1
|
Motlhatlhedi K, Pilusa NB, Ndaba T, George M, Masamba P, Kappo AP. Therapeutic and vaccinomic potential of moonlighting proteins for the discovery and design of drugs and vaccines against schistosomiasis. Am J Transl Res 2024; 16:4279-4300. [PMID: 39398578 PMCID: PMC11470331 DOI: 10.62347/bxrt7210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/15/2024] [Indexed: 10/15/2024]
Abstract
Despite significant and coordinated efforts to combat schistosomiasis, such as providing clean water, sanitation, hygiene, and snail control, these strategies still fall short, as regions previously thought to be disease-free have shown active schistosomiasis transmission. Therefore, it is necessary to implement integrated control methods, emphasizing vaccine development for sustainable control of schistosomiasis. Vaccination has significantly contributed to global healthcare and has been the most economically friendly method for avoiding pathogenic infections. Over the years, different vaccine candidates for schistosomiasis have been investigated with varying degrees of success in clinical trials with many not proceeding past the early clinical phase. Recently, proteins have been mentioned as targets for drug discovery and vaccine development, especially those with multiple functions in schistosomes. Moonlighting proteins are a class of proteins that can perform several functions besides their known functions. This multifunctional property is believed to have been expressed through evolution, where the polypeptide chain gained the ability to perform other tasks without undergoing any structural changes. Since proteins have gained more traction as drug targets, multifunctional proteins have thus become attractive for discovering and developing novel drugs since the drug can target more than one function. Moonlighting proteins are promising drug and vaccine candidates for diseases such as schistosomiasis, since they aid in disease promotion in the human host. This manuscript elucidates vital moonlighting proteins used by schistosomes to drive their life cycle and to ensure their survival in the human host, which can be used to develop anti-schistosomal therapeutics and vaccinomics.
Collapse
Affiliation(s)
- Kagiso Motlhatlhedi
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Naledi Beatrice Pilusa
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Tshepang Ndaba
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Mary George
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Priscilla Masamba
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Abidemi Paul Kappo
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| |
Collapse
|
2
|
Elguindy DAS, Ashour DS, Elmarhoumy SM, El-Guindy DM, Ismail HIH. The efficacy of cercarial antigen loaded on nanoparticles as a potential vaccine candidate in Schistosoma mansoni-infected mice. J Parasit Dis 2024; 48:381-399. [PMID: 38840868 PMCID: PMC11147980 DOI: 10.1007/s12639-024-01677-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/21/2024] [Indexed: 06/07/2024] Open
Abstract
Schistosomiasis is one of the most common causes of morbidity and mortality from parasitic diseases. Mass treatment has proven to be insufficient because of repeated infection after treatment and the appearance of strains resistant to drug therapy. Hence, immunization is a new approach to control the disease and limit the pathological consequences of schistosomiasis. To evaluate the prophylactic effect of Cercarial antigen (CAP) loaded on chitosan nanoparticles (CSNPs) as a potential vaccine against Schistosoma mansoni-infected mice. 130 mice divided into 2 groups were used: Group I: Control groups (50 mice) subdivided into subgroup Ia (10 mice): Non-infected mice (normal control), subgroup Ib (20 mice): Schistosoma infected mice (infected control) and subgroup Ic (20 mice): Non-infected mice receiving NPs only. Group II: Vaccinated group (80 mice) subdivided equally into subgroup IIa (CAP): Received cercarial antigen and subgroup IIb (CAP + CSNP): Received cercarial antigen loaded on chitosan NPs then both vaccinated groups were infected with S. mansoni 3 weeks following the initial vaccination dose. CAP + CSNP and CAP groups showed significant reduction in adult worms count, hepatic egg count, hepatic granulomas number and size in comparison to the infected control group. Elevation of serum IgG and IgM levels, CD4+ and CD8+ T cell frequencies, IL-4, IL-10 and INF-γ levels was more significant in CAP + CSNP group than CAP group. CAP + CSNP is a promising new preparation of Schistosomal antigens that gave better results than immunization with CAP alone. CSNPs enhanced the immune and protective effect of CAP as validated by parasitological, histopathological and immunohistochemical studies.
Collapse
Affiliation(s)
- Dina A. S. Elguindy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dalia S. Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Sirria M. Elmarhoumy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina M. El-Guindy
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Howaida I. H. Ismail
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Zumuk CP, Jones MK, Navarro S, Gray DJ, You H. Transmission-Blocking Vaccines against Schistosomiasis Japonica. Int J Mol Sci 2024; 25:1707. [PMID: 38338980 PMCID: PMC10855202 DOI: 10.3390/ijms25031707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Control of schistosomiasis japonica, endemic in Asia, including the Philippines, China, and Indonesia, is extremely challenging. Schistosoma japonicum is a highly pathogenic helminth parasite, with disease arising predominantly from an immune reaction to entrapped parasite eggs in tissues. Females of this species can generate 1000-2200 eggs per day, which is about 3- to 15-fold greater than the egg output of other schistosome species. Bovines (water buffalo and cattle) are the predominant definitive hosts and are estimated to generate up to 90% of parasite eggs released into the environment in rural endemic areas where these hosts and humans are present. Here, we highlight the necessity of developing veterinary transmission-blocking vaccines for bovines to better control the disease and review potential vaccine candidates. We also point out that the approach to producing efficacious transmission-blocking animal-based vaccines before moving on to human vaccines is crucial. This will result in effective and feasible public health outcomes in agreement with the One Health concept to achieve optimum health for people, animals, and the environment. Indeed, incorporating a veterinary-based transmission vaccine, coupled with interventions such as human mass drug administration, improved sanitation and hygiene, health education, and snail control, would be invaluable to eliminating zoonotic schistosomiasis.
Collapse
Affiliation(s)
- Chika P. Zumuk
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Malcolm K. Jones
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Severine Navarro
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Centre for Childhood Nutrition Research, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Darren J. Gray
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
| | - Hong You
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
4
|
Wilson RA. Models of Protective Immunity against Schistosomes: Implications for Vaccine Development. Pathogens 2023; 12:1215. [PMID: 37887731 PMCID: PMC10610196 DOI: 10.3390/pathogens12101215] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/28/2023] Open
Abstract
After many decades of research, a schistosome vaccine still looks to be a distant prospect. These helminths can live in the human bloodstream for years, even decades, surrounded by and feeding on the components of the immune response they provoke. The original idea of a vaccine based on the killing of invading cercariae in the skin has proven to be illusory. There has also been a realisation that even if humans develop some protection against infection over a protracted period, it very likely involves IgE-mediated responses that cannot provide the basis for a vaccine. However, it has also become clear that both invasive migrating larvae and adult worms must expose proteins and release secretions into the host environment as part of their normal biological activities. The application of modern 'omics approaches means that we now have a much better idea of the identity of these potential immune targets. This review looks at three animal models in which acquired immunity has been demonstrated and asks whether the mechanisms might inform our vaccine strategies to achieve protection in model hosts and humans. Eliciting responses, either humoral or cellular, that can persist for many months is a challenge. Arming of the lungs with effector T cells, as occurs in mice exposed to the radiation-attenuated cercarial vaccine, is one avenue. Generating IgG antibody titres that reach levels at which they can exert sustained immune pressure to cause worm elimination, as occurs in rhesus macaques, is another. The induction of memory cell populations that can detect trickle invasions of larval stages remains to be explored. One promising approach is the analysis of protective antibodies using high-density peptide arrays of target proteins to identify reactive regions. These can be combined in multi-epitope constructs to immunise a host against many targets simultaneously and cheaply.
Collapse
Affiliation(s)
- R Alan Wilson
- Department of Biology and Biomedical Research Institute, University of York, York YO10 5DD, UK;
- Programa de Pós Graduação em, Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35402-136 , Brazil
| |
Collapse
|
5
|
Zhu P, Wu K, Zhang C, Batool SS, Li A, Yu Z, Huang J. Advances in new target molecules against schistosomiasis: A comprehensive discussion of physiological structure and nutrient intake. PLoS Pathog 2023; 19:e1011498. [PMID: 37498810 PMCID: PMC10374103 DOI: 10.1371/journal.ppat.1011498] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Schistosomiasis, a severe parasitic disease, is primarily caused by Schistosoma mansoni, Schistosoma japonicum, or Schistosoma haematobium. Currently, praziquantel is the only recommended drug for human schistosome infection. However, the lack of efficacy of praziquantel against juvenile worms and concerns about the emergence of drug resistance are driving forces behind the research for an alternative medication. Schistosomes are obligatory parasites that survive on nutrients obtained from their host. The ability of nutrient uptake depends on their physiological structure. In short, the formation and maintenance of the structure and nutrient supply are mutually reinforcing and interdependent. In this review, we focus on the structural features of the tegument, esophagus, and intestine of schistosomes and their roles in nutrient acquisition. Moreover, we introduce the significance and modes of glucose, lipids, proteins, and amino acids intake in schistosomes. We linked the schistosome structure and nutrient supply, introduced the currently emerging targets, and analyzed the current bottlenecks in the research and development of drugs and vaccines, in the hope of providing new strategies for the prevention and control of schistosomiasis.
Collapse
Affiliation(s)
- Peng Zhu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Kaijuan Wu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaobin Zhang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Syeda Sundas Batool
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Anqiao Li
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
6
|
You H, Jones MK, Gordon CA, Arganda AE, Cai P, Al-Wassiti H, Pouton CW, McManus DP. The mRNA Vaccine Technology Era and the Future Control of Parasitic Infections. Clin Microbiol Rev 2023; 36:e0024121. [PMID: 36625671 PMCID: PMC10035331 DOI: 10.1128/cmr.00241-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Despite intensive long-term efforts, with very few exceptions, the development of effective vaccines against parasitic infections has presented considerable challenges, given the complexity of parasite life cycles, the interplay between parasites and their hosts, and their capacity to escape the host immune system and to regulate host immune responses. For many parasitic diseases, conventional vaccine platforms have generally proven ill suited, considering the complex manufacturing processes involved and the costs they incur, the inability to posttranslationally modify cloned target antigens, and the absence of long-lasting protective immunity induced by these antigens. An effective antiparasite vaccine platform is required to assess the effectiveness of novel vaccine candidates at high throughput. By exploiting the approach that has recently been used successfully to produce highly protective COVID mRNA vaccines, we anticipate a new wave of research to advance the use of mRNA vaccines to prevent parasitic infections in the near future. This article considers the characteristics that are required to develop a potent antiparasite vaccine and provides a conceptual foundation to promote the development of parasite mRNA-based vaccines. We review the recent advances and challenges encountered in developing antiparasite vaccines and evaluate the potential of developing mRNA vaccines against parasites, including those causing diseases such as malaria and schistosomiasis, against which vaccines are currently suboptimal or not yet available.
Collapse
Affiliation(s)
- Hong You
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - Catherine A. Gordon
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alexa E. Arganda
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Pengfei Cai
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Harry Al-Wassiti
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Colin W. Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Donald P. McManus
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
7
|
Malta KK, Palazzi C, Neves VH, Aguiar Y, Silva TP, Melo RCN. Schistosomiasis Mansoni-Recruited Eosinophils: An Overview in the Granuloma Context. Microorganisms 2022; 10:microorganisms10102022. [PMID: 36296298 PMCID: PMC9607553 DOI: 10.3390/microorganisms10102022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Eosinophils are remarkably recruited during schistosomiasis mansoni, one of the most common parasitic diseases worldwide. These cells actively migrate and accumulate at sites of granulomatous inflammation termed granulomas, the main pathological feature of this disease. Eosinophils colonize granulomas as a robust cell population and establish complex interactions with other immune cells and with the granuloma microenvironment. Eosinophils are the most abundant cells in granulomas induced by Schistosoma mansoni infection, but their functions during this disease remain unclear and even controversial. Here, we explore the current information on eosinophils as components of Schistosoma mansoni granulomas in both humans and natural and experimental models and their potential significance as central cells triggered by this infection.
Collapse
|
8
|
Alzain AA, Elbadwi FA. De Novo Design of Cathepsin B1 Inhibitors as Potential Anti-Schistosomal Agents Using Computational Studies. ADVANCES AND APPLICATIONS IN BIOINFORMATICS AND CHEMISTRY 2022; 15:29-41. [PMID: 35935393 PMCID: PMC9355347 DOI: 10.2147/aabc.s361626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022]
Abstract
Background Schistosomiasis is the world’s second most devastating disease after malaria and the leading cause of disease and mortality for more than 200 million people in developing countries. Cysteine proteases, in particular SmCB1, are the most well-researched biological targets for this disorder. Objective To apply computational techniques to design new antischistosomal agents against SmCB1 protein with favorable pharmacokinetic properties. Methods The smCB1 receptor-based pharmacophore model was created and used to screen 567,000 fragments from the Enamine library. The best scoring fragments have been linked to build novel compounds that were subjected to molecular docking, MM-GBSA free energy estimation, ADME prediction, and molecular dynamics. Results A seven-point pharmacophore hypothesis ADDDRRR was created. The developed hypothesis was used to screen 1.3 M fragment conformations. Among them, 23,732 fragments matched the hypothesis and screened against the protein. The top 50 fragments were used to design new 7745 compounds using the Breed ligand panel which were subjected to docking and MMGBSA binding energy. This led to the identification of 10 compounds with better docking scores (−8.033– −7.483 kcal/mol) and lower-bound free energies (−58.49 – −40.02 kcal/mol) compared to the reference bound ligand. Most of the designed compounds demonstrated good drug-like properties. Concerning Molecular dynamics (MD) simulation results, a low root mean square deviation (RMSD) range (0.25–1.2 Å) was found for the top 3 complexes which indicated their stability. Conclusion We identified compounds that could be potential candidates in the search for novel Schistosoma mansoni inhibitors by targeting SmCB1 utilizing various computational tools. Three newly designed compounds namely breed 1, 2, and 3 showed promising affinity to the target as well as favorable drug-like properties which might be considered potential anti-schistosomal agents.
Collapse
Affiliation(s)
- Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
- Correspondence: Abdulrahim A Alzain, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan, Tel +249-511854501, Fax +249-511861180, Email
| | - Fatima A Elbadwi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| |
Collapse
|
9
|
Perera DJ, Hassan AS, Liu SS, Elahi SM, Gadoury C, Weeratna RD, Gilbert R, Ndao M. A low dose adenovirus vectored vaccine expressing Schistosoma mansoni Cathepsin B protects from intestinal schistosomiasis in mice. EBioMedicine 2022; 80:104036. [PMID: 35500538 PMCID: PMC9065910 DOI: 10.1016/j.ebiom.2022.104036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Accepted: 04/16/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Schistosomiasis is an underestimated neglected tropical disease which affects over 236.6 million people worldwide. According to the CDC, the impact of this disease is second to only malaria as the most devastating parasitic infection. Affected individuals manifest chronic pathology due to egg granuloma formation, destroying the liver over time. The only FDA approved drug, praziquantel, does not protect individuals from reinfection, highlighting the need for a prophylactic vaccine. Schistosoma mansoni Cathepsin B (SmCB) is a parasitic gut peptidase necessary for helminth growth and maturation and confers protection as a vaccine target for intestinal schistosomiasis. METHODS An SmCB expressing human adenovirus serotype 5 (AdSmCB) was constructed and delivered intramuscularly to female C57BL/6 mice in a heterologous prime and boost vaccine with recombinant protein. Vaccine induced immunity was described and subsequent protection from parasite infection was assessed by analysing parasite burden and liver pathology. FINDINGS Substantially higher humoral and cell-mediated immune responses, consisting of IgG2c, Th1 effectors, and polyfunctional CD4+ T cells, were induced by the heterologous administration of AdSmCB when compared to the other regimens. Though immune responses favoured Th1 immunity, Th2 responses provided by SmCB protein boosts were maintained. This mixed Th1/Th2 immune response resulted in significant protection from S. mansoni infection comparable to other vaccine formulations which are in clinical trials. Schistosomiasis associated liver pathology was also prevented in a murine model. INTERPRETATION Our study provides missing preclinical data supporting the use of adenoviral vectoring in vaccines for S. mansoni infection. Our vaccination method significantly reduces parasite burden and its associated liver pathology - both of which are critical considerations for this helminth vaccine. FUNDING This work was supported by the Canadian Institutes of Health Research, R. Howard Webster Foundation, and the Foundation of the McGill University Health Centre.
Collapse
Affiliation(s)
- Dilhan J Perera
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada; Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Room: EM3.3244, 1001 Decarie Blvd, Montréal, Québec H4A 3J1, Canada
| | - Adam S Hassan
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Room: EM3.3244, 1001 Decarie Blvd, Montréal, Québec H4A 3J1, Canada; Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Sunny S Liu
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | | | | | | | - Rénald Gilbert
- National Research Council Canada, Montréal, Québec, Canada
| | - Momar Ndao
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada; Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Room: EM3.3244, 1001 Decarie Blvd, Montréal, Québec H4A 3J1, Canada; Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada; National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
10
|
Ogongo P, Nyakundi RK, Chege GK, Ochola L. The Road to Elimination: Current State of Schistosomiasis Research and Progress Towards the End Game. Front Immunol 2022; 13:846108. [PMID: 35592327 PMCID: PMC9112563 DOI: 10.3389/fimmu.2022.846108] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The new WHO Roadmap for Neglected Tropical Diseases targets the global elimination of schistosomiasis as a public health problem. To date, control strategies have focused on effective diagnostics, mass drug administration, complementary and integrative public health interventions. Non-mammalian intermediate hosts and other vertebrates promote transmission of schistosomiasis and have been utilized as experimental model systems. Experimental animal models that recapitulate schistosomiasis immunology, disease progression, and pathology observed in humans are important in testing and validation of control interventions. We discuss the pivotal value of these models in contributing to elimination of schistosomiasis. Treatment of schistosomiasis relies heavily on mass drug administration of praziquantel whose efficacy is comprised due to re-infections and experimental systems have revealed the inability to kill juvenile schistosomes. In terms of diagnosis, nonhuman primate models have demonstrated the low sensitivity of the gold standard Kato Katz smear technique. Antibody assays are valuable tools for evaluating efficacy of candidate vaccines, and sera from graded infection experiments are useful for evaluating diagnostic sensitivity of different targets. Lastly, the presence of Schistosomes can compromise the efficacy of vaccines to other infectious diseases and its elimination will benefit control programs of the other diseases. As the focus moves towards schistosomiasis elimination, it will be critical to integrate treatment, diagnostics, novel research tools such as sequencing, improved understanding of disease pathogenesis and utilization of experimental models to assist with evaluating performance of new approaches.
Collapse
Affiliation(s)
- Paul Ogongo
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
| | - Ruth K. Nyakundi
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
| | - Gerald K. Chege
- Primate Unit & Delft Animal Centre, South African Medical Research Council, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Lucy Ochola
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
- Department of Environmental Health, School of Behavioural and Lifestyle Sciences, Faculty of Health Sciences, Nelson Mandela University, Gqeberha, South Africa
| |
Collapse
|
11
|
Vaccines for Human Schistosomiasis: Recent Progress, New Developments and Future Prospects. Int J Mol Sci 2022; 23:ijms23042255. [PMID: 35216369 PMCID: PMC8879820 DOI: 10.3390/ijms23042255] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/18/2022] Open
Abstract
Schistosomiasis, caused by human trematode blood flukes (schistosomes), remains one of the most prevalent and serious of the neglected tropical parasitic diseases. Currently, treatment of schistosomiasis relies solely on a single drug, the anthelmintic praziquantel, and with increased usage in mass drug administration control programs for the disease, the specter of drug resistance developing is a constant threat. Vaccination is recognized as one of the most sustainable options for the control of any pathogen, but despite the discovery and reporting of numerous potentially promising schistosome vaccine antigens, to date, no schistosomiasis vaccine for human or animal deployment is available. This is despite the fact that Science ranked such an intervention as one of the top 10 vaccines that need to be urgently developed to improve public health globally. This review summarizes current progress of schistosomiasis vaccines under clinical development and advocates the urgent need for the establishment of a revolutionary and effective anti-schistosome vaccine pipeline utilizing cutting-edge technologies (including developing mRNA vaccines and exploiting CRISPR-based technologies) to provide novel insight into future vaccine discovery, design, manufacture and deployment.
Collapse
|
12
|
Gasan TA, Kuipers ME, Roberts GH, Padalino G, Forde-Thomas JE, Wilson S, Wawrzyniak J, Tukahebwa EM, Hoffmann KF, Chalmers IW. Schistosoma mansoni Larval Extracellular Vesicle protein 1 (SmLEV1) is an immunogenic antigen found in EVs released from pre-acetabular glands of invading cercariae. PLoS Negl Trop Dis 2021; 15:e0009981. [PMID: 34793443 PMCID: PMC8639091 DOI: 10.1371/journal.pntd.0009981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/02/2021] [Accepted: 11/06/2021] [Indexed: 01/10/2023] Open
Abstract
Extracellular Vesicles (EVs) are an integral component of cellular/organismal communication and have been found in the excreted/secreted (ES) products of both protozoan and metazoan parasites. Within the blood fluke schistosomes, EVs have been isolated from egg, schistosomula, and adult lifecycle stages. However, the role(s) that EVs have in shaping aspects of parasite biology and/or manipulating host interactions is poorly defined. Herein, we characterise the most abundant EV-enriched protein in Schistosoma mansoni tissue-migrating schistosomula (Schistosoma mansoni Larval Extracellular Vesicle protein 1 (SmLEV1)). Comparative sequence analysis demonstrates that lev1 orthologs are found in all published Schistosoma genomes, yet homologs are not found outside of the Schistosomatidae. Lifecycle expression analyses collectively reveal that smlev1 transcription peaks in cercariae, is male biased in adults, and is processed by alternative splicing in intra-mammalian lifecycle stages. Immunohistochemistry of cercariae using a polyclonal anti-recombinant SmLEV1 antiserum localises this protein to the pre-acetabular gland, with some disperse localisation to the surface of the parasite. S. mansoni-infected Ugandan fishermen exhibit a strong IgG1 response against SmLEV1 (dropping significantly after praziquantel treatment), with 11% of the cohort exhibiting an IgE response and minimal levels of detectable antigen-specific IgG4. Furthermore, mice vaccinated with rSmLEV1 show a slightly reduced parasite burden upon challenge infection and significantly reduced granuloma volumes, compared with control animals. Collectively, these results describe SmLEV1 as a Schistosomatidae-specific, EV-enriched immunogen. Further investigations are now necessary to uncover the full extent of SmLEV1's role in shaping schistosome EV function and definitive host relationships.
Collapse
Affiliation(s)
- Thomas A. Gasan
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Edward Llwyd Building, Aberystwyth, United Kingdom
| | - Marije E. Kuipers
- Department of Parasitology, Leiden University Medical Centre, Leiden, Netherlands
| | - Grisial H. Roberts
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Edward Llwyd Building, Aberystwyth, United Kingdom
| | - Gilda Padalino
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Edward Llwyd Building, Aberystwyth, United Kingdom
| | - Josephine E. Forde-Thomas
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Edward Llwyd Building, Aberystwyth, United Kingdom
| | - Shona Wilson
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge, United Kingdom
| | - Jakub Wawrzyniak
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge, United Kingdom
| | | | - Karl F. Hoffmann
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Edward Llwyd Building, Aberystwyth, United Kingdom
| | - Iain W. Chalmers
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Edward Llwyd Building, Aberystwyth, United Kingdom
| |
Collapse
|
13
|
Amaral MS, Santos DW, Pereira ASA, Tahira AC, Malvezzi JVM, Miyasato PA, Freitas RDP, Kalil J, Tjon Kon Fat EM, de Dood CJ, Corstjens PLAM, van Dam GJ, Nakano E, Castro SDO, Mattaraia VGDM, Augusto RDC, Grunau C, Wilson RA, Verjovski-Almeida S. Rhesus macaques self-curing from a schistosome infection can display complete immunity to challenge. Nat Commun 2021; 12:6181. [PMID: 34702841 PMCID: PMC8548296 DOI: 10.1038/s41467-021-26497-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
The rhesus macaque provides a unique model of acquired immunity against schistosomes, which afflict >200 million people worldwide. By monitoring bloodstream levels of parasite-gut-derived antigen, we show that from week 10 onwards an established infection with Schistosoma mansoni is cleared in an exponential manner, eliciting resistance to reinfection. Secondary challenge at week 42 demonstrates that protection is strong in all animals and complete in some. Antibody profiles suggest that antigens mediating protection are the released products of developing schistosomula. In culture they are killed by addition of rhesus plasma, collected from week 8 post-infection onwards, and even more efficiently with post-challenge plasma. Furthermore, cultured schistosomula lose chromatin activating marks at the transcription start site of genes related to worm development and show decreased expression of genes related to lysosomes and lytic vacuoles involved with autophagy. Overall, our results indicate that enhanced antibody responses against the challenge migrating larvae mediate the naturally acquired protective immunity and will inform the route to an effective vaccine. To date there is only one single drug with modest efficacy and no vaccine available to protect from schistosomiasis. Here, Amaral et al. characterize the self-cure process of rhesus macaques following primary infection and secondary challenge with Schistosoma mansoni to inform future vaccine development studies.
Collapse
Affiliation(s)
| | - Daisy Woellner Santos
- Laboratório de Parasitologia, Instituto Butantan, Sao Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Adriana S A Pereira
- Laboratório de Parasitologia, Instituto Butantan, Sao Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | - Jorge Kalil
- Heart Institute, Faculty of Medicine, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Elisa M Tjon Kon Fat
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Claudia J de Dood
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul L A M Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Govert J van Dam
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eliana Nakano
- Laboratório de Parasitologia, Instituto Butantan, Sao Paulo, Brazil
| | | | | | - Ronaldo de Carvalho Augusto
- LBMC, Laboratoire de Biologie et Modélisation de la Cellule Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1210, Lyon, France.,IHPE, Univ. Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, France
| | - Christoph Grunau
- IHPE, Univ. Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, France
| | - R Alan Wilson
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, York, United Kingdom
| | - Sergio Verjovski-Almeida
- Laboratório de Parasitologia, Instituto Butantan, Sao Paulo, Brazil. .,Departamento de Bioquímica, Instituto de Química, Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
14
|
Tang Y, Zhou K, Guo Q, Chen C, Jia J, Guo Q, Lu K, Li H, Fu Z, Liu J, Lin J, Yu X, Hong Y. Characterisation and preliminary functional analysis of N-acetyltransferase 13 from Schistosoma japonicum. BMC Vet Res 2021; 17:335. [PMID: 34686208 PMCID: PMC8540080 DOI: 10.1186/s12917-021-03045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022] Open
Abstract
Background N-acetyltransferase 13 (NAT13) is a probable catalytic component of the ARD1A-NARG1 complex possessing alpha (N-terminal) acetyltransferase activity. Results In this study, a full-length complementary DNA (cDNA) encoding Schistosoma japonicum NAT13 (SjNAT13) was isolated from schistosome cDNAs. The 621 bp open reading frame of SjNAT13 encodes a polypeptide of 206 amino acids. Real-time PCR analysis revealed SjNAT13 expression in all tested developmental stages. Transcript levels were highest in cercariae and 21-day-old worms, and higher in male adult worms than female adult worms. The rSjNAT13 protein induced high levels of anti-rSjNAT13 IgG antibodies. In two independent immunoprotection trials, rSjNAT13 induced 24.23% and 24.47% reductions in the numbers of eggs in liver. RNA interference (RNAi) results showed that small interfering RNA (siRNA) Sj-514 significantly reduced SjNAT13 transcript levels in worms and decreased egg production in vitro. Conclusions Thus, rSjNAT13 might play an important role in the development and reproduction of schistosomes. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-03045-y.
Collapse
Affiliation(s)
- Yalan Tang
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Kerou Zhou
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Qingqing Guo
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Cheng Chen
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Jing Jia
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Qinghong Guo
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Ke Lu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Hao Li
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Zhiqiang Fu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Jinming Liu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Jiaojiao Lin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Xingang Yu
- College of Life Science and Engineering, Foshan University, Foshan, 528231, People's Republic of China.
| | - Yang Hong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China. .,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
15
|
Panzner U, Excler JL, Kim JH, Marks F, Carter D, Siddiqui AA. Recent Advances and Methodological Considerations on Vaccine Candidates for Human Schistosomiasis. FRONTIERS IN TROPICAL DISEASES 2021; 2:719369. [PMID: 39280170 PMCID: PMC11392908 DOI: 10.3389/fitd.2021.719369] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Schistosomiasis remains a neglected tropical disease of major public health concern with high levels of morbidity in various parts of the world. Although considerable efforts in implementing mass drug administration programs utilizing praziquantel have been deployed, schistosomiasis is still not contained. A vaccine may therefore be an essential part of multifaceted prevention control efforts. In the 1990s, a joint United Nations committee promoting parasite vaccines shortlisted promising candidates including for schistosomiasis discussed below. After examining the complexity of immune responses in human hosts infected with schistosomes, we review and discuss the antigen design and preclinical and clinical development of the four leading vaccine candidates: Sm-TSP-2 in Phase 1b/2b, Sm14 in Phase 2a/2b, Sm-p80 in Phase 1 preparation, and Sh28GST in Phase 3. Our assessment of currently leading vaccine candidates revealed some methodological issues that preclude a fair comparison between candidates and the rationale to advance in clinical development. These include (1) variability in animal models - in particular non-human primate studies - and predictive values of each for protection in humans; (2) lack of consensus on the assessment of parasitological and immunological parameters; (3) absence of reliable surrogate markers of protection; (4) lack of well-designed parasitological and immunological natural history studies in the context of mass drug administration with praziquantel. The controlled human infection model - while promising and unique - requires validation against efficacy outcomes in endemic settings. Further research is also needed on the impact of advanced adjuvants targeting specific parts of the innate immune system that may induce potent, protective and durable immune responses with the ultimate goal of achieving meaningful worm reduction.
Collapse
Affiliation(s)
- Ursula Panzner
- International Vaccine Institute, Seoul, South Korea
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Jerome H Kim
- International Vaccine Institute, Seoul, South Korea
| | - Florian Marks
- International Vaccine Institute, Seoul, South Korea
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- University of Antananarivo, Antananarivo, Madagascar
| | | | - Afzal A Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
16
|
Anisuzzaman, Frahm S, Prodjinotho UF, Bhattacharjee S, Verschoor A, Prazeres da Costa C. Host-Specific Serum Factors Control the Development and Survival of Schistosoma mansoni. Front Immunol 2021; 12:635622. [PMID: 33968028 PMCID: PMC8103320 DOI: 10.3389/fimmu.2021.635622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/06/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction Schistosomiasis is a neglected tropical disease (NTD) caused by blood-dwelling flatworms which develop from skin-penetrating cercariae, the freely swimming water-borne infective stage of Schistosoma mansoni, into adult worms. This natural course of infection can be mimicked in experimental mouse models of schistosomiasis. However, only a maximum of 20-30% of penetrated cercariae mature into fecund adults. The reasons for this are unknown but could potentially involve soluble factors of the innate immune system, such as complement factors and preexisting, natural antibodies. Materials and Methods Using our recently developed novel serum- and cell-free in vitro culture system for newly transformed schistosomula (NTS), which supports long-term larval survival, we investigated the effects of mouse serum and its major soluble complement factors C1q, C3, C4 as well as preexisting, natural IgM in vitro and assessed worm development in vivo by infecting complement and soluble (s)IgM-deficient animals. Results In contrast to sera from humans and a broad variety of mammalian species, serum from mice, surprisingly, killed parasites already at skin stage in vitro. Interestingly, the most efficient killing component(s) were heat-labile but did not include important members of the perhaps best known family of heat-labile serum factors, the complement system, nor consisted of complement-activating natural immunoglobulins. Infection of complement C1q and sIgM-deficient mice with S. mansoni as well as in vitro tests with sera from mice deficient in C3 and C4 revealed no major role for these soluble factors in vivo in regard to parasite maturation, fecundity and associated immunopathology. Rather, the reduction of parasite maturation from cercariae to adult worms was comparable to wild-type mice. Conclusion This study reveals that not yet identified heat-labile serum factors are major selective determinants of the host-specificity of schistosomiasis, by directly controlling schistosomal development and survival.
Collapse
Affiliation(s)
- Anisuzzaman
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
- Department of Parasitology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sören Frahm
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Ulrich Fabien Prodjinotho
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Sonakshi Bhattacharjee
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Admar Verschoor
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Clarissa Prazeres da Costa
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
- Centre for Global Health, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
17
|
Houlder EL, Costain AH, Cook PC, MacDonald AS. Schistosomes in the Lung: Immunobiology and Opportunity. Front Immunol 2021; 12:635513. [PMID: 33953712 PMCID: PMC8089482 DOI: 10.3389/fimmu.2021.635513] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/01/2021] [Indexed: 01/21/2023] Open
Abstract
Schistosome infection is a major cause of global morbidity, particularly in sub-Saharan Africa. However, there is no effective vaccine for this major neglected tropical disease, and re-infection routinely occurs after chemotherapeutic treatment. Following invasion through the skin, larval schistosomula enter the circulatory system and migrate through the lung before maturing to adulthood in the mesenteric or urogenital vasculature. Eggs released from adult worms can become trapped in various tissues, with resultant inflammatory responses leading to hepato-splenic, intestinal, or urogenital disease – processes that have been extensively studied in recent years. In contrast, although lung pathology can occur in both the acute and chronic phases of schistosomiasis, the mechanisms underlying pulmonary disease are particularly poorly understood. In chronic infection, egg-mediated fibrosis and vascular destruction can lead to the formation of portosystemic shunts through which eggs can embolise to the lungs, where they can trigger granulomatous disease. Acute schistosomiasis, or Katayama syndrome, which is primarily evident in non-endemic individuals, occurs during pulmonary larval migration, maturation, and initial egg-production, often involving fever and a cough with an accompanying immune cell infiltrate into the lung. Importantly, lung migrating larvae are not just a cause of inflammation and pathology but are a key target for future vaccine design. However, vaccine efforts are hindered by a limited understanding of what constitutes a protective immune response to larvae. In this review, we explore the current understanding of pulmonary immune responses and inflammatory pathology in schistosomiasis, highlighting important unanswered questions and areas for future research.
Collapse
Affiliation(s)
- Emma L Houlder
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Alice H Costain
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Peter C Cook
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
18
|
Farias LP, Vitoriano-Souza J, Cardozo LE, Gama LDR, Singh Y, Miyasato PA, Almeida GT, Rodriguez D, Barbosa MMF, Fernandes RS, Barbosa TC, Neto APDS, Nakano E, Ho PL, Verjovski-Almeida S, Nakaya HI, Wilson RA, Leite LCDC. Systems Biology Analysis of the Radiation-Attenuated Schistosome Vaccine Reveals a Role for Growth Factors in Protection and Hemostasis Inhibition in Parasite Survival. Front Immunol 2021; 12:624191. [PMID: 33777004 PMCID: PMC7996093 DOI: 10.3389/fimmu.2021.624191] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/06/2021] [Indexed: 12/31/2022] Open
Abstract
In spite of several decades of research, an effective vaccine against schistosomiasis remains elusive. The radiation-attenuated (RA) cercarial vaccine is still the best model eliciting high protection levels, although the immune mechanisms have not yet been fully characterized. In order to identify genes and pathways underlying protection we investigated patterns of gene expression in PBMC and skin draining Lymph Nodes (LN) from mice using two exposure comparisons: vaccination with 500 attenuated cercariae versus infection with 500 normal cercariae; one versus three doses. Vaccinated mice were challenged with 120 normal parasites. Integration of PBMC and LN data from the infected group revealed early up-regulation of pathways associated with Th2 skewing and polarization of IgG antibody profiles. Additionally, hemostasis pathways were downregulated in infected mice, correlating with platelet reduction, potentially a mechanism to assist parasite migration through capillary beds. Conversely, up regulation of such mechanisms after vaccination may explain parasite blockade in the lungs. In contrast, a single exposure to attenuated parasites revealed early establishment of a Th1 bias (signaling of IL-1, IFN-γ; and Leishmania infection). Genes encoding chemokines and their receptors were more prominent in vaccinated mice, indicating an enhanced capacity for inflammation, potentially augmenting the inhibition of intravascular migration. Increasing the vaccinations from one to three did not dramatically elevate protection, but there was a clear shift towards antibody-mediated effectors. However, elements of the Th1 bias were still evident. Notable features after three vaccinations were markers of cytotoxicity (including IL-6 and NK cells) together with growth factors and their receptors (FGFR/VEGF/EGF) and the apoptosis pathway. Indeed, there is evidence for the development of anergy after three vaccinations, borne out by the limited responses detected in samples after challenge. We infer that persistence of a Th1 response puts a limit on expression of antibody-mediated mechanisms. This feature may explain the failure of multiple doses to drive protection towards sterile immunity. We suggest that the secretions of lung stage parasites would make a novel cohort of antigens for testing in protection experiments.
Collapse
Affiliation(s)
- Leonardo Paiva Farias
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | | | | | | | - Youvika Singh
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Giulliana Tessarin Almeida
- Laboratorio de Parasitologia, Instituto Butantan, São Paulo, Brazil
- Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Dunia Rodriguez
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Mayra Mara Ferrari Barbosa
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia—USP-Butantan-IPT, São Paulo, Brazil
| | - Rafaela Sachetto Fernandes
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia—USP-Butantan-IPT, São Paulo, Brazil
| | | | - Almiro Pires da Silva Neto
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Eliana Nakano
- Laboratorio de Parasitologia, Instituto Butantan, São Paulo, Brazil
| | - Paulo Lee Ho
- Centro BioIndustrial, Instituto Butantan, São Paulo, Brazil
| | - Sergio Verjovski-Almeida
- Laboratorio de Parasitologia, Instituto Butantan, São Paulo, Brazil
- Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Helder Imoto Nakaya
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Robert Alan Wilson
- York Biomedical Research Institute, University of York, York, United Kingdom
| | | |
Collapse
|
19
|
Driciru E, Koopman JPR, Cose S, Siddiqui AA, Yazdanbakhsh M, Elliott AM, Roestenberg M. Immunological Considerations for Schistosoma Vaccine Development: Transitioning to Endemic Settings. Front Immunol 2021; 12:635985. [PMID: 33746974 PMCID: PMC7970007 DOI: 10.3389/fimmu.2021.635985] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
Despite mass drug administration programmes with praziquantel, the prevalence of schistosomiasis remains high. A vaccine is urgently needed to control transmission of this debilitating disease. As some promising schistosomiasis vaccine candidates are moving through pre-clinical and clinical testing, we review the immunological challenges that these vaccine candidates may encounter in transitioning through the clinical trial phases in endemic settings. Prior exposure of the target population to schistosomes and other infections may impact vaccine response and efficacy and therefore requires considerable attention. Schistosomes are known for their potential to induce T-reg/IL-10 mediated immune suppression in populations which are chronically infected. Moreover, endemicity of schistosomiasis is focal whereby target and trial populations may exhibit several degrees of prior exposure as well as in utero exposure which may increase heterogeneity of vaccine responses. The age dependent distribution of exposure and development of acquired immunity, and general differences in the baseline immunological profile, adds to the complexity of selecting suitable trial populations. Similarly, prior or concurrent infections with other parasitic helminths, viral and bacterial infections, may alter immunological responses. Consequently, treatment of co-infections may benefit the immunogenicity of vaccines and may be considered despite logistical challenges. On the other hand, viral infections leave a life-long immunological imprint on the human host. Screening for serostatus may be needed to facilitate interpretation of vaccine responses. Co-delivery of schistosome vaccines with PZQ is attractive from a perspective of implementation but may complicate the immunogenicity of schistosomiasis vaccines. Several studies have reported PZQ treatment to induce both transient and long-term immuno-modulatory effects as a result of tegument destruction, worm killing and subsequent exposure of worm antigens to the host immune system. These in turn may augment or antagonize vaccine immunogenicity. Understanding the complex immunological interactions between vaccine, co-infections or prior exposure is essential in early stages of clinical development to facilitate phase 3 clinical trial design and implementation policies. Besides well-designed studies in different target populations using schistosome candidate vaccines or other vaccines as models, controlled human infections could also help identify markers of immune protection in populations with different disease and immunological backgrounds.
Collapse
Affiliation(s)
- Emmanuella Driciru
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | | | - Stephen Cose
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Afzal A. Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University School of Medicine, Lubbock, TX, United States
- Department of Internal Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Alison M. Elliott
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
20
|
Farias LP, Vance GM, Coulson PS, Vitoriano-Souza J, Neto APDS, Wangwiwatsin A, Neves LX, Castro-Borges W, McNicholas S, Wilson KS, Leite LCC, Wilson RA. Epitope Mapping of Exposed Tegument and Alimentary Tract Proteins Identifies Putative Antigenic Targets of the Attenuated Schistosome Vaccine. Front Immunol 2021; 11:624613. [PMID: 33763055 PMCID: PMC7982949 DOI: 10.3389/fimmu.2020.624613] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/14/2020] [Indexed: 02/03/2023] Open
Abstract
The radiation-attenuated cercarial vaccine remains the gold standard for the induction of protective immunity against Schistosoma mansoni. Furthermore, the protection can be passively transferred to naïve recipient mice from multiply vaccinated donors, especially IFNgR KO mice. We have used such sera versus day 28 infection serum, to screen peptide arrays and identify likely epitopes that mediate the protection. The arrays encompassed 55 secreted or exposed proteins from the alimentary tract and tegument, the principal interfaces with the host bloodstream. The proteins were printed onto glass slides as overlapping 15mer peptides, reacted with primary and secondary antibodies, and reactive regions detected using an Agilent array scanner. Pep Slide Analyzer software provided a numerical value above background for each peptide from which an aggregate score could be derived for a putative epitope. The reactive regions of 26 proteins were mapped onto crystal structures using the CCP4 molecular graphics, to aid selection of peptides with the greatest accessibility and reactivity, prioritizing vaccine over infection serum. A further eight MEG proteins were mapped to regions conserved between family members. The result is a list of priority peptides from 44 proteins for further investigation in multiepitope vaccine constructs and as targets of monoclonal antibodies.
Collapse
Affiliation(s)
- Leonardo P. Farias
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Gillian M. Vance
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Patricia S. Coulson
- York Biomedical Research Institute, University of York, York, United Kingdom
| | | | - Almiro Pires da Silva Neto
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Arporn Wangwiwatsin
- Parasite Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Leandro Xavier Neves
- Instituto de Ciẽncias Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - William Castro-Borges
- Instituto de Ciẽncias Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Stuart McNicholas
- York Structural Biology Laboratory, University of York, York, United Kingdom
| | - Keith S. Wilson
- York Structural Biology Laboratory, University of York, York, United Kingdom
| | - Luciana C. C. Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - R. Alan Wilson
- York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
21
|
Wu HW, Park S, Pond-Tor S, Stuart R, Zhou S, Hong Y, Ruiz AE, Acosta L, Jarilla B, Friedman JF, Jiz M, Kurtis JD. Whole-Proteome Differential Screening Identifies Novel Vaccine Candidates for Schistosomiasis japonica. J Infect Dis 2021; 223:1265-1274. [PMID: 33606021 DOI: 10.1093/infdis/jiab085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/05/2021] [Indexed: 12/31/2022] Open
Abstract
Schistosomiasis remains a leading cause of chronic morbidity in endemic regions despite decades of widespread mass chemotherapy with praziquantel. Using our whole proteome differential screening approach, and plasma and epidemiologic data from a longitudinal cohort of individuals living in a Schistosoma japonicum-endemic region of the Philippines, we interrogated the parasite proteome to identify novel vaccine candidates for Schistosoma japonicum. We identified 16 parasite genes which encoded proteins that were recognized by immunoglobulin G or immunoglobulin E antibodies in the plasma of individuals who had developed resistance to reinfection, but were not recognized by antibodies in the plasma of individuals who remained susceptible to reinfection. Antibody levels to Sj6-8 and Sj4-1 measured in the entire cohort (N = 505) 1 month after praziquantel treatment were associated with significantly decreased risk of reinfection and lower intensity of reinfection over 18 months of follow-up.
Collapse
Affiliation(s)
- Hannah W Wu
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA.,Department of Pediatrics, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Sangshin Park
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA.,Department of Pediatrics, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA.,Graduate School of Urban Public Health, University of Seoul, Seoul, Republic of Korea
| | - Sunthorn Pond-Tor
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Ron Stuart
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Sha Zhou
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA.,Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Yang Hong
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, China
| | - Amanda E Ruiz
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Luz Acosta
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA.,Department of Immunology, Research Institute of Tropical Medicine, Manila, Philippines
| | - Blanca Jarilla
- Department of Immunology, Research Institute of Tropical Medicine, Manila, Philippines
| | - Jennifer F Friedman
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA.,Department of Pediatrics, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Mario Jiz
- Department of Immunology, Research Institute of Tropical Medicine, Manila, Philippines
| | - Jonathan D Kurtis
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA.,Department of Pathology and Laboratory Medicine, Brown University Medical School, Providence, Rhode Island, USA
| |
Collapse
|
22
|
Diaz Soria CL, Lee J, Chong T, Coghlan A, Tracey A, Young MD, Andrews T, Hall C, Ng BL, Rawlinson K, Doyle SR, Leonard S, Lu Z, Bennett HM, Rinaldi G, Newmark PA, Berriman M. Single-cell atlas of the first intra-mammalian developmental stage of the human parasite Schistosoma mansoni. Nat Commun 2020; 11:6411. [PMID: 33339816 PMCID: PMC7749135 DOI: 10.1038/s41467-020-20092-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/13/2020] [Indexed: 12/21/2022] Open
Abstract
Over 250 million people suffer from schistosomiasis, a tropical disease caused by parasitic flatworms known as schistosomes. Humans become infected by free-swimming, water-borne larvae, which penetrate the skin. The earliest intra-mammalian stage, called the schistosomulum, undergoes a series of developmental transitions. These changes are critical for the parasite to adapt to its new environment as it navigates through host tissues to reach its niche, where it will grow to reproductive maturity. Unravelling the mechanisms that drive intra-mammalian development requires knowledge of the spatial organisation and transcriptional dynamics of different cell types that comprise the schistomulum body. To fill these important knowledge gaps, we perform single-cell RNA sequencing on two-day old schistosomula of Schistosoma mansoni. We identify likely gene expression profiles for muscle, nervous system, tegument, oesophageal gland, parenchymal/primordial gut cells, and stem cells. In addition, we validate cell markers for all these clusters by in situ hybridisation in schistosomula and adult parasites. Taken together, this study provides a comprehensive cell-type atlas for the early intra-mammalian stage of this devastating metazoan parasite.
Collapse
Affiliation(s)
| | - Jayhun Lee
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Tracy Chong
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Avril Coghlan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Alan Tracey
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Matthew D Young
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Tallulah Andrews
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Christopher Hall
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Bee Ling Ng
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Kate Rawlinson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Stephen R Doyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Steven Leonard
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Zhigang Lu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Hayley M Bennett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.
| | - Phillip A Newmark
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, USA.
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.
| |
Collapse
|
23
|
Molehin AJ. Current Understanding of Immunity Against Schistosomiasis: Impact on Vaccine and Drug Development. Res Rep Trop Med 2020; 11:119-128. [PMID: 33173371 PMCID: PMC7646453 DOI: 10.2147/rrtm.s274518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease inflicting significant morbidity in humans worldwide. The disease is caused by infections with a parasitic trematode belonging to the genus Schistosoma. Over 250 million people are currently infected globally, with an estimated disability-adjusted life-years of 1.9 million attributed to the disease. Current understanding, based on several immunological studies using experimental and human models of schistosomiasis, reveals that complex immune mechanisms play off each other in the acquisition of immune resistance to infection/reinfection. Nevertheless, the precise characteristics of these responses, the specific antigens against which they are elicited, and how these responses are intricately regulated are still being investigated. What is apparent is that immunity to schistosome infections develops slowly and over a prolonged period of time, augmented by the death of adult worms occurring naturally or by praziquantel therapy. In this review, aspects of immunity to schistosomiasis, host–parasite interactions and their impact on schistosomiasis vaccine development are discussed.
Collapse
Affiliation(s)
- Adebayo J Molehin
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.,Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
24
|
Li XH, Vance GM, Cartwright J, Cao JP, Wilson RA, Castro-Borges W. Mapping the epitopes of Schistosoma japonicum esophageal gland proteins for incorporation into vaccine constructs. PLoS One 2020; 15:e0229542. [PMID: 32107503 PMCID: PMC7046203 DOI: 10.1371/journal.pone.0229542] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/07/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The development of a schistosome vaccine has proved challenging but we have suggested that characterisation of the self-cure mechanism in rhesus macaques might provide a route to an effective product. The schistosome esophagus is a complex structure where blood processing is initiated by secretions from anterior and posterior glands, achieved by a mixture of ~40 unique proteins. The mechanism of self-cure in macaques involves cessation of feeding, after which worms slowly starve to death. Antibody coats the esophagus lumen and disrupts the secretory processes from the glands, potentially making their secretions ideal vaccine targets. METHODOLOGY/PRINCIPAL FINDINGS We have designed three peptide arrays comprising overlapping 15-mer peptides encompassing 32 esophageal gland proteins, and screened them for reactivity against 22-week infection serum from macaques versus permissive rabbit and mouse hosts. There was considerable intra- and inter-species variation in response and no obvious unique target was associated with self-cure status, which suggests that self-cure is achieved by antibodies reacting with multiple targets. Some immuno-dominant sequences/regions were evident across species, notably including: MEGs 4.1C, 4.2, and 11 (Array 1); MEG-12 and Aspartyl protease (Array 2); a Tetraspanin 1 loop and MEG-n2 (Array 3). Responses to MEGs 8.1C and 8.2C were largely confined to macaques. As proof of principle, three synthetic genes were designed, comprising several key targets from each array. One of these was expressed as a recombinant protein and used to vaccinate rabbits. Higher antibody titres were obtained to the majority of reactive regions than those elicited after prolonged infection. CONCLUSIONS/SIGNIFICANCE It is feasible to test simultaneously the additive potential of multiple esophageal proteins to induce protection by combining their most reactive regions in artificial constructs that can be used to vaccinate suitable hosts. The efficacy of the approach to disrupt esophageal function now needs to be tested by a parasite challenge.
Collapse
Affiliation(s)
- Xiao-Hong Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Gillian M. Vance
- Centre for Immunology and Infection, Department of Biology, University of York, York, England, United Kingdom
| | - Jared Cartwright
- Protein Production Laboratory, Department of Biology, University of York, York, England, United Kingdom
| | - Jian-Ping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - R Alan Wilson
- Centre for Immunology and Infection, Department of Biology, University of York, York, England, United Kingdom
| | - William Castro-Borges
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brasil
| |
Collapse
|
25
|
Melkus MW, Le L, Siddiqui AJ, Molehin AJ, Zhang W, Lazarus S, Siddiqui AA. Elucidation of Cellular Responses in Non-human Primates With Chronic Schistosomiasis Followed by Praziquantel Treatment. Front Cell Infect Microbiol 2020; 10:57. [PMID: 32154190 PMCID: PMC7050631 DOI: 10.3389/fcimb.2020.00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
For decades, mass drug treatment with praziquantel (PZQ) has been utilized to treat schistosomiasis, yet reinfection and the risk of drug resistance are among the various factors precluding successful elimination of schistosomiasis. Tractable models that replicate "real world" field conditions are crucial to effectively evaluate putative schistosomiasis vaccines. Herein, we describe the cellular immune responses and cytokine expression profiles under field conditions that include prior infection with schistosomes followed by treatment with PZQ. Baboons were exposed to Schistosoma mansoni cercariae through trickle infection over 5 weeks, allowed for chronic disease to develop, and then treated with PZQ. Peripheral blood mononuclear cells (PBMCs) were monitored for cellular immune response(s) at each disease stage and PZQ therapy. After initial infection and during chronic disease, there was an increase in non-classical monocytes, NK and NKT cells while the CD4:CD8 T cell ratio inverted from a 2:1 to 1:2.5. The cytokine expressions of PBMCs after trickle infections were polarized more toward a Th2 response with a gradual increase in Th1 cytokine expression at chronic disease stage. Following PZQ treatment, with the exception of an increase in B cells, immune cell populations reverted back toward naïve levels; however, expression of almost all Th1, Th2, and Th17 cytokines was significantly increased. This preliminary study is the first to follow the cellular immune response and cytokine expression profiles in a non-human primate model simulating field conditions of schistosomiasis and PZQ therapy, providing a promising reference in predicting the immune response to future vaccines for schistosomiasis.
Collapse
Affiliation(s)
- Michael W Melkus
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Loc Le
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Arif J Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Biology, University of Hail, Hail, Saudi Arabia
| | - Adebayo J Molehin
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Weidong Zhang
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Samra Lazarus
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Afzal A Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
26
|
Schistosomiasis-from immunopathology to vaccines. Semin Immunopathol 2020; 42:355-371. [PMID: 32076812 PMCID: PMC7223304 DOI: 10.1007/s00281-020-00789-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/05/2020] [Indexed: 12/18/2022]
Abstract
Schistosomiasis (bilharzia) is a neglected tropical disease caused by trematode worms of the genus Schistosoma. The transmission cycle involves human (or other mammalian) water contact with surface water contaminated by faeces or urine, as well as specific freshwater snails acting as intermediate hosts. The main disease-causing species are S. haematobium, S. mansoni and S. japonicum. According to the World Health Organisation, over 250 million people are infected worldwide, leading to considerable morbidity and the estimated loss of 1.9 million disability-adjusted life years (DALYs), a likely underestimated figure. Schistosomiasis is characterised by focal epidemiology and an over-dispersed population distribution, with higher infection rates in children. Complex immune mechanisms lead to the slow acquisition of immune resistance, but innate factors also play a part. Acute schistosomiasis, a feverish syndrome, is most evident in travellers following a primary infection. Chronic schistosomiasis affects mainly individuals with long-standing infections residing in poor rural areas. Immunopathological reactions against schistosome eggs trapped in host tissues lead to inflammatory and obstructive disease in the urinary system (S. haematobium) or intestinal disease, hepatosplenic inflammation and liver fibrosis (S. mansoni and S. japonicum). An effective drug—praziquantel—is available for treatment but, despite intensive efforts, no schistosomiasis vaccines have yet been accepted for public use. In this review, we briefly introduce the schistosome parasites and the immunopathogenic manifestations resulting from schistosomiasis. We then explore aspects of the immunology and host-parasite interplay in schistosome infections paying special attention to the current status of schistosomiasis vaccine development highlighting the advancement of a new controlled human challenge infection model for testing schistosomiasis vaccines.
Collapse
|
27
|
Mota EA, do Patrocínio AB, Rodrigues V, da Silva JS, Pereira VC, Guerra-Sá R. Epigenetic and parasitological parameters are modulated in EBi3-/- mice infected with Schistosoma mansoni. PLoS Negl Trop Dis 2020; 14:e0008080. [PMID: 32078636 PMCID: PMC7053770 DOI: 10.1371/journal.pntd.0008080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/03/2020] [Accepted: 01/22/2020] [Indexed: 12/16/2022] Open
Abstract
Schistosoma mansoni adaptive success is related to regulation of replication, transcription and translation inside and outside the intermediate and definitive host. We hypothesize that S. mansoni alters its epigenetic state in response to the mammalian host immune system, reprogramming gene expression and altering the number of eggs. In response, a change in the DNA methylation profile of hepatocytes could occurs, modulating the extent of hepatic granuloma. To investigate this hypothesis, we used the EBi3-/- murine (Mus musculus) model of S. mansoni infection and evaluated changes in new and maintenance DNA methylation profiles in the liver after 55 days of infection. We evaluated expression of epigenetic genes and genes linked to histone deubiquitination in male and female S. mansoni worms. Comparing TET expression with DNMT expression indicated that DNA demethylation exceeds methylation in knockout infected and uninfected mice and in wild-type infected and uninfected mice. S. mansoni infection provokes activation of demethylation in EBi3-/-I mice (knockout infected). EBi3-/-C (knockout uninfected) mice present intrinsically higher DNA methylation than WTC (control uninfected) mice. EBi3-/-I mice show decreased hepatic damage considering volume and reduced number of granulomas compared to WTI mice; the absence of IL27 and IL35 pathways decreases the Th1 response resulting in minor liver damage. S. mansoni males and females recovered from EBi3-/-I mice have reduced expression of a deubiquitinating enzyme gene, orthologs of which target histones and affect chromatin state. SmMBD and SmHDAC1 expression levels are downregulated in male and female parasites recovered from EBi3-/-, leading to epigenetic gene downregulation in S. mansoni. Changes to the immunological background thus induce epigenetic changes in hepatic tissues and alterations in S. mansoni gene expression, which attenuate liver symptoms in the acute phase of schistosomiasis.
Collapse
Affiliation(s)
- Ester Alves Mota
- Biochemistry and Molecular Biology Laboratory, Department of Biological Sciences, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
| | - Andressa Barban do Patrocínio
- Universidade de São Paulo, Medicine Faculty of Ribeirão Preto, Department of Biochemistry and Immunology; Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| | - Vanderlei Rodrigues
- Universidade de São Paulo, Medicine Faculty of Ribeirão Preto, Department of Biochemistry and Immunology; Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| | - João Santana da Silva
- Universidade de São Paulo, Medicine Faculty of Ribeirão Preto, Department of Biochemistry and Immunology; Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa Carregaro Pereira
- Universidade de São Paulo, Medicine Faculty of Ribeirão Preto, Department of Biochemistry and Immunology; Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| | - Renata Guerra-Sá
- Biochemistry and Molecular Biology Laboratory, Department of Biological Sciences, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
28
|
Molehin AJ. Schistosomiasis vaccine development: update on human clinical trials. J Biomed Sci 2020; 27:28. [PMID: 31969170 PMCID: PMC6977295 DOI: 10.1186/s12929-020-0621-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/16/2020] [Indexed: 01/13/2023] Open
Abstract
Schistosomiasis causes significant levels of morbidity and mortality in many geographical regions of the world. The disease is caused by infections with parasitic blood flukes known as schistosomes. The control of schistosomiasis over the last several decades has been centered on the mass drug administration (MDA) of praziquantel (PZQ), which is the only drug currently available for treatment. Despite the concerted efforts of MDA programs, the prevalence and transmission of schistosomiasis has remained largely unchecked due to the fact that PZQ is ineffective against juvenile schistosomes, does not prevent re-infection and the emergence of PZQ-resistant parasites. In addition, other measures such as the water, sanitation and hygiene programs and snail intermediate hosts control have had little to no impact. These drawbacks indicate that the current control strategies are severely inadequate at interrupting transmission and therefore, implementation of other control strategies are required. Ideally, an efficient vaccine is what is needed for long term protection thereby eliminating the current efforts of repeated mass drug administration. However, the general consensus in the field is that the integration of a viable vaccine with MDA and other control measures offer the best chance of achieving the goal of schistosomiasis elimination. This review focuses on the present status of schistosomiasis vaccine candidates in different phases of human clinical trials and provide some insight into future vaccine discovery and design.
Collapse
Affiliation(s)
- Adebayo J Molehin
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA. .,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA.
| |
Collapse
|
29
|
Crosnier C, Brandt C, Rinaldi G, McCarthy C, Barker C, Clare S, Berriman M, Wright GJ. Systematic screening of 96 Schistosoma mansoni cell-surface and secreted antigens does not identify any strongly protective vaccine candidates in a mouse model of infection. Wellcome Open Res 2019; 4:159. [PMID: 31728414 PMCID: PMC6833992 DOI: 10.12688/wellcomeopenres.15487.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2019] [Indexed: 01/13/2023] Open
Abstract
Background: Schistosomiasis is a major parasitic disease affecting people living in tropical and sup-tropical areas. Transmission of the parasite has been reported in 78 countries, causing significant morbidity and around 200,000 deaths per year in endemic regions. The disease is currently managed by the mass-administration of praziquantel to populations at risk of infection; however, the reliance on a single drug raises the prospect of parasite resistance to the only treatment widely available. The development of an effective vaccine would be a more powerful method of control, but none currently exists and the identification of new immunogens that can elicit protective immune responses therefore remains a priority. Because of the complex nature of the parasite life cycle, identification of new vaccine candidates has mostly relied on the use of animal models and on a limited set of recombinant proteins. Methods: In this study, we have established an infrastructure for testing a large number of vaccine candidates in mice and used it to screen 96 cell-surface and secreted recombinant proteins from Schistosoma mansoni. This approach, using standardised immunisation and percutaneous infection protocols, allowed us to compare an extensive set of antigens in a systematic manner. Results: Although some vaccine candidates were associated with a statistically significant reduction in the number of eggs in the initial screens, these observations could not be repeated in subsequent challenges and none of the proteins studied were associated with a strongly protective effect against infection. Conclusions: Although no antigens individually induced reproducible and strongly protective effects using our vaccination regime, we have established the experimental infrastructures to facilitate large-scale systematic subunit vaccine testing for schistosomiasis in a murine infection model.
Collapse
Affiliation(s)
| | | | | | | | - Colin Barker
- Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Simon Clare
- Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | | | | |
Collapse
|
30
|
Alves CC, Araujo N, Bernardes WPDOS, Mendes MM, Oliveira SC, Fonseca CT. A Strong Humoral Immune Response Induced by a Vaccine Formulation Containing rSm29 Adsorbed to Alum Is Associated With Protection Against Schistosoma mansoni Reinfection in Mice. Front Immunol 2018; 9:2488. [PMID: 30450095 PMCID: PMC6224358 DOI: 10.3389/fimmu.2018.02488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/08/2018] [Indexed: 01/17/2023] Open
Abstract
The helminth Schistosoma mansoni is one of main causes of human schistosomiasis, a health and economic concern in some of the world's poorest countries. Current treatment regimens can lead to serious side effects and are not suitable for breastfeeding mothers. As such, efforts have been undertaken to develop a vaccine to prevent infection. Of these, Sm29 is a promising candidate that has been associated with resistance to infection/reinfection in humans and mice. Its ability to induce resistance to reinfection has also been recently demonstrated using a vaccine formulation containing Freund's adjuvant. However, Freund's adjuvant is unsuitable for use in human vaccines. We therefore evaluated the ability of Sm29 to induce protection against S. mansoni reinfection when formulated with either alum or MPLA as an adjuvant, both approved for human use. Our data demonstrate that, in contrast to Sm29 with MPLA, Sm29 with alum reduced parasite burden after reinfection compared to a control. We next investigated whether the immune response was involved in creating the differences between the protective (Sm29Alum) and non-protective (Sm29MPLA) vaccine formulations. We observed that both formulations induced a similar mixed-profile immune response, however, the Sm29 with alum formulation raised the levels of antibodies against Sm29. This suggests that there is an association between a reduction in worm burden and parasite-specific antibodies. In summary, our data show that Sm29 with an alum adjuvant can successfully protect against S. mansoni reinfection in mice, indicating a potentially effective vaccine formulation that could be applied in humans.
Collapse
Affiliation(s)
- Clarice Carvalho Alves
- Laboratório de Biologia e Imunologia de Doenças Infeciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Neusa Araujo
- Laboratório de Esquistossomose, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | | | - Mariana Moreira Mendes
- Laboratório de Biologia e Imunologia de Doenças Infeciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Sergio Costa Oliveira
- Laboratório de Imunologia de doenças Infeciosas, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Ciências e Tecnologia em Doenças Tropicais, CNPq, MCT, Salvador, Brazil
| | - Cristina Toscano Fonseca
- Laboratório de Biologia e Imunologia de Doenças Infeciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| |
Collapse
|
31
|
You H, Harvie M, Du X, Rivera V, Zhang P, McManus DP. Protective Immune Responses Generated in a Murine Model Following Immunization with Recombinant Schistosoma japonicum Insulin Receptor. Int J Mol Sci 2018; 19:ijms19103088. [PMID: 30304851 PMCID: PMC6213549 DOI: 10.3390/ijms19103088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023] Open
Abstract
There is a pressing need to develop vaccines for schistosomiasis given the current heavy dependency on praziquantel as the only available drug for treatment. We previously showed the ligand domain of the Schistosoma japonicum insulin receptor 1 and 2 (rSjLD1 and 2) fusion proteins conferred solid protection in mice against challenge infection with S. japonicum. To improve vaccine efficacy, we compared the immunogenicity and protective efficacy of rSjLD1 on its own and in combination with S. japonicum triose-phosphate isomerase (SjTPI), formulated with either of two adjuvants (QuilA and montanide ISA 720VG) in murine vaccine trials against S. japonicum challenge. The level of protection was higher in mice vaccinated only with rSjLD1 formulated with either adjuvant; rSjTPI or the rSjTPI-rSjLD1 combination resulted in a lower level of protection. Mirroring our previous results, there were significant reductions in the number of female worms (30–44%), faecal eggs (61–68%), liver eggs (44–56%), intestinal eggs (46–48%) and mature intestinal eggs (58–63%) in the rSjLD1-vaccinated mice compared with the adjuvant only groups. At 6-weeks post-cercarial challenge, a significantly increased production of interferon gamma (IFNγ) in rSjLD1-stimulated splenic CD4+ T cells was observed in the rSjLD1-vaccinated mice suggesting a Th1-type response is associated with the generated level of protective efficacy.
Collapse
Affiliation(s)
- Hong You
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane QLD4006, Queensland, Australia.
| | - Marina Harvie
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane QLD4006, Queensland, Australia.
| | - Xiaofeng Du
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane QLD4006, Queensland, Australia.
| | - Vanessa Rivera
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane QLD4006, Queensland, Australia.
| | - Ping Zhang
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Brisbane QLD4006, Queensland, Australia.
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane QLD4006, Queensland, Australia.
| |
Collapse
|
32
|
Zhang W, Molehin AJ, Rojo JU, Sudduth J, Ganapathy PK, Kim E, Siddiqui AJ, Freeborn J, Sennoune SR, May J, Lazarus S, Nguyen C, Redman WK, Ahmad G, Torben W, Karmakar S, Le L, Kottapalli KR, Kottapalli P, Wolf RF, Papin JF, Carey D, Gray SA, Bergthold JD, Damian RT, Mayer BT, Marks F, Reed SG, Carter D, Siddiqui AA. Sm-p80-based schistosomiasis vaccine: double-blind preclinical trial in baboons demonstrates comprehensive prophylactic and parasite transmission-blocking efficacy. Ann N Y Acad Sci 2018; 1425:38-51. [PMID: 30133707 PMCID: PMC6110104 DOI: 10.1111/nyas.13942] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 01/01/2023]
Abstract
Schistosomiasis is of public health importance to an estimated one billion people in 79 countries. A vaccine is urgently needed. Here, we report the results of four independent, double-blind studies of an Sm-p80-based vaccine in baboons. The vaccine exhibited potent prophylactic efficacy against transmission of Schistosoma mansoni infection and was associated with significantly less egg-induced pathology, compared with unvaccinated control animals. Specifically, the vaccine resulted in a 93.45% reduction of pathology-producing female worms and significantly resolved the major clinical manifestations of hepatic/intestinal schistosomiasis by reducing the tissue egg-load by 89.95%. A 35-fold decrease in fecal egg excretion in vaccinated animals, combined with an 81.51% reduction in hatching of eggs into the snail-infective stage (miracidia), demonstrates the parasite transmission-blocking potential of the vaccine. Substantially higher Sm-p80 expression in female worms and Sm-p80-specific antibodies in vaccinated baboons appear to play an important role in vaccine-mediated protection. Preliminary analyses of RNA sequencing revealed distinct molecular signatures of vaccine-induced effects in baboon immune effector cells. This study provides comprehensive evidence for the effectiveness of an Sm-p80-based vaccine for schistosomiasis.
Collapse
Affiliation(s)
- Weidong Zhang
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Adebayo J. Molehin
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Juan U. Rojo
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH
| | - Justin Sudduth
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Pramodh K. Ganapathy
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Eunjee Kim
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Arif J. Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Jasmin Freeborn
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Souad R. Sennoune
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Jordan May
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Samra Lazarus
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Catherine Nguyen
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Whitni K. Redman
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Gul Ahmad
- Department of Natural Sciences, Peru State College, Peru, NE
| | | | - Souvik Karmakar
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Loc Le
- Biomedical Research Institute, Rockville, MD
| | | | | | - Roman F. Wolf
- Oklahoma City VA Health Care System, Oklahoma City, OK
| | - James F. Papin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - David Carey
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | | | | | - Raymond T. Damian
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| | - Bryan T. Mayer
- Vaccine Immunology Statistical Center, Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Florian Marks
- International Vaccine Institute SNU Research Park, Seoul, South Korea
- The Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Darrick Carter
- PAI Life Sciences, Seattle, Washington, WA
- Infectious Disease Research Institute, Seattle, WA
| | - Afzal A. Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| |
Collapse
|
33
|
Zhang W, Ahmad G, Molehin AJ, Torben W, Le L, Kim E, Lazarus S, Siddiqui AJ, Carter D, Siddiqui AA. Schistosoma mansoni antigen Sm-p80: prophylactic efficacy using TLR4 agonist vaccine adjuvant glucopyranosyl lipid A-Alum in murine and non-human primate models. J Investig Med 2018; 66:1124-1132. [PMID: 29997146 PMCID: PMC6288690 DOI: 10.1136/jim-2018-000786] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2018] [Indexed: 01/06/2023]
Abstract
Sm-p80, the large subunit of Schistosoma mansoni calpain, is a leading candidate for a schistosomiasis vaccine. The prophylactic and antifecundity efficacy of Sm-p80 has been tested in three animal models (mouse, hamster and baboon) using a multitude of vaccine formulations and approaches. In our continual effort to enhance the vaccine efficacy, in this study, we have utilized the adjuvant, synthetic hexa-acylated lipid A derivative, glucopyranosyl lipid A (GLA) formulated in aluminum (GLA-Alum) with recombinant Sm-p80. The rSm-p80+GLA-Alum immunization regimen provided 33.33%–53.13% reduction in worm burden in the mouse model and 38% worm burden reduction in vaccinated baboons. Robust Sm-p80-specific immunoglobulin (Ig)G, IgG1, IgG2a and IgM responses were observed in all immunized animals. The rSm-p80+GLA-Alum coadministration induced a mix of T-helper (Th) cells (Th1, Th2 and Th17) responses as determined via the release of interleukin (IL)-2, IL-4, IL-18, IL-21, IL-22 and interferon-γ.
Collapse
Affiliation(s)
- Weidong Zhang
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Gul Ahmad
- Department of Natural Sciences, School of Arts & Sciences, Peru State College, Peru, Nebraska, USA
| | - Adebayo J Molehin
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Workineh Torben
- Comparative Pathology/Immunology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Loc Le
- Bladder Immunology Group, Biomedical Research Institute, Rockville, Maryland, USA
| | - Eunjee Kim
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Samra Lazarus
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Arif J Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | | | - Afzal A Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
34
|
Siddiqui AJ, Molehin AJ, Zhang W, Ganapathy PK, Kim E, Rojo JU, Redman WK, Sennoune SR, Sudduth J, Freeborn J, Hunter D, Kottapalli KR, Kottapalli P, Wettashinghe R, van Dam GJ, Corstjens PLAM, Papin JF, Carey D, Torben W, Ahmad G, Siddiqui AA. Sm-p80-based vaccine trial in baboons: efficacy when mimicking natural conditions of chronic disease, praziquantel therapy, immunization, and Schistosoma mansoni re-encounter. Ann N Y Acad Sci 2018; 1425:19-37. [PMID: 29888790 DOI: 10.1111/nyas.13866] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 11/28/2022]
Abstract
Sm-p80-based vaccine efficacy for Schistosoma mansoni was evaluated in a baboon model of infection and disease. The study was designed to replicate a human vaccine implementation scenario for endemic regions in which vaccine would be administered following drug treatment of infected individuals. In our study, the Sm-p80-based vaccine reduced principal pathology producing hepatic egg burdens by 38.0% and egg load in small and large intestines by 72.2% and 49.4%, respectively, in baboons. Notably, hatching rates of eggs recovered from liver and small and large intestine of vaccinated animals were significantly reduced, by 60.4%, 48.6%, and 82.3%, respectively. Observed reduction in egg maturation/hatching rates was supported by immunofluorescence and confocal microscopy showing unique differences in Sm-p80 expression in worms of both sexes and matured eggs. Vaccinated baboons had a 64.5% reduction in urine schistosome circulating anodic antigen, a parameter that reflects worm numbers/health status in infected hosts. Preliminary analyses of RNA sequencing revealed unique genes and canonical pathways associated with establishment of chronic disease, praziquantel-mediated parasite killing, and Sm-p80-mediated protection in vaccinated baboons. Overall, our study demonstrated efficacy of the Sm-p80 vaccine and provides insight into some of the epistatic interactions associated with protection.
Collapse
Affiliation(s)
- Arif J Siddiqui
- School of Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Adebayo J Molehin
- School of Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Weidong Zhang
- School of Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Pramodh K Ganapathy
- School of Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Eunjee Kim
- School of Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Juan U Rojo
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire
| | - Whitni K Redman
- School of Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Souad R Sennoune
- School of Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Justin Sudduth
- School of Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Jasmin Freeborn
- School of Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Derick Hunter
- School of Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | | | - Pratibha Kottapalli
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, Texas
| | | | - Govert J van Dam
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Paul L A M Corstjens
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - James F Papin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - David Carey
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Workineh Torben
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana
| | - Gul Ahmad
- Department of Biology, School of Arts & Sciences, Peru State College, Peru, Nebraska
| | - Afzal A Siddiqui
- School of Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
35
|
Schistosome vaccines: problems, pitfalls and prospects. Emerg Top Life Sci 2017; 1:641-650. [PMID: 33525844 DOI: 10.1042/etls20170094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022]
Abstract
Human schistosomiasis caused by parasitic flatworms of the genus Schistosoma remains an important public health problem in spite of concerted efforts at control. An effective vaccine would be a useful addition to control strategies that currently rely on chemotherapy, but such a product is not imminent. In this review, likely causes for the lack of progress are first considered. These include the strategies used by worms to evade the immune response, concepts that have misdirected the field, an emphasis on internal antigens, and the use of the laboratory mouse for vaccine testing. On a positive note, recent investigations on self-cure by the rhesus macaque offer the most promising context for vaccine development. The identification of proteins at the parasite-host interface, especially those of the esophageal glands involved in blood processing, has provided an entirely new category of vaccine candidates that merit evaluation.
Collapse
|
36
|
Signalling pathways in schistosomes: novel targets for control interventions against schistosomiasis. Emerg Top Life Sci 2017; 1:633-639. [PMID: 33525854 DOI: 10.1042/etls20170093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/24/2017] [Accepted: 10/31/2017] [Indexed: 11/17/2022]
Abstract
Over the last decade, there has been accumulating evidence showing that signalling pathways are involved in extensive biological and physiological processes in the human blood fluke schistosomes, playing essential roles in environmental sensing, host penetration, growth, development, maturation, embryogenesis, tissue self-renewal and survival. Owing to the likelihood of resistance developing against praziquantel, the only drug currently available that is effective against all the human schistosome species, there is an urgent requirement for an alternative treatment, arguing for continuing research into novel or repurposed anti-schistosomal drugs. An increasing number of anticancer drugs are being developed which block abnormal signalling pathways, a feature that has stimulated interest in developing novel interventions against human schistosomiasis by targeting key cell signalling components. In this review, we discuss the functional characterization of signal transduction pathways in schistosomes and consider current challenges and future perspectives in this important area of research.
Collapse
|
37
|
Protection against Schistosoma haematobium infection in hamsters by immunization with Schistosoma mansoni gut-derived cysteine peptidases, SmCB1 and SmCL3. Vaccine 2017; 35:6977-6983. [PMID: 29122387 DOI: 10.1016/j.vaccine.2017.10.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/15/2017] [Accepted: 10/20/2017] [Indexed: 01/21/2023]
Abstract
We examined the immunogenicity and protective potential of SmCB1 and SmCL3 cysteine peptidases, alone and in combination, in hamsters challenged with S. haematobium. For each of two independent experiments, eight Syrian hamsters were immunized twice with a three week-interval with 0 (controls), 20 µg SmCB1, 20 µg SmCL3, or 10 µg SmCB1 plus 10 µg SmCL3, and then percutaneously exposed eight weeks later to 100 S. haematobium cercariae. Hamsters from each group were assessed for humoral and whole blood culture cytokine responses on day 10 post challenge infection, and examined for parasitological parameters 12 weeks post infection. At day 10 post-infection we found that SmCB1 and SmCL3 elicited low antibody titres and weak but polarized cytokine type 2 responses. Nevertheless, both cysteine peptidases, alone or in combination, evoked reproducible and highly significant reduction in challenge worm burden (>70%, P < 0.02) as well as a significant reduction in worm egg counts and viability. The data support our previous findings and show that S. mansoni cysteine peptidases SmCB1 and SmCL3 are efficacious adjuvant-free vaccines that induce protection in mice and hamsters against both S. mansoni and S. haematobium.
Collapse
|
38
|
Molehin AJ, Sennoune SR, Zhang W, Rojo JU, Siddiqui AJ, Herrera KA, Johnson L, Sudduth J, May J, Siddiqui AA. Cross-species prophylactic efficacy of Sm-p80-based vaccine and intracellular localization of Sm-p80/Sm-p80 ortholog proteins during development in Schistosoma mansoni, Schistosoma japonicum, and Schistosoma haematobium. Parasitol Res 2017; 116:3175-3188. [PMID: 29026995 PMCID: PMC5660642 DOI: 10.1007/s00436-017-5634-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
Schistosomiasis remains a major global health problem. Despite large-scale schistosomiasis control efforts, clear limitations such as possible emergence of drug resistance and reinfection rates highlight the need for an effective schistosomiasis vaccine. Schistosoma mansoni large subunit of calpain (Sm-p80)-based vaccine formulations have shown remarkable efficacy in protecting against S. mansoni challenge infections in mice and baboons. In this study, we evaluated the cross-species protective efficacy of Sm-p80 vaccine against S. japonicum and S. haematobium challenge infections in rodent models. We also elucidated the expression of Sm-p80 and Sm-p80 ortholog proteins in different developmental stages of S. mansoni, S. haematobium, and S. japonicum. Immunization with Sm-p80 vaccine reduced worm burden by 46.75% against S. japonicum challenge infection in mice. DNA prime/protein boost (1 + 1 dose administered on a single day) resulted in 26.95% reduction in worm burden in S. haematobium-hamster infection/challenge model. A balanced Th1 (IFN-γ, TNF-α, IL-2, and IL-12) and Th2 (IL-4, IgG1) type of responses were observed following vaccination in both S. japonicum and S. haematobium challenge trials and these are associated with the prophylactic efficacy of Sm-p80 vaccine. Immunohistochemistry demonstrated that Sm-p80/Sm-p80 ortholog proteins are expressed in different life cycle stages of the three major human species of schistosomes studied. The data presented in this study reinforce the potential of Sm-p80-based vaccine for both hepatic/intestinal and urogenital schistosomiasis occurring in different geographical areas of the world. Differential expression of Sm-p80/Sm-p80 protein orthologs in different life cycle makes this vaccine potentially useful in targeting different levels of infection, disease, and transmission.
Collapse
Affiliation(s)
- Adebayo J Molehin
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Souad R Sennoune
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Weidong Zhang
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Juan U Rojo
- College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, USA
| | - Arif J Siddiqui
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Karlie A Herrera
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Laura Johnson
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Justin Sudduth
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jordan May
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Afzal A Siddiqui
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
39
|
Tallima H, Dvořák J, Kareem S, Abou El Dahab M, Abdel Aziz N, Dalton JP, El Ridi R. Protective immune responses against Schistosoma mansoni infection by immunization with functionally active gut-derived cysteine peptidases alone and in combination with glyceraldehyde 3-phosphate dehydrogenase. PLoS Negl Trop Dis 2017; 11:e0005443. [PMID: 28346516 PMCID: PMC5386297 DOI: 10.1371/journal.pntd.0005443] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/10/2017] [Accepted: 02/27/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Schistosomiasis, a severe disease caused by parasites of the genus Schistosoma, is prevalent in 74 countries, affecting more than 250 million people, particularly children. We have previously shown that the Schistosoma mansoni gut-derived cysteine peptidase, cathepsin B1 (SmCB1), administered without adjuvant, elicits protection (>60%) against challenge infection of S. mansoni or S. haematobium in outbred, CD-1 mice. Here we compare the immunogenicity and protective potential of another gut-derived cysteine peptidase, S. mansoni cathepsin L3 (SmCL3), alone, and in combination with SmCB1. We also examined whether protective responses could be boosted by including a third non-peptidase schistosome secreted molecule, glyceraldehyde 3-phosphate dehydrogenase (SG3PDH), with the two peptidases. METHODOLOGY/PRINCIPAL FINDINGS While adjuvant-free SmCB1 and SmCL3 induced type 2 polarized responses in CD-1 outbred mice those elicited by SmCL3 were far weaker than those induced by SmCB1. Nevertheless, both cysteine peptidases evoked highly significant (P < 0.005) reduction in challenge worm burden (54-65%) as well as worm egg counts and viability. A combination of SmCL3 and SmCB1 did not induce significantly stronger immune responses or higher protection than that achieved using each peptidase alone. However, when the two peptidases were combined with SG3PDH the levels of protection against challenge S. mansoni infection reached 70-76% and were accompanied by highly significant (P < 0.005) decreases in worm egg counts and viability. Similarly, high levels of protection were achieved in hamsters immunized with the cysteine peptidase/SG3PDH-based vaccine. CONCLUSIONS/SIGNIFICANCE Gut-derived cysteine peptidases are highly protective against schistosome challenge infection when administered subcutaneously without adjuvant to outbred CD-1 mice and hamsters, and can also act to enhance the efficacy of other schistosome antigens, such as SG3PDH. This cysteine peptidase-based vaccine should now be advanced to experiments in non-human primates and, if shown promise, progressed to Phase 1 safety trials in humans.
Collapse
Affiliation(s)
- Hatem Tallima
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
- Department of Chemistry, School of Science and Engineering, American University in Cairo, New Cairo, Cairo, Egypt
| | - Jan Dvořák
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Sahira Kareem
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Nada Abdel Aziz
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - John Pius Dalton
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Northern Ireland, United Kingdom
- * E-mail: (JPD); (RER)
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
- * E-mail: (JPD); (RER)
| |
Collapse
|
40
|
Sm-p80-Based Schistosomiasis Vaccine: Preparation for Human Clinical Trials. Trends Parasitol 2016; 33:194-201. [PMID: 27865740 DOI: 10.1016/j.pt.2016.10.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/04/2016] [Accepted: 10/25/2016] [Indexed: 12/17/2022]
Abstract
Mass antiparasitic drug administration programs and other control strategies have made important contributions in reducing the global prevalence of helminths. Schistosomiasis, however, continues to spread to new geographic areas. The advent of a viable vaccine and its deployment, coupled with existing control efforts, is expected to make significant headway towards sustained schistosomiasis control. In 2016, Science ranked the schistosomiasis vaccine as one of the top 10 vaccines that needs to be urgently developed. A vaccine that is effective against geographically distinct forms of intestinal/hepatic and urinary disease is essential to make a meaningful impact in global reduction of the disease burden. In this opinion article, we focus on salient features of schistosomiasis vaccines in different phases of the clinical development pipeline and highlight the Sm-p80-based vaccine which is now being prepared for human clinical trials.
Collapse
|
41
|
Tebeje BM, Harvie M, You H, Loukas A, McManus DP. Schistosomiasis vaccines: where do we stand? Parasit Vectors 2016; 9:528. [PMID: 27716365 PMCID: PMC5045607 DOI: 10.1186/s13071-016-1799-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022] Open
Abstract
Schistosomiasis, caused mainly by S. mansoni, S. haematobium and S. japonicum, continues to be a serious tropical disease and public health problem resulting in an unacceptably high level of morbidity in countries where it is endemic. Praziquantel, the only drug currently available for treatment, is unable to kill developing schistosomes, it does not prevent re-infection and its continued extensive use may result in the future emergence of drug-resistant parasites. This scenario provides impetus for the development and deployment of anti-schistosome vaccines to be used as part of an integrated approach for the prevention, control and eventual elimination of schistosomiasis. This review considers the present status of candidate vaccines for schistosomiasis, and provides some insight on future vaccine discovery and design.
Collapse
Affiliation(s)
- Biniam Mathewos Tebeje
- QIMR Berghofer Medical Research Institute, Brisbane, Australia. .,School of Public Health, University of Queensland, Brisbane, Australia. .,Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
| | - Marina Harvie
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Hong You
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | | |
Collapse
|
42
|
Biosensor for Hepatocellular Injury Corresponds to Experimental Scoring of Hepatosplenic Schistosomiasis in Mice. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1567254. [PMID: 27376078 PMCID: PMC4916270 DOI: 10.1155/2016/1567254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/17/2016] [Indexed: 12/18/2022]
Abstract
Severe hepatosplenic injury of mansonian schistosomiasis is caused by Th2 mediated granulomatous response against parasite eggs entrapped within the periportal tissue. Subsequent fibrotic scarring and deformation/sclerosing of intrahepatic portal veins lead to portal hypertension, ascites, and oesophageal varices. The murine model of Schistosoma mansoni (S. mansoni) infection is suitable to establish the severe hepatosplenic injury of disease within a reasonable time scale for the development of novel antifibrotic or anti-infective strategies against S. mansoni infection. The drawback of the murine model is that the material prepared for complex analysis of egg burden, granuloma size, hepatic inflammation, and fibrosis is limited due to small amounts of liver tissue and blood samples. The objective of our study was the implementation of a macroscopic scoring system for mice livers to determine infection-related organ alterations of S. mansoni infection. In addition, an in vitro biosensor system based on the detection of hepatocellular injury in HepG2/C3A cells following incubation with serum of moderately (50 S. mansoni cercariae) and heavily (100 S. mansoni cercariae) infected mice affirmed the value of our scoring system. Therefore, our score represents a valuable tool in experimental schistosomiasis to assess severity of hepatosplenic schistosomiasis and reduce animal numbers by saving precious tissue samples.
Collapse
|