1
|
Rund SSC, O'Donnell AJ, Prior KF, van der Veen DR. Seasonal plasticity in daily timing of flight activity in Anopheles stephensi is driven by temperature modulation of dawn entrainment. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230343. [PMID: 39842479 PMCID: PMC11753879 DOI: 10.1098/rstb.2023.0343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 01/24/2025] Open
Abstract
The Asian malaria vector Anopheles stephensi is invading Africa, requiring it to adapt to novel climates and ecosystems. In part, this may be facilitated by An. stephensi's poorly understood seasonal behavioural plasticity in flight timing, leading to earlier biting activity in cold Asian winters and later biting times in the warm summer. Changes in behavioural timing could be directly imposed by seasonal variation in ambient light and temperature levels or result from altered entrainment of intrinsically expressed circadian rhythms by these factors. We demonstrate that An. stephensi entrained flight activity timing is phase-locked to dawn and is not affected by constant ambient temperature, which cannot explain earlier biting activity in colder winters with later dawn. Instead, we show that where night temperatures are the colder part of daily temperature cycle; the entrained phase-angle between dawn and flight activity is altered, hereby increasingly colder, winter-like nights progressively advance flight activity onset. We propose that seasonal timing plasticity optimizes behaviour to warmer daytime in winter, and colder nights in summer, providing protection against both heat-desiccation and cold immobility. The adaptive advantage of this plasticity could be relevant to the successful invasion and survival of An. stephensi in African climates, and changing climate worldwide.This article is part of the Theo Murphy meeting issue, 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Samuel S. C. Rund
- Department of Biological Sciences, Center for Research Computing, and Eck Institute of Global Health, University of Notre Dame, Notre Dame, IN46556, USA
| | - Aidan J. O'Donnell
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Kimberley F. Prior
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Daan R. van der Veen
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, GuildfordGU2 7XH, UK
| |
Collapse
|
2
|
Baheshm YA, Zayed A, Awash AA, Follis M, Terreri P, Samake JN, Aljasari A, Harwood JF, Lenhart A, Zohdy S, Al-Eryani SM, Carter TE. Sequencing confirms Anopheles stephensi distribution across southern Yemen. Parasit Vectors 2024; 17:507. [PMID: 39696448 PMCID: PMC11657292 DOI: 10.1186/s13071-024-06601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
The invasion of Anopheles stephensi in Africa warrants investigation of neighboring countries. In this study, genetic analysis was applied to determine the status of An. stephensi in southern Yemen. Cytochrome c oxidase subunit I (COI) and internal transcribed spacer 2 (ITS2) were sequenced in An. stephensi collected in Dar Sa'ad (Aden City), Tuban, Rodoom, Al Mukalla, and Sayhut, and phylogenetic analysis confirmed An. stephensi identity. Our analyses revealed that the ITS2 sequences were identical in all An. stephensi, while COI analysis revealed two haplotypes, one previously reported in northern Horn of Africa and one identified in this study for the first time. Overall, these findings revealed low levels of mitochondrial DNA diversity, which is consistent with a more recent population introduction in parts of southern Yemen relative to the Horn of Africa. Further, whole genomic analysis is needed to elucidate the original connection with invasive populations of An. stephensi in the Horn of Africa.
Collapse
Affiliation(s)
- Yasser A Baheshm
- National Malaria Control Program, Ministry of Health, Aden, Yemen
| | - Alia Zayed
- US Naval Medical Research Unit-EURAFCENT (Previously NAMRU-3), Cairo Detachment, Cairo , Egypt
| | | | | | | | - Jeanne N Samake
- Department of Biology, Baylor University, Waco, TX, USA
- Entomology Branch, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Adel Aljasari
- World Health Organization, Country Office, Sana'a, Yemen
| | - James F Harwood
- Medical Research Unit-EURAFCENT (Previously NAMRU-3), US Naval, Sigonella, Italy
| | - Audrey Lenhart
- Entomology Branch, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sarah Zohdy
- Entomology Branch, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Samira M Al-Eryani
- Department of Universal Health Coverage/Communicable Diseases Prevention and Control, Eastern Mediterranean Regional Office, World Health Organization, Cairo, Egypt
| | - Tamar E Carter
- Department of Biology, Baylor University, Waco, TX, USA.
| |
Collapse
|
3
|
Adam A, Besson D, Bryant R, Rees S, Willis PA, Burrows JN, Hooft van Huisjduijnen R, Laleu B, Norton L, Canan S, Hawryluk N, Robinson D, Palmer M, Samby KK. Global Health Priority Box─Proactive Pandemic Preparedness. ACS Infect Dis 2024; 10:4030-4039. [PMID: 39488746 DOI: 10.1021/acsinfecdis.4c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
The coronavirus pandemic outbreak of 2019 highlighted the critical importance of preparedness for current and future public health threats (https://www.mmv.org/mmv-open/global-health-priority-box/about-global-health-priority-box). While the main attention for the past few years has been on COVID-19 research, this focus has reduced global resources on research in other areas, including malaria and neglected tropical diseases (NTDs). Such a shift in focus puts at risk the hard-earned progress in global health achieved over the past two decades (https://www.who.int/news-room/spotlight/10-global-health-issues-to-track-in-2021). To address the urgent need for new drugs to combat drug-resistant malaria, emerging zoonotic diseases, and vector control, Medicines for Malaria Venture (MMV) and Innovative Vector Control Consortium (IVCC) assembled a collection of 240 compounds and, in August 2022, launched the Global Health Priority Box (GHPB). This collection of compounds has confirmed activity against emerging pathogens or vectors and is available free of charge. This valuable tool enables researchers worldwide to build on each other's work and save precious time and resources by providing a starting point for the further development of treatments and insecticides. Furthermore, this open access box aligns with two of the many priorities outlined by the World Health Organization (WHO) (https://www.who.int/news-room/spotlight/10-global-health-issues-to-track-in-2021).
Collapse
Affiliation(s)
- Anna Adam
- MMV Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | | | - Rob Bryant
- Brychem/Agranova, BR6 9AP Kent, United Kingdom
| | - Sarah Rees
- Innovative Vector Control Consortium, L3 5QA Liverpool, United Kingdom
| | - Paul A Willis
- MMV Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | | | | | - Benoît Laleu
- MMV Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | - Larry Norton
- Innovative Vector Control Consortium, L3 5QA Liverpool, United Kingdom
| | - Stacie Canan
- Bristol Myers Squibb, California 92121, San Diego, United States of America
| | - Natalie Hawryluk
- Bristol Myers Squibb, California 92121, San Diego, United States of America
| | - Dale Robinson
- Bristol Myers Squibb, California 92121, San Diego, United States of America
| | - Mike Palmer
- MMV Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | | |
Collapse
|
4
|
Mwema T, Zohdy S, Sundaram M, Lepczyk CA, Narine L, Willoughby JR. A quantitative and systematic analysis of Anopheles stephensi bionomics and control approaches. Acta Trop 2024; 260:107431. [PMID: 39427695 DOI: 10.1016/j.actatropica.2024.107431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/13/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Anopheles stephensi is a mosquito endemic to South Asia and the Arabian Peninsula that has recently been detected in eight African countries, posing a significant threat to global malaria control efforts. A challenge with An. stephensi is that it requires unique surveillance and control tools when compared to other malaria vectors. Through a systematic literature review, we investigated the efficacy of trapping methods and controls for An. stephensi mosquitoes, with a focus on studies of its behavior and biology. Data from 83 articles (native range: Afghanistan, India, Iran, Iraq, Pakistan, and Qatar; invasive range: Djibouti, Ethiopia, Sri Lanka, Saudi Arabia, and Sudan) met our study inclusion criteria. Data from these studies revealed that using host-seeking animal baited traps increased the number of mosquitoes collected per trap per day in the native range when compared to host-seeking human baited traps. However, these differences were not present in data collection rate assessments from the invasive range. We also found that An. stephensi equally used a large variety of breeding habitats in the native range, but that it tended to prefer water reservoirs and wastewater in the invasive range. Finally, we found that temephos, fenthion, Bacillus thuringiensis israelensis, and Beauveri bassiana were more effective at reducing larvae in their native range compared to the approaches found in our systematic literature search, but the relative effectiveness of these approaches in the invasive range was less clear. Understanding proven historical surveillance and control approaches is essential to the advancement of invasive An. stephensi mitigation efforts, but continued investigations in the invasive range are critical to reducing the impacts of malaria morbidity and mortality.
Collapse
Affiliation(s)
- Tabeth Mwema
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, AL, USA
| | - Sarah Zohdy
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, AL, USA; US President's Malaria Initiative, Division of Parasitic Diseases and Malaria, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mekala Sundaram
- Department of Infectious Disease, University of Georgia, Athens, GA, USA
| | | | - Lana Narine
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, AL, USA
| | - Janna R Willoughby
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, AL, USA.
| |
Collapse
|
5
|
Samake JN, Yared S, Hassen MA, Zohdy S, Carter TE. Insecticide resistance and population structure of the invasive malaria vector, Anopheles stephensi, from Fiq, Ethiopia. Sci Rep 2024; 14:27516. [PMID: 39528579 PMCID: PMC11554808 DOI: 10.1038/s41598-024-78072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Anopheles stephensi invasion in Ethiopia poses a risk of increased malaria disease burden in the region. Thus, understanding the insecticide resistance profile and population structure of the recently detected An. stephensi population in Fiq, Ethiopia, is critical to inform vector control to stop the spread of this invasive malaria species in the country. Following entomological surveillance for An. stephensi in Fiq, Somali region, Ethiopia, we confirmed the presence of An. stephensi morphologically and molecularly in Fiq. Characterization of larval habitats and insecticide susceptibility tests revealed that Fiq An. stephensi is most often found in artificial containers and is resistant to most adult insecticides tested (organophosphates, carbamates, pyrethroids) except for pirimiphos-methyl and PBO-pyrethroids. However, the immature larval stage was susceptible to temephos. Further comparative genomic analyses with previous An. stephensi populations from Ethiopia using 1704 biallelic SNPs revealed genetic relatedness between Fiq An. stephensi and east-central Ethiopia An. stephensi populations, particularly Jigjiga An. stephensi. Our findings of the insecticide resistance profile, coupled with the likely source population of Fiq An. stephensi, can inform vector control strategies against this malaria vector in Fiq and Jigjiga to limit further spread out of these two locations to other parts of the country and continent.
Collapse
Affiliation(s)
- Jeanne N Samake
- Department of Biology, Baylor University, Waco, TX, USA
- Entomology Branch, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Solomon Yared
- Department of Biology, Jigjiga University, Jigjiga, Ethiopia
| | | | - Sarah Zohdy
- Entomology Branch, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
- U.S. President's Malaria Initiative, Entomology Branch, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tamar E Carter
- Department of Biology, Baylor University, Waco, TX, USA.
| |
Collapse
|
6
|
Hassan SA, Mohamed Dirie A, Ahmed NR, Omar AI. Update on antimicrobial resistance in Somalia: Current status, challenges, opportunities, and future perspectives. Heliyon 2024; 10:e39434. [PMID: 39506942 PMCID: PMC11538744 DOI: 10.1016/j.heliyon.2024.e39434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/05/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Antimicrobial resistance (AMR) is a critical global health challenge, and Somalia is no exception. This update examines the current status of AMR in Somalia, highlighting the prevalent patterns of resistance, contributing factors, and significant health impacts. Despite limited surveillance data, evidence suggests rising resistance to key antibiotics, exacerbated by inadequate healthcare infrastructure, overuse of antimicrobials, and lack of regulatory oversight. The review identifies key challenges, including insufficient diagnostic capabilities, poor infection control practices, and a need for robust stewardship programs. Opportunities for addressing AMR in Somalia are discussed, including strengthening surveillance systems, improving healthcare access, and fostering international collaboration. Future perspectives emphasize the importance of integrating AMR strategies into broader health policies, enhancing public awareness, and investing in research to develop new treatments and prevention methods. Addressing these issues is crucial for mitigating the impact of AMR and improving health outcomes in Somalia.
Collapse
Affiliation(s)
- Shafie Abdulkadir Hassan
- Department of Medical Laboratory Sciences, Faculty of Medicine and Health Sciences, Jamhuriya University of Science and Technology, Mogadishu, Somalia
| | - Ahmed Mohamed Dirie
- Faculty of Health Sciences, Salaam University, Mogadishu, Somalia
- Department of Medicine and Surgery, Faculty of Medicine and Health Sciences, Jamhuriya University of Science and Technology, Mogadishu, Somalia
| | - Nur Rashid Ahmed
- Jamhuriya Research Center, Jamhuriya University of Science and Technology, Mogadishu, Somalia
| | - Abdifetah Ibrahim Omar
- Jamhuriya Research Center, Jamhuriya University of Science and Technology, Mogadishu, Somalia
| |
Collapse
|
7
|
Taylor R, Messenger LA, Abeku TA, Clarke SE, Yadav RS, Lines J. Invasive Anopheles stephensi in Africa: insights from Asia. Trends Parasitol 2024; 40:731-743. [PMID: 39054167 DOI: 10.1016/j.pt.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024]
Abstract
Anopheles stephensi is a highly competent urban malaria vector species, endemic in South Asia and the Persian Gulf, which has colonised eight countries in sub-Saharan Africa (SSA) since 2013 and is now spreading uncontrollably. In urban areas of Africa, where malaria transmission has previously been low or non-existent, the invasion of An. stephensi represents a significant problem, particularly to immunologically naïve populations. Despite this rapidly advancing threat, there is a paucity of information regarding the bionomics of An. stephensi in SSA. Here, we offer a critical synthesis of literature from An. stephensi's native range, focusing on the future of An. stephensi in a rapidly urbanising Africa, and highlighting key questions that warrant prioritisation by the global malaria vector control community.
Collapse
Affiliation(s)
- Roz Taylor
- RAFT (Resilience Against Future Threats Through Vector Control) Consortium, Department of Disease Control, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
| | - Louisa A Messenger
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, NV 89154, USA; Parasitology and Vector Biology (PARAVEC) Laboratory, School of Public Health, University of Nevada, Las Vegas, NV 89154, USA
| | - Tarekegn A Abeku
- Malaria Consortium, Green House, 244-254 Cambridge Heath Road, London E2 9DA, UK
| | - Sian E Clarke
- RAFT (Resilience Against Future Threats Through Vector Control) Consortium, Department of Disease Control, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Rajpal S Yadav
- Academy of Public Health Entomology, Udaipur 313002, Rajasthan, India
| | - Jo Lines
- RAFT (Resilience Against Future Threats Through Vector Control) Consortium, Department of Disease Control, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
| |
Collapse
|
8
|
Waymire E, Samake JN, Gunarathna I, Carter TE. A decade of invasive Anopheles stephensi sequence-based identification: toward a global standard. Trends Parasitol 2024; 40:477-486. [PMID: 38755024 PMCID: PMC11381088 DOI: 10.1016/j.pt.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
Anopheles stephensi is an invasive malaria vector in Africa that has been implicated in malaria outbreaks in the Horn of Africa. In 10 years, it has been detected as far east as Djibouti and as far west as Ghana. Early detections were mostly incidental, but now active surveillance in Africa has been updated to include An. stephensi. Morphological identification of An. stephensi from native vectors can be challenging, thus, sequence-based assays have been used to confirm identification during initial detections. Methods of sequence-based identification of An. stephensi have varied across initial detections to date. Here, we summarize initial detections, make suggestions that could provide a standardized approach, and discuss how sequences can inform additional genomic studies beyond species identification.
Collapse
|
9
|
Nisar KS, Anjum MW, Raja MAZ, Shoaib M. Design of a novel intelligent computing framework for predictive solutions of malaria propagation model. PLoS One 2024; 19:e0298451. [PMID: 38635576 PMCID: PMC11025872 DOI: 10.1371/journal.pone.0298451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/23/2024] [Indexed: 04/20/2024] Open
Abstract
The paper presents an innovative computational framework for predictive solutions for simulating the spread of malaria. The structure incorporates sophisticated computing methods to improve the reliability of predicting malaria outbreaks. The study strives to provide a strong and effective tool for forecasting the propagation of malaria via the use of an AI-based recurrent neural network (RNN). The model is classified into two groups, consisting of humans and mosquitoes. To develop the model, the traditional Ross-Macdonald model is expanded upon, allowing for a more comprehensive analysis of the intricate dynamics at play. To gain a deeper understanding of the extended Ross model, we employ RNN, treating it as an initial value problem involving a system of first-order ordinary differential equations, each representing one of the seven profiles. This method enables us to obtain valuable insights and elucidate the complexities inherent in the propagation of malaria. Mosquitoes and humans constitute the two cohorts encompassed within the exposition of the mathematical dynamical model. Human dynamics are comprised of individuals who are susceptible, exposed, infectious, and in recovery. The mosquito population, on the other hand, is divided into three categories: susceptible, exposed, and infected. For RNN, we used the input of 0 to 300 days with an interval length of 3 days. The evaluation of the precision and accuracy of the methodology is conducted by superimposing the estimated solution onto the numerical solution. In addition, the outcomes obtained from the RNN are examined, including regression analysis, assessment of error autocorrelation, examination of time series response plots, mean square error, error histogram, and absolute error. A reduced mean square error signifies that the model's estimates are more accurate. The result is consistent with acquiring an approximate absolute error close to zero, revealing the efficacy of the suggested strategy. This research presents a novel approach to solving the malaria propagation model using recurrent neural networks. Additionally, it examines the behavior of various profiles under varying initial conditions of the malaria propagation model, which consists of a system of ordinary differential equations.
Collapse
Affiliation(s)
- Kottakkaran Sooppy Nisar
- Department of Mathematics, College of Science and Humanities in Alkharj, Prince Sattam Bin Abdulaziz, University, Alkharj, Saudi Arabia
| | | | - Muhammad Asif Zahoor Raja
- Future Technology Research Center, National Yunlin University of Science and Technology, Douliou, Yunlin, Taiwan, R.O.C
| | | |
Collapse
|
10
|
Ashine T, Eyasu A, Asmamaw Y, Simma E, Zemene E, Epstein A, Brown R, Negash N, Kochora A, Reynolds AM, Bulto MG, Tafesse T, Dagne A, Lukus B, Esayas E, Behaksra SW, Woldekidan K, Kassa FA, Deressa JD, Assefa M, Dillu D, Assefa G, Solomon H, Zeynudin A, Massebo F, Sedda L, Donnelly MJ, Wilson AL, Weetman D, Gadisa E, Yewhalaw D. Spatiotemporal distribution and bionomics of Anopheles stephensi in different eco-epidemiological settings in Ethiopia. Parasit Vectors 2024; 17:166. [PMID: 38556881 PMCID: PMC10983662 DOI: 10.1186/s13071-024-06243-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/11/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Malaria is a major public health concern in Ethiopia, and its incidence could worsen with the spread of the invasive mosquito species Anopheles stephensi in the country. This study aimed to provide updates on the distribution of An. stephensi and likely household exposure in Ethiopia. METHODS Entomological surveillance was performed in 26 urban settings in Ethiopia from 2021 to 2023. A kilometer-by-kilometer quadrant was established per town, and approximately 20 structures per quadrant were surveyed every 3 months. Additional extensive sampling was conducted in 50 randomly selected structures in four urban centers in 2022 and 2023 to assess households' exposure to An. stephensi. Prokopack aspirators and CDC light traps were used to collect adult mosquitoes, and standard dippers were used to collect immature stages. The collected mosquitoes were identified to species level by morphological keys and molecular methods. PCR assays were used to assess Plasmodium infection and mosquito blood meal source. RESULTS Catches of adult An. stephensi were generally low (mean: 0.15 per trap), with eight positive sites among the 26 surveyed. This mosquito species was reported for the first time in Assosa, western Ethiopia. Anopheles stephensi was the predominant species in four of the eight positive sites, accounting for 75-100% relative abundance of the adult Anopheles catches. Household-level exposure, defined as the percentage of households with a peridomestic presence of An. stephensi, ranged from 18% in Metehara to 30% in Danan. Anopheles arabiensis was the predominant species in 20 of the 26 sites, accounting for 42.9-100% of the Anopheles catches. Bovine blood index, ovine blood index and human blood index values were 69.2%, 32.3% and 24.6%, respectively, for An. stephensi, and 65.4%, 46.7% and 35.8%, respectively, for An. arabiensis. None of the 197 An. stephensi mosquitoes assayed tested positive for Plasmodium sporozoite, while of the 1434 An. arabiensis mosquitoes assayed, 62 were positive for Plasmodium (10 for P. falciparum and 52 for P. vivax). CONCLUSIONS This study shows that the geographical range of An. stephensi has expanded to western Ethiopia. Strongly zoophagic behavior coupled with low adult catches might explain the absence of Plasmodium infection. The level of household exposure to An. stephensi in this study varied across positive sites. Further research is needed to better understand the bionomics and contribution of An. stephensi to malaria transmission.
Collapse
Affiliation(s)
- Temesgen Ashine
- Department of Biology, College of Natural and Computational Sciences, Arba Minch University, Arba Minch, Ethiopia.
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| | - Adane Eyasu
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Yehenew Asmamaw
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Eba Simma
- Department of Biology, College of Natural Sciences, Jimma University, Jimma, Ethiopia
| | - Endalew Zemene
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Adrienne Epstein
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Rebecca Brown
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Nigatu Negash
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abena Kochora
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Alison M Reynolds
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | | | - Temesgen Tafesse
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Alemayehu Dagne
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Biniyam Lukus
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Endashaw Esayas
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Kidist Woldekidan
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Jimma Dinsa Deressa
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Muluken Assefa
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Dereje Dillu
- Disease Prevention and Control Directorate, Ethiopian Federal Ministry of Health, Addis Ababa, Ethiopia
| | - Gudissa Assefa
- Disease Prevention and Control Directorate, Ethiopian Federal Ministry of Health, Addis Ababa, Ethiopia
| | - Hiwot Solomon
- Disease Prevention and Control Directorate, Ethiopian Federal Ministry of Health, Addis Ababa, Ethiopia
| | - Ahmed Zeynudin
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Fekadu Massebo
- Department of Biology, College of Natural and Computational Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Luigi Sedda
- Lancaster Ecology and Epidemiology Group, Lancaster Medical School, Lancaster University, Lancaster, UK
| | - Martin James Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Anne L Wilson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Endalamaw Gadisa
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Delenasaw Yewhalaw
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
11
|
Liu Q, Wang M, Du YT, Xie JW, Yin ZG, Cai JH, Zhao TY, Zhang HD. Possible potential spread of Anopheles stephensi, the Asian malaria vector. BMC Infect Dis 2024; 24:333. [PMID: 38509457 PMCID: PMC10953274 DOI: 10.1186/s12879-024-09213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Anopheles stephensi is native to Southeast Asia and the Arabian Peninsula and has emerged as an effective and invasive malaria vector. Since invasion was reported in Djibouti in 2012, the global invasion range of An. stephensi has been expanding, and its high adaptability to the environment and the ongoing development of drug resistance have created new challenges for malaria control. Climate change is an important factor affecting the distribution and transfer of species, and understanding the distribution of An. stephensi is an important part of malaria control measures, including vector control. METHODS In this study, we collected existing distribution data for An. stephensi, and based on the SSP1-2.6 future climate data, we used the Biomod2 package in R Studio through the use of multiple different model methods such as maximum entropy models (MAXENT) and random forest (RF) in this study to map the predicted global An. stephensi climatically suitable areas. RESULTS According to the predictions of this study, some areas where there are no current records of An. stephensi, showed significant areas of climatically suitable for An. stephensi. In addition, the global climatically suitability areas for An. stephensi are expanding with global climate change, with some areas changing from unsuitable to suitable, suggesting a greater risk of invasion of An. stephensi in these areas, with the attendant possibility of a resurgence of malaria, as has been the case in Djibouti. CONCLUSIONS This study provides evidence for the possible invasion and expansion of An. stephensi and serves as a reference for the optimization of targeted monitoring and control strategies for this malaria vector in potential invasion risk areas.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ming Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yu-Tong Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jing-Wen Xie
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zi-Ge Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jing-Hong Cai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Tong-Yan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Heng-Duan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
12
|
Yared S, Gebresilassie A, Aklilu E, Abdulahi E, Kirstein OD, Gonzalez-Olvera G, Che-Mendoza A, Bibiano-Marin W, Waymire E, Lines J, Lenhart A, Kitron U, Carter T, Manrique-Saide P, Vazquez-Prokopec GM. Building the vector in: construction practices and the invasion and persistence of Anopheles stephensi in Jigjiga, Ethiopia. Lancet Planet Health 2023; 7:e999-e1005. [PMID: 38056970 PMCID: PMC11707895 DOI: 10.1016/s2542-5196(23)00250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 12/08/2023]
Abstract
Anopheles stephensi is a major vector of malaria in Asia and the Arabian Peninsula, and its recent invasion into Africa poses a major threat to malaria control and elimination efforts on the continent. The mosquito is well adapted to urban environments, and its presence in Africa could potentially lead to an increase in malaria transmission in cities. Most of the knowledge about An stephensi ecology in Africa has been generated from studies conducted during the rainy season, when vectors are most abundant. Here, we provide evidence from the peak of the dry season in the city of Jigjiga in Ethiopia, and report An stephensi immature stages infesting predominantly in water reservoirs made to support construction operations (ie, in construction sites or associated with brick-manufacturing businesses). Political and economic changes in Ethiopia (particularly the Somali Region) have fuelled an unprecedented construction boom since 2018 that, in our opinion, has been instrumental in the establishment, persistence, and propagation of An stephensi via the year-round availability of perennial larval habitats associated with construction. We argue that larval source management during the dry season might provide a unique opportunity for focused control of An stephensi in Jigjiga and similar areas.
Collapse
Affiliation(s)
- Solomon Yared
- Department of Biology, Jigjiga University, Jigjiga, Ethiopia
| | - Araya Gebresilassie
- Department of Zoological Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Esayas Aklilu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Elyas Abdulahi
- Population, Resources and Environmental Economics, Jigjiga University, Jigjiga, Ethiopia
| | | | - Gabriela Gonzalez-Olvera
- Collaborative Unit for Entomological Bioassays, Autonomous University of Yucatan, Mérida, Mexico
| | - Azael Che-Mendoza
- Collaborative Unit for Entomological Bioassays, Autonomous University of Yucatan, Mérida, Mexico
| | - Wilbert Bibiano-Marin
- Collaborative Unit for Entomological Bioassays, Autonomous University of Yucatan, Mérida, Mexico
| | | | - Jo Lines
- London School of Public Health, London, UK
| | - Audrey Lenhart
- Entomology Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - Tamar Carter
- Department of Biology, Baylor University, Wako, TX, USA
| | - Pablo Manrique-Saide
- Collaborative Unit for Entomological Bioassays, Autonomous University of Yucatan, Mérida, Mexico
| | | |
Collapse
|
13
|
Emiru T, Getachew D, Murphy M, Sedda L, Ejigu LA, Bulto MG, Byrne I, Demisse M, Abdo M, Chali W, Elliott A, Vickers EN, Aranda-Díaz A, Alemayehu L, Behaksera SW, Jebessa G, Dinka H, Tsegaye T, Teka H, Chibsa S, Mumba P, Girma S, Hwang J, Yoshimizu M, Sutcliffe A, Taffese HS, Bayissa GA, Zohdy S, Tongren JE, Drakeley C, Greenhouse B, Bousema T, Tadesse FG. Evidence for a role of Anopheles stephensi in the spread of drug- and diagnosis-resistant malaria in Africa. Nat Med 2023; 29:3203-3211. [PMID: 37884028 PMCID: PMC10719088 DOI: 10.1038/s41591-023-02641-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Anopheles stephensi, an Asian malaria vector, continues to expand across Africa. The vector is now firmly established in urban settings in the Horn of Africa. Its presence in areas where malaria resurged suggested a possible role in causing malaria outbreaks. Here, using a prospective case-control design, we investigated the role of An. stephensi in transmission following a malaria outbreak in Dire Dawa, Ethiopia in April-July 2022. Screening contacts of patients with malaria and febrile controls revealed spatial clustering of Plasmodium falciparum infections around patients with malaria in strong association with the presence of An. stephensi in the household vicinity. Plasmodium sporozoites were detected in these mosquitoes. This outbreak involved clonal propagation of parasites with molecular signatures of artemisinin and diagnostic resistance. To our knowledge, this study provides the strongest evidence so far for a role of An. stephensi in driving an urban malaria outbreak in Africa, highlighting the major public health threat posed by this fast-spreading mosquito.
Collapse
Affiliation(s)
- Tadele Emiru
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Maxwell Murphy
- EPPIcenter program, Division of HIV, ID and Global Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Luigi Sedda
- Lancaster Ecology and Epidemiology Group, Lancaster Medical School, Lancaster University, Lancaster, UK
| | | | | | - Isabel Byrne
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Melat Abdo
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Wakweya Chali
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Radboudumc, Nijmegen, the Netherlands
| | - Aaron Elliott
- EPPIcenter program, Division of HIV, ID and Global Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Eric Neubauer Vickers
- EPPIcenter program, Division of HIV, ID and Global Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Andrés Aranda-Díaz
- EPPIcenter program, Division of HIV, ID and Global Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lina Alemayehu
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Gutema Jebessa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Hunduma Dinka
- Adama Science and Technology University, Adama, Ethiopia
| | - Tizita Tsegaye
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Hiwot Teka
- U.S. President's Malaria Initiative, USAID, Addis Ababa, Ethiopia
| | - Sheleme Chibsa
- U.S. President's Malaria Initiative, USAID, Addis Ababa, Ethiopia
| | - Peter Mumba
- U.S. President's Malaria Initiative, USAID, Addis Ababa, Ethiopia
| | - Samuel Girma
- U.S. President's Malaria Initiative, USAID, Addis Ababa, Ethiopia
| | - Jimee Hwang
- U.S. President's Malaria Initiative, Malaria Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Alice Sutcliffe
- U.S. President's Malaria Initiative, Entomology Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | - Sarah Zohdy
- U.S. President's Malaria Initiative, Entomology Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jon Eric Tongren
- U.S. President's Malaria Initiative, Malaria Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, UK
| | - Bryan Greenhouse
- EPPIcenter program, Division of HIV, ID and Global Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Fitsum G Tadesse
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
- London School of Hygiene and Tropical Medicine, London, UK.
- Radboudumc, Nijmegen, the Netherlands.
| |
Collapse
|
14
|
Al-Eryani SM, Irish SR, Carter TE, Lenhart A, Aljasari A, Montoya LF, Awash AA, Mohammed E, Ali S, Esmail MA, Hussain A, Amran JG, Kayad S, Nouredayem M, Adam MA, Azkoul L, Assada M, Baheshm YA, Eltahir W, Hutin YJ. Public health impact of the spread of Anopheles stephensi in the WHO Eastern Mediterranean Region countries in Horn of Africa and Yemen: need for integrated vector surveillance and control. Malar J 2023; 22:187. [PMID: 37337209 PMCID: PMC10278259 DOI: 10.1186/s12936-023-04545-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/30/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Anopheles stephensi is an efficient vector of both Plasmodium falciparum and Plasmodium vivax in South Asia and the Middle East. The spread of An. stephensi to countries within the Horn of Africa threatens progress in malaria control in this region as well as the rest of sub-Saharan Africa. METHODS The available malaria data and the timeline for the detection of An. stephensi was reviewed to analyse the role of An. stephensi in malaria transmission in Horn of Africa of the Eastern Mediterranean Region (EMR) in Djibouti, Somalia, Sudan and Yemen. RESULTS Malaria incidence in Horn of Africa of EMR and Yemen, increased from 41.6 in 2015 to 61.5 cases per 1000 in 2020. The four countries from this region, Djibouti, Somalia, Sudan and Yemen had reported the detection of An. stephensi as of 2021. In Djibouti City, following its detection in 2012, the estimated incidence increased from 2.5 cases per 1000 in 2013 to 97.6 cases per 1000 in 2020. However, its contribution to malaria transmission in other major cities and in other countries, is unclear because of other factors, quality of the urban malaria data, human mobility, uncertainty about the actual arrival time of An. stephensi and poor entomological surveillance. CONCLUSIONS While An. stephensi may explain a resurgence of malaria in Djibouti, further investigations are needed to understand its interpretation trends in urban malaria across the greater region. More investment for multisectoral approach and integrated surveillance and control should target all vectors particularly malaria and dengue vectors to guide interventions in urban areas.
Collapse
Affiliation(s)
- Samira M Al-Eryani
- Department of Universal Health Coverage/Communicable Diseases Prevention and Control, Eastern Mediterranean Regional Office, World Health Organization, Cairo, Egypt.
| | - Seth R Irish
- World Health Organization, Headquarters, 1211, Geneva, Switzerland
| | | | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Adel Aljasari
- World Health Organization, Country Office, Sana'a, Yemen
| | | | - Abdullah A Awash
- World Health Organization, Country Office, Sub-Office, Aden, Yemen
| | | | - Said Ali
- National Malaria Control Programme, Ministry of Health Development, Hargeisa, Somaliland
| | - Mohammed A Esmail
- National Malaria Control Programme, Ministry of Public Health & Population, Sana'a, Yemen
| | | | - Jamal G Amran
- World Health Organization, Country Office, Mogadishu, Somalia
| | - Samatar Kayad
- National Malaria Control Programme, Ministry of Health, Djibouti, Djibouti
| | | | - Mariam A Adam
- World Health Organization, Country Office, Khartoum, Sudan
| | - Lina Azkoul
- Department of Universal Health Coverage/Communicable Diseases Prevention and Control, Eastern Mediterranean Regional Office, World Health Organization, Cairo, Egypt
| | - Methaq Assada
- National Malaria Control Programme, Ministry of Public Health & Population, Sana'a, Yemen
| | - Yasser A Baheshm
- National Malaria Control Programme, Ministry of Public Health & Population, Aden, Yemen
| | - Walid Eltahir
- Directorate of the Integrated Vector Management (IVM), Federal Ministry of Health, Khartoum, Sudan
| | - Yvan J Hutin
- Department of Universal Health Coverage/Communicable Diseases Prevention and Control, Eastern Mediterranean Regional Office, World Health Organization, Cairo, Egypt
| |
Collapse
|
15
|
Whittaker C, Hamlet A, Sherrard-Smith E, Winskill P, Cuomo-Dannenburg G, Walker PGT, Sinka M, Pironon S, Kumar A, Ghani A, Bhatt S, Churcher TS. Seasonal dynamics of Anopheles stephensi and its implications for mosquito detection and emergent malaria control in the Horn of Africa. Proc Natl Acad Sci U S A 2023; 120:e2216142120. [PMID: 36791102 PMCID: PMC9974477 DOI: 10.1073/pnas.2216142120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/20/2023] [Indexed: 02/16/2023] Open
Abstract
Invasion of the malaria vector Anopheles stephensi across the Horn of Africa threatens control efforts across the continent, particularly in urban settings where the vector is able to proliferate. Malaria transmission is primarily determined by the abundance of dominant vectors, which often varies seasonally with rainfall. However, it remains unclear how An. stephensi abundance changes throughout the year, despite this being a crucial input to surveillance and control activities. We collate longitudinal catch data from across its endemic range to better understand the vector's seasonal dynamics and explore the implications of this seasonality for malaria surveillance and control across the Horn of Africa. Our analyses reveal pronounced variation in seasonal dynamics, the timing and nature of which are poorly predicted by rainfall patterns. Instead, they are associated with temperature and patterns of land use; frequently differing between rural and urban settings. Our results show that timing entomological surveys to coincide with rainy periods is unlikely to improve the likelihood of detecting An. stephensi. Integrating these results into a malaria transmission model, we show that timing indoor residual spraying campaigns to coincide with peak rainfall offers little improvement in reducing disease burden compared to starting in a random month. Our results suggest that unlike other malaria vectors in Africa, rainfall may be a poor guide to predicting the timing of peaks in An. stephensi-driven malaria transmission. This highlights the urgent need for longitudinal entomological monitoring of the vector in its new environments given recent invasion and potential spread across the continent.
Collapse
Affiliation(s)
- Charles Whittaker
- Medical Research Council Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, LondonW2 1PG, UK
| | - Arran Hamlet
- Medical Research Council Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, LondonW2 1PG, UK
| | - Ellie Sherrard-Smith
- Medical Research Council Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, LondonW2 1PG, UK
| | - Peter Winskill
- Medical Research Council Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, LondonW2 1PG, UK
| | - Gina Cuomo-Dannenburg
- Medical Research Council Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, LondonW2 1PG, UK
| | - Patrick G. T. Walker
- Medical Research Council Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, LondonW2 1PG, UK
| | - Marianne Sinka
- Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
| | - Samuel Pironon
- Royal Botanic Gardens Kew, Richmond, SurreyTW9 3AQ, UK
- United Nations Environment Program World Conservation Monitoring Centre, CambridgeCB3 0DL, UK
| | - Ashwani Kumar
- Vector Control Research Centre, Puducherry605006, India
| | - Azra Ghani
- Medical Research Council Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, LondonW2 1PG, UK
| | - Samir Bhatt
- Medical Research Council Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, LondonW2 1PG, UK
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen1353, Denmark
| | - Thomas S. Churcher
- Medical Research Council Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, LondonW2 1PG, UK
| |
Collapse
|
16
|
Allan R, Weetman D, Sauskojus H, Budge S, Hawail TB, Baheshm Y. Confirmation of the presence of Anopheles stephensi among internally displaced people's camps and host communities in Aden city, Yemen. Malar J 2023; 22:1. [PMID: 36593465 PMCID: PMC9806911 DOI: 10.1186/s12936-022-04427-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Declines in global malaria cases and deaths since the millennium are currently challenged by multiple factors including funding limitations, limits of, and resistance to vector control tools, and also recent spread of the invasive vector species, Anopheles stephensi-especially into novel urban settings where malaria rates are typically low. Coupled with general increases in urbanization and escalations in the number of conflicts creating rapid and unplanned population displacement into temporary shelter camps within host urban areas, particularly in the Middle East and sub-Saharan Africa, increased urban malaria is a major threat to control and elimination. METHODS Entomological monitoring surveys (targeting Aedes aegypti) of water containers across urban areas hosting internally displaced people (IDP) communities in Aden city, Yemen, were performed by The MENTOR Initiative, a non-governmental organisation. As part of these surveys in 2021 23 larvae collected and raised to adults were morphologically identified as An. stephensi. Twelve of the samples were sent to Liverpool School of Tropical Medicine for independent morphological assessment and genetic analysis by sequencing the ribosomal ITS2 region and the mitochondrial COI gene. RESULTS All twelve samples were confirmed morphologically and by sequence comparison of the single ITS2 and COI haplotype detected to the NCBI BLAST database as An. stephensi. Phylogenetic analysis with comparable COI sequences indicated close relationship to haplotypes found in Djibouti and Ethiopia. CONCLUSION The study results confirm the presence of An. stephensi in Yemen. Confirmation of the species in multiple urban communities hosting thousands of IDPs living in temporary shelters with widescale dependency on open water containers is of particular concern due to the vulnerability of the population and abundance of favourable breeding sites for the vector. Proactive monitoring and targeted integrated vector management are required to limit impacts in this area of typically low malaria transmission, and to prevent further the spread of An. stephensi within the region.
Collapse
Affiliation(s)
- Richard Allan
- The MENTOR Initiative, Burns House, Harlands Road, Haywards Heath, RH16 1PG UK
| | - David Weetman
- grid.48004.380000 0004 1936 9764Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - Hendrik Sauskojus
- The MENTOR Initiative, Burns House, Harlands Road, Haywards Heath, RH16 1PG UK
| | - Sophie Budge
- The MENTOR Initiative, Burns House, Harlands Road, Haywards Heath, RH16 1PG UK
| | - Tarek Bin Hawail
- The MENTOR Initiative, Burns House, Harlands Road, Haywards Heath, RH16 1PG UK
| | - Yasser Baheshm
- Ministry of Health in Yemen, National Malaria Control Programme, Aden, Yemen
| |
Collapse
|
17
|
Allan R, Budge S, Sauskojus H. What sounds like Aedes, acts like Aedes, but is not Aedes? Lessons from dengue virus control for the management of invasive Anopheles. Lancet Glob Health 2023; 11:e165-e169. [PMID: 36427517 DOI: 10.1016/s2214-109x(22)00454-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022]
Abstract
Aedes mosquitoes are responsible for transmission of dengue, chikungunya, Zika, and yellow fever viruses. Aedes mosquitoes are the pathfinders of invasive urban-living mosquitoes, and have spread into 129 countries over the past five decades. In the past 10 years Anopheles stephensi has been identified within densely populated cities in Yemen and across the Horn of Africa and as far west as Nigeria. A stephensi's aggressive spread is closely linked to increases in population movement due to migration, conflict, and climate change; rapid unplanned urbanisation; and resulting poor water quality, sanitation, waste container removal, and hygiene systems. As a highly invasive vector that is adept at transmitting malarial pathogens (eg, Plasmodium vivax and Plasmodium falciparum), A stephensi's spread holds huge implications for increasing malaria morbidity and mortality. Both vectors (ie, Aedes species and A stephensi) thrive in the same urban environments, and urgent action is needed to seize the opportunity to integrate disease control resources and generate innovative vector-control tools for urban populations, to protect the many millions at risk.
Collapse
|