1
|
Faderin E, Iorkula TH, Aworinde OR, Awoyemi RF, Awoyemi CT, Acheampong E, Chukwu JU, Agyemang P, Onaiwu GE, Ifijen IH. Platinum nanoparticles in cancer therapy: chemotherapeutic enhancement and ROS generation. Med Oncol 2025; 42:42. [PMID: 39789336 DOI: 10.1007/s12032-024-02598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Platinum nanoparticles (PtNPs) offer significant promise in cancer therapy by enhancing the therapeutic effects of platinum-based chemotherapies like cisplatin. These nanoparticles improve tumor targeting, reduce off-target effects, and help overcome drug resistance. PtNPs exert their anti-cancer effects primarily through the generation of reactive oxygen species (ROS), which induce oxidative stress and apoptosis in cancer cells. Additionally, PtNPs interact with cellular signaling pathways such as PI3K/AKT and MAPK, sensitizing cancer cells to chemotherapy. Advances in PtNP synthesis focus on optimizing size, shape, and surface modifications to enhance biocompatibility and targeting. Functionalization with biomolecules allows selective tumor delivery, while smart release systems enable controlled drug release. In vivo studies have shown that PtNPs significantly inhibit tumor growth and metastasis. Ongoing clinical trials are evaluating their safety and efficacy. This review explores PtNPs' mechanisms of action, nanotechnology advancements, and challenges in biocompatibility, with a focus on their potential integration into cancer treatments.
Collapse
Affiliation(s)
- Emmanuel Faderin
- Department of Pharmaceutical Sciences, Southern Illinois University, Edwardsville, 1 Hairpin Drive, Edwardsville, IL, 62026-001, USA
| | - Terungwa H Iorkula
- Department of Chemistry and Biochemistry, Brigham Young University Provo, Provo, UT, USA
| | - Omowunmi Rebecca Aworinde
- Department of Chemistry, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Raymond Femi Awoyemi
- Department of Chemistry, Mississippi State University, Starkville, MS, 39762, USA
| | - Christopher Taiwo Awoyemi
- Laboratory Department, Covenant University Medical Centre, Canaanland, KM 10, Idiroko Road, Ota, Ogun State, Nigeria
| | - Edward Acheampong
- Department of Chemistry, Mississippi State University, Starkville, MS, 39762, USA
| | - Janefrances U Chukwu
- C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Stewart Hall, PO Box 6201, Morgantown, WV, 26506-6201, USA
| | - Peter Agyemang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Gregory E Onaiwu
- Department of Physical Science (Chemistry Option), Benson Idahosa University, PMB 1100, Benin City, Edo State, Nigeria
| | - Ikhazuagbe Hilary Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria, PMB 1049, Benin City, Edo State, Nigeria.
| |
Collapse
|
2
|
Kamble OS, Chatterjee R, Abishek KG, Chandra J, Alsayari A, Wahab S, Sahebkar A, Kesharwani P, Dandela R. Small molecules targeting mitochondria as an innovative approach to cancer therapy. Cell Signal 2024; 124:111396. [PMID: 39251050 DOI: 10.1016/j.cellsig.2024.111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Cellular death evasion is a defining characteristic of human malignancies and a significant contributor to therapeutic inefficacy. As a result of oncogenic inhibition of cell death mechanisms, established therapeutic regimens seems to be ineffective. Mitochondria serve as the cellular powerhouses, but they also function as repositories of self-destructive weaponry. Changes in the structure and activities of mitochondria have been consistently documented in cancer cells. In recent years, there has been an increasing focus on using mitochondria as a targeted approach for treating cancer. Considerable attention has been devoted to the development of delivery systems that selectively aim to deliver small molecules called "mitocans" to mitochondria, with the ultimate goal of modulating the physiology of cancer cells. This review summarizes the rationale and mechanism of mitochondrial targeting with small molecules in the treatment of cancer, and their impact on the mitochondria. This paper provides a concise overview of the reasoning and mechanism behind directing treatment towards mitochondria in cancer therapy, with a particular focus on targeting using small molecules. This review also examines diverse small molecule types within each category as potential therapeutic agents for cancer.
Collapse
Affiliation(s)
- Omkar S Kamble
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - Rana Chatterjee
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - K G Abishek
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India.
| |
Collapse
|
3
|
Fiegl H, Schnaiter S, Reimer DU, Leitner K, Nardelli P, Tsibulak I, Wieser V, Wimmer K, Schamschula E, Marth C, Zeimet AG. BRCA loss of function including BRCA1 DNA-methylation, but not BRCA-unrelated homologous recombination deficiency, is associated with platinum hypersensitivity in high-grade ovarian cancer. Clin Epigenetics 2024; 16:171. [PMID: 39605059 PMCID: PMC11603837 DOI: 10.1186/s13148-024-01781-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND In high-grade ovarian cancer (HGOC), determination of homologous recombination deficiency (HRD) status is commonly used in routine practice to predict response to platinum-based therapy or poly (ADP-ribose) polymerase inhibitors (PARPi). Here we tested the hypothesis that BRCA loss of function (LOF) due to epigenetic or genetic aberrations is a better predictor for the clinical outcome than HRD. One hundred thirty-one HGOC tissues were tested for BRCA DNA-methylation, BRCA mutations, HRD and BRCA1 mRNA expression, followed by a comprehensive survival analysis. RESULTS BRCA1-methylation was detected in 11% of the tumors, exclusively in BRCA1-wild-type (wt) HGOCs. BRCA1-methylated tumors (BRCA1-meth) had HRD-scores similar to those of BRCA-mutated (mut) tumors, and higher compared to unmethylated-BRCA-wt tumors (BRCA-wt-unmeth; P < 0.001). Platinum-refractory or -resistant HGOCs at first recurrence were all BRCA-unmeth cancers. Only one of the BRCA-mut cancers had a platinum-resistant recurrence. Thus, 99% of relapses in cancers with epigenetic or genetic BRCA-alterations were platinum-sensitive. Multivariate analysis confirmed BRCA-LOF as an independent predictor of progression-free survival (PFS) and overall survival (OS), whereas HRD-status had no predictive value for PFS and OS. Patients with BRCA-wt-unmeth cancers had the worst outcome compared to patients with cancers harboring epigenetic or genetic BRCA-alterations (PFS: P = 0.007; OS: P = 0.022). Most importantly, the BRCA-wt-unmeth subfraction of HRD-positive HGOCs exhibited the same poor survival as the entire HRD-negative cohort. CONCLUSION In HGOC BRCA mutational status together with BRCA1-methylation exhibit the best predictive power for favorable clinical outcome and thus high sensitivity to platinum-based therapy, whereas BRCA-unrelated HRD positivity was not associated with improved platinum sensitivity.
Collapse
Affiliation(s)
- Heidelinde Fiegl
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Simon Schnaiter
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniel U Reimer
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Leitner
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Petra Nardelli
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Irina Tsibulak
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Wieser
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Wimmer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Esther Schamschula
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Marth
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alain G Zeimet
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
4
|
Belli O, Karava K, Farouni R, Platt RJ. Multimodal scanning of genetic variants with base and prime editing. Nat Biotechnol 2024:10.1038/s41587-024-02439-1. [PMID: 39533106 DOI: 10.1038/s41587-024-02439-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/18/2024] [Indexed: 11/16/2024]
Abstract
Mutational scanning connects genetic variants to phenotype, enabling the interrogation of protein functions, interactions and variant pathogenicity. However, current methodologies cannot efficiently engineer customizable sets of diverse genetic variants in endogenous loci across cellular contexts in high throughput. Here, we combine cytosine and adenine base editors and a prime editor to assess the pathogenicity of a broad spectrum of variants in the epithelial growth factor receptor gene (EGFR). Using pooled base editing and prime editing guide RNA libraries, we install tens of thousands of variants spanning the full coding sequence of EGFR in multiple cell lines and assess the role of these variants in tumorigenesis and resistance to tyrosine kinase inhibitors. Our EGFR variant scan identifies important hits, supporting the robustness of the approach and revealing underappreciated routes to EGFR activation and drug response. We anticipate that multimodal precision mutational scanning can be applied broadly to characterize genetic variation in any genetic element of interest at high and single-nucleotide resolution.
Collapse
Affiliation(s)
- Olivier Belli
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kyriaki Karava
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Rick Farouni
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Basel Research Centre for Child Health, Basel, Switzerland.
- Department of Chemistry, University of Basel, Basel, Switzerland.
- NCCR Molecular Systems Engineering, Basel, Switzerland.
| |
Collapse
|
5
|
Manjunath GK, Sharma S, Nashier D, Vasanthaiah S, Jha S, Bage S, Mitra T, Goyal P, Neerathilingam M, Kumar A. Breast cancer genomic analyses reveal genes, mutations, and signaling networks. Funct Integr Genomics 2024; 24:206. [PMID: 39496981 DOI: 10.1007/s10142-024-01484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer and the predominant cause of death in women. BC is a complex disorder, and the exploration of several types of BC omic data, highlighting genes, perturbations, signaling and cellular mechanisms, is needed. We collected mutational data from 9,555 BC samples using cBioPortal. We classified 1174 BC genes (mutated ≥ 40 samples) into five tiers (BCtier_I-V) and subjected them to pathway and protein‒protein network analyses using EnrichR and STRING 11, respectively. BCtier_I possesses 12 BC genes with mutational frequencies > 5%, with only 5 genes possessing > 10% frequencies, namely, PIK3CA (35.7%), TP53 (34.3%), GATA3 (11.5%), CDH1 (11.4%) and MUC16 (11%), and the next seven BC genes are KMT2C (8.8%), TTN (8%), MAP3K1 (8%), SYNE1 (7.2%), AHNAK2 (7%), USH2A (5.5%), and RYR2 (5.4%). Our pathway analyses revealed that the five top BC pathways were the PI3K-AKT, TP53, NOTCH, HIPPO, and RAS pathways. We found that BC panels share only seven genes. These findings show that BC arises from genetic disruptions evident in BC signaling and protein networks.
Collapse
Affiliation(s)
- Gowrang Kasaba Manjunath
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Srihari Sharma
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Disha Nashier
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Shruthi Vasanthaiah
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Spriha Jha
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Saloni Bage
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Tamoghna Mitra
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Pankaj Goyal
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Muniasamy Neerathilingam
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India.
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India.
| |
Collapse
|
6
|
Schnaiter S, Schamschula E, Laschtowiczka J, Fiegl H, Zschocke J, Zeimet A, Wimmer K, Reimer D. Stratification of Homologous Recombination Deficiency-Negative High-Grade Ovarian Cancer by the Type of Peritoneal Spread into Two Groups with Distinct Survival Outcomes. Cancers (Basel) 2024; 16:2129. [PMID: 38893248 PMCID: PMC11171355 DOI: 10.3390/cancers16112129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Homologous recombination deficiency (HRD) has evolved into a major diagnostic marker in high-grade ovarian cancer (HGOC), predicting the response to poly (adenosine diphosphate-ribose) polymerase inhibitors (PARPi) and also platinum-based therapy. In addition to HRD, the type of peritoneal tumor spread influences the treatment response and patient survival; miliary type tumor spread has a poorer predicted outcome than non-miliary type tumor spread. METHODS Known methods for HRD assessment were adapted for our technical requirements and the predictive-value integrated genomic instability score (PIGIS) for HRD assessment evolved as an outcome. PIGIS was validated in HGOC samples from 122 patients. We used PIGIS to analyze whether the type of tumor spread correlated with HRD status and whether this had an impact on survival. RESULTS We demonstrated that PIGIS can discriminate HRD-positive from HRD-negative samples. Tumors with a miliary tumor spread are HRD-negative and have a very bad prognosis with a progression-free survival (PFS) of 15.6 months and an overall survival (OS) of 3.9 years. However, HRD-negative non-miliary spreading tumors in our cohort had a much better prognosis (PFS 35.4 months, OS 8.9 years); similar to HRD-positive tumors (PFS 34.7 months, OS 8.9 years). CONCLUSIONS Our results indicate that in a predominantly PARPi naïve cohort, the type of tumor spread and concomitant cytoreduction efficiency is a better predictor of survival than HRD and that HRD may be an accidental surrogate marker for tumor spread and concomitant cytoreduction efficiency. It remains to be determined whether this also applies for sensitivity to PARPi.
Collapse
Affiliation(s)
- Simon Schnaiter
- Institute of Human Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria; (E.S.); (J.L.); (J.Z.); (K.W.)
| | - Esther Schamschula
- Institute of Human Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria; (E.S.); (J.L.); (J.Z.); (K.W.)
| | - Juliane Laschtowiczka
- Institute of Human Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria; (E.S.); (J.L.); (J.Z.); (K.W.)
| | - Heidelinde Fiegl
- Department of Obstetrics and Gynecology, Medical University Innsbruck, 6020 Innsbruck, Austria; (H.F.); (A.Z.); (D.R.)
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria; (E.S.); (J.L.); (J.Z.); (K.W.)
| | - Alain Zeimet
- Department of Obstetrics and Gynecology, Medical University Innsbruck, 6020 Innsbruck, Austria; (H.F.); (A.Z.); (D.R.)
| | - Katharina Wimmer
- Institute of Human Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria; (E.S.); (J.L.); (J.Z.); (K.W.)
| | - Daniel Reimer
- Department of Obstetrics and Gynecology, Medical University Innsbruck, 6020 Innsbruck, Austria; (H.F.); (A.Z.); (D.R.)
| |
Collapse
|
7
|
Fernández-Serra A, López-Reig R, Márquez R, Gallego A, de Sande LM, Yubero A, Pérez-Segura C, Ramchandani-Vaswani A, Barretina-Ginesta MP, Mendizábal E, Esteban C, Gálvez F, Sánchez-Heras AB, Guerra-Alía EM, Gaba L, Quindós M, Palacio I, Alarcón J, Oaknin A, Aliaga J, Ramírez-Calvo M, García-Casado Z, Romero I, López-Guerrero JA. The Scarface Score: Deciphering Response to DNA Damage Agents in High-Grade Serous Ovarian Cancer-A GEICO Study. Cancers (Basel) 2023; 15:cancers15113030. [PMID: 37296992 DOI: 10.3390/cancers15113030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Genomic Instability (GI) is a transversal phenomenon shared by several tumor types that provide both prognostic and predictive information. In the context of high-grade serous ovarian cancer (HGSOC), response to DNA-damaging agents such as platinum-based and poly(ADP-ribose) polymerase inhibitors (PARPi) has been closely linked to deficiencies in the DNA repair machinery by homologous recombination repair (HRR) and GI. In this study, we have developed the Scarface score, an integrative algorithm based on genomic and transcriptomic data obtained from the NGS analysis of a prospective GEICO cohort of 190 formalin-fixed paraffin-embedded (FFPE) tumor samples from patients diagnosed with HGSOC with a median follow up of 31.03 months (5.87-159.27 months). In the first step, three single-source models, including the SNP-based model (accuracy = 0.8077), analyzing 8 SNPs distributed along the genome; the GI-based model (accuracy = 0.9038) interrogating 28 parameters of GI; and the HTG-based model (accuracy = 0.8077), evaluating the expression of 7 genes related with tumor biology; were proved to predict response. Then, an ensemble model called the Scarface score was found to predict response to DNA-damaging agents with an accuracy of 0.9615 and a kappa index of 0.9128 (p < 0.0001). The Scarface Score approaches the routine establishment of GI in the clinical setting, enabling its incorporation as a predictive and prognostic tool in the management of HGSOC.
Collapse
Affiliation(s)
- Antonio Fernández-Serra
- Molecular Biology Lab, Molecular Biology Department, Instituto Valenciano de Oncologia, 46009 Valencia, Spain
- Joint IVO-CIPF Cancer Research Unit, 46012 Valencia, Spain
| | - Raquel López-Reig
- Molecular Biology Lab, Molecular Biology Department, Instituto Valenciano de Oncologia, 46009 Valencia, Spain
- Joint IVO-CIPF Cancer Research Unit, 46012 Valencia, Spain
| | - Raúl Márquez
- Medical Oncology Department, MD Anderson Cancer Center, 28033 Madrid, Spain
| | - Alejandro Gallego
- Medical Oncology Department, Hospital Universitario La Paz, 28046 Madrid, Spain
| | | | - Alfonso Yubero
- Medical Oncology Department, Hospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, Spain
| | - Cristina Pérez-Segura
- Medical Oncology Department, Hospital de Sant Pau i Santa Tecla, 08025 Barcelona, Spain
| | | | | | - Elsa Mendizábal
- Medical Oncology Department, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Carmen Esteban
- Medical Oncology Department, Hospital Virgen de la Salud, 45005 Toledo, Spain
| | - Fernando Gálvez
- Medical Oncology Department, Complejo Hospitalario de Jaén, 23007 Jaén, Spain
| | | | - Eva María Guerra-Alía
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Lydia Gaba
- Medical Oncology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - María Quindós
- Medical Oncology Department, Complejo Hospitalario Universitario A Coruña, 15006 A Coruña, Spain
| | - Isabel Palacio
- Medical Oncology Department, Hospital Central Asturias, 33011 Oviedo, Spain
| | - Jesús Alarcón
- Medical Oncology Department, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Ana Oaknin
- Medical Oncology Department, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Jessica Aliaga
- Pathology Department, Instituto Valenciano de Oncologia, 46009 Valencia, Spain
| | - Marta Ramírez-Calvo
- Molecular Biology Lab, Molecular Biology Department, Instituto Valenciano de Oncologia, 46009 Valencia, Spain
| | - Zaida García-Casado
- Molecular Biology Lab, Molecular Biology Department, Instituto Valenciano de Oncologia, 46009 Valencia, Spain
| | - Ignacio Romero
- Medical Oncology Department, Instituto Valenciano de Oncología, 46010 Valencia, Spain
| | - José Antonio López-Guerrero
- Molecular Biology Lab, Molecular Biology Department, Instituto Valenciano de Oncologia, 46009 Valencia, Spain
- Joint IVO-CIPF Cancer Research Unit, 46012 Valencia, Spain
- Department of Pathology, Catholic University of Valencia, 46001 Valencia, Spain
| |
Collapse
|
8
|
Roberto M, Arrivi G, Pilozzi E, Montori A, Balducci G, Mercantini P, Laghi A, Ierinò D, Panebianco M, Marinelli D, Tomao S, Marchetti P, Mazzuca F. The Potential Role of Genomic Signature in Stage II Relapsed Colorectal Cancer (CRC) Patients: A Mono-Institutional Study. Cancer Manag Res 2022; 14:1353-1369. [PMID: 35418781 PMCID: PMC9000544 DOI: 10.2147/cmar.s342612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose The absolute benefit of adjuvant chemotherapy in stage II CRC is only 3–4%. The identification of biomarkers through molecular profiling could identify patients who will more benefit from adjuvant chemotherapy. Patients and Methods This retrospective analysis examined tissue blocks from 17 patients affected by relapsed stage II CRC, whose comprehensive genomic profiling of tumors was conducted through next-generation sequencing (NGS) via Roche-FoundationOne®. Results Mutations were found in APC (76.5%), TP53 (58.8%) and KRAS (52.9%). Only KRAS wild-type samples showed FBXW7. APC frameshift mutations and MLH1 splice variant were conversely significant correlated (7% v 93%, P = 0.014). The median number of gene mutations reported was 6 (range 2–14). The TP53 mutation was associated most frequently with lung metastasis (P = 0.07) and high tumor budding (P = 0.03). Despite no statistical significance, lung recurrence, LVI/Pni, MSI and more than 6 genetic mutations were correlated to worse DFS and OS. Patients carried co-mutations of TP53-FBXW7 reported the worse DFS (4 v 14 months) and OS (4 v 65 months) compared to the other patients. Conclusion According to the present analysis, the setting of relapsed CRC emerges as one of the fields of greatest utility for NGS, looking at personalized cancer care.
Collapse
Affiliation(s)
- Michela Roberto
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Medical Oncology Unit A, Policlinico Umberto I, “Sapienza” University of Rome, Rome, Italy
| | - Giulia Arrivi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Oncology Unit, Sant’ Andrea University Hospital, Rome, Italy
- Correspondence: Giulia Arrivi, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Oncology Unit, Sant’ Andrea University Hospital, Via di Grottarossa 1035-1039, Rome, 00189, Italy, Tel +39 3387231524, Fax +39 0633776629, Email
| | - Emanuela Pilozzi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Anatomia Patologica Unit, Sant’ Andrea University Hospital, Rome, Italy
| | - Andrea Montori
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Anatomia Patologica Unit, Sant’ Andrea University Hospital, Rome, Italy
| | - Genoveffa Balducci
- Department of Medical-Surgical Sciences and Translation Medicine, Sapienza University of Rome, Gastro-intestinal Surgery Unit, Sant’ Andrea University Hospital, Rome, Italy
| | - Paolo Mercantini
- Department of Medical-Surgical Sciences and Translation Medicine, Sapienza University of Rome, Gastro-intestinal Surgery Unit, Sant’ Andrea University Hospital, Rome, Italy
| | - Andrea Laghi
- Department of Medical-Surgical Sciences and Translation Medicine, Sapienza University of Rome, Radiology Unit, Sant’ Andrea University Hospital, Rome, Italy
| | - Debora Ierinò
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Oncology Unit, Sant’ Andrea University Hospital, Rome, Italy
| | - Martina Panebianco
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Oncology Unit, Sant’ Andrea University Hospital, Rome, Italy
| | - Daniele Marinelli
- Medical Oncology Unit B, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Silverio Tomao
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Medical Oncology Unit A, Policlinico Umberto I, “Sapienza” University of Rome, Rome, Italy
| | - Paolo Marchetti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Oncology Unit, Sant’ Andrea University Hospital, Rome, Italy
| | - Federica Mazzuca
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Oncology Unit, Sant’ Andrea University Hospital, Rome, Italy
| |
Collapse
|
9
|
Zhang C, Mei W, Zeng C. Oncogenic Neuregulin 1 gene (NRG1) fusions in cancer: A potential new therapeutic opportunities. Biochim Biophys Acta Rev Cancer 2022; 1877:188707. [PMID: 35247506 DOI: 10.1016/j.bbcan.2022.188707] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/27/2022] [Accepted: 02/27/2022] [Indexed: 10/19/2022]
Abstract
It is widely established that chromosomal rearrangements induce oncogenesis in solid tumors. However, discovering chromosomal rearrangements that are targetable and actionable remains a difficulty. Targeting gene fusion or chromosomal rearrangement seems to be a powerful strategy to address malignancies characterized by gene rearrangement. Oncogenic NRG1 fusions are relatively rare drivers that infrequently occur across most tumor types. NRG1 fusions exhibit unique biological properties and are difficult to identify owing to their large intronic regions. NRG1 fusions can be detected using a variety of techniques, including fluorescence in situ hybridization, immunohistochemistry, or next-generation sequencing (NGS), with NGS-based RNA sequencing being the most sensitive. Previous studies have shown that NRG1 fusion protein induces tumorigenesis, and numerous therapies targeting the ErbB signaling pathway, such as ErbB kinase inhibitors and monoclonal antibodies, have initially demonstrated encouraging anticancer efficacy in malignant tumors carrying NRG1 fusions. In this review, we present the characteristics and prevalence of NRG1 fusions in solid tumors. Additionally, we discuss the laboratory approaches for diagnosing NRG1 gene fusions. More importantly, we outline promising strategies for treating malignancies with NRG1 fusion.
Collapse
Affiliation(s)
- Congwang Zhang
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen 518110, China
| | - Wuxuan Mei
- Clinical Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen 518110, China.
| |
Collapse
|
10
|
Laganà A. Computational Approaches for the Investigation of Intra-tumor Heterogeneity and Clonal Evolution from Bulk Sequencing Data in Precision Oncology Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1361:101-118. [DOI: 10.1007/978-3-030-91836-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Fornerod M, Ma J, Noort S, Liu Y, Walsh MP, Shi L, Nance S, Liu Y, Wang Y, Song G, Lamprecht T, Easton J, Mulder HL, Yergeau D, Myers J, Kamens JL, Obeng EA, Pigazzi M, Jarosova M, Kelaidi C, Polychronopoulou S, Lamba JK, Baker SD, Rubnitz JE, Reinhardt D, van den Heuvel-Eibrink MM, Locatelli F, Hasle H, Klco JM, Downing JR, Zhang J, Pounds S, Zwaan CM, Gruber TA. Integrative Genomic Analysis of Pediatric Myeloid-Related Acute Leukemias Identifies Novel Subtypes and Prognostic Indicators. Blood Cancer Discov 2021; 2:586-599. [PMID: 34778799 PMCID: PMC8580615 DOI: 10.1158/2643-3230.bcd-21-0049] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/04/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
Integrating somatic mutation analysis and gene expression profiling distinguishes pediatric AML subtypes with differential prognoses and clinical risks. Genomic characterization of pediatric patients with acute myeloid leukemia (AML) has led to the discovery of somatic mutations with prognostic implications. Although gene-expression profiling can differentiate subsets of pediatric AML, its clinical utility in risk stratification remains limited. Here, we evaluate gene expression, pathogenic somatic mutations, and outcome in a cohort of 435 pediatric patients with a spectrum of pediatric myeloid-related acute leukemias for biological subtype discovery. This analysis revealed 63 patients with varying immunophenotypes that span a T-lineage and myeloid continuum designated as acute myeloid/T-lymphoblastic leukemia (AMTL). Within AMTL, two patient subgroups distinguished by FLT3-ITD and PRC2 mutations have different outcomes, demonstrating the impact of mutational composition on survival. Across the cohort, variability in outcomes of patients within isomutational subsets is influenced by transcriptional identity and the presence of a stem cell–like gene-expression signature. Integration of gene expression and somatic mutations leads to improved risk stratification.
Collapse
Affiliation(s)
- Maarten Fornerod
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, the Netherlands.,Department of Pediatric Oncology Hematology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sanne Noort
- Department of Pediatric Oncology Hematology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Yu Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michael P Walsh
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephanie Nance
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yuanyuan Wang
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tamara Lamprecht
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Heather L Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Donald Yergeau
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jacquelyn Myers
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jennifer L Kamens
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Esther A Obeng
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Martina Pigazzi
- Department of Women's and Children's Health, Hematology Oncology Clinic and Lab, University of Padova, IRP, Padova, Italy.,Department of Pediatric Hematology Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome, Italy
| | - Marie Jarosova
- Department of Internal Medicine Hematology and Oncology Center of Molecular Biology and Gene Therapy, Masaryk University Hospital, Brno, Czech Republic
| | - Charikleia Kelaidi
- Department of Pediatric Hematology and Oncology Aghia Sophia Children's Hospital, Athens, Greece
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology and Oncology Aghia Sophia Children's Hospital, Athens, Greece
| | - Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Sharyn D Baker
- Division of Pharmaceutics, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Jeffrey E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Dirk Reinhardt
- Department of Pediatrics, University Hospital Essen, Essen, Germany
| | - Marry M van den Heuvel-Eibrink
- Department of Pediatric Oncology Hematology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands.,Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Franco Locatelli
- Department of Pediatric Hematology Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome, Italy
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University, Aarhus, Denmark
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - C Michel Zwaan
- Department of Pediatric Oncology Hematology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands.,Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Tanja A Gruber
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
12
|
Kervarrec T, Appenzeller S, Samimi M, Sarma B, Sarosi EM, Berthon P, Le Corre Y, Hainaut-Wierzbicka E, Blom A, Benethon N, Bens G, Nardin C, Aubin F, Dinulescu M, Jullie ML, Pekár-Lukacs Á, Calonje E, Thanguturi S, Tallet A, Wobser M, Touzé A, Guyétant S, Houben R, Schrama D. Merkel Cell Polyomavirus‒Negative Merkel Cell Carcinoma Originating from In Situ Squamous Cell Carcinoma: A Keratinocytic Tumor with Neuroendocrine Differentiation. J Invest Dermatol 2021; 142:516-527. [PMID: 34480892 DOI: 10.1016/j.jid.2021.07.175] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022]
Abstract
Although virus-negative Merkel cell carcinoma (MCC) is characterized by a high frequency of UV-induced mutations, the expression of two viral oncoproteins is regarded as a key mechanism driving Merkel cell polyomavirus‒positive MCC. The cells in which these molecular events initiate MCC oncogenesis have yet not been identified for both MCC subsets. A considerable proportion of virus-negative MCC is found in association with squamous cell carcinoma (SCC), suggesting (i) coincidental collision, (ii) one providing a niche for the other, or (iii) one evolving from the other. Whole-exome sequencing of four combined tumors consisting of SCC in situ and Merkel cell polyomavirus‒negative MCC showed many mutations shared between SCC and MCC in all cases, indicating a common ancestry and thereby a keratinocytic origin of these MCCs. Moreover, analyses of the combined cases as well as of pure SCC and MCC suggest that RB1 inactivation in SCC facilitates MCC development and that epigenetic changes may contribute to the SCC/MCC transition.
Collapse
Affiliation(s)
- Thibault Kervarrec
- Department of Pathology, University Hospital Center of Tours, University of Tours, Tours, France; Biologie des infections à polyomavirus team, UMR INRAE ISP 1282, University of Tours, Tours, France; Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany.
| | - Silke Appenzeller
- Core Unit Bioinformatics, Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany
| | - Mahtab Samimi
- Biologie des infections à polyomavirus team, UMR INRAE ISP 1282, University of Tours, Tours, France; Department of Dermatology, University Hospital Center of Tours, University of Tours, Tours, France
| | - Bhavishya Sarma
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Eva-Maria Sarosi
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Patricia Berthon
- Biologie des infections à polyomavirus team, UMR INRAE ISP 1282, University of Tours, Tours, France
| | - Yannick Le Corre
- Dermatology Department, LUNAM University, University Hospital Center of Angers, Angers, France
| | - Ewa Hainaut-Wierzbicka
- Dermatology Department, University Hospital Center of Poitiers, University of Poitiers, Poitiers, France
| | - Astrid Blom
- Department of General and Oncologic Dermatology, Ambroise-Paré hospital, APHP, Boulogne-Billancourt, France
| | | | - Guido Bens
- Dermatology Department, Hospital Center of Orléans, Orléans, France
| | - Charline Nardin
- Dermatology Department, University Hospital Center of Besançon, University of Franche Comté, Besançon, France
| | - Francois Aubin
- Dermatology Department, University Hospital Center of Besançon, University of Franche Comté, Besançon, France
| | - Monica Dinulescu
- Dermatology Department, University Hospital Center of Rennes, Rennes, France; "Institut Dermatologie du Grand Ouest" (IDGO), Nantes, France
| | - Marie-Laure Jullie
- Department of Pathology, Hôpital Haut-Lévêque, University Hospital Center of Bordeaux, CARADERM network, Pessac, France
| | - Ágnes Pekár-Lukacs
- Department of Oncology and Pathology, Lund University, Lund, Sweden; Department of Dermatopathology, St John's Institute of Dermatology, St Thomas's Hospital, London, United Kingdom
| | - Eduardo Calonje
- Department of Dermatopathology, St John's Institute of Dermatology, St Thomas's Hospital, London, United Kingdom
| | - Soumanth Thanguturi
- Department of Pathology, University Hospital Center of Tours, University of Tours, Tours, France
| | - Anne Tallet
- Platform of Somatic Tumor Molecular Genetics, University Hospital Center of Tours, Université de Tours, Tours, France
| | - Marion Wobser
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Antoine Touzé
- Biologie des infections à polyomavirus team, UMR INRAE ISP 1282, University of Tours, Tours, France
| | - Serge Guyétant
- Department of Pathology, University Hospital Center of Tours, University of Tours, Tours, France; Biologie des infections à polyomavirus team, UMR INRAE ISP 1282, University of Tours, Tours, France
| | - Roland Houben
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Analysis of Intestinal Metaplasia Without Dysplasia in the Urinary Bladder Reveal Only Rare Mutations Associated With Colorectal Adenocarcinoma. Appl Immunohistochem Mol Morphol 2021; 28:786-790. [PMID: 31876604 DOI: 10.1097/pai.0000000000000812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intestinal metaplasia (IM) is a rare finding in urinary bladder specimens. It is unclear whether IM without dysplasia is a precursor of malignancy in the urinary system. We retrospectively selected 9 cases of IM of bladder (1 case harboring high-grade dysplasia), and performed mutation analysis for genes frequently mutated in colon cancer including BRAF, APC, KRAS, MET, NRAS, PIK3CA, CTNNB1, FBXW7, and TP53 using validated clinical tests. Control groups included 7 colonic tubular adenomas, 10 high-grade papillary urothelial carcinomas. One IM case revealed an APC mutation and another showed an NRAS mutation. Among the tubular adenomas cases, 6 of 7 (85.7%) harbored KRAS mutations and 3 of 7 (42%) APC mutations. Among urothelial carcinomas cases, 1 revealed a KRAS mutation, 2 had PIK3CA mutations, and all cases were negative for APC mutations. Clinical follow-up for the IM patients was available with a median follow-up of 70 months. One patient-without any mutation in the genes investigated-developed invasive bladder adenocarcinoma with intestinal differentiation with metastasis to the liver and lung. Neither of the 2 patients harboring mutations developed any malignancy. In conclusion, a minority of cases with IM without dysplasia bear mutations in the genes commonly associated with colonic adenocarcinoma, suggesting a premalignant potential for such lesions possibly following the classic multistep chromosomal instability pathway of carcinogenesis. A larger cohort of patients with longer follow-up is needed to better establish whether close follow-up is warranted for mutation-harboring IM of the bladder.
Collapse
|
14
|
Tang F, Tie Y, Wei YQ, Tu CQ, Wei XW. Targeted and immuno-based therapies in sarcoma: mechanisms and advances in clinical trials. Biochim Biophys Acta Rev Cancer 2021; 1876:188606. [PMID: 34371128 DOI: 10.1016/j.bbcan.2021.188606] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/04/2021] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
Sarcomas represent a distinct group of rare malignant tumors with high heterogeneity. Limited options with clinical efficacy for the metastatic or local advanced sarcoma existed despite standard therapy. Recently, targeted therapy according to the molecular and genetic phenotype of individual sarcoma is a promising option. Among these drugs, anti-angiogenesis therapy achieved favorable efficacy in sarcomas. Inhibitors targeting cyclin-dependent kinase 4/6, poly-ADP-ribose polymerase, insulin-like growth factor-1 receptor, mTOR, NTRK, metabolisms, and epigenetic drugs are under clinical evaluation for sarcomas bearing the corresponding signals. Immunotherapy represents a promising and favorable method in advanced solid tumors. However, most sarcomas are immune "cold" tumors, with only alveolar soft part sarcoma and undifferentiated pleomorphic sarcoma respond to immune checkpoint inhibitors. Cellular therapies with TCR-engineered T cells, chimeric antigen receptor T cells, tumor infiltrating lymphocytes, and nature killer cells transfer show therapeutic potential. Identifying tumor-specific antigens and exploring immune modulation factors arguing the efficacy of these immunotherapies are the current challenges. This review focuses on the mechanisms, advances, and potential strategies of targeted and immune-based therapies in sarcomas.
Collapse
Affiliation(s)
- Fan Tang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China; Department of Orthopeadics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Tie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yu-Quan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chong-Qi Tu
- Department of Orthopeadics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Xia-Wei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Auzanneau C, Bacq D, Bellera C, Blons H, Boland A, Boucheix M, Bourdon A, Chollet E, Chomienne C, Deleuze JF, Delmas C, Dinart D, Espérou H, Geillon F, Geneste D, Italiano A, Jean D, Khalifa E, Laizet Y, Laurent-Puig P, Lethimonnier F, Lévy-Marchal C, Lucchesi C, Malle C, Mancini P, Mathoulin-Pélissier S, Meyer V, Marie-Ange P, Perkins G, Sellan-Albert S, Soubeyran I, Wallet C. Feasibility of high-throughput sequencing in clinical routine cancer care: lessons from the cancer pilot project of the France Genomic Medicine 2025 plan. ESMO Open 2021; 5:S2059-7029(20)32644-2. [PMID: 32713836 PMCID: PMC7383956 DOI: 10.1136/esmoopen-2020-000744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/02/2022] Open
Abstract
Background Whole exome sequencing and RNA sequencing (WES/RNASeq) should now be implemented in the clinical practice in order to increase access to optimal care for cancer patients. Providing results to Tumour Boards in a relevant time frame—that is, compatible with the clinical pathway—is crucial. Assessing the feasibility of this implementation in the French care system is the primary objective of the Multipli study, as one of the four pilot projects of the national France Genomic Medicine 2025 (FGM 2025) plan. The Multipli study encompasses two innovative trials which will be driven in around 2400 patients suffering from a soft-tissue sarcoma (Multisarc) or a metastatic colorectal carcinoma (Acompli). Methods Prior to launching the FGM 2025 cancer pilot study itself, the performance of the Multipli genomic workflow has been evaluated through each step, from the samples collection to the Molecular Tumour Board (MTB) report. Two Multipli-assigned INCa-labelled molecular genetics centres, the CEA-CNRGH sequencing platform and the Institut Bergonié’s Bioinformatics Platform were involved in a multicentric study. The duration of each step of the genomic workflow was monitored and bottlenecks were identified. Results Thirty barriers which could affect the quality of the samples, sequencing results and the duration of each step of the genomic pathway were identified and mastered. The global turnaround time from the sample reception to the MTB report was of 44 calendar days. Conclusion Our results demonstrate the feasibility of tumour genomic analysis by WES/RNASeq within a time frame compatible with the current cancer patient care. Lessons learnt from the Multipli WES/RNASeq Platforms Workflow Study will constitute guidelines for the forthcoming Multipli study and more broadly for the future clinical routine practice in the first two France Genomic Medicine 2025 platforms.
Collapse
Affiliation(s)
| | - Céline Auzanneau
- Unité de pathologie moléculaire, Institut Bergonié, Bordeaux, France.,U1218, Institut Bergonié, Institut national de la santé et de la recherche médicale, Bordeaux, France
| | - Delphine Bacq
- Centre national de recherche en génétique humaine, Institut de biologie François-Jacob, Commissariat à l'énergie atomique et aux énergies alternatives, Evry, France
| | - Carine Bellera
- Institut de santé publique, d'épidémiologie et de développement, Université de Bordeaux, Bordeaux, France.,CIC-EC1401/EUCLID, Institut national de la santé et de la recherche médicale, Bordeaux, France
| | - Hélène Blons
- Service de pharmacogénétique et d'oncologie moléculaire, Hopital Europeen Georges Pompidou, Paris, France.,U1147, Centre universitaire des Saint-Pères, Institut national de la santé et de la recherche médicale, Paris, France
| | - Anne Boland
- Centre national de recherche en génétique humaine, Institut de biologie François-Jacob, Commissariat à l'énergie atomique et aux énergies alternatives, Evry, France
| | - Marlène Boucheix
- Unité de pathologie moléculaire, Institut Bergonié, Bordeaux, France
| | - Aurélien Bourdon
- U1218, Institut Bergonié, Institut national de la santé et de la recherche médicale, Bordeaux, France.,Unité de bioinformatique, Institut Bergonié, Bordeaux, France
| | - Emmanuelle Chollet
- ITMO Cancer, Alliance nationale pour les sciences de la vie et de la santé, Paris, France
| | - Christine Chomienne
- ITMO Cancer, Alliance nationale pour les sciences de la vie et de la santé, Paris, France .,Institut National du Cancer, Boulogne-Billancourt, France
| | - Jean-François Deleuze
- Centre national de recherche en génétique humaine, Institut de biologie François-Jacob, Commissariat à l'énergie atomique et aux énergies alternatives, Evry, France.,Centre de référence, d'innovation et d'expertise, US39, Commissariat à l'énergie atomique et aux énergies alternatives, Evry, France
| | - Christelle Delmas
- Institut de santé publique, Pôle recherche clinique, Institut national de la santé et de la recherche médicale, Paris, France
| | - Derek Dinart
- Institut de santé publique, d'épidémiologie et de développement, Université de Bordeaux, Bordeaux, France.,CIC-EC1401/EUCLID, Institut national de la santé et de la recherche médicale, Bordeaux, France
| | - Hélène Espérou
- Institut de santé publique, Pôle recherche clinique, Institut national de la santé et de la recherche médicale, Paris, France
| | - Flore Geillon
- Fédération francophone de cancérologie digestive, Dijon, France
| | - Damien Geneste
- U1218, Institut Bergonié, Institut national de la santé et de la recherche médicale, Bordeaux, France.,Unité de bioinformatique, Institut Bergonié, Bordeaux, France
| | - Antoine Italiano
- U1218, Institut Bergonié, Institut national de la santé et de la recherche médicale, Bordeaux, France.,Unités Essais cliniques de phase précoce et Sarcomes, Institut Bergonié, Bordeaux, France
| | - Delphine Jean
- CIC-EC1401/EUCLID, Institut national de la santé et de la recherche médicale, Bordeaux, France
| | - Emmanuel Khalifa
- Unité de pathologie moléculaire, Institut Bergonié, Bordeaux, France.,U1218, Institut Bergonié, Institut national de la santé et de la recherche médicale, Bordeaux, France
| | - Yec'han Laizet
- U1218, Institut Bergonié, Institut national de la santé et de la recherche médicale, Bordeaux, France.,Unité de bioinformatique, Institut Bergonié, Bordeaux, France
| | - Pierre Laurent-Puig
- U1147, Centre universitaire des Saint-Pères, Institut national de la santé et de la recherche médicale, Paris, France.,Service de génétique médicale et clinique, Hopital Europeen Georges Pompidou, Paris, France
| | - Franck Lethimonnier
- ITMO Technologies pour la santé, Alliance nationale pour les sciences de la vie et de la santé, Paris, France
| | - Claire Lévy-Marchal
- Institut de santé publique, Pôle recherche clinique, Institut national de la santé et de la recherche médicale, Paris, France
| | - Carlo Lucchesi
- U1218, Institut Bergonié, Institut national de la santé et de la recherche médicale, Bordeaux, France.,Unité de bioinformatique, Institut Bergonié, Bordeaux, France
| | - Carine Malle
- Institut de santé publique, Pôle recherche clinique, Institut national de la santé et de la recherche médicale, Paris, France
| | - Pierre Mancini
- U1218, Institut Bergonié, Institut national de la santé et de la recherche médicale, Bordeaux, France.,Unité de bioinformatique, Institut Bergonié, Bordeaux, France
| | - Simone Mathoulin-Pélissier
- Institut de santé publique, d'épidémiologie et de développement, Université de Bordeaux, Bordeaux, France.,CIC-EC1401/EUCLID, Institut national de la santé et de la recherche médicale, Bordeaux, France
| | - Vincent Meyer
- Centre national de recherche en génétique humaine, Institut de biologie François-Jacob, Commissariat à l'énergie atomique et aux énergies alternatives, Evry, France
| | - Palomares Marie-Ange
- Centre national de recherche en génétique humaine, Institut de biologie François-Jacob, Commissariat à l'énergie atomique et aux énergies alternatives, Evry, France
| | - Géraldine Perkins
- U1147, Centre universitaire des Saint-Pères, Institut national de la santé et de la recherche médicale, Paris, France.,Service de génétique médicale et clinique, HEGP, Paris, Île-de-France, France
| | - Sabrina Sellan-Albert
- Institut de santé publique, d'épidémiologie et de développement, Université de Bordeaux, Bordeaux, France.,CIC-EC1401/EUCLID, Institut national de la santé et de la recherche médicale, Bordeaux, France
| | - Isabelle Soubeyran
- Unité de pathologie moléculaire, Institut Bergonié, Bordeaux, France.,U1218, Institut Bergonié, Institut national de la santé et de la recherche médicale, Bordeaux, France
| | - Cédric Wallet
- Institut de santé publique, d'épidémiologie et de développement, Université de Bordeaux, Bordeaux, France.,CIC-EC1401/EUCLID, Institut national de la santé et de la recherche médicale, Bordeaux, France
| |
Collapse
|
16
|
Fernandez-Garza LE, Dominguez-Vigil IG, Garza-Martinez J, Valdez-Aparicio EA, Barrera-Barrera SA, Barrera-Saldana HA. Personalized Medicine in Ovarian Cancer: A Perspective From Mexico. World J Oncol 2021; 12:85-92. [PMID: 34349852 PMCID: PMC8297048 DOI: 10.14740/wjon1383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 11/15/2022] Open
Abstract
Ovarian cancer (OC) represents a serious health problem worldwide. In Mexico, most OC patients are detected at late stages, consequently making OC one of the leading causes of death in women after reaching puberty. Personalized medicine (PM) provides an individualized therapeutic opportunity for treating each patient relying on “omic” tools to match the correct drug with the specific pathogenic genomic signature. PM can help predict the best therapeutic option for each affected woman suffering from OC. In recent years, Mexico has made contributions to the PM of OC; however, it still has a long way to go for its full implementation in the country’s health system.
Collapse
Affiliation(s)
- Luis E Fernandez-Garza
- Innbiogem SC/Vitagenesis SA at National Laboratory for Services of Research, Development, and Innovation for the Pharma and Biotech Industries (LANSEIDI) of CONACyT Vitaxentrum Group, Monterrey, Nuevo Leon, Mexico
| | - Irma G Dominguez-Vigil
- Laboratory for Translational Research, Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, CT, USA
| | | | - Erick A Valdez-Aparicio
- Innbiogem SC/Vitagenesis SA at National Laboratory for Services of Research, Development, and Innovation for the Pharma and Biotech Industries (LANSEIDI) of CONACyT Vitaxentrum Group, Monterrey, Nuevo Leon, Mexico
| | | | - Hugo A Barrera-Saldana
- Innbiogem SC/Vitagenesis SA at National Laboratory for Services of Research, Development, and Innovation for the Pharma and Biotech Industries (LANSEIDI) of CONACyT Vitaxentrum Group, Monterrey, Nuevo Leon, Mexico.,Center for Genomic Biotechnology of National Polytechnic Institute, Reynosa, Tamaulipas, Mexico
| |
Collapse
|
17
|
Xiang Y, Zou X, Shi H, Xu X, Wu C, Zhong W, Wang J, Zhou W, Zeng X, He M, Wang Y, Huang L, Wang X. Elastic Net Models Based on DNA Copy Number Variations Predicts Clinical Features, Expression Signatures, and Mutations in Lung Adenocarcinoma. Front Genet 2021; 12:668040. [PMID: 34135942 PMCID: PMC8202527 DOI: 10.3389/fgene.2021.668040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022] Open
Abstract
In the precision medicine of lung adenocarcinoma, the identification and prediction of tumor phenotypes for specific biomolecular events are still not studied in depth. Various earlier researches sheds light on the close correlation between genetic expression signatures and DNA copy number variations (CNVs), for which analysis of CNVs provides valuable information about molecular and phenotypic changes in tumorigenesis. In this study, we propose a comprehensive analysis combining genome-wide association analysis and an Elastic Net Regression predictive model, focus on predicting the levels of many gene expression signatures in lung adenocarcinoma, based upon DNA copy number features alone. Additionally, we predicted many other key phenotypes, including clinical features (pathological stage), gene mutations, and protein expressions. These Elastic Net prediction methods can also be applied to other gene sets, thereby facilitating their use as biomarkers in monitoring therapy.
Collapse
Affiliation(s)
- Yi Xiang
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Xiaohuan Zou
- Department of Critical Care Medicine, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Huaqiu Shi
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Xueming Xu
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Caixia Wu
- First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Wenjuan Zhong
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Jinfeng Wang
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Wenting Zhou
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Xiaoli Zeng
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Miao He
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Ying Wang
- First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Li Huang
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Xiangcai Wang
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| |
Collapse
|
18
|
Intratumoral Heterogeneity in Differentiated Thyroid Tumors: An Intriguing Reappraisal in the Era of Personalized Medicine. J Pers Med 2021; 11:jpm11050333. [PMID: 33922518 PMCID: PMC8146970 DOI: 10.3390/jpm11050333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
Differentiated thyroid tumors (DTTs) are characterized by significant molecular variability in both spatial and temporal intra-tumoral heterogeneity (ITH), that could influence the therapeutic management. ITH phenomenon appears to have a relevant role in tumor growth, aggressive behavior and drug resistance. Accordingly, characteristics and consequences of ITH in DTTs should be better analyzed and understood in order to guide clinical practice, improving survival. Consequently, in the present review, we investigated morphological and molecular ITH of DTTs in benign, borderline neoplasms and in malignant entities, summarizing the most significant data. Molecular testing in DTTs documents a high risk for recurrence of cancer associated with BRAFV600E, RET/PTC 1/3, ALK and NTRK fusions, while the intermediate risk may be related to BRAFK601E, H/K/N RAS and PAX8/PPARγ. In addition, it may be suggested that tumor genotype is associated with peculiar phenotype.
Collapse
|
19
|
Khella CA, Mehta GA, Mehta RN, Gatza ML. Recent Advances in Integrative Multi-Omics Research in Breast and Ovarian Cancer. J Pers Med 2021; 11:149. [PMID: 33669749 PMCID: PMC7922242 DOI: 10.3390/jpm11020149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023] Open
Abstract
The underlying molecular heterogeneity of cancer is responsible for the dynamic clinical landscape of this disease. The combination of genomic and proteomic alterations, including both inherited and acquired mutations, promotes tumor diversity and accounts for variable disease progression, therapeutic response, and clinical outcome. Recent advances in high-throughput proteogenomic profiling of tumor samples have resulted in the identification of novel oncogenic drivers, tumor suppressors, and signaling networks; biomarkers for the prediction of drug sensitivity and disease progression; and have contributed to the development of novel and more effective treatment strategies. In this review, we will focus on the impact of historical and recent advances in single platform and integrative proteogenomic studies in breast and ovarian cancer, which constitute two of the most lethal forms of cancer for women, and discuss the molecular similarities of these diseases, the impact of these findings on our understanding of tumor biology as well as the clinical applicability of these discoveries.
Collapse
Affiliation(s)
- Christen A Khella
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Gaurav A Mehta
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Rushabh N Mehta
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Michael L Gatza
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
20
|
Rostam Niakan Kalhori S, Tanhapour M, Gholamzadeh M. Enhanced childhood diseases treatment using computational models: Systematic review of intelligent experiments heading to precision medicine. J Biomed Inform 2021; 115:103687. [PMID: 33497811 DOI: 10.1016/j.jbi.2021.103687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/05/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Precision or personalized Medicine (PM) is used for the prevention and treatment of diseases by considering a huge amount of information about individuals variables. Due to high volume of information, AI-based computational models are required. A large set of studies conducted to examine the PM approach to improve childhood clinical outcomes. Thus, the main goal of this study was to review the application of health information technology and especially artificial intelligence (AI) methods for the treatment of childhood disease using PM. METHODS PubMed, Scopus, Web of Science, and EMBASE databases were searched up to December 18, 2019. Articles that focused on informatics applications for childhood disease PM included in this study. Included papers were classified for qualitative analysis and interpreting results. The results were analyzed using Microsoft Excel 2019. RESULTS From 341 citations, 62 papers met our inclusion criteria. The number of published papers that used AI methods to apply for PM in childhood diseases increased from 2010 to 2019. Our results showed that most applied methods were related to machine learning discipline. In terms of clinical scope, the largest number of clinical articles are devoted to oncology. Besides, the analysis showed that genomics was the most PM approach used regarding childhood disease. CONCLUSION This systematic review examined papers that used AI methods for applying PM approaches in childhood diseases from medical informatics perspectives. Thus, it provided new insight to researchers who are interested in knowing research needs in this field.
Collapse
Affiliation(s)
- Sharareh Rostam Niakan Kalhori
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mozhgan Tanhapour
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Marsa Gholamzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Zhao L, Shan G, Li L, Yu Y, Cheng G, Zheng X. A robust method for the rapid detection of microsatellite instability in colorectal cancer. Oncol Lett 2020; 20:1982-1988. [PMID: 32724444 DOI: 10.3892/ol.2020.11702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 01/23/2020] [Indexed: 12/21/2022] Open
Abstract
Although several computational tools using next-generation sequencing (NGS) data have been proposed to detect microsatellite instability (MSI) status, they still have limitations and need improvement. We developed a NovoPM-MSI method to detect MSI status based on NGS data. This method evaluated target mononucleotide microsatellite loci that were sequenced during targeted gene enrichment analysis and reported sample instability score as the fraction of unstable loci within the target set after assessing locus instability by comparing length distribution in paired tumor-normal samples. We validated this method against the conventional MSI-PCR method in 113 paired colorectal cancer (CRC) specimens and compared the performance of NovoPM-MSI to that of mSINGS and MANTIS in accuracy and runtime efficiency. By using the MSI status from MSI-PCR as the gold standard, the three computational methods showed the same sensitivity of 88.9% but different specificities (NovoPM-MSI 97.1%, MANTIS 86.5% and mSINGS 99.0%). Only NovoPM-MSI could greatly improve both the sensitivity and specificity by setting an ambiguous interval. MANTIS had the shortest average runtime (16.3 sec), followed by NovoPM-MSI (18.3 sec) and mSINGS (109.0 sec). In short, the NovoPM-MSI method provides a fast and reliable MSI detection method with accuracy comparable to MSI-PCR in paired CRC samples.
Collapse
Affiliation(s)
- Lin Zhao
- Beijing Novogene Bioinformatics Technology Co., Ltd, Beijing 100015, P.R. China
| | - Guangyu Shan
- Beijing Novogene Bioinformatics Technology Co., Ltd, Beijing 100015, P.R. China
| | - Lei Li
- Beijing Novogene Bioinformatics Technology Co., Ltd, Beijing 100015, P.R. China
| | - Yang Yu
- Beijing Novogene Bioinformatics Technology Co., Ltd, Beijing 100015, P.R. China
| | - Gang Cheng
- Beijing Novogene Bioinformatics Technology Co., Ltd, Beijing 100015, P.R. China
| | - Xu Zheng
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
22
|
Wang Y, Liao H, Zheng T, Wang J, Guo D, Lu Z, Li Z, Chen Y, Shen L, Zhang Y, Gao J. Conditionally reprogrammed colorectal cancer cells combined with mouse avatars identify synergy between EGFR and MEK or CDK4/6 inhibitors. Am J Cancer Res 2020; 10:249-262. [PMID: 32064165 PMCID: PMC7017732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023] Open
Abstract
Preclinical models, including patient-derived xenograft (PDX) and organoid and primary cell culture, are essential for studies of cancer cell biology and facilitate translational research and individualization of therapy. We explored the optimum preclinical model by modifying the conventional conditional reprogramming (CR) system followed by screening effective targeted drug combinations against colorectal cancer (CRC). By modifying the ingredients of the culture medium used in a conventional CR system, a novel individualized CR system (termed i-CR) was established. Tumor samples from CRC patients were collected and PDX models were derived followed by high-throughput i-CR drug screening and validation of the effective targeted drug combinations. The i-CR system selectively expanded tumor cells rather than normal epithelial cells and facilitated high-throughput drug screening when combined with high-content imaging and quantitative analysis of cell proliferation. Using inhibitors targeting multiple signaling pathways identified by high-throughput i-CR drug screening, we discovered that inhibition of the EGFR and MEK or CDK4/6 pathways exerted a synergistic inhibitory effect against CRC, and we noted super-synergistic effects when EGFR, MEK, and CDK4/6 inhibitors were used simultaneously. These data were validated using paired PDX models, which showed marked inhibition of tumor growth. The novel i-CR system combined with PDX models will enable individualization of therapy and drug discovery, and strategies combining EGFR, MEK, and CDK4/6 inhibitors warrant clinical validation.
Collapse
Affiliation(s)
- Yanni Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and InstituteBeijing, China
| | - Haiyan Liao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen 518116, China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer HospitalHarbin, China
| | - Jingyuan Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and InstituteBeijing, China
| | | | - Zhihao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and InstituteBeijing, China
| | - Zhongwu Li
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and InstituteBeijing, China
| | | | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and InstituteBeijing, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer HospitalHarbin, China
| | - Jing Gao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen 518116, China
| |
Collapse
|
23
|
Poonnen PJ, Duffy JE, Hintze B, Shukla M, Brettin TS, Conrad NR, Yoo H, Guertin C, Looney JA, Vashistha V, Kelley MJ, Spector NL. Genomic Analysis of Metastatic Solid Tumors in Veterans: Findings From the VHA National Precision Oncology Program. JCO Precis Oncol 2019; 3:PO.19.00075. [PMID: 32914016 PMCID: PMC7446382 DOI: 10.1200/po.19.00075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2019] [Indexed: 01/10/2023] Open
Abstract
PURPOSE The Veterans Health Administration (VHA) is the largest cancer care provider in the United States, with the added challenge of serving more than twice the percentage of patients with cancer in rural areas than the national average. The VHA established the National Precision Oncology Program in 2016 to implement and standardize the practice of precision oncology across the diverse VHA system. METHODS Tumor or peripheral blood specimens from veterans with advanced solid tumors who were eligible for treatment were submitted for next-generation sequencing (NGS) at two commercial laboratories. Annotated results were generated by the laboratories and independently using IBM Watson for Genomics. Levels-of-evidence treatment recommendations were based on OncoKB criteria. RESULTS From July 2016 to June 2018, 3,698 samples from 72 VHA facilities were submitted for NGS testing, of which 3,182 samples (86%) were successfully sequenced. Most samples came from men with lung, prostate, and colorectal cancers. Thirty-four percent of samples were from patients who lived in a rural area. TP53, ATM, and KRAS were among the most commonly mutated genes. Approximately 70% of samples had at least one actionable mutation, with clinical trials identified as the recommended option in more than 50%. Mutations in genes associated with a neuroendocrine prostate cancer phenotype were expressed at increased frequency among veterans than in the general population. The most frequent therapies prescribed in response to NGS testing were immune checkpoint inhibitors, EGFR kinase inhibitors, and PARP inhibitors. CONCLUSION Clinical implementation of precision oncology is feasible across the VHA health care system, including rural sites. Veterans have unique occupational exposures that might inform the nature of the mutational signatures identified here. Importantly, these results underscore the importance of increasing clinical trial availability to veterans.
Collapse
Affiliation(s)
- Pradeep J. Poonnen
- Department of Veterans Affairs, Durham, NC
- Duke University Medical Center, Durham, NC
| | | | - Bradley Hintze
- Department of Veterans Affairs, Durham, NC
- Duke Cancer Institute, Durham, NC
| | | | | | | | | | | | | | - Vishal Vashistha
- Department of Veterans Affairs, Durham, NC
- Duke University Medical Center, Durham, NC
| | - Michael J. Kelley
- Department of Veterans Affairs, Durham, NC
- Duke University Medical Center, Durham, NC
- Duke Cancer Institute, Durham, NC
| | - Neil L. Spector
- Department of Veterans Affairs, Durham, NC
- Duke University Medical Center, Durham, NC
- Duke Cancer Institute, Durham, NC
| |
Collapse
|
24
|
Yang HT, Shah RH, Tegay D, Onel K. Precision oncology: lessons learned and challenges for the future. Cancer Manag Res 2019; 11:7525-7536. [PMID: 31616176 PMCID: PMC6698584 DOI: 10.2147/cmar.s201326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 07/08/2019] [Indexed: 12/31/2022] Open
Abstract
The decreasing cost of and increasing capacity of DNA sequencing has led to vastly increased opportunities for population-level genomic studies to discover novel genomic alterations associated with both Mendelian and complex phenotypes. To translate genomic findings clinically, a number of health care institutions have worked collaboratively or individually to initiate precision medicine programs. These precision medicine programs involve designing patient enrollment systems, tracking electronic health records, building biobank repositories, and returning results with actionable matched therapies. As cancer is a paradigm for genetic diseases and new therapies are increasingly tailored to attack genetic susceptibilities in tumors, these precision medicine programs are largely driven by the urgent need to perform genetic profiling on cancer patients in real time. Here, we review the current landscape of precision oncology and highlight challenges to be overcome and examples of benefits to patients. Furthermore, we make suggestions to optimize future precision oncology programs based upon the lessons learned from these "first generation" early adopters.
Collapse
Affiliation(s)
- Hsih-Te Yang
- Medical Genetics and Human Genomics, Department of Pediatrics, Northwell Health, New York, NY, USA
| | - Ronak H Shah
- Medical Genetics and Human Genomics, Department of Pediatrics, Northwell Health, New York, NY, USA
- Center for Research Informatics and Innovation, The Feinstein Institute for Medical Research, Northwell Health, New York, NY, USA
| | - David Tegay
- Medical Genetics and Human Genomics, Department of Pediatrics, Northwell Health, New York, NY, USA
| | - Kenan Onel
- The Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| |
Collapse
|
25
|
Bangi E, Ang C, Smibert P, Uzilov AV, Teague AG, Antipin Y, Chen R, Hecht C, Gruszczynski N, Yon WJ, Malyshev D, Laspina D, Selkridge I, Rainey H, Moe AS, Lau CY, Taik P, Wilck E, Bhardwaj A, Sung M, Kim S, Yum K, Sebra R, Donovan M, Misiukiewicz K, Schadt EE, Posner MR, Cagan RL. A personalized platform identifies trametinib plus zoledronate for a patient with KRAS-mutant metastatic colorectal cancer. SCIENCE ADVANCES 2019; 5:eaav6528. [PMID: 31131321 PMCID: PMC6531007 DOI: 10.1126/sciadv.aav6528] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 04/12/2019] [Indexed: 05/03/2023]
Abstract
Colorectal cancer remains a leading source of cancer mortality worldwide. Initial response is often followed by emergent resistance that is poorly responsive to targeted therapies, reflecting currently undruggable cancer drivers such as KRAS and overall genomic complexity. Here, we report a novel approach to developing a personalized therapy for a patient with treatment-resistant metastatic KRAS-mutant colorectal cancer. An extensive genomic analysis of the tumor's genomic landscape identified nine key drivers. A transgenic model that altered orthologs of these nine genes in the Drosophila hindgut was developed; a robotics-based screen using this platform identified trametinib plus zoledronate as a candidate treatment combination. Treating the patient led to a significant response: Target and nontarget lesions displayed a strong partial response and remained stable for 11 months. By addressing a disease's genomic complexity, this personalized approach may provide an alternative treatment option for recalcitrant disease such as KRAS-mutant colorectal cancer.
Collapse
Affiliation(s)
- Erdem Bangi
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Celina Ang
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Smibert
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew V. Uzilov
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- SEMA4, a Mount Sinai Venture, 333 Ludlow Street, South Tower, 3rd floor, Stamford, CT 06902, USA
| | - Alexander G. Teague
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yevgeniy Antipin
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- SEMA4, a Mount Sinai Venture, 333 Ludlow Street, South Tower, 3rd floor, Stamford, CT 06902, USA
| | - Rong Chen
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- SEMA4, a Mount Sinai Venture, 333 Ludlow Street, South Tower, 3rd floor, Stamford, CT 06902, USA
| | - Chana Hecht
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nelson Gruszczynski
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wesley J. Yon
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Denis Malyshev
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Denise Laspina
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Isaiah Selkridge
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hope Rainey
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aye S. Moe
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- SEMA4, a Mount Sinai Venture, 333 Ludlow Street, South Tower, 3rd floor, Stamford, CT 06902, USA
| | - Chun Yee Lau
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- SEMA4, a Mount Sinai Venture, 333 Ludlow Street, South Tower, 3rd floor, Stamford, CT 06902, USA
| | - Patricia Taik
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- SEMA4, a Mount Sinai Venture, 333 Ludlow Street, South Tower, 3rd floor, Stamford, CT 06902, USA
| | - Eric Wilck
- Department of Radiology, The Mount Sinai Hospital, New York, NY 10029, USA
| | - Aarti Bhardwaj
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Max Sung
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara Kim
- Department of Pharmacy, The Mount Sinai Hospital, New York, NY 10029, USA
| | - Kendra Yum
- Department of Pharmacy, The Mount Sinai Hospital, New York, NY 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- SEMA4, a Mount Sinai Venture, 333 Ludlow Street, South Tower, 3rd floor, Stamford, CT 06902, USA
| | - Michael Donovan
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Krzysztof Misiukiewicz
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric E. Schadt
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- SEMA4, a Mount Sinai Venture, 333 Ludlow Street, South Tower, 3rd floor, Stamford, CT 06902, USA
| | - Marshall R. Posner
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ross L. Cagan
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Corresponding author.
| |
Collapse
|
26
|
Drug sensitivity testing on patient-derived sarcoma cells predicts patient response to treatment and identifies c-Sarc inhibitors as active drugs for translocation sarcomas. Br J Cancer 2019; 120:435-443. [PMID: 30745580 PMCID: PMC6462037 DOI: 10.1038/s41416-018-0359-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 10/26/2018] [Accepted: 11/22/2018] [Indexed: 11/17/2022] Open
Abstract
Background Heterogeneity and low incidence comprise the biggest challenge in sarcoma diagnosis and treatment. Chemotherapy, although efficient for some sarcoma subtypes, generally results in poor clinical responses and is mostly recommended for advanced disease. Specific genomic aberrations have been identified in some sarcoma subtypes but few of them can be targeted with approved drugs. Methods We cultured and characterised patient-derived sarcoma cells and evaluated their sensitivity to 525 anti-cancer agents including both approved and non-approved drugs. In total, 14 sarcomas and 5 healthy mesenchymal primary cell cultures were studied. The sarcoma biopsies and derived cells were characterised by gene panel sequencing, cancer driver gene expression and by detecting specific fusion oncoproteins in situ in sarcomas with translocations. Results Soft tissue sarcoma cultures were established from patient biopsies with a success rate of 58%. The genomic profile and drug sensitivity testing on these samples helped to identify targeted inhibitors active on sarcomas. The cSrc inhibitor Dasatinib was identified as an active drug in sarcomas carrying chromosomal translocations. The drug sensitivity of the patient sarcoma cells ex vivo correlated with the response to the former treatment of the patient. Conclusions Our results show that patient-derived sarcoma cells cultured in vitro are relevant and practical models for genotypic and phenotypic screens aiming to identify efficient drugs to treat sarcoma patients with poor treatment options.
Collapse
|
27
|
Roberts JS, Gornick MC, Le LQ, Bartnik NJ, Zikmund-Fisher BJ, Chinnaiyan AM. Next-generation sequencing in precision oncology: Patient understanding and expectations. Cancer Med 2019; 8:227-237. [PMID: 30600607 PMCID: PMC6346219 DOI: 10.1002/cam4.1947] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Implementation of precision oncology interventions poses several challenges to informed consent and patient education. This study assessed cancer patients' understanding, expectations, and outcomes regarding participation in research examining the impact of matched tumor and germline sequencing on their clinical care. METHODS A total of 297 patients (mean age: 59 years; 50% female; 96% white) with refractory, metastatic cancer were surveyed, including 217 who completed surveys both before and after undergoing integrated whole exome and transcriptome sequencing as part of a larger clinical research study. RESULTS At baseline, the vast majority of patients expected to receive several potential direct benefits from study participation, including written reports of sequencing findings (88%), greater understanding of the causes of their cancer (74%), and participation in clinical trials for which sequencing results would make them eligible (84%). In most cases, these benefits were not realized by study completion. Despite explanations from study personnel to the contrary, most participants (67%-76%) presumed that incidental germline sequencing findings relevant to noncancerous health conditions (eg, diabetes) would automatically be disclosed to them. Patients reported low levels of concern about study risks at baseline and low levels of regret about study participation at follow-up. CONCLUSIONS Findings suggest that cancer patients participating in precision oncology intervention research have largely unfulfilled expectations of direct benefits related to their study participation. Increased focus on patient education to supplement the informed consent process may help manage patients' expectations regarding the extent and likelihood of benefits received as a result of undergoing genomic sequencing.
Collapse
Affiliation(s)
- J. Scott Roberts
- Department of Health Behavior and Health EducationUniversity of Michigan School of Public HealthAnn ArborMichigan
- Center for Bioethics & Social Sciences in MedicineUniversity of Michigan Medical SchoolAnn ArborMichigan
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichigan
| | - Michele C. Gornick
- Center for Bioethics & Social Sciences in MedicineUniversity of Michigan Medical SchoolAnn ArborMichigan
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichigan
- Department of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMichigan
| | - Lan Q. Le
- Department of Health Behavior and Health EducationUniversity of Michigan School of Public HealthAnn ArborMichigan
| | - Natalie J. Bartnik
- Department of Health Behavior and Health EducationUniversity of Michigan School of Public HealthAnn ArborMichigan
| | - Brian J. Zikmund-Fisher
- Department of Health Behavior and Health EducationUniversity of Michigan School of Public HealthAnn ArborMichigan
- Center for Bioethics & Social Sciences in MedicineUniversity of Michigan Medical SchoolAnn ArborMichigan
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichigan
- Department of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMichigan
| | - Arul M. Chinnaiyan
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichigan
- Department of PathologyUniversity of Michigan Medical SchoolAnn ArborMichigan
- Michigan Center for Translational PathologyUniversity of Michigan Medical SchoolAnn ArborMichigan
- Department of UrologyUniversity of Michigan Medical SchoolAnn ArborMichigan
- Howard Hughes Medical InstituteUniversity of Michigan Medical SchoolAnn ArborMichigan
| |
Collapse
|
28
|
Abstract
Genomic information is increasingly being incorporated into clinical cancer care. Large-scale sequencing efforts have deepened our understanding of the genomic landscape of cancer and contributed to the expanding catalog of alterations being leveraged to aid in cancer diagnosis, prognosis, and treatment. Genomic profiling can provide clinically relevant information regarding somatic point mutations, copy number alterations, translocations, and gene fusions. Genomic features, such as mutational burden, can also be measured by more comprehensive sequencing strategies and have shown value in informing potential treatment options. Ongoing clinical trials are evaluating the use of molecularly targeted agents in genomically defined subsets of cancers within and across tumor histologies. Continued advancements in clinical genomics promise to further expand the application of genomics-enabled medicine to a broader spectrum of oncology patients.
Collapse
Affiliation(s)
- Alison Roos
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Sara A Byron
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA.
| |
Collapse
|
29
|
Frost HR, Amos CI. A multi-omics approach for identifying important pathways and genes in human cancer. BMC Bioinformatics 2018; 19:479. [PMID: 30541428 PMCID: PMC6292115 DOI: 10.1186/s12859-018-2476-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/09/2018] [Indexed: 12/15/2022] Open
Abstract
Background Cancer develops when pathways controlling cell survival, cell fate or genome maintenance are disrupted by the somatic alteration of key driver genes. Understanding how pathway disruption is driven by somatic alterations is thus essential for an accurate characterization of cancer biology and identification of therapeutic targets. Unfortunately, current cancer pathway analysis methods fail to fully model the relationship between somatic alterations and pathway activity. Results To address these limitations, we developed a multi-omics method for identifying biologically important pathways and genes in human cancer. Our approach combines single-sample pathway analysis with multi-stage, lasso-penalized regression to find pathways whose gene expression can be explained largely in terms of gene-level somatic alterations in the tumor. Importantly, this method can analyze case-only data sets, does not require information regarding pathway topology and supports personalized pathway analysis using just somatic alteration data for a limited number of cancer-associated genes. The practical effectiveness of this technique is illustrated through an analysis of data from The Cancer Genome Atlas using gene sets from the Molecular Signatures Database. Conclusions Novel insights into the pathophysiology of human cancer can be obtained from statistical models that predict expression-based pathway activity in terms of non-silent somatic mutations and copy number variation. These models enable the identification of biologically important pathways and genes and support personalized pathway analysis in cases where gene expression data is unavailable. Electronic supplementary material The online version of this article (10.1186/s12859-018-2476-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- H Robert Frost
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, 03755, NH, USA.
| | - Christopher I Amos
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, 03755, NH, USA
| |
Collapse
|
30
|
Darden L, Kundu K, Pal LR, Moult J. Harnessing formal concepts of biological mechanism to analyze human disease. PLoS Comput Biol 2018; 14:e1006540. [PMID: 30586388 PMCID: PMC6306204 DOI: 10.1371/journal.pcbi.1006540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mechanism is a widely used concept in biology. In 2017, more than 10% of PubMed abstracts used the term. Therefore, searching for and reasoning about mechanisms is fundamental to much of biomedical research, but until now there has been almost no computational infrastructure for this purpose. Recent work in the philosophy of science has explored the central role that the search for mechanistic accounts of biological phenomena plays in biomedical research, providing a conceptual basis for representing and analyzing biological mechanism. The foundational categories for components of mechanisms-entities and activities-guide the development of general, abstract types of biological mechanism parts. Building on that analysis, we have developed a formal framework for describing and representing biological mechanism, MecCog, and applied it to describing mechanisms underlying human genetic disease. Mechanisms are depicted using a graphical notation. Key features are assignment of mechanism components to stages of biological organization and classes; visual representation of uncertainty, ignorance, and ambiguity; and tight integration with literature sources. The MecCog framework facilitates analysis of many aspects of disease mechanism, including the prioritization of future experiments, probing of gene-drug and gene-environment interactions, identification of possible new drug targets, personalized drug choice, analysis of nonlinear interactions between relevant genetic loci, and classification of diseases based on mechanism.
Collapse
Affiliation(s)
- Lindley Darden
- Department of Philosophy, University of Maryland College Park, College Park, Maryland, United States of America
| | - Kunal Kundu
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, United States of America
- Computational Biology, Bioinformatics and Genomics, Biological Sciences Graduate Program, University of Maryland College Park, College Park, Maryland, United States of America
| | - Lipika R. Pal
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, United States of America
| | - John Moult
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, United States of America
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, United States of America
| |
Collapse
|
31
|
Rubinstein SM, Warner JL. CancerLinQ: Origins, Implementation, and Future Directions. JCO Clin Cancer Inform 2018; 2:1-7. [DOI: 10.1200/cci.17.00060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid-learning health systems have been proposed as a potential solution to the problem of quality in medicine, by leveraging data generated from electronic health systems in near-real time to improve quality and reduce cost. Given the complex, dynamic nature of cancer care, a rapid-learning health system offers large potential benefits to oncology practice. In this article, we review the rationale for developing a rapid-learning health system for oncology and describe the sequence of events that led to the development of ASCO’s CancerLinQ (Cancer Learning Intelligence Network for Quality) initiative, as well as the current state of CancerLinQ, including its importance to efforts such as the Beau Biden Cancer Moonshot. We then review the considerable challenges facing optimal implementation of a rapid-learning health system such as CancerLinQ, including integration of rapidly expanding multiomic data, capturing big data from a variety of sources, an evolving competitive landscape, and implementing a rapid-learning health system in a way that satisfies many stakeholders, including patients, providers, researchers, and administrators.
Collapse
Affiliation(s)
- Samuel M. Rubinstein
- Samuel M. Rubinstein, Vanderbilt University Medical Center; and Jeremy L. Warner, Vanderbilt University Medical Center; Vanderbilt University, Nashville, TN
| | - Jeremy L. Warner
- Samuel M. Rubinstein, Vanderbilt University Medical Center; and Jeremy L. Warner, Vanderbilt University Medical Center; Vanderbilt University, Nashville, TN
| |
Collapse
|
32
|
Burbulis IE, Wierman MB, Wolpert M, Haakenson M, Lopes MB, Schiff D, Hicks J, Loe J, Ratan A, McConnell MJ. Improved molecular karyotyping in glioblastoma. Mutat Res 2018; 811:16-26. [PMID: 30055482 DOI: 10.1016/j.mrfmmm.2018.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
Uneven replication creates artifacts during whole genome amplification (WGA) that confound molecular karyotype assignment in single cells. Here, we present an improved WGA recipe that increased coverage and detection of copy number variants (CNVs) in single cells. We examined serial resections of glioblastoma (GBM) tumor from the same patient and found low-abundance clones containing CNVs in clinically relevant loci that were not observable using bulk DNA sequencing. We discovered extensive genomic variability in this class of tumor and provide a practical approach for investigating somatic mosaicism.
Collapse
Affiliation(s)
- Ian E Burbulis
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States; Escuela de Medicina, Universidad San Sebastian, Puerto Montt, Chile
| | - Margaret B Wierman
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - Matt Wolpert
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - Mark Haakenson
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - Maria-Beatriz Lopes
- Department of Pathology, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - David Schiff
- Department of Neurology, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - James Hicks
- Michelson Center, University of Southern California, Los Angeles, CA, United States; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Justin Loe
- Full Genomes Corp, Inc., Rockville, MD, United States
| | - Aakrosh Ratan
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States; Center for Public Health Genomics, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - Michael J McConnell
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States; Department of Neuroscience, University of Virginia, School of Medicine, Charlottesville, VA, United States; Center for Public Health Genomics, University of Virginia, School of Medicine, Charlottesville, VA, United States; Center for Brain Immunology and Glia, University of Virginia, School of Medicine, Charlottesville, VA, United States.
| |
Collapse
|
33
|
Li J, Svilar D, McClellan S, Kim JH, Ahn EYE, Vens C, Wilson DM, Sobol RW. DNA Repair Molecular Beacon assay: a platform for real-time functional analysis of cellular DNA repair capacity. Oncotarget 2018; 9:31719-31743. [PMID: 30167090 PMCID: PMC6114979 DOI: 10.18632/oncotarget.25859] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022] Open
Abstract
Numerous studies have shown that select DNA repair enzyme activities impact response and/or toxicity of genotoxins, suggesting a requirement for enzyme functional analyses to bolster precision medicine or prevention. To address this need, we developed a DNA Repair Molecular Beacon (DRMB) platform that rapidly measures DNA repair enzyme activity in real-time. The DRMB assay is applicable for discovery of DNA repair enzyme inhibitors, for the quantification of enzyme rates and is sufficiently sensitive to differentiate cellular enzymatic activity that stems from variation in expression or effects of amino acid substitutions. We show activity measures of several different base excision repair (BER) enzymes, including proteins with tumor-identified point mutations, revealing lesion-, lesion-context- and cell-type-specific repair dependence; suggesting application for DNA repair capacity analysis of tumors. DRMB measurements using lysates from isogenic control and APE1-deficient human cells suggests the major mechanism of base lesion removal by most DNA glycosylases may be mono-functional base hydrolysis. In addition, development of a microbead-conjugated DRMB assay amenable to flow cytometric analysis further advances its application. Our studies establish an analytical platform capable of evaluating the enzyme activity of select DNA repair proteins in an effort to design and guide inhibitor development and precision cancer therapy options.
Collapse
Affiliation(s)
- Jianfeng Li
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | - David Svilar
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Steven McClellan
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | - Jung-Hyun Kim
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | | | - Conchita Vens
- The Netherlands Cancer Institute, Division of Cell Biology, Amsterdam, The Netherlands
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, IRP, NIH Baltimore, MD, USA
| | - Robert W Sobol
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA.,Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
34
|
Hertz DL, Glatz A, Pasternak AL, Lonigro RJ, Vats P, Wu YM, Anderson B, Rabban E, Mora E, Frank K, Robinson DR, Mody RJ, Chinnaiyan A. Integration of Germline Pharmacogenetics Into a Tumor Sequencing Program. JCO Precis Oncol 2018; 2:PO.18.00011. [PMID: 32832831 PMCID: PMC7434089 DOI: 10.1200/po.18.00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Evidence-based guidelines inform treatment decisions for patients for whom germline genetic information is available. Our real-time tumor sequencing program, which makes precision treatment decisions for patients with cancer, produces matched germline information, providing a unique opportunity to efficiently implement pharmacogenetics and benefit patients. METHODS The germline genetic database from the Michigan Oncology Sequencing (MI-Oncoseq) program was searched for 21 clinically actionable polymorphisms in five cancer-relevant genes: TPMT, DPYD, CYP2C19, CYP3A5, and UGT1A1. Residual germ line DNA was sent to an external Clinical Laboratory Improvement Amendments-approved laboratory for confirmatory genotyping. The medical records of MI-Oncoseq patients with actionable phenotypes were searched for receipt of relevant drugs and to determine whether having genetic information at the time of treatment would have led to a treatment recommendation. RESULTS All nine variants in TPMT, DPYD, and CYP2C19 that were detected in MI-Oncoseq were confirmed by external genotyping. Genotype determinations could not be made for CYP3A5*3, UGT1A1*28, or UGT1A1*80. On the basis of retrospective assessment of 115 adult and pediatric patient records, 4.3% (n = 5) had a potentially clinically actionable phenotype for TPMT, DPYD, or CYP2C19 and received a relevant medication. After accounting for differences in adult and pediatric recommendations, three of these patients could have received a treatment recommendation at the time of prescribing. CONCLUSION Germline genotype determinations for TPMT, DPYD, and CYP2C19 can be used to make evidence-based treatment recommendations in MI-Oncoseq patients. Although the proportion of patients for whom recommendations can be made is small, this added value to MI-Oncoseq and patient care comes at no additional genotyping cost. Pharmacogenetic assessment should be integrated into tumor sequencing programs that genotype matched germline DNA; however, the complexity and additional cost of implementing pharmacogenetics remain challenging.
Collapse
Affiliation(s)
- Daniel L. Hertz
- Daniel L. Hertz, Andrew Glatz, Amy L. Pasternak, and Erika Mora, University of Michigan College of Pharmacy; Robert J. Lonigro, Pankaj Vats, Yi-Mi Wu, Bailey Anderson, Erica Rabban, Kevin Frank, Dan R. Robinson, Rajen J. Mody, and Arul Chinnaiyan, Michigan Medicine, Ann Arbor, MI
| | - Andrew Glatz
- Daniel L. Hertz, Andrew Glatz, Amy L. Pasternak, and Erika Mora, University of Michigan College of Pharmacy; Robert J. Lonigro, Pankaj Vats, Yi-Mi Wu, Bailey Anderson, Erica Rabban, Kevin Frank, Dan R. Robinson, Rajen J. Mody, and Arul Chinnaiyan, Michigan Medicine, Ann Arbor, MI
| | - Amy L. Pasternak
- Daniel L. Hertz, Andrew Glatz, Amy L. Pasternak, and Erika Mora, University of Michigan College of Pharmacy; Robert J. Lonigro, Pankaj Vats, Yi-Mi Wu, Bailey Anderson, Erica Rabban, Kevin Frank, Dan R. Robinson, Rajen J. Mody, and Arul Chinnaiyan, Michigan Medicine, Ann Arbor, MI
| | - Robert J. Lonigro
- Daniel L. Hertz, Andrew Glatz, Amy L. Pasternak, and Erika Mora, University of Michigan College of Pharmacy; Robert J. Lonigro, Pankaj Vats, Yi-Mi Wu, Bailey Anderson, Erica Rabban, Kevin Frank, Dan R. Robinson, Rajen J. Mody, and Arul Chinnaiyan, Michigan Medicine, Ann Arbor, MI
| | - Pankaj Vats
- Daniel L. Hertz, Andrew Glatz, Amy L. Pasternak, and Erika Mora, University of Michigan College of Pharmacy; Robert J. Lonigro, Pankaj Vats, Yi-Mi Wu, Bailey Anderson, Erica Rabban, Kevin Frank, Dan R. Robinson, Rajen J. Mody, and Arul Chinnaiyan, Michigan Medicine, Ann Arbor, MI
| | - Yi-Mi Wu
- Daniel L. Hertz, Andrew Glatz, Amy L. Pasternak, and Erika Mora, University of Michigan College of Pharmacy; Robert J. Lonigro, Pankaj Vats, Yi-Mi Wu, Bailey Anderson, Erica Rabban, Kevin Frank, Dan R. Robinson, Rajen J. Mody, and Arul Chinnaiyan, Michigan Medicine, Ann Arbor, MI
| | - Bailey Anderson
- Daniel L. Hertz, Andrew Glatz, Amy L. Pasternak, and Erika Mora, University of Michigan College of Pharmacy; Robert J. Lonigro, Pankaj Vats, Yi-Mi Wu, Bailey Anderson, Erica Rabban, Kevin Frank, Dan R. Robinson, Rajen J. Mody, and Arul Chinnaiyan, Michigan Medicine, Ann Arbor, MI
| | - Erica Rabban
- Daniel L. Hertz, Andrew Glatz, Amy L. Pasternak, and Erika Mora, University of Michigan College of Pharmacy; Robert J. Lonigro, Pankaj Vats, Yi-Mi Wu, Bailey Anderson, Erica Rabban, Kevin Frank, Dan R. Robinson, Rajen J. Mody, and Arul Chinnaiyan, Michigan Medicine, Ann Arbor, MI
| | - Erika Mora
- Daniel L. Hertz, Andrew Glatz, Amy L. Pasternak, and Erika Mora, University of Michigan College of Pharmacy; Robert J. Lonigro, Pankaj Vats, Yi-Mi Wu, Bailey Anderson, Erica Rabban, Kevin Frank, Dan R. Robinson, Rajen J. Mody, and Arul Chinnaiyan, Michigan Medicine, Ann Arbor, MI
| | - Kevin Frank
- Daniel L. Hertz, Andrew Glatz, Amy L. Pasternak, and Erika Mora, University of Michigan College of Pharmacy; Robert J. Lonigro, Pankaj Vats, Yi-Mi Wu, Bailey Anderson, Erica Rabban, Kevin Frank, Dan R. Robinson, Rajen J. Mody, and Arul Chinnaiyan, Michigan Medicine, Ann Arbor, MI
| | - Dan R. Robinson
- Daniel L. Hertz, Andrew Glatz, Amy L. Pasternak, and Erika Mora, University of Michigan College of Pharmacy; Robert J. Lonigro, Pankaj Vats, Yi-Mi Wu, Bailey Anderson, Erica Rabban, Kevin Frank, Dan R. Robinson, Rajen J. Mody, and Arul Chinnaiyan, Michigan Medicine, Ann Arbor, MI
| | - Rajen J. Mody
- Daniel L. Hertz, Andrew Glatz, Amy L. Pasternak, and Erika Mora, University of Michigan College of Pharmacy; Robert J. Lonigro, Pankaj Vats, Yi-Mi Wu, Bailey Anderson, Erica Rabban, Kevin Frank, Dan R. Robinson, Rajen J. Mody, and Arul Chinnaiyan, Michigan Medicine, Ann Arbor, MI
| | - Arul Chinnaiyan
- Daniel L. Hertz, Andrew Glatz, Amy L. Pasternak, and Erika Mora, University of Michigan College of Pharmacy; Robert J. Lonigro, Pankaj Vats, Yi-Mi Wu, Bailey Anderson, Erica Rabban, Kevin Frank, Dan R. Robinson, Rajen J. Mody, and Arul Chinnaiyan, Michigan Medicine, Ann Arbor, MI
| |
Collapse
|
35
|
Furukawa Y. Implementation of genomic medicine for gastrointestinal tumors. Ann Gastroenterol Surg 2018; 2:246-252. [PMID: 30003187 PMCID: PMC6036382 DOI: 10.1002/ags3.12178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/17/2018] [Indexed: 11/09/2022] Open
Abstract
Genomic medicine is an approach to take advantage of genomic data in medical practice and health care. The advancement of sequencing technologies has enabled the determination of individual genomes as well as the genome in neoplasms. In the field of human cancer, understanding genomic alterations in tumors and variations associated with drug responses has paved the way towards the development of new drugs and personalized medicine. International collaborations of cancer genome analyses have accumulated a huge body of information about somatic mutations, and identified new driver mutations and pathways in a wide range of cancers. In particular, a growing body of evidence has shown that information about mutations in neoplasms helps to assess the efficacy and resistance of anti-cancer drugs. Information about germline mutations associated with hereditary cancer has been shown to benefit patients by enabling early detection of their tumors and disease-specific treatment, as well as reducing the risk for those at risk. To promote personalized medicine in a more cost-effective and personalized way, further inter-institutional, nationwide, and international collaboration is needed. This article summarizes the background and current situation of genomic medicine in the field of gastrointestinal tumors to help physicians and medical coworkers by assisting their better understanding of genomic medicine and strengthening their confidence of its clinical use.
Collapse
Affiliation(s)
- Yoichi Furukawa
- Division of Clinical Genome ResearchThe Institute of Medical ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
36
|
Kurnit KC, Dumbrava EEI, Litzenburger B, Khotskaya YB, Johnson AM, Yap TA, Rodon J, Zeng J, Shufean MA, Bailey AM, Sánchez NS, Holla V, Mendelsohn J, Shaw KM, Bernstam EV, Mills GB, Meric-Bernstam F. Precision Oncology Decision Support: Current Approaches and Strategies for the Future. Clin Cancer Res 2018; 24:2719-2731. [PMID: 29420224 PMCID: PMC6004235 DOI: 10.1158/1078-0432.ccr-17-2494] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/02/2017] [Accepted: 01/30/2018] [Indexed: 12/11/2022]
Abstract
With the increasing availability of genomics, routine analysis of advanced cancers is now feasible. Treatment selection is frequently guided by the molecular characteristics of a patient's tumor, and an increasing number of trials are genomically selected. Furthermore, multiple studies have demonstrated the benefit of therapies that are chosen based upon the molecular profile of a tumor. However, the rapid evolution of genomic testing platforms and emergence of new technologies make interpreting molecular testing reports more challenging. More sophisticated precision oncology decision support services are essential. This review outlines existing tools available for health care providers and precision oncology teams and highlights strategies for optimizing decision support. Specific attention is given to the assays currently available for molecular testing, as well as considerations for interpreting alteration information. This article also discusses strategies for identifying and matching patients to clinical trials, current challenges, and proposals for future development of precision oncology decision support. Clin Cancer Res; 24(12); 2719-31. ©2018 AACR.
Collapse
Affiliation(s)
- Katherine C Kurnit
- Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Beate Litzenburger
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Bioinformatics, Qiagen Inc., Redwood City, California
| | - Yekaterina B Khotskaya
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amber M Johnson
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy A Yap
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jordi Rodon
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jia Zeng
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Md Abu Shufean
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ann M Bailey
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nora S Sánchez
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vijaykumar Holla
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John Mendelsohn
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kenna Mills Shaw
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elmer V Bernstam
- School of Biomedical Informatics and Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Gordon B Mills
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Funda Meric-Bernstam
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
37
|
Chen G, Xue WD, Zhu J. Full genetic analysis for genome-wide association study of Fangji: a powerful approach for effectively dissecting the molecular architecture of personalized traditional Chinese medicine. Acta Pharmacol Sin 2018; 39:906-911. [PMID: 29417942 DOI: 10.1038/aps.2017.137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 08/29/2017] [Indexed: 12/24/2022]
Abstract
Elucidation of the systems biology foundation underlying the effect of Fangji, which are multi-herbal traditional Chinese medicine (TCM) formulas, is one of the major aims in the field. The numerous bioactive ingredients of a Fangji deal with the multiple targets of a complex disease, which is influenced by a number of genes and their interactions with the environment. Genome-wide association study (GWAS) is an unbiased approach for dissecting the genetic variants underlying complex diseases and individual response to a given treatment. GWAS has great potential for the study of systems biology from the point of view of genomics, but the capacity using current analysis models is largely handicapped, as evidenced by missing heritability. Recent development of a full genetic model, in which gene-gene interactions (dominance and epistasis) and gene-environment interactions are all considered, has addressed these problems. This approach has been demonstrated to substantially increase model power, remarkably improving the detection of association of GWAS and the construction of the molecular architecture. This analysis does not require a very large sample size, which is often difficult to meet for a GWAS of treatment response. Furthermore, this analysis can integrate other omic information and allow for variations of Fangji, which is very promising for Fangjiomic study and detection of the sophisticated molecular architecture of the function of Fangji, as well as for the delineation of the systems biology of personalized medicine in TCM in an unbiased and comprehensive manner.
Collapse
|
38
|
Colombo I, Kurnit KC, Westin SN, Oza AM. Moving From Mutation to Actionability. Am Soc Clin Oncol Educ Book 2018; 38:495-503. [PMID: 30231353 DOI: 10.1200/edbk_199665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The diffusion of high-throughput next-generation sequencing technologies has sustained massive parallel sequencing of tumor tissue providing a deep insight into tumor biology and advancement of personalized medicine. A substantial number of targeted agents have been investigated in gynecologic cancer and some have received U.S. Food and Drug Administration approval, like PARP inhibitors in ovarian cancer, bevacizumab in ovarian and cervical cancers, and pembrolizumab in microsatellite-unstable or mismatch repair-deficient endometrial cancer. To improve effectiveness of targeted therapy, identification of predictive biomarkers able to guide the selection of the correct drug for the correct patient is crucial. Different limitations must be addressed to favor a more rapid implementation of a genotyping approach in treatment selection, such as the possibility to easily assess tumor heterogeneity and clonal evolution along the disease trajectory and the need for innovative trial designs like adaptive or basket trials incorporating molecular features as selection criteria. A deep dive into the genomic features of exceptional responders may also favor better understanding of tumor biology, mechanism of action of a specific target agent, and identification or predictive biomarkers for subsequent tailored studies.
Collapse
Affiliation(s)
- Ilaria Colombo
- From the Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX; University of Toronto, Department of Medicine, Toronto, ON, Canada
| | - Katherine C Kurnit
- From the Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX; University of Toronto, Department of Medicine, Toronto, ON, Canada
| | - Shannon N Westin
- From the Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX; University of Toronto, Department of Medicine, Toronto, ON, Canada
| | - Amit M Oza
- From the Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX; University of Toronto, Department of Medicine, Toronto, ON, Canada
| |
Collapse
|
39
|
Host-dependent variables: The missing link to personalized medicine. Eur J Surg Oncol 2018; 44:1289-1294. [PMID: 29735363 DOI: 10.1016/j.ejso.2018.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022] Open
Abstract
Individualized medicine has the potential to tailor anticancer therapy with the best response and highest safety margin to provide better patient care. However, modern targeted therapies are still being tested through clinical trials comparing preselected patient cohorts and assessed upon behaviour of group averages. Clinically manifesting malignant disease requires identification of host- and tumour-dependent variables such as biological characteristics of the tumour and its microenvironment including immune response features, and overall capacity of the host to receive, tolerate and efficiently utilize treatment. Contemporary medical oncology including clinical trial design need to refocus from assessing group averages to individuality taking into consideration time dependent host-associated characteristics and reinventing outliers to be appreciated as naturally occurring variables collectively determining the ultimate outcome of malignant disease.
Collapse
|
40
|
Stanta G, Bonin S. Overview on Clinical Relevance of Intra-Tumor Heterogeneity. Front Med (Lausanne) 2018; 5:85. [PMID: 29682505 PMCID: PMC5897590 DOI: 10.3389/fmed.2018.00085] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Today, clinical evaluation of tumor heterogeneity is an emergent issue to improve clinical oncology. In particular, intra-tumor heterogeneity (ITH) is closely related to cancer progression, resistance to therapy, and recurrences. It is interconnected with complex molecular mechanisms including spatial and temporal phenomena, which are often peculiar for every single patient. This review tries to describe all the types of ITH including morphohistological ITH, and at the molecular level clonal ITH derived from genomic instability and nonclonal ITH derived from microenvironment interaction. It is important to consider the different types of ITH as a whole for any patient to investigate on cancer progression, prognosis, and treatment opportunities. From a practical point of view, analytical methods that are widely accessible today, or will be in the near future, are evaluated to investigate the complex pattern of ITH in a reproducible way for a clinical application.
Collapse
Affiliation(s)
- Giorgio Stanta
- DSM, Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Serena Bonin
- DSM, Department of Medical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
41
|
Added Value of Whole-Exome and Transcriptome Sequencing for Clinical Molecular Screenings of Advanced Cancer Patients With Solid Tumors. Cancer J 2018; 24:153-162. [DOI: 10.1097/ppo.0000000000000322] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Castrillo JI, Lista S, Hampel H, Ritchie CW. Systems Biology Methods for Alzheimer’s Disease Research Toward Molecular Signatures, Subtypes, and Stages and Precision Medicine: Application in Cohort Studies and Trials. Methods Mol Biol 2018; 1750:31-66. [PMID: 29512064 DOI: 10.1007/978-1-4939-7704-8_3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Juan I Castrillo
- Genetadi Biotech S.L. Parque Tecnológico de Bizkaia, Derio, Bizkaia, Spain.
| | - Simone Lista
- AXA Research Fund & UPMC Chair, F-75013, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l'hôpital, F-75013, Paris, France
| | - Harald Hampel
- AXA Research Fund & UPMC Chair, F-75013, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l'hôpital, F-75013, Paris, France
| | - Craig W Ritchie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
43
|
Zhang Z, Hao K. Using SAAS-CNV to Detect and Characterize Somatic Copy Number Alterations in Cancer Genomes from Next Generation Sequencing and SNP Array Data. Methods Mol Biol 2018; 1833:29-47. [PMID: 30039361 DOI: 10.1007/978-1-4939-8666-8_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Somatic copy number alterations (SCNAs) are profound in cancer genomes at different stages: oncogenesis, progression, and metastasis. Accurate detection and characterization of SCNA landscape at genome-wide scale are of great importance. Next-generation sequencing and SNP array are current technology of choice for SCNA analysis. They are able to quantify SCNA with high resolution and meanwhile raise great challenges in data analysis. To this end, we have developed an R package saasCNV for SCNA analysis using (1) whole-genome sequencing (WGS), (2) whole-exome sequencing (WES) or (3) whole-genome SNP array data. In this chapter, we provide the features of the package and step-by-step instructions in detail.
Collapse
Affiliation(s)
- Zhongyang Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
44
|
|
45
|
Valenciaga A, Grubbs EG, Porter K, Wakely PE, Williams MD, Cote GJ, Vasko VV, Saji M, Ringel MD. Reduced Retinoblastoma Protein Expression Is Associated with Decreased Patient Survival in Medullary Thyroid Cancer. Thyroid 2017; 27:1523-1533. [PMID: 29105562 PMCID: PMC5734142 DOI: 10.1089/thy.2017.0113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The retinoblastoma (RB) transcriptional corepressor 1 protein functions to slow cell-cycle progression. Inactivation of RB by reduced expression and/or hyperphosphorylation allow for enhanced progression through the cell cycle. Murine models develop medullary thyroid carcinoma (MTC) after generalized loss of RB. However, RB expression in MTC has only been evaluated in a small number of tumors, with differing results. The objective of this study was to determine whether reduced expression of RB and/or overexpression of hyperphosphorylated RB predict MTC aggressive behavior. METHODS Formalin-fixed, paraffin-embedded primary thyroid tumors and lymph node metastases from MTC patients were evaluated for calcitonin, RB, and phosphorylated RB (pRB) expression by immunohistochemistry. Two expert pathologists evaluated the slides in a blinded manner, and the immunohistochemistry results were compared to disease-specific survival as a primary endpoint. RESULTS Seventy-four MTC samples from 56 patients were analyzed in this study, including 51 primary tumors and 23 lymph node metastases. The median follow-up time was 6.75 years after surgery (range 0.64-24.30 years), and the median primary tumor size was 30 mm (range 6-96 mm). Sixty-six percent of cases were classified as stage IV. RB nuclear expression was diffusely present in 88% of primary tumors and 78% of lymph node metastases. Nuclear pRB expression was present in 22% of primary tumors and 22% of lymph node metastases. On univariate analysis, reduced RB (<75% tumor cell staining) trended with lower MTC-specific survival for primary tumor and metastatic nodes (primary tumor hazard ratio = 3.54 [confidence interval 0.81-15.47], p = 0.08; and lymph node hazard ratio = 4.35 [confidence interval 0.87-21.83], p = 0.05). For primary tumors, multivariable analysis showed that low nuclear RB expression was independently associated with worse disease-specific (p = 0.01) and overall (p = 0.02) survival. pRB levels were not associated with survival for either primary tumor or lymph node metastases. CONCLUSIONS Reduced RB expression is associated with decreased patient survival in univariate and multivariable analyses, independent from patient age at surgery or advanced TNM stage. Future studies involving larger MTC patient populations are warranted to determine if lower RB expression levels may serve as a biomarker for aggressive disease in patients with MTC.
Collapse
Affiliation(s)
- Anisley Valenciaga
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University Wexner Medical Center and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio
| | - Elizabeth G. Grubbs
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kyle Porter
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Paul E. Wakely
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Michelle D. Williams
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gilbert J. Cote
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vasyl V. Vasko
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Motoyasu Saji
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University Wexner Medical Center and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio
| | - Matthew D. Ringel
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University Wexner Medical Center and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
46
|
Wong EHC, Tetter N, Tzankov A, Muller L. CASTLE tumor of the parotid: First documented case, literature review, and genetic analysis of the cancer. Head Neck 2017; 40:E1-E4. [PMID: 29120527 DOI: 10.1002/hed.24985] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/20/2017] [Accepted: 09/15/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Carcinoma showing thymus-like elements (CASTLE) is a rare tumor that normally affects the thyroid gland and was thought to arise from either the remnants of the branchial pouch or the ectopic cervical thymic tissue. These tumors show strong immunopositivity for CD5, P63, and CD117. Most CASTLE of the thyroid gland is treated with surgery with or without adjuvant radiotherapy or chemotherapy. METHOD A 55-year-old woman presented with a slow-growing right parotid mass. A right total parotidectomy and ipsilateral selective neck dissection were performed and the diagnosis of CASTLE was made after confirmation with an immunohistochemistry test. She received radiotherapy postoperatively. RESULTS Genetic sequencing showed alterations in the PPARG, BRCA2, and NOTCH1 genes. She remained disease free for >1 year after treatment. CONCLUSION We believe that this is the first reported case of CASTLE in the parotid gland. Clinicians should be aware of this rare entity and consider this differential diagnosis after ruling out other common parotid lesions.
Collapse
Affiliation(s)
- Eugene Hung Chih Wong
- Department of Otolaryngology, Head and Neck Surgery, University Hospital of Basel, Basel, Switzerland
| | - Nora Tetter
- Department of Otolaryngology, Head and Neck Surgery, University Hospital of Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Basel, Basel, Switzerland
| | - Laurent Muller
- Department of Otolaryngology, Head and Neck Surgery, University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
47
|
The integration of genomics testing and functional proteomics in the era of personalized medicine. Expert Rev Proteomics 2017; 14:1055-1058. [PMID: 29039218 DOI: 10.1080/14789450.2017.1392245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Scott SA, Owusu Obeng A, Botton MR, Yang Y, Scott ER, Ellis SB, Wallsten R, Kaszemacher T, Zhou X, Chen R, Nicoletti P, Naik H, Kenny EE, Vega A, Waite E, Diaz GA, Dudley J, Halperin JL, Edelmann L, Kasarskis A, Hulot JS, Peter I, Bottinger EP, Hirschhorn K, Sklar P, Cho JH, Desnick RJ, Schadt EE. Institutional profile: translational pharmacogenomics at the Icahn School of Medicine at Mount Sinai. Pharmacogenomics 2017; 18:1381-1386. [PMID: 28982267 DOI: 10.2217/pgs-2017-0137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
For almost 50 years, the Icahn School of Medicine at Mount Sinai has continually invested in genetics and genomics, facilitating a healthy ecosystem that provides widespread support for the ongoing programs in translational pharmacogenomics. These programs can be broadly cataloged into discovery, education, clinical implementation and testing, which are collaboratively accomplished by multiple departments, institutes, laboratories, companies and colleagues. Focus areas have included drug response association studies and allele discovery, multiethnic pharmacogenomics, personalized genotyping and survey-based education programs, pre-emptive clinical testing implementation and novel assay development. This overview summarizes the current state of translational pharmacogenomics at Mount Sinai, including a future outlook on the forthcoming expansions in overall support, research and clinical programs, genomic technology infrastructure and the participating faculty.
Collapse
Affiliation(s)
- Stuart A Scott
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA.,The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Aniwaa Owusu Obeng
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Department of Pharmacy, the Mount Sinai Medical Center, NY 10029, USA
| | - Mariana R Botton
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Yao Yang
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Erick R Scott
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Stephen B Ellis
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | | | - Tom Kaszemacher
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Xiang Zhou
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Rong Chen
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Paola Nicoletti
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Hetanshi Naik
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Eimear E Kenny
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Aida Vega
- Mount Sinai Faculty Practice Associates Primary Care Program, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Eva Waite
- Mount Sinai Faculty Practice Associates Primary Care Program, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - George A Diaz
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Joel Dudley
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Jonathan L Halperin
- The Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Lisa Edelmann
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Andrew Kasarskis
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Jean-Sébastien Hulot
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sorbonne Universités, UPMC Univ Paris 06, Faculty of Medicine, UMRS_1166 ICAN, Institute of Cardiometabolism & Nutrition, AP-HP, Pitié-Salpêtrière Hospital, Institute of Cardiology, Paris, France
| | - Inga Peter
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Berlin Institute of Health, Berlin, Germany
| | - Kurt Hirschhorn
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Pamela Sklar
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Department of Psychiatry & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Judy H Cho
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Department of Medicine, Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, NY 10029 USA
| | - Robert J Desnick
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Eric E Schadt
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| |
Collapse
|
49
|
Wang H, Bender A, Wang P, Karakose E, Inabnet WB, Libutti SK, Arnold A, Lambertini L, Stang M, Chen H, Kasai Y, Mahajan M, Kinoshita Y, Fernandez-Ranvier G, Becker TC, Takane KK, Walker LA, Saul S, Chen R, Scott DK, Ferrer J, Antipin Y, Donovan M, Uzilov AV, Reva B, Schadt EE, Losic B, Argmann C, Stewart AF. Insights into beta cell regeneration for diabetes via integration of molecular landscapes in human insulinomas. Nat Commun 2017; 8:767. [PMID: 28974674 PMCID: PMC5626682 DOI: 10.1038/s41467-017-00992-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/10/2017] [Indexed: 12/19/2022] Open
Abstract
Although diabetes results in part from a deficiency of normal pancreatic beta cells, inducing human beta cells to regenerate is difficult. Reasoning that insulinomas hold the “genomic recipe” for beta cell expansion, we surveyed 38 human insulinomas to obtain insights into therapeutic pathways for beta cell regeneration. An integrative analysis of whole-exome and RNA-sequencing data was employed to extensively characterize the genomic and molecular landscape of insulinomas relative to normal beta cells. Here, we show at the pathway level that the majority of the insulinomas display mutations, copy number variants and/or dysregulation of epigenetic modifying genes, most prominently in the polycomb and trithorax families. Importantly, these processes are coupled to co-expression network modules associated with cell proliferation, revealing candidates for inducing beta cell regeneration. Validation of key computational predictions supports the concept that understanding the molecular complexity of insulinoma may be a valuable approach to diabetes drug discovery. Diabetes results in part from a deficiency of functional pancreatic beta cells. Here, the authors study the genomic and epigenetic landscapes of human insulinomas to gain insight into possible pathways for therapeutic beta cell regeneration, highlighting epigenetic genes and pathways.
Collapse
Affiliation(s)
- Huan Wang
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,The Graduate School, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT, 06902, USA
| | - Aaron Bender
- The Graduate School, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,The Diabetes Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Peng Wang
- The Diabetes Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Esra Karakose
- The Diabetes Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - William B Inabnet
- The Department of Surgery, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Steven K Libutti
- The Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Andrew Arnold
- Center for Molecular Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Luca Lambertini
- The Departments of Environmental Medicine and Public Health and Obstetrics, Gynecology, and Reproductive Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Micheal Stang
- The Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Herbert Chen
- The Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Yumi Kasai
- The New York Genome Center, New York, NY, 10013, USA
| | - Milind Mahajan
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yayoi Kinoshita
- The Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Thomas C Becker
- The Sarah W. Stedman Center for Nutrition and Metabolism, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Karen K Takane
- The Diabetes Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Laura A Walker
- The Diabetes Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Shira Saul
- The Diabetes Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rong Chen
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT, 06902, USA
| | - Donald K Scott
- The Diabetes Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jorge Ferrer
- The Department of Genetics in Medicine, Imperial College, London, W12 0NN, UK
| | - Yevgeniy Antipin
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT, 06902, USA
| | - Michael Donovan
- The Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andrew V Uzilov
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT, 06902, USA
| | - Boris Reva
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric E Schadt
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT, 06902, USA
| | - Bojan Losic
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Carmen Argmann
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andrew F Stewart
- The Diabetes Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
50
|
Tsang H, Addepalli K, Davis SR. Resources for Interpreting Variants in Precision Genomic Oncology Applications. Front Oncol 2017; 7:214. [PMID: 28975082 PMCID: PMC5610688 DOI: 10.3389/fonc.2017.00214] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/29/2017] [Indexed: 01/08/2023] Open
Abstract
Precision genomic oncology-applying high throughput sequencing (HTS) at the point-of-care to inform clinical decisions-is a developing precision medicine paradigm that is seeing increasing adoption. Simultaneously, new developments in targeted agents and immunotherapy, when informed by rich genomic characterization, offer potential benefit to a growing subset of patients. Multiple previous studies have commented on methods for identifying both germline and somatic variants. However, interpreting individual variants remains a significant challenge, relying in large part on the integration of observed variants with biological knowledge. A number of data and software resources have been developed to assist in interpreting observed variants, determining their potential clinical actionability, and augmenting them with ancillary information that can inform clinical decisions and even generate new hypotheses for exploration in the laboratory. Here, we review available variant catalogs, variant and functional annotation software and tools, and databases of clinically actionable variants that can be used in an ad hoc approach with research samples or incorporated into a data platform for interpreting and formally reporting clinical results.
Collapse
Affiliation(s)
- Hsinyi Tsang
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Gaithersburg, MD, United States
- Attain, LLC, McLean, VA, United States
| | - KanakaDurga Addepalli
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Gaithersburg, MD, United States
- Attain, LLC, McLean, VA, United States
| | - Sean R. Davis
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|