Y, Downs R, Rajapaksha H, Gasser R, Piedrafita D, Beddoe T. Proteomic identification of galectin-11 and 14 ligands from Haemonchus contortus. PeerJ 2018; 6:e4510. [PMID: 29576976 PMCID: PMC5863708 DOI: 10.7717/peerj.4510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/25/2018] [Indexed: 01/23/2023] Open
Abstract
Haemonchus contortus is the most pathogenic nematode of small ruminants. Infection in sheep and goats results in anaemia that decreases animal productivity and can ultimately cause death. The involvement of ruminant-specific galectin-11 (LGALS-11) and galectin-14 (LGALS-14) has been postulated to play important roles in protective immune responses against parasitic infection; however, their ligands are unknown. In the current study, LGALS-11 and LGALS-14 ligands in H. contortus were identified from larval (L4) and adult parasitic stages extracts using immobilised LGALS-11 and LGALS-14 affinity column chromatography and mass spectrometry. Both LGALS-11 and LGALS-14 bound more putative protein targets in the adult stage of H. contortus (43 proteins) when compared to the larval stage (two proteins). Of the 43 proteins identified in the adult stage, 34 and 35 proteins were bound by LGALS-11 and LGALS-14, respectively, with 26 proteins binding to both galectins. Interestingly, hematophagous stage-specific sperm-coating protein and zinc metalloprotease (M13), which are known vaccine candidates, were identified as putative ligands of both LGALS-11 and LGALS-14. The identification of glycoproteins of H. contortus by LGALS-11 and LGALS-14 provide new insights into host-parasite interactions and the potential for developing new interventions.
Collapse
Affiliation(s)
- Dhanasekaran Sakthivel
- Department of Animal, Plant and Soil Science and Centre for AgriBioscience (AgriBio), La Trobe University, Bundoora, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.,School of Applied and Biomedical Sciences, Federation University, Churchill, Australia
| | - Jaclyn Swan
- Department of Animal, Plant and Soil Science and Centre for AgriBioscience (AgriBio), La Trobe University, Bundoora, Victoria, Australia
| | - Sarah Preston
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Australia.,Faculty of Science and Technology, Federation University, Ballarat, Australia
| | - M D Shakif-Azam
- School of Applied and Biomedical Sciences, Federation University, Churchill, Australia
| | - Pierre Faou
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Yaqing Jiao
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Australia
| | - Rachael Downs
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Harinda Rajapaksha
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Robin Gasser
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Australia
| | - David Piedrafita
- School of Applied and Biomedical Sciences, Federation University, Churchill, Australia
| | - Travis Beddoe
- Department of Animal, Plant and Soil Science and Centre for AgriBioscience (AgriBio), La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
11
|
May K, Brügemann K, König S, Strube C. The effect of patent Dictyocaulus viviparus (re)infections on individual milk yield and milk quality in pastured dairy cows and correlation with clinical signs. Parasit Vectors 2018; 11:24. [PMID: 29310709 PMCID: PMC5759297 DOI: 10.1186/s13071-017-2602-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/20/2017] [Indexed: 11/16/2022] Open
Abstract
Background Infections with the bovine lungworm Dictyocaulus viviparus might lead to reduced milk production and detrimental impacts on milk quality resulting in considerable economic losses in dairy farming. Methods In the presented field study, 1988 faecal samples were collected from 1166 Black and White dairy cows allocated in 17 small and medium-sized German grassland farms. Faecal samples were collected in summer and autumn 2015 to assess D. viviparus larvae excretion. Test-day records were used to estimate the association between patent D. viviparus infections in individual cows and the milk production parameters milk yield, milk protein and milk fat content by using linear mixed models. Bulk tank milk (BTM) samples from each farm and individual milk samples from those cows which were excreting larvae in summer were collected in autumn. In addition, occurrence of the clinical symptom “coughing” was noted in individual cows during autumn sampling to determine its association with patent lungworm infections. Results Patent D. viviparus infections were found on 23.5% (4/17) of farms with a prevalence at the individual cow level of 0.9% (9/960) in summer and 3.4% (35/1028) in autumn. No BTM sample exceeded the BTM ELISA cut-off value of 0.410 optical density ratio (ODR), the mean value was 0.168 ODR. Only one individual milk sample exceeded the individual milk ELISA cut-off value of 0.573 ODR (mean value of 0.302 ODR). A patent D. viviparus infection status was associated with a lower average daily milk yield of 1.62 kg/cow/day (P = 0.0406). No significant association was found with milk protein or fat content representing milk quality parameters. Coughing was observed in 5.9% (61/1028) of cows. Of the coughing cows, only 4.9% (3/61) had a patent lungworm infection. Fisher’s exact test showed no significant difference between infected and non-infected coughing cows. Conclusions Farmers and veterinarians should be aware that patent lungworm (re)infections in dairy cows reduce milk yield, despite the absence of clinical signs. Furthermore, if dairy cows present with coughing, other differential diagnoses need to be considered in addition to dictyocaulosis. Electronic supplementary material The online version of this article (10.1186/s13071-017-2602-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katharina May
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany.,Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390, Gießen, Germany
| | - Kerstin Brügemann
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390, Gießen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390, Gießen, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany.
| |
Collapse
|
12
|
Apparent prevalence of and risk factors for infection with Ostertagia ostertagi, Fasciola hepatica and Dictyocaulus viviparus in Swiss dairy herds. Vet Parasitol 2018; 250:52-59. [DOI: 10.1016/j.vetpar.2017.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/28/2017] [Accepted: 12/02/2017] [Indexed: 11/20/2022]
|
13
|
Biological function of Dictyocaulus viviparus asparaginyl peptidase legumain-1 and its suitability as a vaccine target. Parasitology 2017; 145:378-392. [PMID: 28942744 DOI: 10.1017/s0031182017001573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The present study characterized the biological function of the asparaginyl peptidase legumain-1 (LEG-1) of the bovine lungworm Dictyocaulus viviparus and its suitability as a recombinant vaccine against dictyocaulosis. Quantitative real-time PCR and immunoblot analysis revealed LEG-1 to be almost exclusively transcribed and expressed in parasitic lungworm stages. Immunohistochemistry localized the enzyme in the parasite's gut, which was confirmed by immunoblots detecting LEG-1 in the gut as well as male testes. LEG-1 was recombinantly (rLEG-1) expressed in the yeast Pichia pastoris and subsequently analysed in activity assays for its enzyme functions and substrate specificity. For sufficient functionality, rLEG-1 needed trans-activation through D. viviparus cathepsin L-2, indicating a novel mechanism of legumain activation. After trans-activation, rLEG-1 worked best at pH 5·5 and 35-39 °C and cleaved a legumain-specific artificial substrate as well as the natural substrates bovine collagen types I and II. In a clinical vaccination trial, rLEG-1 did not protect against challenge infection. Results of in vitro characterization, transcription pattern and localization enhance the presumption that LEG-1 participates in digestion processes of D. viviparus. Since rLEG-1 needs trans-activation through a cathepsin, it is probably involved in an enzyme cascade and therefore remains interesting as a candidate in a multi-component vaccine.
Collapse
|
14
|
Strube C, Springer A, Schunn AM, Forbes AB. Serological lessons from the bovine lungworm Dictyocaulus viviparus: Antibody titre development is independent of the infection dose and reinfection shortens seropositivity. Vet Parasitol 2017; 242:47-53. [PMID: 28606324 DOI: 10.1016/j.vetpar.2017.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/19/2017] [Accepted: 05/21/2017] [Indexed: 11/25/2022]
Abstract
Infections with the bovine lungworm Dictyocaulus viviparus, the causative agent of parasitic bronchitis, are accompanied by substantial economic losses due to impacts on production, clinical respiratory disease or even death of diseased cattle. To detect lungworm antibodies in cattle, an enzyme-linked immunosorbent assay (ELISA) based on recombinant major sperm protein (MSP) has been developed. However, it remained unknown whether the infection dose influences antibody levels, and how acquired immunity influences antibody level patterns during reinfections. The latter may lead to low within-herd seroprevalence and thus to negative MSP-ELISA results in examination of bulk tank milk (BTM). Thus, infection experiments with 12 different doses ranging from 10 to 3000 D. viviparus larvae were performed to assess whether the antibody response is dose-dependent. Second, the impact of reinfections on the antibody response was evaluated in infection experiments, and third, antibody patterns in dairy cows during naturally occurring reinfections were assessed in a longitudinal field study based on individual milk samples. Results of this study demonstrate that the rise in MSP antibodies during first infection is dose-independent at infection doses of 25 lungworm larvae and above. However, following reinfections the magnitude and duration of the MSP antibody response are reduced or lacking, depending on the interval to reinfection. The field study revealed short periods of seropositivity as a common pattern in dairy cows subjected to natural D. viviparus reinfections. Low within-herd seroprevalence in dairy herds can thus be a result of continuous reinfections. Low infection doses should not be a barrier to serodiagnosis of lungworm infection in first-time infected cattle.
Collapse
Affiliation(s)
- Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany.
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Anne-Marie Schunn
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Andrew B Forbes
- Scottish Centre for Production Animal Health and Food Safety, School of Veterinary Medicine, University of Glasgow, G61 1QH, Scotland, UK
| |
Collapse
|
15
|
Wright HW, Bartley K, Huntley JF, Nisbet AJ. Characterisation of tropomyosin and paramyosin as vaccine candidate molecules for the poultry red mite, Dermanyssus gallinae. Parasit Vectors 2016; 9:544. [PMID: 27733192 PMCID: PMC5059928 DOI: 10.1186/s13071-016-1831-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/04/2016] [Indexed: 01/14/2023] Open
Abstract
Background Dermanyssus gallinae is the most economically important haematophagous ectoparasite in commercial egg laying flocks worldwide. It infests the hens during the night where it causes irritation leading to restlessness, pecking and in extreme cases anaemia and increased cannibalism. Due to an increase in the occurrence of acaricide-resistant D. gallinae populations, new control strategies are required and vaccination may offer a sustainable alternative to acaricides. In this study, recombinant forms of D. gallinae tropomyosin (Der g 10) and paramyosin (Der g 11) were produced, characterised and tested as vaccine candidate molecules. Methods The D. gallinae paramyosin (Der g 11) coding sequence was characterised and recombinant versions of Der g 11 and D. gallinae tropomyosin (Der g 10) were produced. Hens were immunised with the recombinant proteins and the resulting antibodies were fed to D. gallinae and mite mortality evaluated. Sections of mites were probed with anti- Der g 11 and Der g 10 antibodies to identify the tissue distribution of these protein in D. gallinae. Results The entire coding sequence of Der g 11 was 2,622 bp encoding 874 amino acid residues. Immunohistochemical staining of mite sections revealed that Der g 10 and Der g 11 were located throughout D. gallinae tissues. In phylogenetic analyses of these proteins both clustered with orthologues from tick species rather than with orthologues from astigmatid mites. Antibodies raised in hens against recombinant forms of these proteins significantly increased D. gallinae mortality, by 19 % for Der g 10 (P < 0.001) and by 23 % for Der g 11 (P = 0.009) when fed to the mites using an in vitro feeding device. Conclusions This study has shown that Der g 10 and Der g 11 were located ubiquitously throughout D. gallinae and that antibodies raised against recombinant versions of these proteins can be used to significantly increase D. gallinae mortality in an in vitro feeding assay. When comparing archived data for all recombinant and native proteins assessed as vaccines using this in vitro feeding assay, Der g 10 and Der g 11 ranked highly and performed better than some of the pools of native proteins.
Collapse
Affiliation(s)
- Harry W Wright
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, Scotland, UK.
| | - Kathryn Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, Scotland, UK
| | - John F Huntley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, Scotland, UK
| | - Alasdair J Nisbet
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, Scotland, UK
| |
Collapse
|
16
|
Joekel D, Hinse P, Raulf MK, Schicht S, Bäumer W, Werling D, Kremmer E, Strube C. Vaccination of calves with yeast- and bacterial-expressed paramyosin from the bovine lungworm Dictyocaulus viviparus. Parasite Immunol 2016; 37:614-23. [PMID: 26408341 DOI: 10.1111/pim.12280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/16/2015] [Indexed: 11/28/2022]
Abstract
Previously, vaccination of cattle with Escherichia coli-expressed bovine lungworm paramyosin (EcPMY) adjuvanted with Quil A resulted in considerable reduction in worm burden and larvae shedding (Strube et al., 2015). To further evaluate the protective potential of PMY, cattle vaccination trials were performed using either E. coli- (EcPMY) or Pichia pastoris-expressed PMY (PpPMY) with different adjuvants (Matrix-Q(™) or Quil A). Combinations EcPMY+Matrix-Q(™) (trial 1), PpPMY+Matrix-Q(™) (trial 2) and PpPMY+Quil A (trial 3) were tested against challenge infections with 2000 Dictyocaulus viviparus larvae. Even though GM worm burden and larvae shedding was lower in almost all vaccinated groups, there were high variations between individuals hampering significant differences. However, in all vaccinated groups, lungworms were significantly shorter compared with those in controls. In vitro stimulation of peripheral blood mononuclear cells (PBMC) with recombinant (r)PMY revealed no significant proliferation following vaccinations or challenge infection. All vaccinated cattle showed a significant rise in specific antibodies, particularly IgG and its subclass IgG1, and detected the native lungworm PMY in immunoblots starting 2 weeks after the first vaccination. The use of a different rPMY-adjuvant combination or combined vaccination with additional recombinant antigens might be a promising future approach towards a new vaccine against lungworms in cattle.
Collapse
Affiliation(s)
- D Joekel
- Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - P Hinse
- Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - M K Raulf
- Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - S Schicht
- Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - W Bäumer
- College of Veterinary Medicine, Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - D Werling
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hatfield, UK
| | - E Kremmer
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Molecular Immunology, Munich, Germany
| | - C Strube
- Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
17
|
Campbell B, Cortes H, Annoscia G, Giannelli A, Parisi A, Latrofa MS, Dantas-Torres F, Cardoso L, Otranto D. Paramyosin of canine Onchocerca lupi: usefulness for the diagnosis of a neglected zoonotic disease. Parasit Vectors 2016; 9:493. [PMID: 27604904 PMCID: PMC5013582 DOI: 10.1186/s13071-016-1783-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/30/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Of increasing importance to the medical and veterinary communities is the zoonotic filarioid nematode Onchocerca lupi. Onchocercosis, thus far found in wolves, dogs, cats and humans, is diagnosed via skin snips to detect microfilariae and surgical removal of adults from the eye of the host. These methods are time-consuming, laborious and invasive, highlighting the need for new tools for the diagnosis of O. lupi in susceptible hosts. Symptoms related to the presence of the adults in the eye can range from none apparent to severe, including blindness. No reliable chemotherapeutic protocols are available, as yet, to eliminate the infection. Paramyosin, an invertebrate-specific protein, has been well-studied as an allergen, diagnostic marker and vaccine candidate. The aim of this study, therefore, was to isolate and characterise paramyosin from O. lupi to assess its suitability for the development of a serological diagnostic assay. METHODS The adult and microfilarial stages of O. lupi were isolated from the eyes and skin of a 3-year-old male dog. Total RNA was extracted and reverse transcribed into single stranded cDNA. Reverse-transcription PCR was used to isolate a full-length paramyosin cDNA from adult worms and to investigate the temporal expression patterns of this gene. All amplicons were sequenced using dideoxy chain termination sequencing. Bioinformatics was used to predict the amino acid sequence of the gene, to compare the DNA and protein sequences with those available in public databases and to investigate the phylogenetic relationship of all molecules. Antibody binding sites were predicted using bioinformatics and mapped along with published antigenic epitopes against the O. lupi paramyosin protein. The native protein, and three smaller recombinantly expressed peptides, were subjected to western blot using serum from dogs both positive and negative for O. lupi. RESULTS Paramyosin of O. lupi was herein molecularly characterized, encoded by a transcript of 2,643 bp and producing a protein of 881 amino acids (101.24 kDa). The paramyosin transcript was detected, by reverse transcription PCR, in adults and microfilariae, but not in eggs. Phylogenetic analysis indicates that this molecule clusters with paramyosins from other filarioids to the exclusion of those from other taxa. A total of 621 unique antibody binding epitopes were predicted for this protein and another 28 were conserved in other organisms. This information was used to design three peptides, for recombinant expression, to identify the antibody binding epitope(s) and reduce potential cross-reactivity with serum from dogs infected with other filarioid nematodes. Native paramyosin, purified from microfilariae and adults, was detected by antibodies present in serum from dogs with known O. lupi infections. CONCLUSIONS Data provided herein may assist in the development of a serological diagnostic test, based on antibodies to O. lupi paramyosin, for the diagnosis of this infection, in order to gain more information on the real distribution of this little known filarioid of zoonotic concern.
Collapse
Affiliation(s)
- Bronwyn Campbell
- Dipartimento di Medicina Veterinaria, Universitá degli Studi di Bari, Bari, Italy
| | - Helder Cortes
- Victor Caeiro Laboratory of Parasitology, Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Évora, Portugal
| | - Giada Annoscia
- Dipartimento di Medicina Veterinaria, Universitá degli Studi di Bari, Bari, Italy
| | - Alessio Giannelli
- Dipartimento di Medicina Veterinaria, Universitá degli Studi di Bari, Bari, Italy
| | - Antonio Parisi
- IZS Istituto Zooprofilattico Sperimentale Puglia e Basilicata, Putignano, Italy
| | | | - Filipe Dantas-Torres
- Dipartimento di Medicina Veterinaria, Universitá degli Studi di Bari, Bari, Italy
- Departamento de Imunologia, Centro de Pesquisas Aggeu Magalhães (Fiocruz-PE), Recife, Brazil
| | - Luís Cardoso
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Domenico Otranto
- Dipartimento di Medicina Veterinaria, Universitá degli Studi di Bari, Bari, Italy
| |
Collapse
|
18
|
Ács Z, Hayward A, Sugár L. Genetic diversity and population genetics of large lungworms (Dictyocaulus, Nematoda) in wild deer in Hungary. Parasitol Res 2016; 115:3295-312. [PMID: 27150969 PMCID: PMC4980422 DOI: 10.1007/s00436-016-5088-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/21/2016] [Indexed: 11/29/2022]
Abstract
Dictyocaulus nematode worms live as parasites in the lower airways of ungulates and can cause significant disease in both wild and farmed hosts. This study represents the first population genetic analysis of large lungworms in wildlife. Specifically, we quantify genetic variation in Dictyocaulus lungworms from wild deer (red deer, fallow deer and roe deer) in Hungary, based on mitochondrial cytochrome c oxidase subunit 1 (cox1) sequence data, using population genetic and phylogenetic analyses. The studied Dictyocaulus taxa display considerable genetic diversity. At least one cryptic species and a new parasite–host relationship are revealed by our molecular study. Population genetic analyses for Dictyocaulus eckerti revealed high gene flow amongst weakly structured spatial populations that utilise the three host deer species considered here. Our results suggest that D. eckerti is a widespread generalist parasite in ungulates, with a diverse genetic backround and high evolutionary potential. In contrast, evidence of cryptic genetic structure at regional geographic scales was observed for Dictyocaulus capreolus, which infects just one host species, suggesting it is a specialist within the studied area. D. capreolus displayed lower genetic diversity overall, with only moderate gene flow compared to the closely related D. eckerti. We suggest that the differing vagility and dispersal behaviour of hosts are important contributing factors to the population structure of lungworms, and possibly other nematode parasites with single-host life cycles. Our findings are of relevance for the management of lungworms in deer farms and wild deer populations.
Collapse
Affiliation(s)
- Zoltán Ács
- Department of Wildlife Biology and Ethology, Faculty of Animal and Environmental Sciences, Kaposvar University, 7400, Kaposvár, Hungary
| | - Alexander Hayward
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, TR10 9E2, UK.
| | - László Sugár
- Department of Wildlife Biology and Ethology, Faculty of Animal and Environmental Sciences, Kaposvar University, 7400, Kaposvár, Hungary
| |
Collapse
|
19
|
McNulty SN, Strübe C, Rosa BA, Martin JC, Tyagi R, Choi YJ, Wang Q, Hallsworth Pepin K, Zhang X, Ozersky P, Wilson RK, Sternberg PW, Gasser RB, Mitreva M. Dictyocaulus viviparus genome, variome and transcriptome elucidate lungworm biology and support future intervention. Sci Rep 2016; 6:20316. [PMID: 26856411 PMCID: PMC4746573 DOI: 10.1038/srep20316] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/26/2015] [Indexed: 11/12/2022] Open
Abstract
The bovine lungworm, Dictyocaulus viviparus (order Strongylida), is an important parasite of livestock that causes substantial economic and production losses worldwide. Here we report the draft genome, variome, and developmental transcriptome of D. viviparus. The genome (161 Mb) is smaller than those of related bursate nematodes and encodes fewer proteins (14,171 total). In the first genome-wide assessment of genomic variation in any parasitic nematode, we found a high degree of sequence variability in proteins predicted to be involved host-parasite interactions. Next, we used extensive RNA sequence data to track gene transcription across the life cycle of D. viviparus, and identified genes that might be important in nematode development and parasitism. Finally, we predicted genes that could be vital in host-parasite interactions, genes that could serve as drug targets, and putative RNAi effectors with a view to developing functional genomic tools. This extensive, well-curated dataset should provide a basis for developing new anthelmintics, vaccines, and improved diagnostic tests and serve as a platform for future investigations of drug resistance and epidemiology of the bovine lungworm and related nematodes.
Collapse
Affiliation(s)
- Samantha N McNulty
- The McDonnell Genome Institute, Washington University in St Louis, MO 63108, USA
| | - Christina Strübe
- Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Bruce A Rosa
- The McDonnell Genome Institute, Washington University in St Louis, MO 63108, USA
| | - John C Martin
- The McDonnell Genome Institute, Washington University in St Louis, MO 63108, USA
| | - Rahul Tyagi
- The McDonnell Genome Institute, Washington University in St Louis, MO 63108, USA
| | - Young-Jun Choi
- The McDonnell Genome Institute, Washington University in St Louis, MO 63108, USA
| | - Qi Wang
- The McDonnell Genome Institute, Washington University in St Louis, MO 63108, USA
| | | | - Xu Zhang
- The McDonnell Genome Institute, Washington University in St Louis, MO 63108, USA
| | - Philip Ozersky
- The McDonnell Genome Institute, Washington University in St Louis, MO 63108, USA
| | - Richard K Wilson
- The McDonnell Genome Institute, Washington University in St Louis, MO 63108, USA
| | - Paul W Sternberg
- HHMI, Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| | - Makedonka Mitreva
- The McDonnell Genome Institute, Washington University in St Louis, MO 63108, USA.,Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
20
|
Karanikola SN, Krücken J, Ramünke S, de Waal T, Höglund J, Charlier J, Weber C, Müller E, Kowalczyk SJ, Kaba J, von Samson-Himmelstjerna G, Demeler J. Development of a multiplex fluorescence immunological assay for the simultaneous detection of antibodies against Cooperia oncophora, Dictyocaulus viviparus and Fasciola hepatica in cattle. Parasit Vectors 2015; 8:335. [PMID: 26084663 PMCID: PMC4492007 DOI: 10.1186/s13071-015-0924-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/01/2015] [Indexed: 12/04/2022] Open
Abstract
Background A major constraint for the effective control and management of helminth parasites is the lack of rapid, high-throughput, routine diagnostic tests to assess the health status of individual animals and herds and to identify the parasite species responsible for these helminthoses. The capability of a multiplex platform for the simultaneous detection of three pasture associated parasite species was evaluated and compared to existing ELISAs. Methods The recombinant antigens 14.2 kDa ES protein for Cooperia oncophora, major sperm protein for Dictyocaulus viviparus and Cathepsin L1 for Fasciola hepatica were recombinantly expressed either in Escherichia coli or Pichia pastoris. Antigens were covalently coupled onto magnetic beads. Optimal concentrations for coupling were determined following the examination of serum samples collected from experimentally mono-infected animals, before and after their infection with the target species. Absence of cross-reactivity was further determined with sera from calves mono-infected with Haemonchus contortus, Ostertagia ostertagi and Trichostrongylus colubriformis. Examination of negative serum samples was characterised by low median fluorescence intensity (MFI). Results Establishment of the optimal serum dilution of 1:200 was achieved for all three bead sets. Receiver Operating Characteristic analyses were performed to obtain cut-off MFI values for each parasite separately. Sensitivity and specificity at the chosen cut-off values were close to, or 100 % for all bead sets. Examination of serum samples collected on different days post infection from different animals showed a high reproducibility of the assays. Serum samples were additionally examined with two already established ELISAs, an in-house ELISA using the recombinant MSP as an antigen and a DRG ELISA using Cathepsin L1 for liver fluke. The results between the assays were compared and kappa tests revealed an overall good agreement. Conclusions A versatile bead-based assay using fluorescence detection (xMAP® technology) was developed to simultaneously detect antibodies against C. oncophora, D. viviparus and F. hepatica in cattle serum samples. This platform provides rapid, high-throughput results and is highly sensitive and specific in comparison to existing serological as well as coproscopical diagnostic techniques.
Collapse
Affiliation(s)
- Sofia N Karanikola
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| | - Sabrina Ramünke
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| | - Theo de Waal
- UCD School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Dublin, Ireland.
| | - Johan Höglund
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology (SWEPAR), Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Johannes Charlier
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.
| | | | | | - Slawomir J Kowalczyk
- Laboratory of Veterinary Epidemiology and Economics, Faculty of Veterinary Medicine, Warsaw University of Life Science, Warsaw, Poland.
| | - Jaroslaw Kaba
- Laboratory of Veterinary Epidemiology and Economics, Faculty of Veterinary Medicine, Warsaw University of Life Science, Warsaw, Poland.
| | | | - Janina Demeler
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|