1
|
Lippi CA, Mundis SJ, Sippy R, Flenniken JM, Chaudhary A, Hecht G, Carlson CJ, Ryan SJ. Trends in mosquito species distribution modeling: insights for vector surveillance and disease control. Parasit Vectors 2023; 16:302. [PMID: 37641089 PMCID: PMC10463544 DOI: 10.1186/s13071-023-05912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
Species distribution modeling (SDM) has become an increasingly common approach to explore questions about ecology, geography, outbreak risk, and global change as they relate to infectious disease vectors. Here, we conducted a systematic review of the scientific literature, screening 563 abstracts and identifying 204 studies that used SDMs to produce distribution estimates for mosquito species. While the number of studies employing SDM methods has increased markedly over the past decade, the overwhelming majority used a single method (maximum entropy modeling; MaxEnt) and focused on human infectious disease vectors or their close relatives. The majority of regional models were developed for areas in Africa and Asia, while more localized modeling efforts were most common for North America and Europe. Findings from this study highlight gaps in taxonomic, geographic, and methodological foci of current SDM literature for mosquitoes that can guide future efforts to study the geography of mosquito-borne disease risk.
Collapse
Affiliation(s)
- Catherine A Lippi
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32601, USA.
| | - Stephanie J Mundis
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
| | - Rachel Sippy
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
- School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS, UK
| | - J Matthew Flenniken
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
| | - Anusha Chaudhary
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
| | - Gavriella Hecht
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32601, USA
| | - Colin J Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Sadie J Ryan
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32601, USA.
| |
Collapse
|
2
|
Arnoldi I, Negri A, Soresinetti L, Brambilla M, Carraretto D, Montarsi F, Roberto P, Mosca A, Rubolini D, Bandi C, Epis S, Gabrieli P. Assessing the distribution of invasive Asian mosquitoes in Northern Italy and modelling the potential spread of Aedes koreicus in Europe. Acta Trop 2022; 232:106536. [PMID: 35609630 DOI: 10.1016/j.actatropica.2022.106536] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022]
Abstract
In the last decade, Aedes koreicus and Aedes japonicus japonicus mosquitoes, which are competent vectors for various arboviruses of public health relevance, colonised Italy and other European countries. Nevertheless, information about their current and potential distribution is partial. Accordingly, in this study four regions of Northern Italy (Lombardy, Liguria, Piedmont and Aosta Valley) were surveyed during 2021 for the presence of eggs, larvae and pupae of these two invasive species. We found evidence for a widespread presence of Ae. koreicus in pre-Alpine territories of Lombardy and Piedmont. Larvae from the invasive subspecies of Ae. j. japonicus were also collected in the same geographic areas, though they were less frequent. Occurrence data from this study and results from previous monitoring campaigns were used to generate a Maxent model for the prediction of habitat suitability for Ae. koreicus mosquitoes in Northern Italy and the rest of Europe. Peri-urban areas located in proximity to forests, pastures and vineyards were revealed as highly suitable environments for colonisation by this invasive species. Maps of the potential distribution also suggest the presence of further suitable areas in currently uncolonized countries. We conclude that this invasive mosquito species has the potential for a broad expansion at the European level in the coming decades.
Collapse
Affiliation(s)
- Irene Arnoldi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan 20133, Italy; Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, Milan 20133, Italy; Department of Biology and Biotechnology, University of Pavia, Pavia 27100, Italy; University School of Advanced Studies Pavia, IUSS, Pavia 27100, Italy
| | - Agata Negri
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan 20133, Italy; Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, Milan 20133, Italy
| | - Laura Soresinetti
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan 20133, Italy; Department of Biology and Biotechnology, University of Pavia, Pavia 27100, Italy
| | - Mattia Brambilla
- Department of Environmental Science and Policy, University of Milan, Milan 20133, Italy
| | - Davide Carraretto
- Department of Biology and Biotechnology, University of Pavia, Pavia 27100, Italy; University School of Advanced Studies Pavia, IUSS, Pavia 27100, Italy
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro 35020, Italy
| | - Paolo Roberto
- Istituto per le Piante da Legno e l'Ambiente, I.P.L.A. S.p.A., Turin 10132, Italy
| | - Andrea Mosca
- Istituto per le Piante da Legno e l'Ambiente, I.P.L.A. S.p.A., Turin 10132, Italy
| | - Diego Rubolini
- Department of Environmental Science and Policy, University of Milan, Milan 20133, Italy
| | - Claudio Bandi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan 20133, Italy; Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, Milan 20133, Italy
| | - Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan 20133, Italy; Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, Milan 20133, Italy.
| | - Paolo Gabrieli
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan 20133, Italy; Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, Milan 20133, Italy.
| |
Collapse
|
3
|
Deblauwe I, De Wolf K, De Witte J, Schneider A, Verlé I, Vanslembrouck A, Smitz N, Demeulemeester J, Van Loo T, Dekoninck W, Krit M, Madder M, Müller R, Van Bortel W. From a long-distance threat to the invasion front: a review of the invasive Aedes mosquito species in Belgium between 2007 and 2020. Parasit Vectors 2022; 15:206. [PMID: 35698108 PMCID: PMC9195248 DOI: 10.1186/s13071-022-05303-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
Invasive mosquito species (IMS) and their associated mosquito-borne diseases are emerging in Europe. In Belgium, the first detection of Aedes albopictus (Skuse 1894) occurred in 2000 and of Aedes japonicus japonicus (Theobald 1901) in 2002. Early detection and control of these IMS at points of entry (PoEs) are of paramount importance to slow down any possible establishment. This article reviews the introductions and establishments recorded of three IMS in Belgium based on published (2007-2014) and unpublished (2015-2020) data collected during several surveillance projects. In total, 52 PoEs were monitored at least once for the presence of IMS between 2007 and 2020. These included used tyre and lucky bamboo import companies, airports, ports, parking lots along highways, shelters for imported cutting plants, wholesale markets, industrial areas, recycling areas, cemeteries and an allotment garden at the country border with colonised areas. In general, monitoring was performed between April and November. Mosquitoes were captured with adult and oviposition traps as well as by larval sampling. Aedes albopictus was detected at ten PoEs, Ae. japonicus at three PoEs and Aedes koreicus (Edwards 1917) at two PoEs. The latter two species have established overwintering populations. The percentage of PoEs positive for Ae. albopictus increased significantly over years. Aedes albopictus is currently entering Belgium through lucky bamboo and used tyre trade and passive ground transport, while Ae. japonicus through used tyre trade and probably passive ground transport. In Belgium, the import through passive ground transport was first recorded in 2018 and its importance seems to be growing. Belgium is currently at the invasion front of Ae. albopictus and Ae. japonicus. The surveillance and control management actions at well-known PoEs associated to long-distance introductions are more straightforward than at less-defined PoEs associated with short-distance introductions from colonised areas. These latter PoEs represent a new challenge for IMS management in Belgium in the coming years. Aedes albopictus is expected to become established in Belgium in the coming years, hence increasing the likelihood of local arbovirus transmission. The implementation of a sustainable, structured and long-term IMS management programme, integrating active and passive entomological surveillance, vector control and Public Health surveillance is therefore pivotal.
Collapse
Affiliation(s)
- Isra Deblauwe
- The Unit of Entomology, Department Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Katrien De Wolf
- The Unit of Entomology, Department Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Jacobus De Witte
- The Unit of Entomology, Department Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Anna Schneider
- The Unit of Entomology, Department Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ingrid Verlé
- The Unit of Entomology, Department Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Adwine Vanslembrouck
- The Unit of Entomology, Department Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Nathalie Smitz
- Royal Museum for Central Africa (BopCo), Tervuren, Belgium
| | - Julie Demeulemeester
- The Unit of Entomology, Department Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Wouter Dekoninck
- Royal Belgian Institute of Natural Sciences (Scientific Heritage Service), Brussels, Belgium
| | - Meryam Krit
- The Unit of Eco-Modelling, Department Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Maxime Madder
- Clinglobal, Tamarin, Mauritius
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa
| | - Ruth Müller
- The Unit of Entomology, Department Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Wim Van Bortel
- The Unit of Entomology, Department Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Outbreak Research Team, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
4
|
Kerkow A, Wieland R, Gethmann JM, Hölker F, Lentz HH. Linking a compartment model for West Nile virus with a flight simulator for vector mosquitoes. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2021.109840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Alencar J, de Mello CF, Leite PJ, Bastos AQ, Freitas Silva SO, Serdeiro M, dos Santos Silva J, Müller GA. Oviposition activity of Haemagogus leucocelaenus (Diptera: Culicidae) during the rainy and dry seasons, in areas with yellow fever virus circulation in the Atlantic Forest, Rio de Janeiro, Brazil. PLoS One 2021; 16:e0261283. [PMID: 34898653 PMCID: PMC8668088 DOI: 10.1371/journal.pone.0261283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/25/2021] [Indexed: 11/18/2022] Open
Abstract
The present study aims to analyze the effectiveness of ovitraps in the capture of Hg leucocelaenus eggs and evaluate the influence of the dry and rainy seasons on their abundance and hatching rates. The eggs were collected in the Atlantic Forest of State of Rio de Janeiro, Brazil, an area in which the yellow fever virus is known to circulate. We distributed 15 ovitraps in three sampling points, with five ovitraps per point. We distributed 15 ovitraps in three sampling points on trees within a forested area, which were sequentially numbered, monitored, and replaced every two weeks from October 2016 to April 2018. There was a high dominance of Hg. leucocelaenus eggs (98.4%) and a variation in egg hatching rates between the wet and dry seasons. These rates were 1.5 times higher in the rainy season than in the dry season. The rainy season also showed a greater abundance of eggs and higher values of ovitrap positivity and egg density indexes in the installed ovitraps. The abundances of Hg. leucocelaenus eggs were positively correlated with mean monthly temperature and air humidity but not significantly correlated with accumulated precipitation. These results, as well as their implications for the possible use of ovitraps to monitor vector mosquitoes of yellow fever in the study region, are discussed.
Collapse
Affiliation(s)
- Jeronimo Alencar
- Diptera Laboratory, Oswaldo Cruz Institute (FIOCRUZ), Rio de Janeiro, Brazil
- * E-mail:
| | - Cecilia Ferreira de Mello
- Diptera Laboratory, Oswaldo Cruz Institute (FIOCRUZ), Rio de Janeiro, Brazil
- Graduate Program in Animal Biology, Institute of Biology, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo José Leite
- Diptera Laboratory, Oswaldo Cruz Institute (FIOCRUZ), Rio de Janeiro, Brazil
| | - Amanda Queiroz Bastos
- Diptera Laboratory, Oswaldo Cruz Institute (FIOCRUZ), Rio de Janeiro, Brazil
- Graduate Program in Animal Biology, Institute of Biology, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Shayenne Olsson Freitas Silva
- Diptera Laboratory, Oswaldo Cruz Institute (FIOCRUZ), Rio de Janeiro, Brazil
- Graduate Program in Tropical Medicine, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro, Brazil
| | - Michele Serdeiro
- Diptera Laboratory, Oswaldo Cruz Institute (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Gerson Azulim Müller
- Farroupilha Federal Institute of Education Science and Technology, Panambi, Rio Grande do Sul, Brazil
| |
Collapse
|
6
|
Krupa E, Gréhal AL, Esnault J, Bender C, Mathieu B. Laboratory Evaluation of Flight Capacities of Aedes japonicus (Diptera: Culicidae) Using a Flight Mill Device. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6449198. [PMID: 34865033 PMCID: PMC8643834 DOI: 10.1093/jisesa/ieab093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Dispersion expands the distribution of invasive species and as such, it is a key factor of the colonization process. Aedes japonicus japonicus (Theobald, 1901) is an invasive species of mosquito and a vector of various viruses. It was detected in the northeast of France in 2014. The population of this species can expand its distribution by several kilometers per year. However, though flight capacities play an active part in the dispersion of Ae. japonicus, they remain unknown for this species. In this study, we investigated the flight capacities of Ae. japonicus in a laboratory setting using the flight mill technique. We evaluated the influence of age on flight. We recorded videos of individual flights with a camera mounted on Raspberry Pi. We extracted data on distance, duration, and speed of flight using the Toxtrac and Boris software. Our analysis showed a median flight distance of 438 m with a maximum of 11,466 m. Strong flyers, which represented 10% of the females tested, flew more than 6,115 m during 4 h and 28 min at a speed of 1.7 km per h. As suspected, Ae. japonicus is a stronger flyer than the other invasive species Aedes albopictus (Skuse, 1894) (Diptera: Culicidae). To our knowledge, this is the first flight mill study conducted on Ae. japonicus and therefore the first evaluation of its flight capacity. In the future, the flight propensity of Ae. japonicus determined in this study can be included as a parameter to model the colonization process of this invasive vector species.
Collapse
Affiliation(s)
- Eva Krupa
- Institut de Parasitologie et Pathologie Tropicale, UR7292 Dynamique des interactions hôte pathogène, Fédération de Médecine Translationnelle, Université de Strasbourg, F-67000, Strasbourg, France
| | - Alexa-Lou Gréhal
- Institut de Parasitologie et Pathologie Tropicale, UR7292 Dynamique des interactions hôte pathogène, Fédération de Médecine Translationnelle, Université de Strasbourg, F-67000, Strasbourg, France
| | - Jérémy Esnault
- Syndicat de Lutte contre les Moustiques du Bas-Rhin (SLM67), F-67630, Lauterbourg, France
| | - Christelle Bender
- Syndicat de Lutte contre les Moustiques du Bas-Rhin (SLM67), F-67630, Lauterbourg, France
| | - Bruno Mathieu
- Institut de Parasitologie et Pathologie Tropicale, UR7292 Dynamique des interactions hôte pathogène, Fédération de Médecine Translationnelle, Université de Strasbourg, F-67000, Strasbourg, France
| |
Collapse
|
7
|
|
8
|
Drivers of spatio-temporal variation in mosquito submissions to the citizen science project 'Mückenatlas'. Sci Rep 2021; 11:1356. [PMID: 33446753 PMCID: PMC7809264 DOI: 10.1038/s41598-020-80365-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/27/2020] [Indexed: 01/18/2023] Open
Abstract
Intensified travel activities of humans and the ever growing global trade create opportunities of arthropod-borne disease agents and their vectors, such as mosquitoes, to establish in new regions. To update the knowledge of mosquito occurrence and distribution, a national mosquito monitoring programme was initiated in Germany in 2011, which has been complemented by a citizen science project, the ‘Mückenatlas’ since 2012. We analysed the ‘Mückenatlas’ dataset to (1) investigate causes of variation in submission numbers from the start of the project until 2017 and to (2) reveal biases induced by opportunistic data collection. Our results show that the temporal variation of submissions over the years is driven by fluctuating topicality of mosquito-borne diseases in the media and large-scale climate conditions. Hurdle models suggest a positive association of submission numbers with human population, catch location in the former political East Germany and the presence of water bodies, whereas precipitation and wind speed are negative predictors. We conclude that most anthropogenic and environmental effects on submission patterns are associated with the participants’ (recording) behaviour. Understanding how the citizen scientists’ behaviour shape opportunistic datasets help to take full advantage of the available information.
Collapse
|
9
|
Früh L, Kampen H, Koban MB, Pernat N, Schaub GA, Werner D. Oviposition of Aedes japonicus japonicus (Diptera: Culicidae) and associated native species in relation to season, temperature and land use in western Germany. Parasit Vectors 2020; 13:623. [PMID: 33334377 PMCID: PMC7744736 DOI: 10.1186/s13071-020-04461-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/05/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Aedes japonicus japonicus, first detected in Europe in 2000 and considered established in Germany 10 years later, is of medical importance due to its opportunistic biting behaviour and its potential to transmit pathogenic viruses. Its seasonal phenology, temperature and land use preference related to oviposition in newly colonised regions remain unclear, especially in the context of co-occurring native mosquito species. METHODS Focussing on regions in Germany known to be infested by Ae. japonicus japonicus, we installed ovitraps in different landscapes and their transition zones and recorded the oviposition activity of mosquitoes in relation to season, temperature and land use (arable land, forest, settlement) in two field seasons (May-August 2017, April-November 2018). RESULTS Ae. japonicus japonicus eggs and larvae were encountered in 2017 from June to August and in 2018 from May to November, with a markedly high abundance from June to September in rural transition zones between forest and settlement, limited to water temperatures below 30 °C. Of the three native mosquito taxa using the ovitraps, the most frequent was Culex pipiens s.l., whose offspring was found in high numbers from June to August at water temperatures of up to 35 °C. The third recorded species, Anopheles plumbeus, rarely occurred in ovitraps positioned in settlements and on arable land, but was often associated with Ae. japonicus japonicus. The least frequent species, Aedes geniculatus, was mostly found in ovitraps located in the forest. CONCLUSIONS The transition zone between forest and settlement was demonstrated to be the preferred oviposition habitat of Ae. japonicus japonicus, where it was also the most frequent container-inhabiting mosquito species in this study. Compared to native taxa, Ae. japonicus japonicus showed an extended seasonal activity period, presumably due to tolerance of colder water temperatures. Higher water temperatures and arable land represent distribution barriers to this species. The frequently co-occurring native species An. plumbeus might be useful as an indicator for potentially suitable oviposition habitats of Ae. japonicus japonicus in hitherto uncolonised regions. The results contribute to a better understanding of mosquito ecology and provide a basis for more targeted monitoring, distribution modelling and risk management of mosquitoes.
Collapse
Affiliation(s)
- Linus Früh
- Leibniz Centre for Agricultural Landscape Research, Eberswalder Straße 84, 15374 Müncheberg, Germany
- Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Insel Riems, 17493 Greifswald, Germany
| | - Marcel B. Koban
- Leibniz Centre for Agricultural Landscape Research, Eberswalder Straße 84, 15374 Müncheberg, Germany
- Universität Hohenheim, Garbenstraße 30, 70593 Stuttgart, Germany
| | - Nadja Pernat
- Leibniz Centre for Agricultural Landscape Research, Eberswalder Straße 84, 15374 Müncheberg, Germany
- Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany
| | - Günter A. Schaub
- Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research, Eberswalder Straße 84, 15374 Müncheberg, Germany
| |
Collapse
|
10
|
Pernat N, Kampen H, Jeschke JM, Werner D. Citizen science versus professional data collection: Comparison of approaches to mosquito monitoring in Germany. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13767] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nadja Pernat
- Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg Germany
- Department of Biology, Chemistry, Pharmacy Institute of BiologyFreie Universität Berlin Berlin Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
| | - Helge Kampen
- Friedrich‐Loeffler‐Institut Federal Research Institute for Animal Health Greifswald, Insel Riems Germany
| | - Jonathan M. Jeschke
- Department of Biology, Chemistry, Pharmacy Institute of BiologyFreie Universität Berlin Berlin Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
| |
Collapse
|
11
|
Focus on Common Small Animal Vector-Borne Diseases in Central and Southeastern Europe. ACTA VET-BEOGRAD 2020. [DOI: 10.2478/acve-2020-0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract
Vector-borne diseases are one of the main causes of morbidity and mortality in small animals in Europe. Many of these diseases are well-known among veterinary practitioners and some of them are called emerging diseases as prevalence, temporal and spatial distribution seem to increase in Europe. The number of newly recognized pathogens, transmitted by a variety of arthropod vectors, that are relevant for dogs and cats, is also increasing every year. The prevalence among infected vectors and hosts is a hot topic in veterinary science throughout the entire continent, as well as the development of efficient diagnostic procedures, therapy and prophylactic measures. Companion animal vector-borne diseases comprise a large group of pathogens including viruses, bacteria, protozoa and helminths. These pathogens are mainly transmitted by bloodsucking arthropods (ticks, fleas, mosquitos, sand flies), and more seldom by direct transmission between vertebrate hosts. Vector prevalence and activity is influenced by local climate conditions, host species density, changes in landscape and land use. Human parameters such as poverty and migration affect the use of prophylactic measures against pathogen transmission and infection as well as increasing the zoonotic risk to introducing pathogens by infected humans. Small animal associated factors such as pet trade and pet travel spread infection and certain vectors such as ticks and fleas. All these factors pose several complex and significant challenges for veterinarians in clinical practice to decide on efficient laboratory work-up and constructive diagnostic procedures.
Collapse
|
12
|
Caputo B, Manica M. Mosquito surveillance and disease outbreak risk models to inform mosquito-control operations in Europe. CURRENT OPINION IN INSECT SCIENCE 2020; 39:101-108. [PMID: 32403040 DOI: 10.1016/j.cois.2020.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/09/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Surveillance programs are needed to guide mosquito-control operations to reduce both nuisance and the spread of mosquito-borne diseases. Understanding the thresholds for action to reduce both nuisance and the risk of arbovirus transmission is becoming critical. To date, mosquito surveillance is mainly implemented to inform about pathogen transmission risks rather than to reduce mosquito nuisance even though lots of control efforts are aimed at the latter. Passive surveillance, such as digital monitoring (validated by entomological trapping), is a powerful tool to record biting rates in real time. High-quality data are essential to model the risk of arbovirus diseases. For invasive pathogens, efforts are needed to predict the arrival of infected hosts linked to the small-scale vector to host contact ratio, while for endemic pathogens efforts are needed to set up region-wide highly structured surveillance measures to understand seasonal re-activation and pathogen transmission in order to carry out effective control operations.
Collapse
Affiliation(s)
- Beniamino Caputo
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Piazzale A. Moro 5, 38010, 00185 Rome, Italy.
| | - Mattia Manica
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all' Adige, Italy
| |
Collapse
|
13
|
Cunze S, Kochmann J, Klimpel S. Global occurrence data improve potential distribution models for Aedes japonicus japonicus in non-native regions. PEST MANAGEMENT SCIENCE 2020; 76:1814-1822. [PMID: 31814250 DOI: 10.1002/ps.5710] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/30/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND There is great interest in modelling the distribution of invasive species, particularly from the point of view of management. However, distribution modelling for invasive species using ecological niche models (ENMs) involves multiple challenges. Owing to the short time span since the introduction or arrival of a non-indigenous species and the associated dispersal limitations, applying regular ENMs at an early stage of the invasion process may result in an underestimation of the potential niche in the new ranges. This topic is dealt with here using the example of Aedes japonicus japonicus, a vector competent mosquito species for a number of diseases. RESULTS We found high niche unfilling for the species' non-native range niches in Europe and North America compared with the native range niche, which can be explained by the early stage of the invasion process. Comparing four different ENMs based on: (i) the European and (ii) the North American non-native range occurrence data, (iii) (derived) native range occurrence data, and (iv) all available occurrence data together, we found large differences in the projected climatic suitability, with the global data model projecting larger areas with climatic suitability. CONCLUSION ENM in biological invasions can be challenging, especially when distribution data are only poorly available. We suggest one possible way to project climatic suitability for Aedes j. japonicus despite poor data availability for the non-native ranges and missing occurrences from the native range. We discuss aspects of the lack of information and the associated implications for modelling. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sarah Cunze
- Institute of Ecology, Evolution and Diversity, Goethe-University, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
| | - Judith Kochmann
- Institute of Ecology, Evolution and Diversity, Goethe-University, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
| | - Sven Klimpel
- Institute of Ecology, Evolution and Diversity, Goethe-University, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
| |
Collapse
|
14
|
Nebbak A, Almeras L. Identification of Aedes mosquitoes by MALDI-TOF MS biotyping using protein signatures from larval and pupal exuviae. Parasit Vectors 2020; 13:161. [PMID: 32238178 PMCID: PMC7110738 DOI: 10.1186/s13071-020-04029-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/24/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) biotyping is an innovative strategy, applied successfully for the identification of numerous arthropod families including mosquitoes. The effective mosquito identification using this emerging tool was demonstrated possible at different steps of their life-cycle, including eggs, immature and adult stages. Unfortunately, for species identification by MS, the euthanasia of the mosquito specimen is required. METHODS To avoid mosquito euthanasia, the present study assessed whether aedine mosquitoes could be identified by MALDI-TOF MS biotyping, using their respective exuviae. In this way, exuviae from the fourth-instar and pupal stages of Aedes albopictus and Aedes aegypti were submitted to MALDI-TOF MS analysis. RESULTS Reproducible and specific MS spectra according to aedine species and stage of exuviae were observed which were objectified by cluster analyses, composite correlation index (CCI) tool and principal components analysis (PCA). The query of our reference MS spectra database (DB) upgraded with MS spectra of exuviae from fourth-instar larvae and pupae of both Aedes species revealed that 100% of the samples were correctly classified at the species and stage levels. Among them, 93.8% (135/144) of the MS profiles reached the threshold log score value (LSV > 1.8) for reliable identification. CONCLUSIONS The extension of reference MS spectra DB to exuviae from fourth-instar and pupal stages made now possible the identification of mosquitoes throughout their life-cycle at aquatic and aerial stages. The exuviae presenting the advantage to avoid specimen euthanasia, allowing to perform complementary analysis on alive mosquitoes.
Collapse
Affiliation(s)
- Amira Nebbak
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, Marseille, France.,Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle, BP 384 Bou-Ismail, Tipaza, Algérie
| | - Lionel Almeras
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, Marseille, France. .,Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005, Marseille, France. .,IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
15
|
Kerkow A, Wieland R, Früh L, Hölker F, Jeschke JM, Werner D, Kampen H. Can data from native mosquitoes support determining invasive species habitats? Modelling the climatic niche of Aedes japonicus japonicus (Diptera, Culicidae) in Germany. Parasitol Res 2019; 119:31-42. [PMID: 31773308 PMCID: PMC6942025 DOI: 10.1007/s00436-019-06513-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/15/2019] [Indexed: 11/29/2022]
Abstract
Invasive mosquito species and the pathogens they transmit represent a serious health risk to both humans and animals. Thus, predictions on their potential geographic distribution are urgently needed. In the case of a recently invaded region, only a small number of occurrence data is typically available for analysis, and absence data are not reliable. To overcome this problem, we have tested whether it is possible to determine the climatic ecological niche of an invasive mosquito species by using both the occurrence data of other, native species and machine learning. The approach is based on a support vector machine and in this scenario applied to the Asian bush mosquito (Aedes japonicus japonicus) in Germany. Presence data for this species (recorded in the Germany since 2008) as well as for three native mosquito species were used to model the potential distribution of the invasive species. We trained the model with data collected from 2011 to 2014 and compared our predicted occurrence probabilities for 2015 with observations found in the field throughout 2015 to evaluate our approach. The prediction map showed a high degree of concordance with the field data. We applied the model to medium climate conditions at an early stage of the invasion (2011–2015), and developed an explanation for declining population densities in an area in northern Germany. In addition to the already known distribution areas, our model also indicates a possible spread to Saarland, southwestern Rhineland-Palatinate and in 2015 to southern Bavaria, where the species is now being increasingly detected. However, there is also evidence that the possible distribution area under the mean climate conditions was underestimated.
Collapse
Affiliation(s)
- Antje Kerkow
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany. .,Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195, Berlin, Germany. .,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany.
| | - Ralf Wieland
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany
| | - Linus Früh
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany
| | - Franz Hölker
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195, Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany
| | - Jonathan M Jeschke
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195, Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 34, 14195, Berlin, Germany
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany
| | - Helge Kampen
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| |
Collapse
|
16
|
Koban MB, Kampen H, Scheuch DE, Frueh L, Kuhlisch C, Janssen N, Steidle JLM, Schaub GA, Werner D. The Asian bush mosquito Aedes japonicus japonicus (Diptera: Culicidae) in Europe, 17 years after its first detection, with a focus on monitoring methods. Parasit Vectors 2019; 12:109. [PMID: 30871592 PMCID: PMC6419366 DOI: 10.1186/s13071-019-3349-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/26/2019] [Indexed: 11/10/2022] Open
Abstract
After the first detection of the Asian bush mosquito Aedes japonicus japonicus in the year 2000 in France, its invasive nature was revealed in 2008 in Switzerland and Germany. In the following years, accumulating reports have shown that Ae. j. japonicus succeeded in establishing in several European countries. Surveillance efforts suggest that there are currently four populations in Europe, with the largest one, formed by the recent fusion of several smaller populations, ranging from West Germany, with extensions to Luxembourg and French Alsace, southwards to Switzerland and continuing westwards through Liechtenstein to western Austria. This paper summarises the present distribution of Ae. j. japonicus in Europe, based on published literature and hitherto unpublished findings by the authors, and critically reviews the monitoring strategies applied. A proposal for a more standardised monitoring approach is provided, aiming at the harmonisation of future data collections for improving the comparability between studies and the suitability of collected data for further research purposes, e.g. predictive modelling approaches.
Collapse
Affiliation(s)
- Marcel B. Koban
- Leibniz-Centre for Agricultural Landscape Research, Müncheberg, Germany
- University of Hohenheim, Stuttgart, Germany
| | - Helge Kampen
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Insel Riems, Greifswald, Germany
| | - Dorothee E. Scheuch
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Insel Riems, Greifswald, Germany
| | - Linus Frueh
- Leibniz-Centre for Agricultural Landscape Research, Müncheberg, Germany
| | | | - Nele Janssen
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Insel Riems, Greifswald, Germany
| | | | | | - Doreen Werner
- Leibniz-Centre for Agricultural Landscape Research, Müncheberg, Germany
| |
Collapse
|