1
|
Sehl OC, Yang Y, Anjier AR, Nevozhay D, Cheng D, Guo K, Fellows B, Mohtasebzadeh AR, Mason EE, Sanders T, Kim P, Trease D, Koul D, Goodwill PW, Sokolov K, Wintermark M, Gordon N, Greve JM, Gopalakrishnan V. Preclinical and Clinical-Scale Magnetic Particle Imaging of Natural Killer Cells: in vitro and ex vivo Demonstration of Cellular Sensitivity, Resolution, and Quantification. Mol Imaging Biol 2025; 27:78-88. [PMID: 39653984 DOI: 10.1007/s11307-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/23/2024] [Accepted: 11/20/2024] [Indexed: 02/08/2025]
Abstract
PURPOSE Clinical adoption of NK cell immunotherapy is underway for medulloblastoma and osteosarcoma, however there is currently little feedback on cell fate after administration. We propose magnetic particle imaging (MPI) may have applications for the quantitative detection of NK cells. PROCEDURES Human-derived NK-92 cells were labeled by co-incubation with iron oxide nanoparticles (VivoTrax™) for 24 h then excess nanoparticles were washed with centrifugation. Cytolytic activity of labeled versus unlabeled NK-92 cells was assessed after 4 h of co-incubation with medulloblastoma cells (DAOY) or osteosarcoma cells (LM7 or OS17). Labeled NK-92 cells at two different doses (0.5 or 1 × 106) were administered to excised mouse brains (cerebellum), fibulas, and lungs then imaged by 3D preclinical MPI (MOMENTUM™) for detection relative to fiducial markers. NK-92 cells were also imaged by clinical-scale MPI under development at Magnetic Insight Inc. RESULTS NK-92 cells were labeled with an average of 3.17 pg Fe/cell with no measurable effects on cell viability or cytolytic activity against 3 tumor cell lines. MPI signal was directly quantitative with the number of labeled NK-92 cells, with preclinical limit of detection of 3.1 × 104 cells on MOMENTUM imager. Labeled NK-92 cells could be accurately localized in mouse brains, fibulas, and lungs within < 1 mm of stereotactic injection coordinates with preclinical scanner. Feasibility for detection on a clinical-scale MPI scanner was demonstrated using 4 × 107 labeled NK-92 cells, which is in the range of NK cell doses administered in our previous clinical trial. CONCLUSION MPI can provide sensitive, quantitative, and accurate spatial information on NK cells soon after delivery, showing initial promise to address a significant unmet clinical need to track NK cell fate in patients.
Collapse
Affiliation(s)
- Olivia C Sehl
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA.
| | - Yanwen Yang
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Ariana R Anjier
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Dmitry Nevozhay
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Donghang Cheng
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Kelvin Guo
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | | | | | - Erica E Mason
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | - Toby Sanders
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | - Petrina Kim
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | - David Trease
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | - Dimpy Koul
- Department of Neuroradiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Konstantin Sokolov
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Max Wintermark
- Department of Neuroradiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nancy Gordon
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Joan M Greve
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | - Vidya Gopalakrishnan
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA.
- Brain Tumor Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson- UT Health Graduate School of Biomedical Science, Houston, TX, USA.
| |
Collapse
|
2
|
Yang C, Trivedi V, Dyson K, Gu T, Candelario KM, Yegorov O, Mitchell DA. Identification of tumor rejection antigens and the immunologic landscape of medulloblastoma. Genome Med 2024; 16:102. [PMID: 39160595 PMCID: PMC11331754 DOI: 10.1186/s13073-024-01363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND The current standard of care treatments for medulloblastoma are insufficient as these do not take tumor heterogeneity into account. Newer, safer, patient-specific treatment approaches are required to treat high-risk medulloblastoma patients who are not cured by the standard therapies. Immunotherapy is a promising treatment modality that could be key to improving survival and avoiding morbidity. For an effective immune response, appropriate tumor antigens must be targeted. While medulloblastoma patients with subgroup-specific genetic substitutions have been previously reported, the immunogenicity of these genetic alterations remains unknown. The aim of this study is to identify potential tumor rejection antigens for the development of antigen-directed cellular therapies for medulloblastoma. METHODS We developed a cancer immunogenomics pipeline and performed a comprehensive analysis of medulloblastoma subgroup-specific transcription profiles (n = 170, 18 WNT, 46 SHH, 41 Group 3, and 65 Group 4 patient tumors) available through International Cancer Genome Consortium (ICGC) and European Genome-Phenome Archive (EGA). We performed in silico antigen prediction across a broad array of antigen classes including neoantigens, tumor-associated antigens (TAAs), and fusion proteins. Furthermore, we evaluated the antigen processing and presentation pathway in tumor cells and the immune infiltrating cell landscape using the latest computational deconvolution methods. RESULTS Medulloblastoma patients were found to express multiple private and shared immunogenic antigens. The proportion of predicted TAAs was higher than neoantigens and gene fusions for all molecular subgroups, except for sonic hedgehog (SHH), which had a higher neoantigen burden. Importantly, cancer-testis antigens, as well as previously unappreciated neurodevelopmental antigens, were found to be expressed by most patients across all medulloblastoma subgroups. Despite being immunologically cold, medulloblastoma subgroups were found to have distinct immune cell gene signatures. CONCLUSIONS Using a custom antigen prediction pipeline, we identified potential tumor rejection antigens with important implications for the development of immunotherapy for medulloblastoma.
Collapse
Affiliation(s)
- Changlin Yang
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Vrunda Trivedi
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Kyle Dyson
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Tongjun Gu
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Kate M Candelario
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Oleg Yegorov
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Duane A Mitchell
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA.
| |
Collapse
|
3
|
Chaiyawat P, Sangkhathat S, Chiangjong W, Wongtrakoongate P, Hongeng S, Pruksakorn D, Chutipongtanate S. Targeting pediatric solid tumors in the new era of RNA therapeutics. Crit Rev Oncol Hematol 2024; 200:104406. [PMID: 38834094 DOI: 10.1016/j.critrevonc.2024.104406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/26/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
Despite substantial progress in pediatric cancer treatment, poor prognosis remained for patients with recurrent or metastatic disease, given the limitations of approved targeted treatments and immunotherapies. RNA therapeutics offer significant potential for addressing a broad spectrum of diseases, including cancer. Advances in manufacturing and delivery systems are paving the way for the rapid development of therapeutic RNAs for clinical applications. This review summarizes therapeutic RNA classifications and the mechanisms of action, highlighting their potential in manipulating major cancer-related pathways and biological effects. We also focus on the pre-clinical investigation of RNA molecules with efficient delivery systems for their therapeutic potential targeting pediatric solid tumors.
Collapse
Affiliation(s)
- Parunya Chaiyawat
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Surasak Sangkhathat
- Department of Biomedical Science, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand; Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ra-mathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ra-mathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
4
|
Machaca V, Goyzueta V, Cruz MG, Sejje E, Pilco LM, López J, Túpac Y. Transformers meets neoantigen detection: a systematic literature review. J Integr Bioinform 2024; 21:jib-2023-0043. [PMID: 38960869 PMCID: PMC11377031 DOI: 10.1515/jib-2023-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/20/2024] [Indexed: 07/05/2024] Open
Abstract
Cancer immunology offers a new alternative to traditional cancer treatments, such as radiotherapy and chemotherapy. One notable alternative is the development of personalized vaccines based on cancer neoantigens. Moreover, Transformers are considered a revolutionary development in artificial intelligence with a significant impact on natural language processing (NLP) tasks and have been utilized in proteomics studies in recent years. In this context, we conducted a systematic literature review to investigate how Transformers are applied in each stage of the neoantigen detection process. Additionally, we mapped current pipelines and examined the results of clinical trials involving cancer vaccines.
Collapse
Affiliation(s)
| | | | | | - Erika Sejje
- Universidad Nacional de San Agustín, Arequipa, Perú
| | | | | | - Yván Túpac
- 187038 Universidad Católica San Pablo , Arequipa, Perú
| |
Collapse
|
5
|
Singh S, Fang J, Jin H, Van de Velde LA, Wu Q, Cortes A, Morton CL, Woolard MA, Quarni W, Steele JA, Connelly JP, He L, Thorne R, Turner G, Confer T, Johnson M, Caufield WV, Freeman BB, Lockey T, Pruett-Miller SM, Wang R, Davidoff AM, Thomas PG, Yang J. RBM39 degrader invigorates natural killer cells to eradicate neuroblastoma despite cancer cell plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586157. [PMID: 38585889 PMCID: PMC10996557 DOI: 10.1101/2024.03.21.586157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The cellular plasticity of neuroblastoma is defined by a mixture of two major cell states, adrenergic (ADRN) and mesenchymal (MES), which may contribute to therapy resistance. However, how neuroblastoma cells switch cellular states during therapy remains largely unknown and how to eradicate neuroblastoma regardless of their cell states is a clinical challenge. To better understand the lineage switch of neuroblastoma in chemoresistance, we comprehensively defined the transcriptomic and epigenetic map of ADRN and MES types of neuroblastomas using human and murine models treated with indisulam, a selective RBM39 degrader. We showed that cancer cells not only undergo a bidirectional switch between ADRN and MES states, but also acquire additional cellular states, reminiscent of the developmental pliancy of neural crest cells. The lineage alterations are coupled with epigenetic reprogramming and dependency switch of lineage-specific transcription factors, epigenetic modifiers and targetable kinases. Through targeting RNA splicing, indisulam induces an inflammatory tumor microenvironment and enhances anticancer activity of natural killer cells. The combination of indisulam with anti-GD2 immunotherapy results in a durable, complete response in high-risk transgenic neuroblastoma models, providing an innovative, rational therapeutic approach to eradicate tumor cells regardless of their potential to switch cell states.
Collapse
|
6
|
Kirk AM, Crawford JC, Chou CH, Guy C, Pandey K, Kozlik T, Shah RK, Chung S, Nguyen P, Zhang X, Wang J, Bell M, Mettelman RC, Allen EK, Pogorelyy MV, Kim H, Minervina AA, Awad W, Bajracharya R, White T, Long D, Gordon B, Morrison M, Glazer ES, Murphy AJ, Jiang Y, Fitzpatrick EA, Yarchoan M, Sethupathy P, Croft NP, Purcell AW, Federico SM, Stewart E, Gottschalk S, Zamora AE, DeRenzo C, Strome SE, Thomas PG. DNAJB1-PRKACA fusion neoantigens elicit rare endogenous T cell responses that potentiate cell therapy for fibrolamellar carcinoma. Cell Rep Med 2024; 5:101469. [PMID: 38508137 PMCID: PMC10983114 DOI: 10.1016/j.xcrm.2024.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/29/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Fibrolamellar carcinoma (FLC) is a liver tumor with a high mortality burden and few treatment options. A promising therapeutic vulnerability in FLC is its driver mutation, a conserved DNAJB1-PRKACA gene fusion that could be an ideal target neoantigen for immunotherapy. In this study, we aim to define endogenous CD8 T cell responses to this fusion in FLC patients and evaluate fusion-specific T cell receptors (TCRs) for use in cellular immunotherapies. We observe that fusion-specific CD8 T cells are rare and that FLC patient TCR repertoires lack large clusters of related TCR sequences characteristic of potent antigen-specific responses, potentially explaining why endogenous immune responses are insufficient to clear FLC tumors. Nevertheless, we define two functional fusion-specific TCRs, one of which has strong anti-tumor activity in vivo. Together, our results provide insights into the fragmented nature of neoantigen-specific repertoires in humans and indicate routes for clinical development of successful immunotherapies for FLC.
Collapse
Affiliation(s)
- Allison M Kirk
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ching-Heng Chou
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kirti Pandey
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Tanya Kozlik
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ravi K Shah
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shanzou Chung
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Phuong Nguyen
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiaoyu Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jin Wang
- Department of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Matthew Bell
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mikhail V Pogorelyy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hyunjin Kim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anastasia A Minervina
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Walid Awad
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Resha Bajracharya
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Toni White
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Donald Long
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Brittney Gordon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michelle Morrison
- Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Evan S Glazer
- Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Surgery, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Andrew J Murphy
- Department of Surgery, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yixing Jiang
- Department of Medical Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Elizabeth A Fitzpatrick
- Department of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mark Yarchoan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Nathan P Croft
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Sara M Federico
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elizabeth Stewart
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anthony E Zamora
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Christopher DeRenzo
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Scott E Strome
- College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
7
|
Filipek-Gorzała J, Kwiecińska P, Szade A, Szade K. The dark side of stemness - the role of hematopoietic stem cells in development of blood malignancies. Front Oncol 2024; 14:1308709. [PMID: 38440231 PMCID: PMC10910019 DOI: 10.3389/fonc.2024.1308709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/02/2024] [Indexed: 03/06/2024] Open
Abstract
Hematopoietic stem cells (HSCs) produce all blood cells throughout the life of the organism. However, the high self-renewal and longevity of HSCs predispose them to accumulate mutations. The acquired mutations drive preleukemic clonal hematopoiesis, which is frequent among elderly people. The preleukemic state, although often asymptomatic, increases the risk of blood cancers. Nevertheless, the direct role of preleukemic HSCs is well-evidenced in adult myeloid leukemia (AML), while their contribution to other hematopoietic malignancies remains less understood. Here, we review the evidence supporting the role of preleukemic HSCs in different types of blood cancers, as well as present the alternative models of malignant evolution. Finally, we discuss the clinical importance of preleukemic HSCs in choosing the therapeutic strategies and provide the perspective on further studies on biology of preleukemic HSCs.
Collapse
Affiliation(s)
- Jadwiga Filipek-Gorzała
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Patrycja Kwiecińska
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
8
|
Kumar H, Luo R, Wen J, Yang C, Zhou X, Kim P. FusionNeoAntigen: a resource of fusion gene-specific neoantigens. Nucleic Acids Res 2024; 52:D1276-D1288. [PMID: 37870454 PMCID: PMC10767944 DOI: 10.1093/nar/gkad922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023] Open
Abstract
Among the diverse sources of neoantigens (i.e. single-nucleotide variants (SNVs), insertions or deletions (Indels) and fusion genes), fusion gene-derived neoantigens are generally more immunogenic, have multiple targets per mutation and are more widely distributed across various cancer types. Therefore, fusion gene-derived neoantigens are a potential source of highly immunogenic neoantigens and hold great promise for cancer immunotherapy. However, the lack of fusion protein sequence resources and knowledge prevents this application. We introduce 'FusionNeoAntigen', a dedicated resource for fusion-specific neoantigens, accessible at https://compbio.uth.edu/FusionNeoAntigen. In this resource, we provide fusion gene breakpoint crossing neoantigens focused on ∼43K fusion proteins of ∼16K in-frame fusion genes from FusionGDB2.0. FusionNeoAntigen provides fusion gene information, corresponding fusion protein sequences, fusion breakpoint peptide sequences, fusion gene-derived neoantigen prediction, virtual screening between fusion breakpoint peptides having potential fusion neoantigens and human leucocyte antigens (HLAs), fusion breakpoint RNA/protein sequences for developing vaccines, information on samples with fusion-specific neoantigen, potential CAR-T targetable cell-surface fusion proteins and literature curation. FusionNeoAntigen will help to develop fusion gene-based immunotherapies. We will report all potential fusion-specific neoantigens from all possible open reading frames of ∼120K human fusion genes in future versions.
Collapse
Affiliation(s)
- Himansu Kumar
- Department of Bioinformatics and Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ruihan Luo
- Department of Bioinformatics and Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jianguo Wen
- Department of Bioinformatics and Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chengyuan Yang
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaobo Zhou
- Department of Bioinformatics and Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Pora Kim
- Department of Bioinformatics and Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
9
|
Zappa E, Vitali A, Anders K, Molenaar JJ, Wienke J, Künkele A. Adoptive cell therapy in paediatric extracranial solid tumours: current approaches and future challenges. Eur J Cancer 2023; 194:113347. [PMID: 37832507 PMCID: PMC10695178 DOI: 10.1016/j.ejca.2023.113347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 10/15/2023]
Abstract
Immunotherapy has ignited hope to cure paediatric solid tumours that resist traditional therapies. Among the most promising methods is adoptive cell therapy (ACT). Particularly, ACT using T cells equipped with chimeric antigen receptors (CARs) has moved into the spotlight in clinical studies. However, the efficacy of ACT is challenged by ACT-intrinsic factors, like lack of activation or T cell exhaustion, as well as immune evasion strategies of paediatric solid tumours, such as their highly immunosuppressive microenvironment. Novel strategies, including ACT using innate-like lymphocytes, innovative cell engineering techniques, and ACT combination therapies, are being developed and will be crucial to overcome these challenges. Here, we discuss the main classes of ACT for the treatment of paediatric extracranial solid tumours, reflect on the available preclinical and clinical evidence supporting promising strategies, and address the challenges that ACT is still facing. Ultimately, we highlight state-of-the-art developments and opportunities for new therapeutic options, which hold great potential for improving outcomes in this challenging patient population.
Collapse
Affiliation(s)
- Elisa Zappa
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Alice Vitali
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.
| | - Kathleen Anders
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Judith Wienke
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
10
|
Zhang M, Lang X, Chen X, Lv Y. Prospective Identification of Prognostic Hot-Spot Mutant Gene Signatures for Leukemia: A Computational Study Based on Integrative Analysis of TCGA and cBioPortal Data. Mol Biotechnol 2023; 65:1898-1912. [PMID: 36879146 DOI: 10.1007/s12033-023-00704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023]
Abstract
The advantage of an increasing amount of bioinformatics data on leukemias intrigued us to explore the hot-spot mutation profiles and investigate the implications of those hot-spot mutations in patient survival. We retrieved somatic mutations and their distribution in protein domains through data analysis of The Cancer Genome Atlas and cBioPortal databases. After determining differentially expressed mutant genes related to leukemia, we further conducted principal component analysis and single-factor Cox regression analyses. Moreover, survival analysis was performed for the obtained candidate genes, followed by a multi-factor Cox proportional hazard model method for the impacts of the candidate genes on the survival and prognosis of patients with leukemia. At last, the signaling pathways involved in leukemia were investigated by gene set enrichment analysis. There were 223 somatic missense mutation hot-spots identified with pertinence to leukemia, which were distributed in 41 genes. Differential expression in leukemia was witnessed in 39 genes. We found a close correlation between seven genes and the prognosis of leukemia patients, among which, three genes could significantly influence the survival rate. In addition, among these three genes, CD74 and P2RY8 were highlighted due to close pertinence with survival conditions of leukemia patients. Finally, data suggested that B cell receptor, Hedgehog, and TGF-beta signaling pathways were enriched in low-hazard patients. In conclusion, these data underline the involvement of hot-spot mutations of CD74 and P2RY8 genes in survival status of leukemia patients, highlighting their as novel therapeutic targets or prognostic indicators for leukemia patients. Summary of Graphical Abstract: We identified 223 leukemia-associated somatic missense mutation hotspots concentrated in 41 different genes from 2297 leukemia patients in the TCGA database. Differential analysis of leukemic and normal samples from the TCGA and GTEx databases revealed that 39 of these 41 genes showed significant differential expression in leukemia. These 39 genes were subjected to PCA analysis, univariate Cox analysis, survival analysis, multivariate Cox regression analysis, GSEA pathway enrichment analysis, and then the association with leukemia survival prognosis and related pathways were investigated.
Collapse
Affiliation(s)
- Min Zhang
- Department of Hematology, The First People's Hospital of Yongkang, Affiliated to Hangzhou Medical College, No. 599, Jinshan West Road, Yongkang, Jinhua City, Zhejiang Province, 321300, People's Republic of China.
| | - Xianghua Lang
- Department of Hematology, The First People's Hospital of Yongkang, Affiliated to Hangzhou Medical College, No. 599, Jinshan West Road, Yongkang, Jinhua City, Zhejiang Province, 321300, People's Republic of China
| | - Xinyi Chen
- Department of Hematology, The First People's Hospital of Yongkang, Affiliated to Hangzhou Medical College, No. 599, Jinshan West Road, Yongkang, Jinhua City, Zhejiang Province, 321300, People's Republic of China
| | - Yuke Lv
- Department of Hematology, The First People's Hospital of Yongkang, Affiliated to Hangzhou Medical College, No. 599, Jinshan West Road, Yongkang, Jinhua City, Zhejiang Province, 321300, People's Republic of China
| |
Collapse
|
11
|
Feng Y, Hess PR, Tompkins SM, Hildebrand WH, Zhao S. A Kmer-based paired-end read de novo assembler and genotyper for canine MHC class I genotyping. iScience 2023; 26:105996. [PMID: 36798440 PMCID: PMC9926114 DOI: 10.1016/j.isci.2023.105996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/28/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
The major histocompatibility complex class I (MHC-I) genes are highly polymorphic. MHC-I genotyping is required for determining the peptide epitopes available to an individual's T-cell repertoire. Current genotyping software tools do not work for the dog, due to very limited known canine alleles. To address this, we developed a Kmer-based paired-end read (KPR) de novo assembler and genotyper, which assemble paired-end RNA-seq reads from MHC-I regions into contigs, and then genotype each contig and estimate its expression level. KPR tools outperform other popular software examined in typing new alleles. We used KPR tools to successfully genotype152 dogs from a published dataset. The study discovers 33 putative new alleles, finds dominant alleles in 4 dog breeds, and builds allele diversity and expression landscapes among the 152 dogs. Our software meets a significant need in biomedical research.
Collapse
Affiliation(s)
- Yuan Feng
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Paul R. Hess
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Stephen M. Tompkins
- Center for Vaccines and Immunology, University of Georgia, UGA, Athens, GA 30602, USA
| | - William H. Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shaying Zhao
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
12
|
Sun H, Zhang Y, Wang G, Yang W, Xu Y. mRNA-Based Therapeutics in Cancer Treatment. Pharmaceutics 2023; 15:pharmaceutics15020622. [PMID: 36839944 PMCID: PMC9964383 DOI: 10.3390/pharmaceutics15020622] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/15/2023] Open
Abstract
Over the past two decades, significant technological innovations have led to messenger RNA (mRNA) becoming a promising option for developing prophylactic and therapeutic vaccines, protein replacement therapies, and genome engineering. The success of the two COVID-19 mRNA vaccines has sparked new enthusiasm for other medical applications, particularly in cancer treatment. In vitro-transcribed (IVT) mRNAs are structurally designed to resemble naturally occurring mature mRNA. Delivery of IVT mRNA via delivery platforms such as lipid nanoparticles allows host cells to produce many copies of encoded proteins, which can serve as antigens to stimulate immune responses or as additional beneficial proteins for supplements. mRNA-based cancer therapeutics include mRNA cancer vaccines, mRNA encoding cytokines, chimeric antigen receptors, tumor suppressors, and other combination therapies. To better understand the current development and research status of mRNA therapies for cancer treatment, this review focused on the molecular design, delivery systems, and clinical indications of mRNA therapies in cancer.
Collapse
Affiliation(s)
- Han Sun
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ge Wang
- Department of Oral Maxillofacial & Head and Neck Oncology, National Center of Stomatology, National Clinical Research Center for Oral Disease, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wen Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence:
| |
Collapse
|
13
|
Ni Q, Li X, Huang H, Ge Z. Decreased expression of SCARA5 predicts a poor prognosis in melanoma using bioinformatics analysis. Front Oncol 2023; 13:1015358. [PMID: 37035142 PMCID: PMC10079878 DOI: 10.3389/fonc.2023.1015358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/24/2023] [Indexed: 04/11/2023] Open
Abstract
Background It has been established that the scavenger receptor class A member 5 (SCARA5) functions as a tumor suppressor gene in various cancer types. To our knowledge, no comprehensive study has hitherto investigated the expression and function of SCARA5 in melanoma. This study aimed to determine the association between SCARA5 and melanoma. Methods Analysis of SCARA5 mRNA expression was performed using The Cancer Genome Atlas (TCGA) data sets. To evaluate the clinical significance of SCARA5, the clinical data of 93 patients with melanoma were collected. The role of SCARA5 expression in prognosis was also analyzed. In this study, survival was evaluated by Kaplan-Meier analysis and compared using the log-rank test. Univariate and multivariate Cox proportional hazard regression analyses were used to identify independent predictors. The Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and gene set enrichment analysis (GSEA) were used to perform gene set functional annotations. Protein-protein interaction (PPI) networks were constructed to illustrate gene-gene interactions. The Tumor IMmune Estimation Resource (TIMER) database was used to explore the association between SCARA5 and immune infiltration levels. Results The results showed that the SCARA5 mRNA expression in melanoma was significantly lower than in adjacent normal skin tissue (p < 0.001). Moreover, decreased expression of SCARA5 in melanoma correlated with the tumor, node, and metastasis (TNM) stage and recurrence (p < 0.05). The overall survival (OS) was significantly higher in melanoma with high SCARA5 expression compared with low SCARA5 expression (p < 0.001). During univariate analysis, SCARA5 expression, tumor (T) stage, node (N) stage, metastasis (M) stage, and recurrence correlated with OS (p < 0.05). Further multivariate Cox regression analysis showed that SCARA5 expression (p = 0.012) could be an independent prognostic factor for OS in cutaneous malignant melanoma. GSEA analysis showed that SCARA5 was significantly enriched in various pathways, such as response to developmental biology and response to antimicrobial peptides. Correlation analysis showed a positive correlation with CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells (p < 0.05), and a negative correlation with tumor purity (p < 0.05). Conclusion SCARA5 has significant potential as a prognostic biomarker and as a promising therapeutic target in melanoma. Furthermore, SCARA5 expression in melanoma is related to the level of immune infiltration.
Collapse
Affiliation(s)
- Qinggan Ni
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Burns and Plastic Surgery, Yancheng Clinical College of Xuzhou Medical University, The First People’s Hospital of Yancheng, Yancheng, China
| | - Xia Li
- Department of General Medicine, Yancheng Third People’s Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zili Ge
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- *Correspondence: Zili Ge,
| |
Collapse
|
14
|
Current State of Immunotherapy and Mechanisms of Immune Evasion in Ewing Sarcoma and Osteosarcoma. Cancers (Basel) 2022; 15:cancers15010272. [PMID: 36612267 PMCID: PMC9818129 DOI: 10.3390/cancers15010272] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
We argue here that in many ways, Ewing sarcoma (EwS) is a unique tumor entity and yet, it shares many commonalities with other immunologically cold solid malignancies. From the historical perspective, EwS, osteosarcoma (OS) and other bone and soft-tissue sarcomas were the first types of tumors treated with the immunotherapy approach: more than 100 years ago American surgeon William B. Coley injected his patients with a mixture of heat-inactivated bacteria, achieving survival rates apparently higher than with surgery alone. In contrast to OS which exhibits recurrent somatic copy-number alterations, EwS possesses one of the lowest mutation rates among cancers, being driven by a single oncogenic fusion protein, most frequently EWS-FLI1. In spite these differences, both EwS and OS are allied with immune tolerance and low immunogenicity. We discuss here the potential mechanisms of immune escape in these tumors, including low representation of tumor-specific antigens, low expression levels of MHC-I antigen-presenting molecules, accumulation of immunosuppressive M2 macrophages and myeloid proinflammatory cells, and release of extracellular vesicles (EVs) which are capable of reprogramming host cells in the tumor microenvironment and systemic circulation. We also discuss the vulnerabilities of EwS and OS and potential novel strategies for their targeting.
Collapse
|
15
|
How Genetics and Genomics Advances Are Rewriting Pediatric Cancer Research and Clinical Care. Medicina (B Aires) 2022; 58:medicina58101386. [PMID: 36295546 PMCID: PMC9610804 DOI: 10.3390/medicina58101386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
In the last two decades, thanks to the data that have been obtained from the Human Genome Project and the development of next-generation sequencing (NGS) technologies, research in oncology has produced extremely important results in understanding the genomic landscape of pediatric cancers, which are the main cause of death during childhood. NGS has provided significant advances in medicine by detecting germline and somatic driver variants that determine the development and progression of many types of cancers, allowing a distinction between hereditary and non-hereditary cancers, characterizing resistance mechanisms that are also related to alterations of the epigenetic apparatus, and quantifying the mutational burden of tumor cells. A combined approach of next-generation technologies allows us to investigate the numerous molecular features of the cancer cell and the effects of the environment on it, discovering and following the path of personalized therapy to defeat an "ancient" disease that has had victories and defeats. In this paper, we provide an overview of the results that have been obtained in the last decade from genomic studies that were carried out on pediatric cancer and their contribution to the more accurate and faster diagnosis in the stratification of patients and the development of new precision therapies.
Collapse
|
16
|
Alarcon NO, Jaramillo M, Mansour HM, Sun B. Therapeutic Cancer Vaccines—Antigen Discovery and Adjuvant Delivery Platforms. Pharmaceutics 2022; 14:pharmaceutics14071448. [PMID: 35890342 PMCID: PMC9325128 DOI: 10.3390/pharmaceutics14071448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
For decades, vaccines have played a significant role in protecting public and personal health against infectious diseases and proved their great potential in battling cancers as well. This review focused on the current progress of therapeutic subunit vaccines for cancer immunotherapy. Antigens and adjuvants are key components of vaccine formulations. We summarized several classes of tumor antigens and bioinformatic approaches of identification of tumor neoantigens. Pattern recognition receptor (PRR)-targeting adjuvants and their targeted delivery platforms have been extensively discussed. In addition, we emphasized the interplay between multiple adjuvants and their combined delivery for cancer immunotherapy.
Collapse
Affiliation(s)
- Neftali Ortega Alarcon
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (N.O.A.); (M.J.); (H.M.M.)
| | - Maddy Jaramillo
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (N.O.A.); (M.J.); (H.M.M.)
| | - Heidi M. Mansour
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (N.O.A.); (M.J.); (H.M.M.)
- The University of Arizona Cancer Center, Tucson, AZ 85721, USA
- Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Bo Sun
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (N.O.A.); (M.J.); (H.M.M.)
- The University of Arizona Cancer Center, Tucson, AZ 85721, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
- Correspondence: ; Tel.: +1-520-621-6420
| |
Collapse
|
17
|
Dinh TA, Utria AF, Barry KC, Ma R, Abou-Alfa GK, Gordan JD, Jaffee EM, Scott JD, Zucman-Rossi J, O’Neill AF, Furth ME, Sethupathy P. A framework for fibrolamellar carcinoma research and clinical trials. Nat Rev Gastroenterol Hepatol 2022; 19:328-342. [PMID: 35190728 PMCID: PMC9516439 DOI: 10.1038/s41575-022-00580-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Abstract
Fibrolamellar carcinoma (FLC), a rare, lethal hepatic cancer, occurs primarily in adolescents and young adults. Unlike hepatocellular carcinoma, FLC has no known association with viral, metabolic or chemical agents that cause cirrhosis. Currently, surgical resection is the only treatment demonstrated to achieve cure, and no standard of care exists for systemic therapy. Progress in FLC research illuminates a transition from an obscure cancer to one for which an interactive community seems poised to uncover fundamental mechanisms and initiate translation towards novel therapies. In this Roadmap, we review advances since the seminal discovery in 2014 that nearly all FLC tumours express a signature oncogene (DNAJB1-PRKACA) encoding a fusion protein (DNAJ-PKAc) in which the J-domain of a heat shock protein 40 (HSP40) co-chaperone replaces an amino-terminal segment of the catalytic subunit of the cyclic AMP-dependent protein kinase (PKA). Important gains include increased understanding of oncogenic pathways driven by DNAJ-PKAc; identification of potential therapeutic targets; development of research models; elucidation of immune mechanisms with potential for the development of immunotherapies; and completion of the first multicentre clinical trials of targeted therapy for FLC. In each of these key areas we propose a Roadmap for future progress.
Collapse
Affiliation(s)
- Timothy A. Dinh
- Medical Scientist Training Program, University of North Carolina, Chapel Hill, NC, USA.,Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA.,These authors contributed equally: Timothy A. Dinh, Alan F. Utria, Kevin C. Barry
| | - Alan F. Utria
- Department of Surgery, University of Washington, Seattle, WA, USA.,These authors contributed equally: Timothy A. Dinh, Alan F. Utria, Kevin C. Barry
| | - Kevin C. Barry
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,These authors contributed equally: Timothy A. Dinh, Alan F. Utria, Kevin C. Barry
| | - Rosanna Ma
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Ghassan K. Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Weill Medical College at Cornell University, New York, NY, USA
| | - John D. Gordan
- Gastrointestinal oncology, University of California at San Francisco Comprehensive Cancer Center, San Francisco, CA, USA
| | - Elizabeth M. Jaffee
- Department of oncology, Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - John D. Scott
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne université, Inserm, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Allison F. O’Neill
- Department of Paediatric Hematology/oncology, Dana-Farber Cancer Institute, Harvard University, Boston, MA, USA
| | - Mark E. Furth
- Fibrolamellar Cancer Foundation, Greenwich, CT, USA.,;
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA.,;
| |
Collapse
|
18
|
Redwood AJ, Dick IM, Creaney J, Robinson BWS. What’s next in cancer immunotherapy? - The promise and challenges of neoantigen vaccination. Oncoimmunology 2022; 11:2038403. [PMID: 35186441 PMCID: PMC8855878 DOI: 10.1080/2162402x.2022.2038403] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The process of tumorigenesis leaves a series of indelible genetic changes in tumor cells, that when expressed, have the potential to be tumor-specific immune targets. Neoantigen vaccines that capitalize on this potential immunogenicity have shown efficacy in preclinical models and have now entered clinical trials. Here we discuss the status of personalized neoantigen vaccines and the current major challenges to this nascent field. In particular, we focus on the types of antigens that can be targeted by vaccination and on the role that preexisting immunosuppression, and in particular T-cell exhaustion, will play in the development of effective cancer vaccines.
Collapse
Affiliation(s)
- Alec J. Redwood
- Institute of Respiratory Health, University of Western Australia, Perth,Australia
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
| | - Ian M. Dick
- Institute of Respiratory Health, University of Western Australia, Perth,Australia
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Jenette Creaney
- Institute of Respiratory Health, University of Western Australia, Perth,Australia
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | - Bruce W. S. Robinson
- Institute of Respiratory Health, University of Western Australia, Perth,Australia
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia
- Medical School, University of Western Australia, Perth, Australia
| |
Collapse
|
19
|
Thakur S, Jain M, Zhang C, Major C, Bielamowicz KJ, Lacayo NJ, Vaske O, Lewis V, Murguia-Favela L, Narendran A. Identification and in vitro validation of neoantigens for immune activation against high-risk pediatric leukemia cells. Hum Vaccin Immunother 2021; 17:5558-5562. [PMID: 34844524 DOI: 10.1080/21645515.2021.2001243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
There is experimental and clinical data to indicate the contribution of immune-escape mechanisms in relapsed/refractory pediatric leukemia. Studies have shown the accumulation of mutations that translate to peptides containing tumor-specific epitopes (neoantigens). The effectiveness of neoantigen-based vaccines has been shown in several clinical trials in adults. Though the initial results are encouraging, this knowledge must be developed to account for the uniqueness of pediatric cancer biology. We have completed the initial proof-of-concept analysis on a high-risk pediatric leukemia specimen and identified usable neoantigen sequences. We describe this approach, including the bioinformatics method and experimental model to verify their function that can be further broadened for personalized neoantigen prediction and testing for the generation of anticancer vaccines against high-risk pediatric leukemias.
Collapse
Affiliation(s)
- Satbir Thakur
- Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Mohit Jain
- Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Chunfen Zhang
- Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Candice Major
- Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Kevin J Bielamowicz
- Division of Hematology/Oncology, Arkansas Children's Hospital, Little Rock, Arkansas
| | - Norman J Lacayo
- Department of Oncology, Stanford University School of Medicine, Stanford, California
| | - Olena Vaske
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - Victor Lewis
- Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Luis Murguia-Favela
- Section of Hematology and Immunology, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Aru Narendran
- Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, Alberta, Canada
| |
Collapse
|
20
|
Identification of an Immunogenic Medulloblastoma-Specific Fusion Involving EPC2 and GULP1. Cancers (Basel) 2021; 13:cancers13225838. [PMID: 34830991 PMCID: PMC8616194 DOI: 10.3390/cancers13225838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Medulloblastoma is the most common malignant brain tumor in children. Immunotherapy is yet to demonstrate dramatic results in medulloblastoma, one reason being the low rate of mutations creating new antigens in this entity. In tumors with low mutational burden, gene fusions may represent a source of tumor-specific neoantigens. Here, we reviewed the landscape of fusions in medulloblastoma and analyzed their predicted immunogenicity. Furthermore, we described a new in-frame fusion protein identified by RNA-Seq. The fusion involved two genes on chromosome 2 coding for the enhancer of polycomb homolog 2 (EPC2) and GULP PTB domain containing engulfment adaptor 1 (GULP1) respectively. By qRT-PCR analysis, the fusion was detected in 3 out of 11 medulloblastoma samples, whereby 2 samples were from the same patients obtained at 2 different time points (initial diagnosis and relapse), but not in other pediatric brain tumor entities. Cloning of the full-length sequence indicated that the fusion protein contains the N-terminal enhancer of polycomb-like domain A (EPcA) of EPC2 and the coiled-coil domain of GULP1. In silico analyses predicted binding of the neoantigen-derived peptide to HLA-A*0201. A total of 50% of the fusions described in the literature were also predicted to produce an immunogenic peptide. The EPC2-GULP1 fusion peptide was able to induce a de novo T cell response characterized by interferon gamma release of CD8+ cytotoxic T cells in vitro. While the functional relevance of this fusion in medulloblastoma biology remains to be clarified, our data support an immunotherapeutic approach for pediatric medulloblastoma patients carrying the EPC2-GULP1 fusion and other immunogenic fusions.
Collapse
|
21
|
Jiménez-Morales S, Aranda-Uribe IS, Pérez-Amado CJ, Ramírez-Bello J, Hidalgo-Miranda A. Mechanisms of Immunosuppressive Tumor Evasion: Focus on Acute Lymphoblastic Leukemia. Front Immunol 2021; 12:737340. [PMID: 34867958 PMCID: PMC8636671 DOI: 10.3389/fimmu.2021.737340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/27/2021] [Indexed: 01/05/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a malignancy with high heterogeneity in its biological features and treatments. Although the overall survival (OS) of patients with ALL has recently improved considerably, owing to the application of conventional chemo-therapeutic agents, approximately 20% of the pediatric cases and 40-50% of the adult patients relapse during and after the treatment period. The potential mechanisms that cause relapse involve clonal evolution, innate and acquired chemoresistance, and the ability of ALL cells to escape the immune-suppressive tumor response. Currently, immunotherapy in combination with conventional treatment is used to enhance the immune response against tumor cells, thereby significantly improving the OS in patients with ALL. Therefore, understanding the mechanisms of immune evasion by leukemia cells could be useful for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Ivan Sammir Aranda-Uribe
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Departamento de Farmacología, División de Ciencias de la Salud, Universidad de Quintana Roo, Quintana Roo, Mexico
| | - Carlos Jhovani Pérez-Amado
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Programa de Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Julian Ramírez-Bello
- Departamento de Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
22
|
Morales E, Olson M, Iglesias F, Luetkens T, Atanackovic D. Targeting the tumor microenvironment of Ewing sarcoma. Immunotherapy 2021; 13:1439-1451. [PMID: 34670399 DOI: 10.2217/imt-2020-0341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ewing sarcoma is an aggressive tumor type with an age peak in adolescence. Despite the use of dose-intensified chemotherapy as well as radiation and surgery for local control, patients with upfront metastatic disease or relapsed disease have a dismal prognosis, highlighting the need for additional therapeutic options. Different types of immunotherapies have been investigated with only very limited clinical success, which may be due to the presence of immunosuppressive factors in the tumor microenvironment. Here we provide an overview on different factors contributing to Ewing sarcoma immune escape. We demonstrate ways to target these factors in order to make current and future immunotherapies more effective and achieve deeper and more durable responses in patients with Ewing sarcoma.
Collapse
Affiliation(s)
- Erin Morales
- Pediatric Hematology/Oncology Department, University of Utah, Salt Lake City, UT 84132, USA
| | - Michael Olson
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA.,Hematology & Hematologic Malignancies, University of Utah/Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - Fiorella Iglesias
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tim Luetkens
- Department of Microbiology & Immunology, School of Medicine, University of Maryland Baltimore, MD 21201, USA.,Department of Medicine, University of Maryland School of Medicine & Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Djordje Atanackovic
- Department of Microbiology & Immunology, School of Medicine, University of Maryland Baltimore, MD 21201, USA.,Department of Medicine, University of Maryland School of Medicine & Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
23
|
Byron SA, Hendricks WPD, Nagulapally AB, Kraveka JM, Ferguson WS, Brown VI, Eslin DE, Mitchell D, Cornelius A, Roberts W, Isakoff MS, Oesterheld JE, Wada RK, Rawwas J, Neville K, Zage PE, Harrod VL, Bergendahl G, VanSickle E, Dykema K, Bond J, Chou HC, Wei JS, Wen X, Reardon HV, Roos A, Nasser S, Izatt T, Enriquez D, Hegde AM, Cisneros F, Christofferson A, Turner B, Szelinger S, Keats JJ, Halperin RF, Khan J, Saulnier Sholler GL, Trent JM. Genomic and Transcriptomic Analysis of Relapsed and Refractory Childhood Solid Tumors Reveals a Diverse Molecular Landscape and Mechanisms of Immune Evasion. Cancer Res 2021; 81:5818-5832. [PMID: 34610968 DOI: 10.1158/0008-5472.can-21-1033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/10/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
Children with treatment-refractory or relapsed (R/R) tumors face poor prognoses. As the genomic underpinnings driving R/R disease are not well defined, we describe here the genomic and transcriptomic landscapes of R/R solid tumors from 202 patients enrolled in Beat Childhood Cancer Consortium clinical trials. Tumor mutational burden (TMB) was elevated relative to untreated tumors at diagnosis, with one-third of tumors classified as having a pediatric high TMB. Prior chemotherapy exposure influenced the mutational landscape of these R/R tumors, with more than 40% of tumors demonstrating mutational signatures associated with platinum or temozolomide chemotherapy and two tumors showing treatment-associated hypermutation. Immunogenomic profiling found a heterogenous pattern of neoantigen and MHC class I expression and a general absence of immune infiltration. Transcriptional analysis and functional gene set enrichment analysis identified cross-pathology clusters associated with development, immune signaling, and cellular signaling pathways. While the landscapes of these R/R tumors reflected those of their corresponding untreated tumors at diagnosis, important exceptions were observed suggestive of tumor evolution, treatment resistance mechanisms, and mutagenic etiologies of treatment.
Collapse
Affiliation(s)
- Sara A Byron
- Integrated Cancer Genomics Division, Translational Genomics Research Institute
| | | | | | | | - William S Ferguson
- Pediatrics, Division of Hematology-Oncology, Saint Louis University School of Medicine
| | - Valerie I Brown
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Penn State Children's Hospital and Penn State College of Medicine
| | - Don E Eslin
- Pediatric Hematology-Oncology, St. Joseph's Children's Hospital
| | | | | | - William Roberts
- Hematology/Oncology, University of California - San Diego School of Medicine
| | - Michael S Isakoff
- Center for Cancer and Blood Disorders, Connecticut Children's Medical Center
| | | | - Randal K Wada
- Pediatric Hematology/Oncology, Kapiolani Medical Center for Women and Children
| | - Jawhar Rawwas
- Pediatric Hematology and Oncology, Children's Hospitals and Clinics of Minnesota
| | | | | | | | | | | | | | - Jeffrey Bond
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital
| | - Hsien-Chao Chou
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health
| | - Jun S Wei
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Xinyu Wen
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health
| | - Hue V Reardon
- Advanced Biomedical Computational Sciences, Biomedical Informatics & Data Science, Frederick National Laboratory for Cancer Research
| | | | - Sara Nasser
- Integrated Cancer Genomics Division, Translational Genomics Research Institute
| | - Tyler Izatt
- Neurogenomics Division, Translational Genomics Research Institute
| | - Daniel Enriquez
- Integrated Cancer Genomics, Translational Genomics Research Institute
| | | | | | | | - Bryce Turner
- Integrated Cancer Genomics Division, Translational Genomics Research Institute
| | | | - Jonathan J Keats
- Integrated Cancer Genomics, Translational Genomics Research Institute
| | - Rebecca F Halperin
- Quantitative Medicine and Systems Biology Division, Translational Genomics Research Institute
| | - Javed Khan
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Cancer Institute
| | | | - Jeffrey M Trent
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute
| |
Collapse
|
24
|
Morales E, Olson M, Iglesias F, Dahiya S, Luetkens T, Atanackovic D. Role of immunotherapy in Ewing sarcoma. J Immunother Cancer 2021; 8:jitc-2020-000653. [PMID: 33293354 PMCID: PMC7725096 DOI: 10.1136/jitc-2020-000653] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Ewing sarcoma (ES) is thought to arise from mesenchymal stem cells and is the second most common bone sarcoma in pediatric patients and young adults. Given the dismal overall outcomes and very intensive therapies used, there is an urgent need to explore and develop alternative treatment modalities including immunotherapies. In this article, we provide an overview of ES biology, features of ES tumor microenvironment (TME) and review various tumor-associated antigens that can be targeted with immune-based approaches including cancer vaccines, monoclonal antibodies, T cell receptor-transduced T cells, and chimeric antigen receptor T cells. We highlight key reasons for the limited efficacy of various immunotherapeutic approaches for the treatment of ES to date. These factors include absence of human leukocyte antigen class I molecules from the tumor tissue, lack of an ideal surface antigen, and immunosuppressive TME due to the presence of myeloid-derived suppressor cells, F2 fibrocytes, and M2-like macrophages. Lastly, we offer insights into strategies for novel therapeutics development in ES. These strategies include the development of gene-modified T cell receptor T cells against cancer–testis antigen such as XAGE-1, surface target discovery through detailed profiling of ES surface proteome, and combinatorial approaches. In summary, we provide state-of-the-art science in ES tumor immunology and immunotherapy, with rationale and recommendations for future therapeutics development.
Collapse
Affiliation(s)
- Erin Morales
- Pediatric Oncology and Hematology, University of Utah, Salt Lake City, Utah, USA
| | - Michael Olson
- Cancer Immunotherapy, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Fiorella Iglesias
- Pediatric Oncology and Hematology, University of Utah, Salt Lake City, Utah, USA
| | - Saurabh Dahiya
- Department of Medicine, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Tim Luetkens
- Pediatric Oncology and Hematology, University of Utah, Salt Lake City, Utah, USA.,Cancer Immunotherapy, Huntsman Cancer Institute, Salt Lake City, Utah, USA.,Department of Medicine, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA.,Hematology and Hematologic Malignancies, University of Utah/Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Djordje Atanackovic
- Cancer Immunotherapy, Huntsman Cancer Institute, Salt Lake City, Utah, USA .,Department of Medicine, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA.,Hematology and Hematologic Malignancies, University of Utah/Huntsman Cancer Institute, Salt Lake City, Utah, USA
| |
Collapse
|
25
|
Xu B, Wang H, Wright S, Hyle J, Zhang Y, Shao Y, Niu M, Fan Y, Rosikiewicz W, Djekidel MN, Peng J, Lu R, Li C. Acute depletion of CTCF rewires genome-wide chromatin accessibility. Genome Biol 2021; 22:244. [PMID: 34429148 PMCID: PMC8386078 DOI: 10.1186/s13059-021-02466-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 08/12/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The transcription factor CTCF appears indispensable in defining topologically associated domain boundaries and maintaining chromatin loop structures within these domains, supported by numerous functional studies. However, acute depletion of CTCF globally reduces chromatin interactions but does not significantly alter transcription. RESULTS Here, we systematically integrate multi-omics data including ATAC-seq, RNA-seq, WGBS, Hi-C, Cut&Run, and CRISPR-Cas9 survival dropout screens, and time-solved deep proteomic and phosphoproteomic analyses in cells carrying auxin-induced degron at endogenous CTCF locus. Acute CTCF protein degradation markedly rewires genome-wide chromatin accessibility. Increased accessible chromatin regions are frequently located adjacent to CTCF-binding sites at promoter regions and insulator sites associated with enhanced transcription of nearby genes. In addition, we use CTCF-associated multi-omics data to establish a combinatorial data analysis pipeline to discover CTCF co-regulatory partners. We successfully identify 40 candidates, including multiple established partners. Interestingly, many CTCF co-regulators that have alterations of their respective downstream gene expression do not show changes of their own expression levels across the multi-omics measurements upon acute CTCF loss, highlighting the strength of our system to discover hidden co-regulatory partners associated with CTCF-mediated transcription. CONCLUSIONS This study highlights that CTCF loss rewires genome-wide chromatin accessibility, which plays a critical role in transcriptional regulation.
Collapse
Affiliation(s)
- Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Hong Wang
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Shaela Wright
- Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Judith Hyle
- Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yang Zhang
- Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Ying Shao
- Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Mingming Niu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Mohamed Nadhir Djekidel
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Junmin Peng
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Rui Lu
- Division of Hematology/Oncology, University of Alabama at Birmingham, 1824 6th Ave S WTI 510G, Birmingham, AL, 35294, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, 1824 6th Ave S WTI 510G, Birmingham, AL, 35294, USA
| | - Chunliang Li
- Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
26
|
Yang F, Brady SW, Tang C, Sun H, Du L, Barz MJ, Ma X, Chen Y, Fang H, Li X, Kolekar P, Pathak O, Cai J, Ding L, Wang T, von Stackelberg A, Shen S, Eckert C, Klco JM, Chen H, Duan C, Liu Y, Li H, Li B, Kirschner-Schwabe R, Zhang J, Zhou BBS. Chemotherapy and mismatch repair deficiency cooperate to fuel TP53 mutagenesis and ALL relapse. NATURE CANCER 2021; 2:819-834. [PMID: 35122027 DOI: 10.1038/s43018-021-00230-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/02/2021] [Indexed: 06/14/2023]
Abstract
Chemotherapy is a standard treatment for pediatric acute lymphoblastic leukemia (ALL), which sometimes relapses with chemoresistant features. However, whether acquired drug-resistance mutations in relapsed ALL pre-exist or are induced by treatment remains unknown. Here we provide direct evidence of a specific mechanism by which chemotherapy induces drug-resistance-associated mutations leading to relapse. Using genomic and functional analysis of relapsed ALL we show that thiopurine treatment in mismatch repair (MMR)-deficient leukemias induces hotspot TP53 R248Q mutations through a specific mutational signature (thio-dMMR). Clonal evolution analysis reveals sequential MMR inactivation followed by TP53 mutation in some patients with ALL. Acquired TP53 R248Q mutations are associated with on-treatment relapse, poor treatment response and resistance to multiple chemotherapeutic agents, which could be reversed by pharmacological p53 reactivation. Our findings indicate that TP53 R248Q in relapsed ALL originates through synergistic mutagenesis from thiopurine treatment and MMR deficiency and suggest strategies to prevent or treat TP53-mutant relapse.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Samuel W Brady
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chao Tang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiying Sun
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijuan Du
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Malwine J Barz
- Department of Pediatric Oncology/Hematology, Charite-Universitaetsmedizin Berlin, Berlin, Germany
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yao Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Houshun Fang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomeng Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pandurang Kolekar
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Omkar Pathak
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jiaoyang Cai
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lixia Ding
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyi Wang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Arend von Stackelberg
- Department of Pediatric Oncology/Hematology, Charite-Universitaetsmedizin Berlin, Berlin, Germany
| | - Shuhong Shen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cornelia Eckert
- Department of Pediatric Oncology/Hematology, Charite-Universitaetsmedizin Berlin, Berlin, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, School of Basic Medicine and Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Caiwen Duan
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pharmacology and Chemical Biology, School of Basic Medicine and Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Liu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Benshang Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renate Kirschner-Schwabe
- Department of Pediatric Oncology/Hematology, Charite-Universitaetsmedizin Berlin, Berlin, Germany.
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany.
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Bin-Bing S Zhou
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Pharmacology and Chemical Biology, School of Basic Medicine and Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Zahnreich S, Schmidberger H. Childhood Cancer: Occurrence, Treatment and Risk of Second Primary Malignancies. Cancers (Basel) 2021; 13:cancers13112607. [PMID: 34073340 PMCID: PMC8198981 DOI: 10.3390/cancers13112607] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer represents the leading cause of disease-related death and treatment-associated morbidity in children with an increasing trend in recent decades worldwide. Nevertheless, the 5-year survival of childhood cancer patients has been raised impressively to more than 80% during the past decades, primarily attributed to improved diagnostic technologies and multiagent cytotoxic regimens. This strong benefit of more efficient tumor control and prolonged survival is compromised by an increased risk of adverse and fatal late sequelae. Long-term survivors of pediatric tumors are at the utmost risk for non-carcinogenic late effects such as cardiomyopathies, neurotoxicity, or pneumopathies, as well as the development of secondary primary malignancies as the most detrimental consequence of genotoxic chemo- and radiotherapy. Promising approaches to reducing the risk of adverse late effects in childhood cancer survivors include high precision irradiation techniques like proton radiotherapy or non-genotoxic targeted therapies and immune-based treatments. However, to date, these therapies are rarely used to treat pediatric cancer patients and survival rates, as well as incidences of late effects, have changed little over the past two decades in this population. Here we provide an overview of the epidemiology and etiology of childhood cancers, current developments for their treatment, and therapy-related adverse late health consequences with a special focus on second primary malignancies.
Collapse
|
28
|
Gout AM, Arunachalam S, Finkelstein DB, Zhang J. Data-driven approaches to advance research and clinical care for pediatric cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188571. [PMID: 34051287 DOI: 10.1016/j.bbcan.2021.188571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/07/2021] [Accepted: 05/22/2021] [Indexed: 11/17/2022]
Abstract
Pediatric cancer is a rare disease with a distinct etiology and mutational landscape compared with adult cancer. Multi-omics profiling of retrospective and prospective cohorts coupled with innovative computational analysis have been instrumental in uncovering mechanisms of tumorigenesis and drug resistance that are now informing pediatric cancer clinical therapy. In this review we present the major data resources of pediatric cancer and actionable insights into pediatric cancer etiology stemming from the identification of oncogenic gene fusions, mutational signature analysis, systems biology, cancer predisposition and survivorship studies - that have led to improved clinical diagnosis, discovery of new drug-targets, pharmacological therapy, and screening for genetic predisposition. Ultimately, integration of large-scale omics datasets generated through international collaboration is required to maximize the power of data-driven approaches to advance pediatric cancer research informing clinical therapy.
Collapse
Affiliation(s)
- Alexander M Gout
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sasi Arunachalam
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David B Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
29
|
Abstract
The term "undruggable" is used to describe a protein that is not pharmacologically capable of being targeted; recently, however, substantial efforts have been made to turn these proteins into "druggable" targets. Thus, "difficult to drug" or "yet to be drugged" are perhaps more appropriate terms. In cancer, a number of elusive targets fall into this category, including transcription factors such as STAT3, TP53, and MYC. Pharmacologically targeting these intractable proteins is now a key challenge of modern drug development, requiring innovation and the development of new technologies. In this article, we discuss some of the recent technologic and pharmacologic advances that have underpinned the erosion of the concept of undruggability. We describe recent successes in drugging the undruggable RAS (KRAS G12C and HRAS), and discuss the advances that have led to the validation of further targets previously believed to be undruggable, such as HIF-2α, BCL-2, MDM2, and MLL. Finally, we look to the future and describe important advances that are likely to have a major impact on targeting undruggable targets, such as the advent of proteolysis-targeting chimeras and protein-protein modulators, which are leading to considerable excitement surrounding the development of cancer targets.
Collapse
Affiliation(s)
- Niamh Coleman
- Division of Cancer Medicine, Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jordi Rodon
- Division of Cancer Medicine, Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
30
|
Pastorczak A, Domka K, Fidyt K, Poprzeczko M, Firczuk M. Mechanisms of Immune Evasion in Acute Lymphoblastic Leukemia. Cancers (Basel) 2021; 13:1536. [PMID: 33810515 PMCID: PMC8037152 DOI: 10.3390/cancers13071536] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) results from a clonal expansion of abnormal lymphoid progenitors of B cell (BCP-ALL) or T cell (T-ALL) origin that invade bone marrow, peripheral blood, and extramedullary sites. Leukemic cells, apart from their oncogene-driven ability to proliferate and avoid differentiation, also change the phenotype and function of innate and adaptive immune cells, leading to escape from the immune surveillance. In this review, we provide an overview of the genetic heterogeneity and treatment of BCP- and T-ALL. We outline the interactions of leukemic cells in the bone marrow microenvironment, mainly with mesenchymal stem cells and immune cells. We describe the mechanisms by which ALL cells escape from immune recognition and elimination by the immune system. We focus on the alterations in ALL cells, such as overexpression of ligands for various inhibitory receptors, including anti-phagocytic receptors on macrophages, NK cell inhibitory receptors, as well as T cell immune checkpoints. In addition, we describe how developing leukemia shapes the bone marrow microenvironment and alters the function of immune cells. Finally, we emphasize that an immunosuppressive microenvironment can reduce the efficacy of chemo- and immunotherapy and provide examples of preclinical studies showing strategies for improving ALL treatment by targeting these immunosuppressive interactions.
Collapse
Affiliation(s)
- Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 91-738 Lodz, Poland;
| | - Krzysztof Domka
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.D.); (K.F.); (M.P.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Klaudyna Fidyt
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.D.); (K.F.); (M.P.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Martyna Poprzeczko
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.D.); (K.F.); (M.P.)
| | - Malgorzata Firczuk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.D.); (K.F.); (M.P.)
| |
Collapse
|
31
|
Wang Y, Shi T, Song X, Liu B, Wei J. Gene fusion neoantigens: Emerging targets for cancer immunotherapy. Cancer Lett 2021; 506:45-54. [PMID: 33675984 DOI: 10.1016/j.canlet.2021.02.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022]
Abstract
Tumor neoantigens play an important role in current cancer immunotherapies. The most commonly studied class of tumor neoantigens contains those derived from single-nucleotide variants (SNVs) and insertions or deletions (Indels). However, gene fusions are also ideal sources of tumor neoantigens, as they can form new open reading frames (ORFs). Compared with SNV and Indel (SNV&Indel) neoantigens, fusion gene neoantigens tend to be more immunogenic, have more targets per mutation, and are more broadly shared across different cancer types. As a result, they are an important class of tumor neoantigens and emerging targets for cancer immunotherapies, with uses as prognostic biomarkers of immune checkpoint blockade (ICB) and in the development of tumor vaccines, adoptive cell therapies and tumor immune microenvironment modulation. In this review, we introduce the chromosomal basis and characteristics of gene fusions. Then, we summarize the predictive tools, mutation burden and immunogenicity of gene fusion neoantigens. Further, we discuss applications and future improvements of gene fusion neoantigens with respect to current cancer immunotherapies and novel developments in cancer treatment.
Collapse
Affiliation(s)
- Yue Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Tao Shi
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Xueru Song
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
32
|
Roessner A, Lohmann C, Jechorek D. Translational cell biology of highly malignant osteosarcoma. Pathol Int 2021; 71:291-303. [PMID: 33631032 DOI: 10.1111/pin.13080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/31/2021] [Indexed: 12/19/2022]
Abstract
Highly malignant osteosarcoma (HMO) is the most frequent malignant bone tumor preferentially occurring in adolescents and children with a second more flat peak in patients over the age of 60. The younger patients benefit from combined neoadjuvant chemotherapy with 65-70% 5-year survival rate. In patients with metastatic HMO the 5-year survival rate is consistently poor with approximately 30%. In the last several years strategies for target therapies have been developed by using next generation sequencing (NGS) for defining targetable molecular factors. However, it has so far been challenging to establish an effective target therapy for so-called 'orphan tumors' without recognizable driver mutations, including HMO. The molecular genetic studies using NGS have shown that HMOs are genomically unstable tumors with highly complex chaotic karyotypes. Before the background of this genetic complexity more investigations should be performed in the future for defining targetable biological factors. As the prognosis could not be improved for 40 years one may expect improvements for patients only by gaining a deeper understanding of the cell and molecular biology of HMO. The cell of origin of HMO is being clarified now. The majority of studies indicate that an osteoblastic progenitor cell is probably the cell of origin of HMO and not an undifferentiated mesenchymal stem cell. This means that the established histopathological definition of HMO through verification of osteoid production by the osteoblastic cells is well justified and will probably be the cornerstone for a precise differential diagnosis of HMO also in the years to come.
Collapse
Affiliation(s)
- Albert Roessner
- Department of Pathology, Otto-von-Guericke University, Magdeburg, Germany
| | - Christoph Lohmann
- Department of Orthopedics, Otto-von-Guericke University, Magdeburg, Germany
| | - Doerthe Jechorek
- Department of Pathology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
33
|
Esprit A, de Mey W, Bahadur Shahi R, Thielemans K, Franceschini L, Breckpot K. Neo-Antigen mRNA Vaccines. Vaccines (Basel) 2020; 8:E776. [PMID: 33353155 PMCID: PMC7766040 DOI: 10.3390/vaccines8040776] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
The interest in therapeutic cancer vaccines has caught enormous attention in recent years due to several breakthroughs in cancer research, among which the finding that successful checkpoint blockade treatments reinvigorate neo-antigen-specific T cells and that successful adoptive cell therapies are directed towards neo-antigens. Neo-antigens are cancer-specific antigens, which develop from somatic mutations in the cancer cell genome that can be highly immunogenic and are not subjected to central tolerance. As the majority of neo-antigens are unique to each patient's cancer, a vaccine technology that is flexible and potent is required to develop personalized neo-antigen vaccines. In vitro transcribed mRNA is such a technology platform and has been evaluated for delivery of neo-antigens to professional antigen-presenting cells both ex vivo and in vivo. In addition, strategies that support the activity of T cells in the tumor microenvironment have been developed. These represent a unique opportunity to ensure durable T cell activity upon vaccination. Here, we comprehensively review recent progress in mRNA-based neo-antigen vaccines, summarizing critical milestones that made it possible to bring the promise of therapeutic cancer vaccines within reach.
Collapse
Affiliation(s)
| | | | | | | | | | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences, Vrije Universiteit Brussel, B-1090 Brussels, Belgium; (A.E.); (W.d.M.); (R.B.S.); (K.T.); (L.F.)
| |
Collapse
|
34
|
Rao AA, Madejska AA, Pfeil J, Paten B, Salama SR, Haussler D. ProTECT-Prediction of T-Cell Epitopes for Cancer Therapy. Front Immunol 2020; 11:483296. [PMID: 33244314 PMCID: PMC7683782 DOI: 10.3389/fimmu.2020.483296] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Somatic mutations in cancers affecting protein coding genes can give rise to potentially therapeutic neoepitopes. These neoepitopes can guide Adoptive Cell Therapies and Peptide- and RNA-based Neoepitope Vaccines to selectively target tumor cells using autologous patient cytotoxic T-cells. Currently, researchers have to independently align their data, call somatic mutations and haplotype the patient’s HLA to use existing neoepitope prediction tools. We present ProTECT, a fully automated, reproducible, scalable, and efficient end-to-end analysis pipeline to identify and rank therapeutically relevant tumor neoepitopes in terms of potential immunogenicity starting directly from raw patient sequencing data, or from pre-processed data. The ProTECT pipeline encompasses alignment, HLA haplotyping, mutation calling (single nucleotide variants, short insertions and deletions, and gene fusions), peptide:MHC binding prediction, and ranking of final candidates. We demonstrate the scalability, efficiency, and utility of ProTECT on 326 samples from the TCGA Prostate Adenocarcinoma cohort, identifying recurrent potential neoepitopes from TMPRSS2-ERG fusions, and from SNVs in SPOP. We also compare ProTECT with results from published tools. ProTECT can be run on a standalone computer, a local cluster, or on a compute cloud using a Mesos backend. ProTECT is highly scalable and can process TCGA data in under 30 min per sample (on average) when run in large batches. ProTECT is freely available at https://www.github.com/BD2KGenomics/protect.
Collapse
Affiliation(s)
- Arjun A Rao
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States.,Computational Genomics Lab, University of California, Santa Cruz, Santa Cruz, CA, United States.,UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Ada A Madejska
- Computational Genomics Lab, University of California, Santa Cruz, Santa Cruz, CA, United States.,Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, Santa Cruz, CA, United States
| | - Jacob Pfeil
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States.,Computational Genomics Lab, University of California, Santa Cruz, Santa Cruz, CA, United States.,UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Benedict Paten
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States.,Computational Genomics Lab, University of California, Santa Cruz, Santa Cruz, CA, United States.,UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Sofie R Salama
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States.,UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, United States.,Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - David Haussler
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States.,Computational Genomics Lab, University of California, Santa Cruz, Santa Cruz, CA, United States.,UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, United States.,Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
35
|
Gopanenko AV, Kosobokova EN, Kosorukov VS. Main Strategies for the Identification of Neoantigens. Cancers (Basel) 2020; 12:E2879. [PMID: 33036391 PMCID: PMC7600129 DOI: 10.3390/cancers12102879] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022] Open
Abstract
Genetic instability of tumors leads to the appearance of numerous tumor-specific somatic mutations that could potentially result in the production of mutated peptides that are presented on the cell surface by the MHC molecules. Peptides of this kind are commonly called neoantigens. Their presence on the cell surface specifically distinguishes tumors from healthy tissues. This feature makes neoantigens a promising target for immunotherapy. The rapid evolution of high-throughput genomics and proteomics makes it possible to implement these techniques in clinical practice. In particular, they provide useful tools for the investigation of neoantigens. The most valuable genomic approach to this problem is whole-exome sequencing coupled with RNA-seq. High-throughput mass-spectrometry is another option for direct identification of MHC-bound peptides, which is capable of revealing the entire MHC-bound peptidome. Finally, structure-based predictions could significantly improve the understanding of physicochemical and structural features that affect the immunogenicity of peptides. The development of pipelines combining such tools could improve the accuracy of the peptide selection process and decrease the required time. Here we present a review of the main existing approaches to investigating the neoantigens and suggest a possible ideal pipeline that takes into account all modern trends in the context of neoantigen discovery.
Collapse
Affiliation(s)
| | | | - Vyacheslav S. Kosorukov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (A.V.G.); (E.N.K.)
| |
Collapse
|
36
|
Wood MA, Nguyen A, Struck AJ, Ellrott K, Nellore A, Thompson RF. neoepiscope improves neoepitope prediction with multivariant phasing. Bioinformatics 2020; 36:713-720. [PMID: 31424527 DOI: 10.1093/bioinformatics/btz653] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/22/2019] [Accepted: 08/16/2019] [Indexed: 12/30/2022] Open
Abstract
MOTIVATION The vast majority of tools for neoepitope prediction from DNA sequencing of complementary tumor and normal patient samples do not consider germline context or the potential for the co-occurrence of two or more somatic variants on the same mRNA transcript. Without consideration of these phenomena, existing approaches are likely to produce both false-positive and false-negative results, resulting in an inaccurate and incomplete picture of the cancer neoepitope landscape. We developed neoepiscope chiefly to address this issue for single nucleotide variants (SNVs) and insertions/deletions (indels). RESULTS Herein, we illustrate how germline and somatic variant phasing affects neoepitope prediction across multiple datasets. We estimate that up to ∼5% of neoepitopes arising from SNVs and indels may require variant phasing for their accurate assessment. neoepiscope is performant, flexible and supports several major histocompatibility complex binding affinity prediction tools. AVAILABILITY AND IMPLEMENTATION neoepiscope is available on GitHub at https://github.com/pdxgx/neoepiscope under the MIT license. Scripts for reproducing results described in the text are available at https://github.com/pdxgx/neoepiscope-paper under the MIT license. Additional data from this study, including summaries of variant phasing incidence and benchmarking wallclock times, are available in Supplementary Files 1, 2 and 3. Supplementary File 1 contains Supplementary Table 1, Supplementary Figures 1 and 2, and descriptions of Supplementary Tables 2-8. Supplementary File 2 contains Supplementary Tables 2-6 and 8. Supplementary File 3 contains Supplementary Table 7. Raw sequencing data used for the analyses in this manuscript are available from the Sequence Read Archive under accessions PRJNA278450, PRJNA312948, PRJNA307199, PRJNA343789, PRJNA357321, PRJNA293912, PRJNA369259, PRJNA305077, PRJNA306070, PRJNA82745 and PRJNA324705; from the European Genome-phenome Archive under accessions EGAD00001004352 and EGAD00001002731; and by direct request to the authors. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mary A Wood
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97201, USA
- Portland VA Research Foundation, Portland, OR 97239, USA
| | - Austin Nguyen
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97201, USA
| | - Adam J Struck
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97201, USA
| | - Kyle Ellrott
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, OR 97239, USA
| | - Abhinav Nellore
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, OR 97239, USA
- Department of Surgery, OR 97239, USA
| | - Reid F Thompson
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97201, USA
- Portland VA Research Foundation, Portland, OR 97239, USA
- Department of Radiation Medicine, OR 97239, USA
- Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University Portland, OR 97239, USA
- Division of Hospital and Specialty Medicine, VA Portland Healthcare System, Portland, OR 97239, USA
| |
Collapse
|
37
|
Biswas A, Rajesh Y, Mitra P, Mandal M. ETV6 gene aberrations in non-haematological malignancies: A review highlighting ETV6 associated fusion genes in solid tumors. Biochim Biophys Acta Rev Cancer 2020; 1874:188389. [PMID: 32659251 DOI: 10.1016/j.bbcan.2020.188389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
ETV6 (translocation-Ets-leukemia virus) gene is a transcriptional repressor mainly involved in haematopoiesis and maintenance of vascular networks and has developed to be a major oncogene with the potential ability of forming fusion partners with many other genes with carcinogenic consequences. ETV6 fusions function primarily by constitutive activation of kinase activity of the fusion partners, modifications in the normal functions of ETV6 transcription factor, loss of function of ETV6 or the partner gene and activation of a proto-oncogene near the site of translocation. The role of ETV6 fusion gene in tumorigenesis has been well-documented and more variedly found in haematological malignancies. However, the role of the ETV6 oncogene in solid tumors has also risen to prominence due to an increasing number of cases being reported with this malignancy. Since, solid tumors can be well-targeted, the diagnosis of this genre of tumors based on ETV6 malignancy is of crucial importance for treatment. This review highlights the important ETV6 associated fusions in solid tumors along with critical insights as to existing and novel means of targeting it. A consolidation of novel therapies such as immune, gene, RNAi, stem cell therapy and protein degradation hitherto unused in the case of ETV6 solid tumor malignancies may open further therapeutic avenues.
Collapse
Affiliation(s)
- Angana Biswas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Yetirajam Rajesh
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Pralay Mitra
- Department of Computer Science and Engineering, Indian institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
38
|
Zamora AE, Crawford JC, Allen EK, Guo XZJ, Bakke J, Carter RA, Abdelsamed HA, Moustaki A, Li Y, Chang TC, Awad W, Dallas MH, Mullighan CG, Downing JR, Geiger TL, Chen T, Green DR, Youngblood BA, Zhang J, Thomas PG. Pediatric patients with acute lymphoblastic leukemia generate abundant and functional neoantigen-specific CD8 + T cell responses. Sci Transl Med 2020; 11:11/498/eaat8549. [PMID: 31243155 DOI: 10.1126/scitranslmed.aat8549] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/16/2018] [Accepted: 05/06/2019] [Indexed: 12/12/2022]
Abstract
Cancer arises from the accumulation of genetic alterations, which can lead to the production of mutant proteins not expressed by normal cells. These mutant proteins can be processed and presented on the cell surface by major histocompatibility complex molecules as neoepitopes, allowing CD8+ T cells to mount responses against them. For solid tumors, only an average 2% of neoepitopes predicted by algorithms have detectable endogenous antitumor T cell responses. This suggests that low mutation burden tumors, which include many pediatric tumors, are poorly immunogenic. Here, we report that pediatric patients with acute lymphoblastic leukemia (ALL) have tumor-associated neoepitope-specific CD8+ T cells, responding to 86% of tested neoantigens and recognizing 68% of the tested neoepitopes. These responses include a public neoantigen from the ETV6-RUNX1 fusion that is targeted in seven of nine tested patients. We characterized phenotypic and transcriptional profiles of CD8+ tumor-infiltrating lymphocytes (TILs) at the single-cell level and found a heterogeneous population that included highly functional effectors. Moreover, we observed immunodominance hierarchies among the CD8+ TILs restricted to one or two putative neoepitopes. Our results indicate that robust antitumor immune responses are induced in pediatric ALL despite their low mutation burdens and emphasize the importance of immunodominance in shaping cellular immune responses. Furthermore, these data suggest that pediatric cancers may be amenable to immunotherapies aimed at enhancing immune recognition of tumor-specific neoantigens.
Collapse
Affiliation(s)
- Anthony E Zamora
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xi-Zhi J Guo
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jesse Bakke
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,Department of Foundational Sciences, College of Medicine, Central Michigan University, Mount Pleasant, MI 48858, USA
| | - Robert A Carter
- Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hossam A Abdelsamed
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ardiana Moustaki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yongjin Li
- Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ti-Cheng Chang
- Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Walid Awad
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mari H Dallas
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Terrence L Geiger
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Benjamin A Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA. .,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
39
|
Hattinger CM, Patrizio MP, Luppi S, Serra M. Pharmacogenomics and Pharmacogenetics in Osteosarcoma: Translational Studies and Clinical Impact. Int J Mol Sci 2020; 21:E4659. [PMID: 32629971 PMCID: PMC7369799 DOI: 10.3390/ijms21134659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
High-grade osteosarcoma (HGOS) is a very aggressive bone tumor which primarily affects adolescents and young adults. Although not advanced as is the case for other cancers, pharmacogenetic and pharmacogenomic studies applied to HGOS have been providing hope for an improved understanding of the biology and the identification of genetic biomarkers, which may impact on clinical care management. Recent developments of pharmacogenetics and pharmacogenomics in HGOS are expected to: i) highlight genetic events that trigger oncogenesis or which may act as drivers of disease; ii) validate research models that best predict clinical behavior; and iii) indicate genetic biomarkers associated with clinical outcome (in terms of treatment response, survival probability and susceptibility to chemotherapy-related toxicities). The generated body of information may be translated to clinical settings, in order to improve both effectiveness and safety of conventional chemotherapy trials as well as to indicate new tailored treatment strategies. Here, we review and summarize the current scientific evidence for each of the aforementioned issues in view of possible clinical applications.
Collapse
Affiliation(s)
| | | | | | - Massimo Serra
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, 40136 Bologna, Italy; (C.M.H.); (M.P.P.); (S.L.)
| |
Collapse
|
40
|
Pushpam D, Garg V, Ganguly S, Biswas B. Management of Refractory Pediatric Sarcoma: Current Challenges and Future Prospects. Onco Targets Ther 2020; 13:5093-5112. [PMID: 32606731 PMCID: PMC7293381 DOI: 10.2147/ott.s193363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Paediatric sarcomas are a heterogeneous group of disorders constituting bone sarcoma and various soft tissue sarcomas. Almost one-third of these presents with metastasis at baseline and another one-third recur after initial curative treatment. There is a huge unmet need in this cohort in terms of curative options and/or prolongation of survival. In this review, we have discussed the current treatment options, challenges and future strategies of managing relapsed/refractory paediatric sarcomas. Upfront risk-adapted treatment with multidisciplinary management remains the main strategy to prevent future recurrence or relapse of the disease. In the case of limited local and/or systemic relapse or late relapse, initial multimodality management can be administered. In treatment-refractory cases or where cure is not feasible, the treatment options are limited to novel therapeutics, immunotherapeutic approach, targeted therapies, and metronomic therapies. A better understanding of disease biology, mechanism of treatment refractoriness, identifications of driver mutation, the discovery of novel targeted therapies, cellular vaccine and adapted therapies should be explored in relapsed/refractory cases. Close national and international collaboration for translation research is needed to fulfil the unmet need.
Collapse
Affiliation(s)
| | - Vikas Garg
- Department of Medical Oncology, AIIMS, New Delhi, India
| | - Sandip Ganguly
- Department of Medical Oncology, Tata Medical Center, Kolkata, India
| | - Bivas Biswas
- Department of Medical Oncology, Tata Medical Center, Kolkata, India
| |
Collapse
|
41
|
Genomics and Therapeutic Vulnerabilities of Primary Bone Tumors. Cells 2020; 9:cells9040968. [PMID: 32295254 PMCID: PMC7227002 DOI: 10.3390/cells9040968] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma, Ewing sarcoma and chondrosarcoma are rare diseases but the most common primary tumors of bone. The genes directly involved in the sarcomagenesis, tumor progression and treatment responsiveness are not completely defined for these tumors, and the powerful discovery of genetic analysis is highly warranted in the view of improving the therapy and cure of patients. The review summarizes recent advances concerning the molecular and genetic background of these three neoplasms and, of their most common variants, highlights the putative therapeutic targets and the clinical trials that are presently active, and notes the fundamental issues that remain unanswered. In the era of personalized medicine, the rarity of sarcomas may not be the major obstacle, provided that each patient is studied extensively according to a road map that combines emerging genomic and functional approaches toward the selection of novel therapeutic strategies.
Collapse
|
42
|
Penter L, Wu CJ. Personal tumor antigens in blood malignancies: genomics-directed identification and targeting. J Clin Invest 2020; 130:1595-1607. [PMID: 31985488 PMCID: PMC7108890 DOI: 10.1172/jci129209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hematological malignancies have long been at the forefront of the development of novel immune-based treatment strategies. The earliest successful efforts originated from the extensive body of work in the field of allogeneic hematopoietic stem cell transplantation. These efforts laid the foundation for the recent exciting era of cancer immunotherapy, which includes immune checkpoint blockade, personal neoantigen vaccines, and adoptive T cell transfer. At the heart of the specificity of these novel strategies is the recognition of target antigens presented by malignant cells to T cells. Here, we review the advances in systematic identification of minor histocompatibility antigens and neoantigens arising from personal somatic alterations or recurrent driver mutations. These exciting efforts pave the path for the implementation of personalized combinatorial cancer therapy.
Collapse
Affiliation(s)
- Livius Penter
- Department of Hematology, Oncology, and Tumor Immunology, Charité – Universitätsmedizin Berlin (CVK), Berlin, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Heymann MF, Schiavone K, Heymann D. Bone sarcomas in the immunotherapy era. Br J Pharmacol 2020; 178:1955-1972. [PMID: 31975481 DOI: 10.1111/bph.14999] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 11/30/2022] Open
Abstract
Bone sarcomas are primary bone tumours found mainly in children and adolescents, as osteosarcoma and Ewing's sarcoma, and in adults in their 40s as chondrosarcoma. The last four decades the development of therapeutic approaches was based on drug combinations have shown no real improvement in overall survival. Recently oncoimmunology has allowed a better understand of the crucial role played by the immune system in the oncologic process. This led to clinical trials with the aim of reprogramming the immune system to facilitate cancer cell recognition. Immune infiltrates of bone sarcomas have been characterized and their molecular profiling identified as immune therapeutic targets. Unfortunately, the clinical responses in trials remain anecdotal but highlight the necessity to improve the characterization of tumour micro-environment to unlock the immunotherapeutic response, especially in their paediatric forms. Bone sarcomas have entered the immunotherapy era and here we overview the recent developments in immunotherapies in these sarcomas. LINKED ARTICLES: This article is part of a themed issue on The molecular pharmacology of bone and cancer-related bone diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.9/issuetoc.
Collapse
Affiliation(s)
- Marie-Françoise Heymann
- Université de Nantes, INSERM, CRCINA, Institut de Cancérologie de l'Ouest, Saint-Herblain, France.,"Tumor Heterogeneity and Precision Medicine", Institut de Cancérologie de l'Ouest, Saint Herblain, France.,INSERM, European Associated Laboratory "Sarcoma Research Unit", Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Kristina Schiavone
- Université de Nantes, INSERM, CRCINA, Institut de Cancérologie de l'Ouest, Saint-Herblain, France.,"Tumor Heterogeneity and Precision Medicine", Institut de Cancérologie de l'Ouest, Saint Herblain, France
| | - Dominique Heymann
- Université de Nantes, INSERM, CRCINA, Institut de Cancérologie de l'Ouest, Saint-Herblain, France.,"Tumor Heterogeneity and Precision Medicine", Institut de Cancérologie de l'Ouest, Saint Herblain, France.,INSERM, European Associated Laboratory "Sarcoma Research Unit", Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| |
Collapse
|
44
|
Leruste A, Tosello J, Ramos RN, Tauziède-Espariat A, Brohard S, Han ZY, Beccaria K, Andrianteranagna M, Caudana P, Nikolic J, Chauvin C, Niborski LL, Manriquez V, Richer W, Masliah-Planchon J, Grossetête-Lalami S, Bohec M, Lameiras S, Baulande S, Pouponnot C, Coulomb A, Galmiche L, Surdez D, Servant N, Helft J, Sedlik C, Puget S, Benaroch P, Delattre O, Waterfall JJ, Piaggio E, Bourdeaut F. Clonally Expanded T Cells Reveal Immunogenicity of Rhabdoid Tumors. Cancer Cell 2019; 36:597-612.e8. [PMID: 31708437 DOI: 10.1016/j.ccell.2019.10.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 08/06/2019] [Accepted: 10/22/2019] [Indexed: 01/01/2023]
Abstract
Rhabdoid tumors (RTs) are genomically simple pediatric cancers driven by the biallelic inactivation of SMARCB1, leading to SWI/SNF chromatin remodeler complex deficiency. Comprehensive evaluation of the immune infiltrates of human and mice RTs, including immunohistochemistry, bulk RNA sequencing and DNA methylation profiling studies showed a high rate of tumors infiltrated by T and myeloid cells. Single-cell RNA (scRNA) and T cell receptor sequencing highlighted the heterogeneity of these cells and revealed therapeutically targetable exhausted effector and clonally expanded tissue resident memory CD8+ T subpopulations, likely representing tumor-specific cells. Checkpoint blockade therapy in an experimental RT model induced the regression of established tumors and durable immune responses. Finally, we show that one mechanism mediating RTs immunogenicity involves SMARCB1-dependent re-expression of endogenous retroviruses and interferon-signaling activation.
Collapse
Affiliation(s)
- Amaury Leruste
- PSL Research University, Institut Curie Research Center, INSERM U830, Paris, France; PSL Research University, Institut Curie Research Center, Translational Research Department, Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Jimena Tosello
- PSL Research University, Institut Curie Research Center, Translational Research Department, Paris, France; PSL Research University, Institut Curie Research Center, INSERM U932, Paris, France
| | - Rodrigo Nalio Ramos
- PSL Research University, Institut Curie Research Center, Translational Research Department, Paris, France; PSL Research University, Institut Curie Research Center, INSERM U932, Paris, France
| | | | - Solène Brohard
- PSL Research University, Institut Curie Research Center, Translational Research Department, Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Zhi-Yan Han
- PSL Research University, Institut Curie Research Center, INSERM U830, Paris, France; PSL Research University, Institut Curie Research Center, Translational Research Department, Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Kevin Beccaria
- AP-HP, Necker Hospital, Department of Neurosurgery, Paris, France
| | - Mamy Andrianteranagna
- PSL Research University, Institut Curie Research Center, INSERM U900, Paris, France; MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Pamela Caudana
- PSL Research University, Institut Curie Research Center, Translational Research Department, Paris, France; PSL Research University, Institut Curie Research Center, INSERM U932, Paris, France
| | - Jovan Nikolic
- PSL Research University, Institut Curie Research Center, INSERM U932, Paris, France
| | - Céline Chauvin
- PSL Research University, Institut Curie Research Center, INSERM U830, Paris, France; PSL Research University, Institut Curie Research Center, Translational Research Department, Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Leticia Laura Niborski
- PSL Research University, Institut Curie Research Center, Translational Research Department, Paris, France; PSL Research University, Institut Curie Research Center, INSERM U932, Paris, France
| | - Valeria Manriquez
- PSL Research University, Institut Curie Research Center, Translational Research Department, Paris, France; PSL Research University, Institut Curie Research Center, INSERM U932, Paris, France
| | - Wilfrid Richer
- PSL Research University, Institut Curie Research Center, Translational Research Department, Paris, France; PSL Research University, Institut Curie Research Center, INSERM U932, Paris, France
| | - Julien Masliah-Planchon
- PSL Research University, Institut Curie Hospital, Laboratory of Somatic Genetics, Paris, France
| | - Sandrine Grossetête-Lalami
- PSL Research University, Institut Curie Research Center, INSERM U830, Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Mylene Bohec
- PSL Research University, Institut Curie Genomics of Excellence (ICGex) Platform, Paris, France
| | - Sonia Lameiras
- PSL Research University, Institut Curie Genomics of Excellence (ICGex) Platform, Paris, France
| | - Sylvain Baulande
- PSL Research University, Institut Curie Genomics of Excellence (ICGex) Platform, Paris, France
| | - Celio Pouponnot
- PSL Research University, Institut Curie Research Center, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Aurore Coulomb
- AP-HP, Armand Trousseau Hospital, Department of Pathology, Paris, France
| | - Louise Galmiche
- AP-HP, Necker Hospital, Department of Pathology, Paris, France
| | - Didier Surdez
- PSL Research University, Institut Curie Research Center, INSERM U830, Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Nicolas Servant
- PSL Research University, Institut Curie Research Center, INSERM U900, Paris, France; MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Julie Helft
- PSL Research University, Institut Curie Research Center, Translational Research Department, Paris, France; PSL Research University, Institut Curie Research Center, INSERM U932, Paris, France
| | - Christine Sedlik
- PSL Research University, Institut Curie Research Center, Translational Research Department, Paris, France; PSL Research University, Institut Curie Research Center, INSERM U932, Paris, France
| | - Stéphanie Puget
- AP-HP, Necker Hospital, Department of Neurosurgery, Paris, France
| | - Philippe Benaroch
- PSL Research University, Institut Curie Research Center, INSERM U932, Paris, France
| | - Olivier Delattre
- PSL Research University, Institut Curie Research Center, INSERM U830, Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Joshua J Waterfall
- PSL Research University, Institut Curie Research Center, INSERM U830, Paris, France; PSL Research University, Institut Curie Research Center, Translational Research Department, Paris, France.
| | - Eliane Piaggio
- PSL Research University, Institut Curie Research Center, Translational Research Department, Paris, France; PSL Research University, Institut Curie Research Center, INSERM U932, Paris, France.
| | - Franck Bourdeaut
- PSL Research University, Institut Curie Research Center, INSERM U830, Paris, France; PSL Research University, Institut Curie Research Center, Translational Research Department, Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France.
| |
Collapse
|
45
|
Knott MML, Hölting TLB, Ohmura S, Kirchner T, Cidre-Aranaz F, Grünewald TGP. Targeting the undruggable: exploiting neomorphic features of fusion oncoproteins in childhood sarcomas for innovative therapies. Cancer Metastasis Rev 2019; 38:625-642. [PMID: 31970591 PMCID: PMC6994515 DOI: 10.1007/s10555-019-09839-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
While sarcomas account for approximately 1% of malignant tumors of adults, they are particularly more common in children and adolescents affected by cancer. In contrast to malignancies that occur in later stages of life, childhood tumors, including sarcoma, are characterized by a striking paucity of somatic mutations. However, entity-defining fusion oncogenes acting as the main oncogenic driver mutations are frequently found in pediatric bone and soft-tissue sarcomas such as Ewing sarcoma (EWSR1-FLI1), alveolar rhabdomyosarcoma (PAX3/7-FOXO1), and synovial sarcoma (SS18-SSX1/2/4). Since strong oncogene-dependency has been demonstrated in these entities, direct pharmacological targeting of these fusion oncogenes has been excessively attempted, thus far, with limited success. Despite apparent challenges, our increasing understanding of the neomorphic features of these fusion oncogenes in conjunction with rapid technological advances will likely enable the development of new strategies to therapeutically exploit these neomorphic features and to ultimately turn the "undruggable" into first-line target structures. In this review, we provide a broad overview of the current literature on targeting neomorphic features of fusion oncogenes found in Ewing sarcoma, alveolar rhabdomyosarcoma, and synovial sarcoma, and give a perspective for future developments. Graphical abstract Scheme depicting the different targeting strategies of fusion oncogenes in pediatric fusion-driven sarcomas. Fusion oncogenes can be targeted on their DNA level (1), RNA level (2), protein level (3), and by targeting downstream functions and interaction partners (4).
Collapse
Affiliation(s)
- Maximilian M L Knott
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
- Faculty of Medicine, Institute of Pathology, LMU Munich, Munich, Germany
| | - Tilman L B Hölting
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Shunya Ohmura
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Thomas Kirchner
- Faculty of Medicine, Institute of Pathology, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florencia Cidre-Aranaz
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany.
- Faculty of Medicine, Institute of Pathology, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
46
|
Mösch A, Raffegerst S, Weis M, Schendel DJ, Frishman D. Machine Learning for Cancer Immunotherapies Based on Epitope Recognition by T Cell Receptors. Front Genet 2019; 10:1141. [PMID: 31798635 PMCID: PMC6878726 DOI: 10.3389/fgene.2019.01141] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/21/2019] [Indexed: 12/30/2022] Open
Abstract
In the last years, immunotherapies have shown tremendous success as treatments for multiple types of cancer. However, there are still many obstacles to overcome in order to increase response rates and identify effective therapies for every individual patient. Since there are many possibilities to boost a patient's immune response against a tumor and not all can be covered, this review is focused on T cell receptor-mediated therapies. CD8+ T cells can detect and destroy malignant cells by binding to peptides presented on cell surfaces by MHC (major histocompatibility complex) class I molecules. CD4+ T cells can also mediate powerful immune responses but their peptide recognition by MHC class II molecules is more complex, which is why the attention has been focused on CD8+ T cells. Therapies based on the power of T cells can, on the one hand, enhance T cell recognition by introducing TCRs that preferentially direct T cells to tumor sites (so called TCR-T therapy) or through vaccination to induce T cells in vivo. On the other hand, T cell activity can be improved by immune checkpoint inhibition or other means that help create a microenvironment favorable for cytotoxic T cell activity. The manifold ways in which the immune system and cancer interact with each other require not only the use of large omics datasets from gene, to transcript, to protein, and to peptide but also make the application of machine learning methods inevitable. Currently, discovering and selecting suitable TCRs is a very costly and work intensive in vitro process. To facilitate this process and to additionally allow for highly personalized therapies that can simultaneously target multiple patient-specific antigens, especially neoepitopes, breakthrough computational methods for predicting antigen presentation and TCR binding are urgently required. Particularly, potential cross-reactivity is a major consideration since off-target toxicity can pose a major threat to patient safety. The current speed at which not only datasets grow and are made available to the public, but also at which new machine learning methods evolve, is assuring that computational approaches will be able to help to solve problems that immunotherapies are still facing.
Collapse
Affiliation(s)
- Anja Mösch
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- Medigene Immunotherapies GmbH, a subsidiary of Medigene AG, Planegg, Germany
| | - Silke Raffegerst
- Medigene Immunotherapies GmbH, a subsidiary of Medigene AG, Planegg, Germany
| | - Manon Weis
- Medigene Immunotherapies GmbH, a subsidiary of Medigene AG, Planegg, Germany
| | - Dolores J. Schendel
- Medigene Immunotherapies GmbH, a subsidiary of Medigene AG, Planegg, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| |
Collapse
|
47
|
Benvenuto M, Focaccetti C, Izzi V, Masuelli L, Modesti A, Bei R. Tumor antigens heterogeneity and immune response-targeting neoantigens in breast cancer. Semin Cancer Biol 2019; 72:65-75. [PMID: 31698088 DOI: 10.1016/j.semcancer.2019.10.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022]
Abstract
Breast cancer is both the most common type of cancer and the most frequent cause of cancer mortality in women, mainly because of its heterogeneity and limited immunogenicity. The aim of specific active cancer immunotherapy is to stimulate the host's immune response against cancer cells directly using a vaccine platform carrying one or more tumor antigens. In particular, the ideal tumor antigen should be able to elicit T cell and B cell responses, be specific for the tumor and be expressed at high levels on cancer cells. Neoantigens are ideal targets for immunotherapy because they are exclusive to individual patient's tumors, are absent in healthy tissues and are not subject to immune tolerance mechanisms. Thus, neoantigens should generate a specific reaction towards tumors since they constitute the largest fraction of targets of tumor-infiltrating T cells. In this review, we describe the technologies used for neoantigen discovery, the heterogeneity of neoantigens in breast cancer and recent studies of breast cancer immunotherapy targeting neoantigens.
Collapse
Affiliation(s)
- Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy; Saint Camillus International University of Health and Medical Sciences, via di Sant'Alessandro 8, 00131, Rome, Italy.
| | - Chiara Focaccetti
- Department of Human Science and Promotion of the Quality of Life, University San Raffaele Rome, Via di Val Cannuta 247, 00166, Rome, Italy.
| | - Valerio Izzi
- Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7C, FI-90230, Oulu, Finland.
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy.
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
| |
Collapse
|
48
|
Witkowski MT, Lasry A, Carroll WL, Aifantis I. Immune-Based Therapies in Acute Leukemia. Trends Cancer 2019; 5:604-618. [PMID: 31706508 PMCID: PMC6859901 DOI: 10.1016/j.trecan.2019.07.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022]
Abstract
Treatment resistance remains a leading cause of acute leukemia-related deaths. Thus, there is an unmet need to develop novel approaches to improve outcome. New immune-based therapies with chimeric antigen receptor (CAR) T cells, bi-specific T cell engagers (BiTEs), and immune checkpoint blockers (ICBs) have emerged as effective treatment options for chemoresistant B cell acute lymphoblastic leukemia (B-ALL) and acute myeloid leukemia (AML). However, many patients show resistance to these immune-based approaches. This review describes crucial lessons learned from immune-based approaches targeting high-risk B-ALL and AML, such as the leukemia-intrinsic (e.g., target antigen loss, tumor heterogeneity) and -extrinsic (e.g., immunosuppressive microenvironment) mechanisms that drive treatment resistance, and discusses alternative approaches to enhance the effectiveness of these immune-based treatment regimens.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Disease Susceptibility
- Humans
- Immunity
- Immunotherapy/methods
- Immunotherapy, Adoptive
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Molecular Targeted Therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Matthew T Witkowski
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA.
| | - Audrey Lasry
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - William L Carroll
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA; Department of Pediatrics, New York University School of Medicine, New York, NY 10016, USA
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
49
|
Richters MM, Xia H, Campbell KM, Gillanders WE, Griffith OL, Griffith M. Best practices for bioinformatic characterization of neoantigens for clinical utility. Genome Med 2019; 11:56. [PMID: 31462330 PMCID: PMC6714459 DOI: 10.1186/s13073-019-0666-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022] Open
Abstract
Neoantigens are newly formed peptides created from somatic mutations that are capable of inducing tumor-specific T cell recognition. Recently, researchers and clinicians have leveraged next generation sequencing technologies to identify neoantigens and to create personalized immunotherapies for cancer treatment. To create a personalized cancer vaccine, neoantigens must be computationally predicted from matched tumor-normal sequencing data, and then ranked according to their predicted capability in stimulating a T cell response. This candidate neoantigen prediction process involves multiple steps, including somatic mutation identification, HLA typing, peptide processing, and peptide-MHC binding prediction. The general workflow has been utilized for many preclinical and clinical trials, but there is no current consensus approach and few established best practices. In this article, we review recent discoveries, summarize the available computational tools, and provide analysis considerations for each step, including neoantigen prediction, prioritization, delivery, and validation methods. In addition to reviewing the current state of neoantigen analysis, we provide practical guidance, specific recommendations, and extensive discussion of critical concepts and points of confusion in the practice of neoantigen characterization for clinical use. Finally, we outline necessary areas of development, including the need to improve HLA class II typing accuracy, to expand software support for diverse neoantigen sources, and to incorporate clinical response data to improve neoantigen prediction algorithms. The ultimate goal of neoantigen characterization workflows is to create personalized vaccines that improve patient outcomes in diverse cancer types.
Collapse
Affiliation(s)
- Megan M Richters
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Forest Park Avenue, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Huiming Xia
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Forest Park Avenue, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Katie M Campbell
- Division of Hematology and Oncology, Medical Plaza Driveway, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - William E Gillanders
- Department of Surgery, South Euclid Avenue, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Siteman Cancer Center, Parkview Place, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Obi L Griffith
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- McDonnell Genome Institute, Forest Park Avenue, Washington University School of Medicine, St. Louis, MO, 63108, USA.
- Siteman Cancer Center, Parkview Place, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Genetics, South Euclid Avenue, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Malachi Griffith
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- McDonnell Genome Institute, Forest Park Avenue, Washington University School of Medicine, St. Louis, MO, 63108, USA.
- Siteman Cancer Center, Parkview Place, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Genetics, South Euclid Avenue, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
50
|
Wang H, Diaz AK, Shaw TI, Li Y, Niu M, Cho JH, Paugh BS, Zhang Y, Sifford J, Bai B, Wu Z, Tan H, Zhou S, Hover LD, Tillman HS, Shirinifard A, Thiagarajan S, Sablauer A, Pagala V, High AA, Wang X, Li C, Baker SJ, Peng J. Deep multiomics profiling of brain tumors identifies signaling networks downstream of cancer driver genes. Nat Commun 2019; 10:3718. [PMID: 31420543 PMCID: PMC6697699 DOI: 10.1038/s41467-019-11661-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/19/2019] [Indexed: 12/11/2022] Open
Abstract
High throughput omics approaches provide an unprecedented opportunity for dissecting molecular mechanisms in cancer biology. Here we present deep profiling of whole proteome, phosphoproteome and transcriptome in two high-grade glioma (HGG) mouse models driven by mutated RTK oncogenes, PDGFRA and NTRK1, analyzing 13,860 proteins and 30,431 phosphosites by mass spectrometry. Systems biology approaches identify numerous master regulators, including 41 kinases and 23 transcription factors. Pathway activity computation and mouse survival indicate the NTRK1 mutation induces a higher activation of AKT downstream targets including MYC and JUN, drives a positive feedback loop to up-regulate multiple other RTKs, and confers higher oncogenic potency than the PDGFRA mutation. A mini-gRNA library CRISPR-Cas9 validation screening shows 56% of tested master regulators are important for the viability of NTRK-driven HGG cells, including TFs (Myc and Jun) and metabolic kinases (AMPKa1 and AMPKa2), confirming the validity of the multiomics integrative approaches, and providing novel tumor vulnerabilities.
Collapse
Affiliation(s)
- Hong Wang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Alexander K Diaz
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Timothy I Shaw
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yuxin Li
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mingming Niu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ji-Hoon Cho
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Barbara S Paugh
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yang Zhang
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jeffrey Sifford
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Bing Bai
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Zhiping Wu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suiping Zhou
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Laura D Hover
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Heather S Tillman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Abbas Shirinifard
- Department of Information Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suresh Thiagarajan
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Andras Sablauer
- Department of Information Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anthony A High
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|