1
|
Clark BZ, Soong TR, Goel K, Elishaev E, Zhao C, Jones TE, Jones MW, Skvarca LB, Motanagh SA, Carter GJ, Fine JL, Harinath L, Villatoro TM, Yu J, Bhargava R. A comprehensive analysis of SOX17 expression by immunohistochemistry in human epithelial tumors, with an emphasis on gynecologic tumors. Am J Clin Pathol 2025; 163:143-152. [PMID: 39240859 DOI: 10.1093/ajcp/aqae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/15/2024] [Indexed: 09/08/2024] Open
Abstract
OBJECTIVES The objective of this study was to evaluate SOX17, a transcription factor from the Sry high-mobility group-related box superfamily, as a diagnostic marker to determine site of origin using both whole-tissue sections and tissue microarrays (TMAs). METHODS SOX17 immunohistochemistry was performed on gynecologic and nongynecologic tissues (N = 1004) using whole-tissue sections and both internally constructed and commercially available TMAs. SOX17 nuclear reactivity was scored as positive or negative on the whole-tissue sections and using the semiquantitative H score method on TMAs. RESULTS Using both whole-tissue sections and TMAs, SOX17 was positive in 94% (n = 155) of endometrial tumors and 96% (n = 242) of ovarian tumors. All breast cases (n = 241) and vulvar/cervical squamous cell carcinomas (n = 150) were negative. Among 1004 tumors from 20 sites, the only organs with positive tumors were ovary, uterus, and testis. CONCLUSIONS SOX17 is a sensitive and specific marker for gynecologic origin in the tissues tested and may be a valuable adjunct to PAX8 and other commonly used markers to confirm endometrial or ovarian origin. SOX17 expression is lower in mucinous tumors, endocervical adenocarcinoma, high-grade neuroendocrine tumors, and undifferentiated/dedifferentiated endometrial carcinoma.
Collapse
Affiliation(s)
- Beth Z Clark
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - T Rinda Soong
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - Kanika Goel
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - Chengquan Zhao
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - Terri E Jones
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - Mirka W Jones
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - Lauren B Skvarca
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - Samaneh A Motanagh
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - Gloria J Carter
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - Jeffrey L Fine
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - Lakshmi Harinath
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - Tatiana M Villatoro
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - Jing Yu
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - Rohit Bhargava
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| |
Collapse
|
2
|
Mullen MP, Ivy DD, Varghese NP, Winant AJ, Cortes-Santiago N, Vargas SO, Porres D, Maschietto N, Critser PJ, Hirsch R, Avitabile CM, Hopper RK, Frank BS, Coleman RD, Agrawal PB, Madden JA, Roberts AE, Collins SL, Raj JU, Austin ED, Chung WK, Abman SH. SOX17-Associated Pulmonary Hypertension in Children: A Distinct Developmental and Clinical Syndrome. J Pediatr 2024; 278:114422. [PMID: 39603521 DOI: 10.1016/j.jpeds.2024.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVE To characterize clinical, hemodynamic, imaging, and pathologic findings in children with pulmonary arterial hypertension (PAH) and variants in SRY-box transcription factor 17 (SOX17), a novel risk gene linked to heritable and congenital heart disease-associated PAH. STUDY DESIGN We assembled a multi-institutional cohort of children with PAH and SOX17 variants enrolled in the Pediatric Pulmonary Hypertension Network (PPHNet) and other registries. Subjects were identified through exome and PAH gene panel sequencing. Data were collected from registries and retrospective chart review. RESULTS We identified 13 children (8 female, 5 male) aged 1.6-16 years at diagnosis with SOX17 variants and PAH. Seven patients had atrial septal defects and 2 had patent ductus arteriosus. At diagnostic cardiac catheterization, patients had severely elevated mean pulmonary artery (PA) pressure (mean 78, range 47-124 mmHg) and markedly elevated indexed pulmonary vascular resistance (mean 25.9, range 4.9-55 WU∗m2). No patients responded to acute vasodilator testing. Catheter and computed tomography angiography imaging demonstrated atypical PA anatomy including severely dilated main pulmonary arteries, lack of tapering in third and fourth order pulmonary arteries, tortuous 'corkscrewing' pulmonary arteries, and abnormal capillary 'blush.' Several children had PA stenoses and 2 had systemic arterial abnormalities. Histologic examination of explanted lungs from 3 patients disclosed plexiform arteriopathy and extensive aneurysmal dilation of alveolar septal capillaries. CONCLUSIONS SOX17-associated PAH is a distinctive genetic syndrome characterized by early onset severe PAH, extensive pulmonary vascular abnormalities, and high prevalence of congenital heart disease with intracardiac and interarterial shunts, suggesting a role for SOX17 in pulmonary vascular development.
Collapse
Affiliation(s)
- Mary P Mullen
- Department of Cardiology, Boston Children's Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA.
| | - D Dunbar Ivy
- Section of Cardiology, Department of Pediatrics, University of Colorado Denver Anschutz Medical Center and Children's Hospital Colorado, Aurora, CO
| | - Nidhy P Varghese
- Division of Pulmonology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Abbey J Winant
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Nahir Cortes-Santiago
- Department of Pathology and Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Diego Porres
- Department of Cardiology, Boston Children's Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Nicola Maschietto
- Department of Cardiology, Boston Children's Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Paul J Critser
- The Heart Institute, Cincinnati Children's Hospital, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Russel Hirsch
- The Heart Institute, Cincinnati Children's Hospital, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Catherine M Avitabile
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, MA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Rachel K Hopper
- Division of Cardiology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA
| | - Benjamin S Frank
- Section of Cardiology, Department of Pediatrics, University of Colorado Denver Anschutz Medical Center and Children's Hospital Colorado, Aurora, CO
| | - Ryan D Coleman
- Division of Critical Care Medicine, Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX
| | - Pankaj B Agrawal
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL
| | - Jill A Madden
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA
| | - Amy E Roberts
- Department of Cardiology, Boston Children's Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA
| | - Shane L Collins
- Department of Cardiology, Boston Children's Hospital, Boston, MA
| | - J Usha Raj
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL
| | - Eric D Austin
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Wendy K Chung
- Department of Pediatrics, Harvard Medical School, Boston, MA; Department of Pediatrics, Boston Children's Hospital, Boston, MA
| | - Steven H Abman
- Pediatric Heart Lung Center and Section of Pulmonary Medicine, Department of Pediatrics, University of Colorado Anschutz School of Medicine and Children's Hospital Colorado, Aurora, CO
| |
Collapse
|
3
|
Imai Y, Kusano K, Aiba T, Ako J, Asano Y, Harada-Shiba M, Kataoka M, Kosho T, Kubo T, Matsumura T, Minamino T, Minatoya K, Morita H, Nishigaki M, Nomura S, Ogino H, Ohno S, Takamura M, Tanaka T, Tsujita K, Uchida T, Yamagishi H, Ebana Y, Fujita K, Ida K, Inoue S, Ito K, Kuramoto Y, Maeda J, Matsunaga K, Neki R, Sugiura K, Tada H, Tsuji A, Yamada T, Yamaguchi T, Yamamoto E, Kimura A, Kuwahara K, Maemura K, Minamino T, Morisaki H, Tokunaga K. JCS/JCC/JSPCCS 2024 Guideline on Genetic Testing and Counseling in Cardiovascular Disease. Circ J 2024; 88:2022-2099. [PMID: 39343605 DOI: 10.1253/circj.cj-23-0926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Affiliation(s)
- Yasushi Imai
- Division of Clinical Pharmacology and Division of Cardiovascular Medicine, Jichi Medical University
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Yoshihiro Asano
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center
| | | | - Masaharu Kataoka
- The Second Department of Internal Medicine, University of Occupational and Environmental Health
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine
| | - Toru Kubo
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University
| | - Takayoshi Matsumura
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University
| | - Tetsuo Minamino
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University
| | - Kenji Minatoya
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Masakazu Nishigaki
- Department of Genetic Counseling, International University of Health and Welfare
| | - Seitaro Nomura
- Department of Frontier Cardiovascular Science, Graduate School of Medicine, The University of Tokyo
| | | | - Seiko Ohno
- Medical Genome Center, National Cerebral and Cardiovascular Center
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences
| | - Toshihiro Tanaka
- Department of Human Genetics and Disease Diversity, Tokyo Medical and Dental University
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Tetsuro Uchida
- Department of Surgery II (Division of Cardiovascular, Thoracic and Pediatric Surgery), Yamagata University Faculty of Medicine
| | | | - Yusuke Ebana
- Life Science and Bioethics Research Center, Tokyo Medical and Dental University Hospital
| | - Kanna Fujita
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
- Department of Computational Diagnostic Radiology and Preventive Medicine, Graduate School of Medicine, The University of Tokyo
| | - Kazufumi Ida
- Division of Counseling for Medical Genetics, National Cerebral and Cardiovascular Center
| | - Shunsuke Inoue
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences
| | - Yuki Kuramoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Jun Maeda
- Department of Cardiology, Tokyo Metropolitan Children's Medical Center
| | - Keiji Matsunaga
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University
| | - Reiko Neki
- Division of Counseling for Medical Genetics, Department of Obstetrics and Gynecology, National Cerebral and Cardiovascular Center
| | - Kenta Sugiura
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University
| | - Hayato Tada
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University
| | - Akihiro Tsuji
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | | | | | | | - Akinori Kimura
- Institutional Research Office, Tokyo Medical and Dental University
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University School of Medicine
| | - Koji Maemura
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | | | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine
| |
Collapse
|
4
|
Hayashi H, Hanamatsu Y, Saigo C, Matsuhashi N, Takeuchi T. SOX17 expression in tumor endothelial cells in colorectal cancer and its association with favorable outcomes in patients. Pathol Res Pract 2024; 263:155610. [PMID: 39342888 DOI: 10.1016/j.prp.2024.155610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
The high mortality rate of colorectal cancer (CRC) highlights the need for new treatment strategies; however, the venous invasion mechanisms in tumor endothelial cells within CRC remain unexplored. Therefore, we investigated the clinicopathological features of SRY-box transcription factor 17 (SOX17) in CRC. Immunohistochemical staining was performed on 55 CRC tissue specimens using a SOX17-specific antibody, followed by Kaplan-Meier and Cox proportional hazards regression analyses. SOX17 immunoreactivity was detected in the endothelial cells of tumor-penetrating vessels in 35/55 CRC samples. Kaplan-Meier analysis indicated that patients with SOX17 immunoreactivity had favorable overall and progression-free survival (log-rank test, P = 0.03 and 0.02, respectively). Notably, tumor endothelial SOX17 immunoreactivity was associated with a favorable prognosis in patients with stage III or IV disease (OS, P = 0.0089; PFS, P = 0.0065). Cox proportional hazard regression analysis indicated that SOX17 immunoreactivity is an independent factor for predicting favorable overall and progression-free survival in CRC (P = 0.02 and 0.01, respectively). The present findings suggest that SOX17 expression in tumor endothelial cells is a potential indicator of favorable prognosis in patients with CRC.
Collapse
Affiliation(s)
- Hirokatsu Hayashi
- Department of Gastroenterological Surgery and Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuki Hanamatsu
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan; Center for One Medicine Innovative Translational Research, COMIT, Gifu University, Gifu, Japan
| | - Chiemi Saigo
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan; Center for One Medicine Innovative Translational Research, COMIT, Gifu University, Gifu, Japan; The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Japan
| | - Nobuhisa Matsuhashi
- Department of Gastroenterological Surgery and Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu, Japan; Center for One Medicine Innovative Translational Research, COMIT, Gifu University, Gifu, Japan
| | - Tamotsu Takeuchi
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan; Center for One Medicine Innovative Translational Research, COMIT, Gifu University, Gifu, Japan.
| |
Collapse
|
5
|
Austin ED, Aldred MA, Alotaibi M, Gräf S, Nichols WC, Trembath RC, Chung WK. Genetics and precision genomics approaches to pulmonary hypertension. Eur Respir J 2024; 64:2401370. [PMID: 39209481 PMCID: PMC11525347 DOI: 10.1183/13993003.01370-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
Considerable progress has been made in the genomics of pulmonary arterial hypertension (PAH) since the 6th World Symposium on Pulmonary Hypertension, with the identification of rare variants in several novel genes, as well as common variants that confer a modest increase in PAH risk. Gene and variant curation by an expert panel now provides a robust framework for knowing which genes to test and how to interpret variants in clinical practice. We recommend that genetic testing be offered to specific subgroups of symptomatic patients with PAH, and to children with certain types of group 3 pulmonary hypertension (PH). Testing of asymptomatic family members and the use of genetics in reproductive decision-making require the involvement of genetics experts. Large cohorts of PAH patients with biospecimens now exist and extension to non-group 1 PH has begun. However, these cohorts are largely of European origin; greater diversity will be essential to characterise the full extent of genomic variation contributing to PH risk and treatment responses. Other types of omics data are also being incorporated. Furthermore, to advance gene- and pathway-specific care and targeted therapies, gene-specific registries will be essential to support patients and their families and to lay the foundation for genetically informed clinical trials. This will require international outreach and collaboration between patients/families, clinicians and researchers. Ultimately, harmonisation of patient-derived biospecimens, clinical and omic information, and analytic approaches will advance the field.
Collapse
Affiliation(s)
- Eric D. Austin
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Mona Alotaibi
- University of California San Diego, San Diego, CA, USA
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Victor Phillip Dahdaleh Heart and Lung Research Institute, Cambridge, UK
| | - William C. Nichols
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Richard C. Trembath
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Wendy K. Chung
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Gomez-Arroyo J, Houweling AC, Bogaard HJ, Aman J, Kitzmiller JA, Porollo A, Dooijes D, Meijboom LJ, Hale P, Pauciulo MW, Hong J, Zhu N, Welch C, Shen Y, Zacharias WJ, McCormack FX, Aldred MA, Weirauch MT, Graf S, Rhodes C, Chung WK, Whitsett JA, Martin LJ, Kalinichenko VV, Nichols WC. Role of Forkhead box F1 in the Pathobiology of Pulmonary Arterial Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.611448. [PMID: 39345371 PMCID: PMC11429893 DOI: 10.1101/2024.09.18.611448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Rationale Approximately 80% of patients with non-familial pulmonary arterial hypertension (PAH) lack identifiable pathogenic genetic variants. While most genetic studies of PAH have focused on predicted loss-of-function variants, recent approaches have identified ultra-rare missense variants associated with the disease. FOXF1 encodes a highly conserved transcription factor, essential for angiogenesis and vasculogenesis in human and mouse lungs. Objectives We identified a rare FOXF1 missense coding variant in two unrelated probands with PAH. FOXF1 is an evolutionarily conserved transcription factor required for lung vascular development and vascular integrity. Our aims were to determine the frequency of FOXF1 variants in larger PAH cohorts compared to the general population, study FOXF1 expression in explanted lung tissue from PAH patients versus control (failed-donor) lungs, and define potential downstream targets linked to PAH development. Methods Three independent, international, multicenter cohorts were analyzed to evaluate the frequency of FOXF1 rare variants. Various composite prediction models assessed the deleteriousness of individual variants. Bulk RNA sequencing datasets from human explanted lung tissues were compared to failed-donor controls to determine FOXF1 expression. Bioinformatic tools identified putative FOXF1 binding targets, which were orthogonally validated using mouse ChIP-seq datasets. Measurements and Main Results Seven novel or ultra-rare missense coding variants were identified across three patient cohorts in different regions of the FOXF1 gene, including the DNA binding domain. FOXF1 expression was dysregulated in PAH lungs, correlating with disease severity. Histological analysis showed heterogeneous FOXF1 expression, with the lowest levels in phenotypically abnormal endothelial cells within complex vascular lesions in PAH samples. A hybrid bioinformatic approach identified FOXF1 downstream targets potentially involved in PAH pathogenesis, including BMPR2 . Conclusions Large genomic and transcriptomic datasets suggest that decreased FOXF1 expression or predicted dysfunction is associated with PAH.
Collapse
|
7
|
Awad KS, Wang S, Dougherty EJ, Keshavarz A, Demirkale CY, Yu ZX, Miller L, Elinoff JM, Danner RL. BMPR2 Loss Activates AKT by Disrupting DLL4/NOTCH1 and PPARγ Signaling in Pulmonary Arterial Hypertension. Int J Mol Sci 2024; 25:5403. [PMID: 38791441 PMCID: PMC11121464 DOI: 10.3390/ijms25105403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive cardiopulmonary disease characterized by pathologic vascular remodeling of small pulmonary arteries. Endothelial dysfunction in advanced PAH is associated with proliferation, apoptosis resistance, and endothelial to mesenchymal transition (EndoMT) due to aberrant signaling. DLL4, a cell membrane associated NOTCH ligand, plays a pivotal role maintaining vascular integrity. Inhibition of DLL4 has been associated with the development of pulmonary hypertension, but the mechanism is incompletely understood. Here we report that BMPR2 silencing in pulmonary artery endothelial cells (PAECs) activated AKT and suppressed the expression of DLL4. Consistent with these in vitro findings, increased AKT activation and reduced DLL4 expression was found in the small pulmonary arteries of patients with PAH. Increased NOTCH1 activation through exogenous DLL4 blocked AKT activation, decreased proliferation and reversed EndoMT. Exogenous and overexpression of DLL4 induced BMPR2 and PPRE promoter activity, and BMPR2 and PPARG mRNA in idiopathic PAH (IPAH) ECs. PPARγ, a nuclear receptor associated with EC homeostasis, suppressed by BMPR2 loss was induced and activated by DLL4/NOTCH1 signaling in both BMPR2-silenced and IPAH ECs, reversing aberrant phenotypic changes, in part through AKT inhibition. Directly blocking AKT or restoring DLL4/NOTCH1/PPARγ signaling may be beneficial in preventing or reversing the pathologic vascular remodeling of PAH.
Collapse
MESH Headings
- Humans
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Bone Morphogenetic Protein Receptors, Type II/genetics
- PPAR gamma/metabolism
- PPAR gamma/genetics
- Receptor, Notch1/metabolism
- Receptor, Notch1/genetics
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Endothelial Cells/metabolism
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Calcium-Binding Proteins/metabolism
- Calcium-Binding Proteins/genetics
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/genetics
- Pulmonary Arterial Hypertension/pathology
- Male
- Cell Proliferation
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Female
- Cells, Cultured
Collapse
Affiliation(s)
- Keytam S. Awad
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA; (S.W.); (E.J.D.); (A.K.); (C.Y.D.); (L.M.); (R.L.D.)
| | - Shuibang Wang
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA; (S.W.); (E.J.D.); (A.K.); (C.Y.D.); (L.M.); (R.L.D.)
| | - Edward J. Dougherty
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA; (S.W.); (E.J.D.); (A.K.); (C.Y.D.); (L.M.); (R.L.D.)
| | - Ali Keshavarz
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA; (S.W.); (E.J.D.); (A.K.); (C.Y.D.); (L.M.); (R.L.D.)
| | - Cumhur Y. Demirkale
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA; (S.W.); (E.J.D.); (A.K.); (C.Y.D.); (L.M.); (R.L.D.)
| | - Zu Xi Yu
- Critical Care Medicine and Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; (Z.X.Y.); (J.M.E.)
| | - Latonia Miller
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA; (S.W.); (E.J.D.); (A.K.); (C.Y.D.); (L.M.); (R.L.D.)
| | - Jason M. Elinoff
- Critical Care Medicine and Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; (Z.X.Y.); (J.M.E.)
| | - Robert L. Danner
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA; (S.W.); (E.J.D.); (A.K.); (C.Y.D.); (L.M.); (R.L.D.)
- Critical Care Medicine and Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; (Z.X.Y.); (J.M.E.)
| |
Collapse
|
8
|
Grath A, Dai G. SOX17/ETV2 improves the direct reprogramming of adult fibroblasts to endothelial cells. CELL REPORTS METHODS 2024; 4:100732. [PMID: 38503291 PMCID: PMC10985233 DOI: 10.1016/j.crmeth.2024.100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/07/2023] [Accepted: 02/23/2024] [Indexed: 03/21/2024]
Abstract
An autologous source of vascular endothelial cells (ECs) is valuable for vascular regeneration and tissue engineering without the concern of immune rejection. The transcription factor ETS variant 2 (ETV2) has been shown to directly convert patient fibroblasts into vascular EC-like cells. However, reprogramming efficiency is low and there are limitations in EC functions, such as eNOS expression. In this study, we directly reprogram adult human dermal fibroblasts into reprogrammed ECs (rECs) by overexpressing SOX17 in conjunction with ETV2. We find several advantages to rEC generation using this approach, including improved reprogramming efficiency, increased enrichment of EC genes, formation of large blood vessels carrying blood from the host, and, most importantly, expression of eNOS in vivo. From these results, we present an improved method to reprogram adult fibroblasts into functional ECs and posit ideas for the future that could potentially further improve the reprogramming process.
Collapse
Affiliation(s)
- Alexander Grath
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
9
|
Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ, Boehme AK, Commodore-Mensah Y, Currie ME, Elkind MSV, Evenson KR, Generoso G, Heard DG, Hiremath S, Johansen MC, Kalani R, Kazi DS, Ko D, Liu J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Perman SM, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Tsao CW, Urbut SM, Van Spall HGC, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024; 149:e347-e913. [PMID: 38264914 DOI: 10.1161/cir.0000000000001209] [Citation(s) in RCA: 401] [Impact Index Per Article: 401.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2024 AHA Statistical Update is the product of a full year's worth of effort in 2023 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. The AHA strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional global data, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
10
|
Awad KS, Wang S, Dougherty EJ, Keshavarz A, Demirkale CY, Yu ZX, Miller L, Elinoff JM, Danner RL. Disruption of DLL4/NOTCH1 Causes Dysregulated PPARγ/AKT Signaling in Pulmonary Arterial Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578230. [PMID: 38903104 PMCID: PMC11188078 DOI: 10.1101/2024.01.31.578230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive cardiopulmonary disease characterized by vascular remodeling of small pulmonary arteries. Endothelial dysfunction in advanced PAH is associated with proliferation, apoptosis resistance, and endothelial to mesenchymal transition (EndoMT) due to aberrant signaling. DLL4, a cell membrane associated NOTCH ligand, activates NOTCH1 signaling and plays a pivotal role maintaining vascular integrity. Inhibition of DLL4 has been associated with the development of pulmonary hypertension, but the mechanism is incompletely understood. Here we report that BMPR2 silencing in PAECs activated AKT and decreased DLL4 expression. DLL4 loss was also seen in lungs of patients with IPAH and HPAH. Over-expression of DLL4 in PAECs induced BMPR2 promoter activity and exogenous DLL4 increased BMPR2 mRNA through NOTCH1 activation. Furthermore, DLL4/NOTCH1 signaling blocked AKT activation, decreased proliferation and reversed EndoMT in BMPR2-silenced PAECs and ECs from IPAH patients. PPARγ, suppressed by BMPR2 loss, was induced and activated by DLL4/NOTCH1 signaling in both BMPR2-silenced and IPAH PAECs, reversing aberrant phenotypic changes, in part through AKT inhibition. Finally, leniolisib, a well-tolerated oral PI3Kδ/AKT inhibitor, decreased cell proliferation, induced apoptosis and reversed markers of EndoMT in BMPR2-silenced PAECs. Restoring DLL4/NOTCH1/PPARγ signaling and/or suppressing AKT activation may be beneficial in preventing or reversing the pathologic vascular remodeling of PAH.
Collapse
Affiliation(s)
- Keytam S Awad
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
| | - Shuibang Wang
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
| | - Edward J Dougherty
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
| | - Ali Keshavarz
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
| | - Cumhur Y Demirkale
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
| | - Zu Xi Yu
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, US, 20892
| | - Latonia Miller
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, US, 20892
| | - Jason M Elinoff
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, US, 20892
| | - Robert L Danner
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
| |
Collapse
|
11
|
Al-Qazazi R, Emon IM, Potus F, Martin AY, Lima PDA, Vlasschaert C, Chen KH, Wu D, Gupta AD, Noordhof C, Jefferson L, McNaughton AJM, Bick AG, Pauciulo MW, Nichols WC, Chung WK, Hassoun PM, Damico RL, Rauh MJ, Archer SL. Germline and Somatic Mutations in DNA Methyltransferase 3A (DNMT3A) Predispose to Pulmonary Arterial Hypertension (PAH) in Humans and Mice: Implications for Associated PAH. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.30.23300391. [PMID: 38234783 PMCID: PMC10793539 DOI: 10.1101/2023.12.30.23300391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Background Mutations are found in 10-20% of idiopathic PAH (IPAH) patients, but none are consistently identified in connective tissue disease-associated PAH (APAH), which accounts for ∼45% of PAH cases. TET2 mutations, a cause of clonal hematopoiesis of indeterminant potential (CHIP), predispose to an inflammatory type of PAH. We now examine mutations in another CHIP gene, DNMT3A , in PAH. Methods We assessed DNMT3A mutation prevalence in PAH Biobank subjects as compared with controls, first using whole exome sequencing (WES)-derived CHIP calls in 1832 PAH Biobank patients versus 7509 age-and sex-matched gnomAD controls. We then performed deep, targeted panel sequencing of CHIP genes on a subset of 710 PAH Biobank patients and compared the prevalence of DNMT3A mutations therein to an independent pooled control cohort (N = 3645). In another cohort of 80 PAH patients and 41 controls, DNMT3A mRNA expression was studied in peripheral blood mononuclear cells (PBMCs). Finally, we evaluated the development of PAH in a conditional, hematopoietic, Dnmt3a knockout mouse model. Results DNMT3A mutations were more frequent in PAH cases versus control subjects in the WES dataset (OR 2.60, 95% CI: 1.71-4.27). Among PAH patients, 33 had DNMT3A variants, most of whom had APAH (21/33). While 21/33 had somatic mutations (female:male 17:4), germline variants occurred in 12/33 (female:male 11:1). Hemodynamics were comparable with and without DNMT3A mutations (mPAP=58±21 vs. 52±18 mmHg); however, patients with DNMT3A mutations were unresponsive to acute vasodilator testing. Targeted panel sequencing identified that 14.6% of PAH patients had CHIP mutations (104/710), with DNMT3A accounting for 49/104. There was a significant association between all CHIP mutations and PAH in analyses adjusted for age and sex (OR 1.40, 95% CI: 1.09-1.80), though DNMT3A CHIP alone was not significantly enriched (OR:1.15, 0.82-1.61). DNMT3A expression was reduced in patient-derived versus control PAH-PBMCs. Spontaneous PAH developed in Dnmt3a -/- mice, and it was exacerbated by 3 weeks of hypoxia. Dnmt3a -/- mice had increased lung macrophages and elevated plasma IL-13. The IL-1β antibody canakinumab attenuated PAH in Dnmt3a -/- mice. Conclusions Germline and acquired DNMT3A variants predispose to PAH in humans. DNMT3A mRNA expression is reduced in human PAH PBMCs. Hematopoietic depletion of Dnmt3a causes inflammatory PAH in mice. DNMT3A is a novel APAH gene and may be a biomarker and therapeutic target.
Collapse
|
12
|
Dong L, Zhang L, Li X, Mei S, Shen Y, Fu L, Zhao S, Tang X, Tang Y. Clinical and genetic analysis of two patients with primary ciliary dyskinesia caused by a novel variant of DNAAF2. BMC Pediatr 2023; 23:616. [PMID: 38053031 PMCID: PMC10696777 DOI: 10.1186/s12887-023-04185-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/08/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND The study describes the clinical manifestations and variant screening of two Chinese siblings with primary ciliary dyskinesia (PCD). They carry the same DNAAF2 genotype, which is an extremely rare PCD genotype in the Chinese population. In addition, the study illustrated an overview of published variants on DNAAF2 to date. METHODS A two-child family was recruited for the study. Clinical manifestations, laboratory tests, bronchoscopic and otoscopic images, and radiographic data were collected. Whole blood was collected from siblings and their parents for whole-exome sequencing (WES) and Sanger sequencing to screen variants. RESULTS The two siblings exhibited typical clinical manifestations of PCD. Two compound heterozygous variants in DNAAF2 were detected in both by WES. Nonsense variant c.156 C>A and frameshift variant c.177_178insA, which was a novel variant. CONCLUSION The study identified a novel variant of DNAAF2 in Chinese children with a typical phenotype of PCD, which may enrich our knowledge of the clinical, diagnostic and genetic information of DNAAF2-induced PCD in children.
Collapse
Affiliation(s)
- Lili Dong
- Department of Respiratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Lei Zhang
- Department of Respiratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Xiao Li
- Department of Respiratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Shiyue Mei
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Yuelin Shen
- Department of Respiratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Libing Fu
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shunying Zhao
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaolei Tang
- Department of Respiratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| | - Yu Tang
- Department of Respiratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
| |
Collapse
|
13
|
Simmons Beck R, Liang OD, Klinger JR. Light at the ENDothelium-role of Sox17 and Runx1 in endothelial dysfunction and pulmonary arterial hypertension. Front Cardiovasc Med 2023; 10:1274033. [PMID: 38028440 PMCID: PMC10656768 DOI: 10.3389/fcvm.2023.1274033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease that is characterized by an obliterative vasculopathy of the distal pulmonary circulation. Despite significant progress in our understanding of the pathophysiology, currently approved medical therapies for PAH act primarily as pulmonary vasodilators and fail to address the underlying processes that lead to the development and progression of the disease. Endothelial dysregulation in response to stress, injury or physiologic stimuli followed by perivascular infiltration of immune cells plays a prominent role in the pulmonary vascular remodeling of PAH. Over the last few decades, our understanding of endothelial cell dysregulation has evolved and brought to light a number of transcription factors that play important roles in vascular homeostasis and angiogenesis. In this review, we examine two such factors, SOX17 and one of its downstream targets, RUNX1 and the emerging data that implicate their roles in the pathogenesis of PAH. We review their discovery and discuss their function in angiogenesis and lung vascular development including their roles in endothelial to hematopoietic transition (EHT) and their ability to drive progenitor stem cells toward an endothelial or myeloid fate. We also summarize the data from studies that link mutations in Sox17 with an increased risk of developing PAH and studies that implicate Sox17 and Runx1 in the pathogenesis of PAH. Finally, we review the results of recent studies from our lab demonstrating the efficacy of preventing and reversing pulmonary hypertension in animal models of PAH by deleting RUNX1 expression in endothelial or myeloid cells or by the use of RUNX1 inhibitors. By investigating PAH through the lens of SOX17 and RUNX1 we hope to shed light on the role of these transcription factors in vascular homeostasis and endothelial dysregulation, their contribution to pulmonary vascular remodeling in PAH, and their potential as novel therapeutic targets for treating this devastating disease.
Collapse
Affiliation(s)
- Robert Simmons Beck
- Division of Pulmonary, Sleep and Critical Care Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, United States
| | - Olin D. Liang
- Division of Hematology/Oncology, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, United States
| | - James R. Klinger
- Division of Pulmonary, Sleep and Critical Care Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
14
|
Yi D, Liu B, Ding H, Li S, Li R, Pan J, Ramirez K, Xia X, Kala M, Ye Q, Lee WH, Frye RE, Wang T, Zhao Y, Knox KS, Glembotski CC, Fallon MB, Dai Z. E2F1 Mediates SOX17 Deficiency-Induced Pulmonary Hypertension. Hypertension 2023; 80:2357-2371. [PMID: 37737027 PMCID: PMC10591929 DOI: 10.1161/hypertensionaha.123.21241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Rare genetic variants and genetic variation at loci in an enhancer in SOX17 (SRY-box transcription factor 17) are identified in patients with idiopathic pulmonary arterial hypertension (PAH) and PAH with congenital heart disease. However, the exact role of genetic variants or mutations in SOX17 in PAH pathogenesis has not been reported. METHODS SOX17 expression was evaluated in the lungs and pulmonary endothelial cells (ECs) of patients with idiopathic PAH. Mice with Tie2Cre-mediated Sox17 knockdown and EC-specific Sox17 deletion were generated to determine the role of SOX17 deficiency in the pathogenesis of PAH. Human pulmonary ECs were cultured to understand the role of SOX17 deficiency. Single-cell RNA sequencing, RNA-sequencing analysis, and luciferase assay were performed to understand the underlying molecular mechanisms of SOX17 deficiency-induced PAH. E2F1 (E2F transcription factor 1) inhibitor HLM006474 was used in EC-specific Sox17 mice. RESULTS SOX17 expression was downregulated in the lung and pulmonary ECs from patients with idiopathic PAH. Mice with Tie2Cre-mediated Sox17 knockdown and EC-specific Sox17 deletion induced spontaneously mild pulmonary hypertension. Loss of endothelial Sox17 in EC exacerbated hypoxia-induced pulmonary hypertension in mice. Loss of SOX17 in lung ECs induced endothelial dysfunctions including upregulation of cell cycle programming, proliferative and antiapoptotic phenotypes, augmentation of paracrine effect on pulmonary arterial smooth muscle cells, impaired cellular junction, and BMP (bone morphogenetic protein) signaling. E2F1 signaling was shown to mediate the SOX17 deficiency-induced EC dysfunction. Pharmacological inhibition of E2F1 in Sox17 EC-deficient mice attenuated pulmonary hypertension development. CONCLUSIONS Our study demonstrated that endothelial SOX17 deficiency induces pulmonary hypertension through E2F1. Thus, targeting E2F1 signaling represents a promising approach in patients with PAH.
Collapse
Affiliation(s)
- Dan Yi
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Bin Liu
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Hongxu Ding
- Department of Pharmacy Practice & Science, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Shuai Li
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Rebecca Li
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Jiakai Pan
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Karina Ramirez
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Xiaomei Xia
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Mrinalini Kala
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Qinmao Ye
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Won Hee Lee
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | | | - Ting Wang
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Environmental Health Science and Center of Translational Science, Florida International University, Port Saint Lucie, Florida, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kenneth S. Knox
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Christopher C. Glembotski
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Michael B. Fallon
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Zhiyu Dai
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Sarver Heart Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
15
|
Montani D, Eichstaedt CA, Belge C, Chung WK, Gräf S, Grünig E, Humbert M, Quarck R, Tenorio-Castano JA, Soubrier F, Trembath RC, Morrell NW. [Genetic counselling and testing in pulmonary arterial hypertension - A consensus statement on behalf of the International Consortium for Genetic Studies in PAH - French version]. Rev Mal Respir 2023; 40:838-852. [PMID: 37923650 DOI: 10.1016/j.rmr.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/11/2023] [Indexed: 11/07/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease that can be caused by (likely) pathogenic germline genomic variants. In addition to the most prevalent disease gene, BMPR2 (bone morphogenetic protein receptor 2), several genes, some belonging to distinct functional classes, are also now known to predispose to the development of PAH. As a consequence, specialist and non-specialist clinicians and healthcare professionals are increasingly faced with a range of questions regarding the need for, approaches to and benefits/risks of genetic testing for PAH patients and/or related family members. We provide a consensus-based approach to recommendations for genetic counselling and assessment of current best practice for disease gene testing. We provide a framework and the type of information to be provided to patients and relatives through the process of genetic counselling, and describe the presently known disease causal genes to be analysed. Benefits of including molecular genetic testing within the management protocol of patients with PAH include the identification of individuals misclassified by other diagnostic approaches, the optimisation of phenotypic characterisation for aggregation of outcome data, including in clinical trials, and importantly through cascade screening, the detection of healthy causal variant carriers, to whom regular assessment should be offered.
Collapse
Affiliation(s)
- D Montani
- French Referral Center for Pulmonary Hypertension, Pulmonary Department, hôpital de Bicêtre, AP-HP, université Paris-Saclay, Le Kremlin-Bicêtre, France; Inserm UMR_S999, hôpital Marie-Lannelongue, Le Plessis-Robinson, France.
| | - C A Eichstaedt
- Center for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital, Heidelberg, Allemagne; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Allemagne; Laboratory for Molecular Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Allemagne
| | - C Belge
- Department of Chronic Diseases & Metabolism (CHROMETA), Clinical Department of Respiratory Diseases, University Hospitals, Laboratory of Respiratory Diseases & Thoracic Surgery (BREATHE), University of Leuven, 3000 Leuven, Belgique
| | - W K Chung
- Department of Pediatrics, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, États-Unis
| | - S Gräf
- Department of Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge Biomedical Campus, Cambridge CB2 0BB, Royaume-Uni; Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, Royaume-Uni; NIHR BioResource, for Translational Research - Rare Diseases, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, Royaume-Uni
| | - E Grünig
- Center for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital, Heidelberg, Allemagne; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Allemagne
| | - M Humbert
- French Referral Center for Pulmonary Hypertension, Pulmonary Department, hôpital de Bicêtre, AP-HP, université Paris-Saclay, Le Kremlin-Bicêtre, France; Inserm UMR_S999, hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - R Quarck
- Department of Chronic Diseases & Metabolism (CHROMETA), Clinical Department of Respiratory Diseases, University Hospitals, Laboratory of Respiratory Diseases & Thoracic Surgery (BREATHE), University of Leuven, 3000 Leuven, Belgique
| | - J A Tenorio-Castano
- INGEMM, Instituto de Genética Médica y Molecular, IdiPAZ, Hospital Universitario La Paz, Madrid, Espagne; CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Espagne; ITHACA, European Reference Network, Brussels, Belgique
| | - F Soubrier
- Département de génétique, Inserm UMR_S1166, AP-HP, hôpital Pitié-Salpêtrière, Institute for Cardio-metabolism and Nutrition (ICAN), Sorbonne université, Paris, France
| | - R C Trembath
- Department of Medical & Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, Royaume-Uni
| | - N W Morrell
- Department of Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge Biomedical Campus, Cambridge CB2 0BB, Royaume-Uni; Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, Royaume-Uni
| |
Collapse
|
16
|
Welch CL, Aldred MA, Balachandar S, Dooijes D, Eichstaedt CA, Gräf S, Houweling AC, Machado RD, Pandya D, Prapa M, Shaukat M, Southgate L, Tenorio-Castano J, Chung WK. Defining the clinical validity of genes reported to cause pulmonary arterial hypertension. Genet Med 2023; 25:100925. [PMID: 37422716 PMCID: PMC10766870 DOI: 10.1016/j.gim.2023.100925] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023] Open
Abstract
PURPOSE Pulmonary arterial hypertension (PAH) is a rare, progressive vasculopathy with significant cardiopulmonary morbidity and mortality. Genetic testing is currently recommended for adults diagnosed with heritable, idiopathic, anorexigen-, hereditary hemorrhagic telangiectasia-, and congenital heart disease-associated PAH, PAH with overt features of venous/capillary involvement, and all children diagnosed with PAH. Variants in at least 27 genes have putative evidence for PAH causality. Rigorous assessment of the evidence is needed to inform genetic testing. METHODS An international panel of experts in PAH applied a semi-quantitative scoring system developed by the NIH Clinical Genome Resource to classify the relative strength of evidence supporting PAH gene-disease relationships based on genetic and experimental evidence. RESULTS Twelve genes (BMPR2, ACVRL1, ATP13A3, CAV1, EIF2AK4, ENG, GDF2, KCNK3, KDR, SMAD9, SOX17, and TBX4) were classified as having definitive evidence and 3 genes (ABCC8, GGCX, and TET2) with moderate evidence. Six genes (AQP1, BMP10, FBLN2, KLF2, KLK1, and PDGFD) were classified as having limited evidence for causal effects of variants. TOPBP1 was classified as having no known PAH relationship. Five genes (BMPR1A, BMPR1B, NOTCH3, SMAD1, and SMAD4) were disputed because of a paucity of genetic evidence over time. CONCLUSION We recommend that genetic testing includes all genes with definitive evidence and that caution be taken in the interpretation of variants identified in genes with moderate or limited evidence. Genes with no known evidence for PAH or disputed genes should not be included in genetic testing.
Collapse
Affiliation(s)
- Carrie L Welch
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Micheala A Aldred
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, IN
| | - Srimmitha Balachandar
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, IN
| | - Dennis Dooijes
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Christina A Eichstaedt
- Center for Pulmonary Hypertension, Thoraxklinik-Heidelberg gGmbH, at Heidelberg University Hospital and Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany; Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Stefan Gräf
- NIHR BioResource for Translational Research - Rare Diseases, Department of Haemotology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom; Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Arjan C Houweling
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rajiv D Machado
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Divya Pandya
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Matina Prapa
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom; St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Memoona Shaukat
- Center for Pulmonary Hypertension, Thoraxklinik-Heidelberg gGmbH, at Heidelberg University Hospital and Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany; Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Laura Southgate
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Jair Tenorio-Castano
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IDiPAZ, Universidad Autonoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; ITHACA, European Reference Network, Brussels, Belgium
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY; Department of Medicine, Columbia University Irving Medical Center, New York, NY.
| |
Collapse
|
17
|
Gallego-Zazo N, Miranda-Alcaraz L, Cruz-Utrilla A, del Cerro Marín MJ, Álvarez-Fuente M, del Mar Rodríguez Vázquez del Rey M, Guillén Rodríguez I, Becerra-Munoz VM, Moya-Bonora A, Ochoa Parra N, Parra A, Pascual P, Cazalla M, Silván C, Arias P, Valverde D, de Jesús-Pérez V, Lapunzina P, Escribano-Subías P, Tenorio-Castano J. Seven Additional Patients with SOX17 Related Pulmonary Arterial Hypertension and Review of the Literature. Genes (Basel) 2023; 14:1965. [PMID: 37895315 PMCID: PMC10606077 DOI: 10.3390/genes14101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is an infrequent disorder characterized by high blood pressure in the pulmonary arteries. It may lead to premature death or the requirement for lung and/or heart transplantation. Genetics plays an important and increasing role in the diagnosis of PAH. Here, we report seven additional patients with variants in SOX17 and a review of sixty previously described patients in the literature. Patients described in this study suffered with additional conditions including large septal defects, as described by other groups. Collectively, sixty-seven PAH patients have been reported so far with variants in SOX17, including missense and loss-of-function (LoF) variants. The majority of the loss-of-function variants found in SOX17 were detected in the last exon of the gene. Meanwhile, most missense variants were located within exon one, suggesting a probable tolerated change at the amino terminal part of the protein. In addition, we reported two idiopathic PAH patients presenting with the same variant previously detected in five patients by other studies, suggesting a possible hot spot. Research conducted on PAH associated with congenital heart disease (CHD) indicated that variants in SOX17 might be particularly prevalent in this subgroup, as two out of our seven additional patients presented with CHD. Further research is still necessary to clarify the precise association between the biological pathway of SOX17 and the development of PAH.
Collapse
Affiliation(s)
- Natalia Gallego-Zazo
- Instituto de Genética Médica y Molecular (INGEMM), Instituto de Investigación del Hospital Universitario La Paz (IdiPaz), Hospital Universitario La Paz, 28046 Madrid, Spain; (L.M.-A.); (A.P.); (P.P.); (M.C.); (C.S.); (P.A.); (P.L.)
- CIBERER, Centro de Investigación Biomédica de Enfermedades Raras en Red, Instituto de Salud Carlos III, 28029 Madrid, Spain
- ERN-ITHACA, European Reference Network on Rare Malformations Syndromes, Intellectual and Other Neuro-Developmental Disorders, 75019 Paris, France
| | - Lucía Miranda-Alcaraz
- Instituto de Genética Médica y Molecular (INGEMM), Instituto de Investigación del Hospital Universitario La Paz (IdiPaz), Hospital Universitario La Paz, 28046 Madrid, Spain; (L.M.-A.); (A.P.); (P.P.); (M.C.); (C.S.); (P.A.); (P.L.)
- CIBERER, Centro de Investigación Biomédica de Enfermedades Raras en Red, Instituto de Salud Carlos III, 28029 Madrid, Spain
- ERN-ITHACA, European Reference Network on Rare Malformations Syndromes, Intellectual and Other Neuro-Developmental Disorders, 75019 Paris, France
| | - Alejandro Cruz-Utrilla
- Unidad Multidisciplinar de Hipertensión Pulmonar, Servicio de Cardiología, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (A.C.-U.); (N.O.P.); (P.E.-S.)
- ERN-LUNG, European Reference Network on Rare Lung Diseases (Pulmonary Hypertension), 60596 Frankfurt am Main, Germany
- CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - María Jesús del Cerro Marín
- Unidad de Hipertensión Pulmonar Pediátrica, Servicio de Cardiología Pediátrica, Hospital Universitario Ramón y Cajal, Instituto de Investigación Biomédica del Hospital Universitario Ramón y Cajal (Irycis), 28034 Madrid, Spain; (M.J.d.C.M.); (M.Á.-F.)
| | - María Álvarez-Fuente
- Unidad de Hipertensión Pulmonar Pediátrica, Servicio de Cardiología Pediátrica, Hospital Universitario Ramón y Cajal, Instituto de Investigación Biomédica del Hospital Universitario Ramón y Cajal (Irycis), 28034 Madrid, Spain; (M.J.d.C.M.); (M.Á.-F.)
| | | | | | - Victor Manuel Becerra-Munoz
- CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Unidad de Gestión Clínica Área del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29590 Málaga, Spain
| | - Amparo Moya-Bonora
- Unidad de Cardiología Pediátrica, Departamento de Pediatría, Hospital Universitario La Fe, 46026 Valencia, Spain;
| | - Nuria Ochoa Parra
- Unidad Multidisciplinar de Hipertensión Pulmonar, Servicio de Cardiología, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (A.C.-U.); (N.O.P.); (P.E.-S.)
- ERN-LUNG, European Reference Network on Rare Lung Diseases (Pulmonary Hypertension), 60596 Frankfurt am Main, Germany
- CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Alejandro Parra
- Instituto de Genética Médica y Molecular (INGEMM), Instituto de Investigación del Hospital Universitario La Paz (IdiPaz), Hospital Universitario La Paz, 28046 Madrid, Spain; (L.M.-A.); (A.P.); (P.P.); (M.C.); (C.S.); (P.A.); (P.L.)
- CIBERER, Centro de Investigación Biomédica de Enfermedades Raras en Red, Instituto de Salud Carlos III, 28029 Madrid, Spain
- ERN-ITHACA, European Reference Network on Rare Malformations Syndromes, Intellectual and Other Neuro-Developmental Disorders, 75019 Paris, France
| | - Patricia Pascual
- Instituto de Genética Médica y Molecular (INGEMM), Instituto de Investigación del Hospital Universitario La Paz (IdiPaz), Hospital Universitario La Paz, 28046 Madrid, Spain; (L.M.-A.); (A.P.); (P.P.); (M.C.); (C.S.); (P.A.); (P.L.)
- CIBERER, Centro de Investigación Biomédica de Enfermedades Raras en Red, Instituto de Salud Carlos III, 28029 Madrid, Spain
- ERN-ITHACA, European Reference Network on Rare Malformations Syndromes, Intellectual and Other Neuro-Developmental Disorders, 75019 Paris, France
| | - Mario Cazalla
- Instituto de Genética Médica y Molecular (INGEMM), Instituto de Investigación del Hospital Universitario La Paz (IdiPaz), Hospital Universitario La Paz, 28046 Madrid, Spain; (L.M.-A.); (A.P.); (P.P.); (M.C.); (C.S.); (P.A.); (P.L.)
- CIBERER, Centro de Investigación Biomédica de Enfermedades Raras en Red, Instituto de Salud Carlos III, 28029 Madrid, Spain
- ERN-ITHACA, European Reference Network on Rare Malformations Syndromes, Intellectual and Other Neuro-Developmental Disorders, 75019 Paris, France
| | - Cristina Silván
- Instituto de Genética Médica y Molecular (INGEMM), Instituto de Investigación del Hospital Universitario La Paz (IdiPaz), Hospital Universitario La Paz, 28046 Madrid, Spain; (L.M.-A.); (A.P.); (P.P.); (M.C.); (C.S.); (P.A.); (P.L.)
- CIBERER, Centro de Investigación Biomédica de Enfermedades Raras en Red, Instituto de Salud Carlos III, 28029 Madrid, Spain
- ERN-ITHACA, European Reference Network on Rare Malformations Syndromes, Intellectual and Other Neuro-Developmental Disorders, 75019 Paris, France
| | - Pedro Arias
- Instituto de Genética Médica y Molecular (INGEMM), Instituto de Investigación del Hospital Universitario La Paz (IdiPaz), Hospital Universitario La Paz, 28046 Madrid, Spain; (L.M.-A.); (A.P.); (P.P.); (M.C.); (C.S.); (P.A.); (P.L.)
- CIBERER, Centro de Investigación Biomédica de Enfermedades Raras en Red, Instituto de Salud Carlos III, 28029 Madrid, Spain
- ERN-ITHACA, European Reference Network on Rare Malformations Syndromes, Intellectual and Other Neuro-Developmental Disorders, 75019 Paris, France
| | - Diana Valverde
- Centro de Investigación en Nonomateriais e Biomedicina (CINBIO), Universidad de Vigo, 36310 Vigo, Spain;
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36310 Vigo, Spain
- Centro de Investigaciones Biomédicas (CINBIO), 36310 Vigo, Spain
| | - Vinicio de Jesús-Pérez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM), Instituto de Investigación del Hospital Universitario La Paz (IdiPaz), Hospital Universitario La Paz, 28046 Madrid, Spain; (L.M.-A.); (A.P.); (P.P.); (M.C.); (C.S.); (P.A.); (P.L.)
- CIBERER, Centro de Investigación Biomédica de Enfermedades Raras en Red, Instituto de Salud Carlos III, 28029 Madrid, Spain
- ERN-ITHACA, European Reference Network on Rare Malformations Syndromes, Intellectual and Other Neuro-Developmental Disorders, 75019 Paris, France
| | - Pilar Escribano-Subías
- Unidad Multidisciplinar de Hipertensión Pulmonar, Servicio de Cardiología, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (A.C.-U.); (N.O.P.); (P.E.-S.)
- ERN-LUNG, European Reference Network on Rare Lung Diseases (Pulmonary Hypertension), 60596 Frankfurt am Main, Germany
- CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Jair Tenorio-Castano
- Instituto de Genética Médica y Molecular (INGEMM), Instituto de Investigación del Hospital Universitario La Paz (IdiPaz), Hospital Universitario La Paz, 28046 Madrid, Spain; (L.M.-A.); (A.P.); (P.P.); (M.C.); (C.S.); (P.A.); (P.L.)
- CIBERER, Centro de Investigación Biomédica de Enfermedades Raras en Red, Instituto de Salud Carlos III, 28029 Madrid, Spain
- ERN-ITHACA, European Reference Network on Rare Malformations Syndromes, Intellectual and Other Neuro-Developmental Disorders, 75019 Paris, France
| |
Collapse
|
18
|
Sullivan RT, Raj JU, Austin ED. Recent Advances in Pediatric Pulmonary Hypertension: Implications for Diagnosis and Treatment. Clin Ther 2023; 45:901-912. [PMID: 37517916 DOI: 10.1016/j.clinthera.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023]
Abstract
PURPOSE Pediatric pulmonary hypertension (PH) is a condition characterized by elevated pulmonary arterial pressure, which has the potential to be life-limiting. The etiology of pediatric PH varies. When compared with adult cohorts, the etiology is often multifactorial, with contributions from prenatal, genetic, and developmental factors. This review aims to provide an up-to-date overview of the causes and classification of pediatric PH, describe current therapeutics in pediatric PH, and discuss upcoming and necessary research in pediatric PH. METHODS PubMed was searched for articles relating to pediatric pulmonary hypertension, with a particular focus on articles published within the past 10 years. Literature was reviewed for pertinent areas related to this topic. FINDINGS The evaluation and approach to pediatric PH are unique when compared with that of adults, in large part because of the different, often multifactorial, causes of the disease in children. Collaborative registry studies have found that the most common disease causes include developmental lung disease and subsets of pulmonary arterial hypertension, which includes genetic variants and PH associated with congenital heart disease. Treatment with PH-targeted therapies in pediatrics is often guided by extrapolation of adult data, small clinical studies in pediatrics, and/or expert consensus opinion. We review diagnostic considerations and treatment in some of the more common pediatric subpopulations of patients with PH, including developmental lung diseases, congenital heart disease, and trisomy 21. IMPLICATIONS The care of pediatric patients with PH requires consideration of unique pediatric-specific factors. With significant variability in disease etiology, ongoing efforts are needed to optimize treatment strategies based on disease phenotype and guide evidence-based practices.
Collapse
Affiliation(s)
- Rachel T Sullivan
- Department of Pediatrics, Division of Cardiology, Vanderbilt University Medical Center, Monroe Carrell Jr Children's Hospital, Nashville, Tennessee.
| | - J Usha Raj
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Eric D Austin
- Department of Pediatrics, Division of Pulmonary Medicine, Vanderbilt University Medical Center, Monroe Carrell Jr Children's Hospital, Nashville, Tennessee
| |
Collapse
|
19
|
Ishida H, Maeda J, Uchida K, Yamagishi H. Unique Pulmonary Hypertensive Vascular Diseases Associated with Heart and Lung Developmental Defects. J Cardiovasc Dev Dis 2023; 10:333. [PMID: 37623346 PMCID: PMC10455332 DOI: 10.3390/jcdd10080333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/10/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
Although pediatric pulmonary hypertension (PH) shares features and mechanisms with adult PH, there are also some significant differences between the two conditions. Segmental PH is a unique pediatric subtype of PH with unclear and/or multifactorial pathophysiological mechanisms, and is often associated with complex congenital heart disease (CHD), pulmonary atresia with ventricular septal defect, and aortopulmonary collateral arteries. Some cases of complex CHD, associated with a single ventricle after Fontan operation, show pathological changes in the small peripheral pulmonary arteries and pulmonary vascular resistance similar to those observed in pulmonary arterial hypertension (PAH). This condition is termed as the pediatric pulmonary hypertensive vascular disease (PPHVD). Recent advances in genetics have identified the genes responsible for PAH associated with developmental defects of the heart and lungs, such as TBX4 and SOX17. Targeted therapies for PAH have been developed; however, their effects on PH associated with developmental heart and lung defects remain to be established. Real-world data analyses on the anatomy, pathophysiology, genetics, and molecular biology of unique PPHVD cases associated with developmental defects of the heart and lungs, using nationwide and/or international registries, should be conducted in order to improve the treatments and prognosis of patients with these types of pediatric PH.
Collapse
Affiliation(s)
- Hidekazu Ishida
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan;
| | - Jun Maeda
- Department of Cardiology, Tokyo Metropolitan Children’s Medical Center, 2-8-29 Musashidai, Fuchu 183-8561, Tokyo, Japan;
| | - Keiko Uchida
- Department of Pediatrics, Keio University of Medicine, 35 Shinanomachi, Shinjuku-ku 160-8582, Tokyo, Japan;
- Keio University Health Center, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama 223-8521, Kanagawa, Japan
| | - Hiroyuki Yamagishi
- Department of Pediatrics, Keio University of Medicine, 35 Shinanomachi, Shinjuku-ku 160-8582, Tokyo, Japan;
| |
Collapse
|
20
|
Zhao Y, Jia H, Hua X, An T, Song J. Cardio-oncology: Shared Genetic, Metabolic, and Pharmacologic Mechanism. Curr Cardiol Rep 2023; 25:863-878. [PMID: 37493874 PMCID: PMC10403418 DOI: 10.1007/s11886-023-01906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 07/27/2023]
Abstract
PURPOSE OF REVIEW The article aims to investigate the complex relationship between cancer and cardiovascular disease (CVD), with a focus on the effects of cancer treatment on cardiac health. RECENT FINDINGS Advances in cancer treatment have improved long-term survival rates, but CVD has emerged as a leading cause of morbidity and mortality in cancer patients. The interplay between cancer itself, treatment methods, homeostatic changes, and lifestyle modifications contributes to this comorbidity. Recent research in the field of cardio-oncology has revealed common genetic mutations, risk factors, and metabolic features associated with the co-occurrence of cancer and CVD. This article provides a comprehensive review of the latest research in cardio-oncology, including common genetic mutations, risk factors, and metabolic features, and explores the interactions between cancer treatment and CVD drugs, proposing novel approaches for the management of cancer and CVD.
Collapse
Affiliation(s)
- Yiqi Zhao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Tao An
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| |
Collapse
|
21
|
Balistrieri A, Makino A, Yuan JXJ. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca 2+ signaling. Physiol Rev 2023; 103:1827-1897. [PMID: 36422993 PMCID: PMC10110735 DOI: 10.1152/physrev.00030.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Harvard University, Cambridge, Massachusetts
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
22
|
Zufiaurre-Seijo M, García-Arumí J, Duarri A. Clinical and Molecular Aspects of C2orf71/PCARE in Retinal Diseases. Int J Mol Sci 2023; 24:10670. [PMID: 37445847 DOI: 10.3390/ijms241310670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Mutations in the photoreceptor-specific C2orf71 gene (also known as photoreceptor cilium actin regulator protein PCARE) cause autosomal recessive retinitis pigmentosa type 54 and cone-rod dystrophy. No treatments are available for patients with C2orf71 retinal ciliopathies exhibiting a severe clinical phenotype. Our understanding of the disease process and the role of PCARE in the healthy retina significantly limits our capacity to transfer recent technical developments into viable therapy choices. This study summarizes the current understanding of C2orf71-related retinal diseases, including their clinical manifestations and an unclear genotype-phenotype correlation. It discusses molecular and functional studies on the photoreceptor-specific ciliary PCARE, focusing on the photoreceptor cell and its ciliary axoneme. It is proposed that PCARE is an actin-associated protein that interacts with WASF3 to regulate the actin-driven expansion of the ciliary membrane during the development of a new outer segment disk in photoreceptor cells. This review also introduces various cellular and animal models used to model these diseases and provides an overview of potential treatments.
Collapse
Affiliation(s)
- Maddalen Zufiaurre-Seijo
- Ophthalmology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, 08035 Barcelona, Spain
| | - José García-Arumí
- Ophthalmology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, 08035 Barcelona, Spain
| | - Anna Duarri
- Ophthalmology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, 08035 Barcelona, Spain
| |
Collapse
|
23
|
Walters R, Vasilaki E, Aman J, Chen CN, Wu Y, Liang OD, Ashek A, Dubois O, Zhao L, Sabrin F, Cebola I, Ferrer J, Morrell NW, Klinger JR, Wilkins MR, Zhao L, Rhodes CJ. SOX17 Enhancer Variants Disrupt Transcription Factor Binding And Enhancer Inactivity Drives Pulmonary Hypertension. Circulation 2023; 147:1606-1621. [PMID: 37066790 PMCID: PMC7614572 DOI: 10.1161/circulationaha.122.061940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/15/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a rare disease characterized by remodeling of the pulmonary arteries, increased vascular resistance, and right-sided heart failure. Genome-wide association studies of idiopathic/heritable PAH established novel genetic risk variants, including conserved enhancers upstream of transcription factor (TF) SOX17 containing 2 independent signals. SOX17 is an important TF in embryonic development and in the homeostasis of pulmonary artery endothelial cells (hPAEC) in the adult. Rare pathogenic mutations in SOX17 cause heritable PAH. We hypothesized that PAH risk alleles in an enhancer region impair TF-binding upstream of SOX17, which in turn reduces SOX17 expression and contributes to disturbed endothelial cell function and PAH development. METHODS CRISPR manipulation and siRNA were used to modulate SOX17 expression. Electromobility shift assays were used to confirm in silico-predicted TF differential binding to the SOX17 variants. Functional assays in hPAECs were used to establish the biological consequences of SOX17 loss. In silico analysis with the connectivity map was used to predict compounds that rescue disturbed SOX17 signaling. Mice with deletion of the SOX17-signal 1 enhancer region (SOX17-4593/enhKO) were phenotyped in response to chronic hypoxia and SU5416/hypoxia. RESULTS CRISPR inhibition of SOX17-signal 2 and deletion of SOX17-signal 1 specifically decreased SOX17 expression. Electromobility shift assays demonstrated differential binding of hPAEC nuclear proteins to the risk and nonrisk alleles from both SOX17 signals. Candidate TFs HOXA5 and ROR-α were identified through in silico analysis and antibody electromobility shift assays. Analysis of the hPAEC transcriptomes revealed alteration of PAH-relevant pathways on SOX17 silencing, including extracellular matrix regulation. SOX17 silencing in hPAECs resulted in increased apoptosis, proliferation, and disturbance of barrier function. With the use of the connectivity map, compounds were identified that reversed the SOX17-dysfunction transcriptomic signatures in hPAECs. SOX17 enhancer knockout in mice reduced lung SOX17 expression, resulting in more severe pulmonary vascular leak and hypoxia or SU5416/hypoxia-induced pulmonary hypertension. CONCLUSIONS Common PAH risk variants upstream of the SOX17 promoter reduce endothelial SOX17 expression, at least in part, through differential binding of HOXA5 and ROR-α. Reduced SOX17 expression results in disturbed hPAEC function and PAH. Existing drug compounds can reverse the disturbed SOX17 pulmonary endothelial transcriptomic signature.
Collapse
Affiliation(s)
- Rachel Walters
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Eleni Vasilaki
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Jurjan Aman
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
- Department of Pulmonary Medicine, Amsterdam University Medical Center, The Netherlands (J.A.)
| | - Chien-Nien Chen
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Yukyee Wu
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Olin D Liang
- Division of Hematology/Oncology, Department of Medicine (O.D.L.), Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence
| | - Ali Ashek
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Olivier Dubois
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Lin Zhao
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Farah Sabrin
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Inês Cebola
- Section of Genetics & Genomics, Department of Metabolism, Digestion & Reproduction, Hammersmith Hospital, Imperial College, London, United Kingdom (I.C., J.F.)
| | - Jorge Ferrer
- Section of Genetics & Genomics, Department of Metabolism, Digestion & Reproduction, Hammersmith Hospital, Imperial College, London, United Kingdom (I.C., J.F.)
- Computational Biology and Health Genomics Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Spain (J.F.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain (J.F.)
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, United Kingdom (N.W.M.)
- NIHR BioResource for Translational Research, University of Cambridge, United Kingdom (N.W.M.)
- On Behalf of the British Heart Foundation/Medical Research Council UK PAH Cohort Consortium (N.W.M., M.R.W., C.J.R.)
| | - James R Klinger
- Division of Pulmonary, Sleep and Critical Care Medicine, Department of Medicine (J.R.K.), Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence
| | - Martin R Wilkins
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
- On Behalf of the British Heart Foundation/Medical Research Council UK PAH Cohort Consortium (N.W.M., M.R.W., C.J.R.)
| | - Lan Zhao
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
| | - Christopher J Rhodes
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London, United Kingdom (R.W., E.V., J.A., C.-N.C., Y.W., A.A., O.D., L.Z., F.S., M.R.W., L.Z., C.J.R.)
- On Behalf of the British Heart Foundation/Medical Research Council UK PAH Cohort Consortium (N.W.M., M.R.W., C.J.R.)
| |
Collapse
|
24
|
Benincasa G, Napoli C, Loscalzo J, Maron BA. Pursuing functional biomarkers in complex disease: Focus on pulmonary arterial hypertension. Am Heart J 2023; 258:96-113. [PMID: 36565787 DOI: 10.1016/j.ahj.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 05/11/2023]
Abstract
A major gap in diagnosis, classification, risk stratification, and prediction of therapeutic response exists in pulmonary arterial hypertension (PAH), driven in part by a lack of functional biomarkers that are also disease-specific. In this regard, leveraging big data-omics analyses using innovative approaches that integrate network medicine and machine learning correlated with clinically useful indices or risk stratification scores is an approach well-positioned to advance PAH precision medicine. For example, machine learning applied to a panel of 48 cytokines, chemokines, and growth factors could prognosticate PAH patients with immune-dominant subphenotypes at elevated or low-risk for mortality. Here, we discuss strengths and weaknesses of the most current studies evaluating omics-derived biomarkers in PAH. Progress in this field is offset by studies with small sample size, pervasive limitations in bioinformatics, and lack of standardized methods for data processing and interpretation. Future success in this field, in turn, is likely to hinge on mechanistic validation of data outputs in order to couple functional biomarker data with target-specific therapeutics in clinical practice.
Collapse
Affiliation(s)
- Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Bradley A Maron
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA.
| |
Collapse
|
25
|
Karolak JA, Welch CL, Mosimann C, Bzdęga K, West JD, Montani D, Eyries M, Mullen MP, Abman SH, Prapa M, Gräf S, Morrell NW, Hemnes AR, Perros F, Hamid R, Logan MPO, Whitsett J, Galambos C, Stankiewicz P, Chung WK, Austin ED. Molecular Function and Contribution of TBX4 in Development and Disease. Am J Respir Crit Care Med 2023; 207:855-864. [PMID: 36367783 PMCID: PMC10111992 DOI: 10.1164/rccm.202206-1039tr] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past decade, recognition of the profound impact of the TBX4 (T-box 4) gene, which encodes a member of the evolutionarily conserved family of T-box-containing transcription factors, on respiratory diseases has emerged. The developmental importance of TBX4 is emphasized by the association of TBX4 variants with congenital disorders involving respiratory and skeletal structures; however, the exact role of TBX4 in human development remains incompletely understood. Here, we discuss the developmental, tissue-specific, and pathological TBX4 functions identified through human and animal studies and review the published TBX4 variants resulting in variable disease phenotypes. We also outline future research directions to fill the gaps in our understanding of TBX4 function and of how TBX4 disruption affects development.
Collapse
Affiliation(s)
- Justyna A. Karolak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | - Katarzyna Bzdęga
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - James D. West
- Division of Allergy, Pulmonary and Critical Care Medicine, and
| | - David Montani
- Université Paris-Saclay, Assistance Publique–Hôpitaux de Paris, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, DMU 5 Thorinno, Inserm UMR_S999, Le Kremlin-Bicêtre, France
| | - Mélanie Eyries
- Sorbonne Université, AP-HP, Département de Génétique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Mary P. Mullen
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Matina Prapa
- St. George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Stefan Gräf
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge, United Kingdom
| | - Nicholas W. Morrell
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge, United Kingdom
| | - Anna R. Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, and
| | - Frédéric Perros
- Université Paris-Saclay, Assistance Publique–Hôpitaux de Paris, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, DMU 5 Thorinno, Inserm UMR_S999, Le Kremlin-Bicêtre, France
| | - Rizwan Hamid
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Malcolm P. O. Logan
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Jeffrey Whitsett
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Perinatal Institute, Cincinnati, Ohio
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Csaba Galambos
- Department of Pathology, University of Colorado School of Medicine, and Children’s Hospital Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Wendy K. Chung
- Department of Pediatrics and
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Eric D. Austin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
26
|
Yang L, Wan N, Gong F, Wang X, Feng L, Liu G. Transcription factors and potential therapeutic targets for pulmonary hypertension. Front Cell Dev Biol 2023; 11:1132060. [PMID: 37009479 PMCID: PMC10064017 DOI: 10.3389/fcell.2023.1132060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Pulmonary hypertension (PH) is a refractory and fatal disease characterized by excessive pulmonary arterial cell remodeling. Uncontrolled proliferation and hypertrophy of pulmonary arterial smooth muscle cells (PASMCs), dysfunction of pulmonary arterial endothelial cells (PAECs), and abnormal perivascular infiltration of immune cells result in pulmonary arterial remodeling, followed by increased pulmonary vascular resistance and pulmonary pressure. Although various drugs targeting nitric oxide, endothelin-1 and prostacyclin pathways have been used in clinical settings, the mortality of pulmonary hypertension remains high. Multiple molecular abnormalities have been implicated in pulmonary hypertension, changes in numerous transcription factors have been identified as key regulators in pulmonary hypertension, and a role for pulmonary vascular remodeling has been highlighted. This review consolidates evidence linking transcription factors and their molecular mechanisms, from pulmonary vascular intima PAECs, vascular media PASMCs, and pulmonary arterial adventitia fibroblasts to pulmonary inflammatory cells. These findings will improve the understanding of particularly interactions between transcription factor-mediated cellular signaling pathways and identify novel therapies for pulmonary hypertension.
Collapse
Affiliation(s)
- Liu Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Naifu Wan
- Department of Vascular & Cardiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fanpeng Gong
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xianfeng Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Guizhu Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Guizhu Liu,
| |
Collapse
|
27
|
Zhao M, Liu J, Xin M, Yang K, Huang H, Zhang W, Zhang J, He S. Pulmonary arterial hypertension associated with congenital heart disease: An omics study. Front Cardiovasc Med 2023; 10:1037357. [PMID: 36970344 PMCID: PMC10036813 DOI: 10.3389/fcvm.2023.1037357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Pulmonary arterial hypertension associated with congenital heart disease (PAH-CHD) is a severely progressive condition with uncertain physiological course. Hence, it has become increasingly relevant to clarify the specific mechanisms of molecular modification, which is crucial to identify more treatment strategies. With the rapid development of high-throughput sequencing, omics technology gives access to massive experimental data and advanced techniques for systems biology, permitting comprehensive assessment of disease occurrence and progression. In recent years, significant progress has been made in the study of PAH-CHD and omics. To provide a comprehensive description and promote further in-depth investigation of PAH-CHD, this review attempts to summarize the latest developments in genomics, transcriptomics, epigenomics, proteomics, metabolomics, and multi-omics integration.
Collapse
Affiliation(s)
- Maolin Zhao
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Jiaotong University, General Hospital of Western Theater Command, Chengdu, China
| | - Jian Liu
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Jiaotong University, General Hospital of Western Theater Command, Chengdu, China
| | - Mei Xin
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Jiaotong University, General Hospital of Western Theater Command, Chengdu, China
| | - Ke Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Jiaotong University, General Hospital of Western Theater Command, Chengdu, China
| | - Honghao Huang
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Jiaotong University, General Hospital of Western Theater Command, Chengdu, China
| | - Wenxin Zhang
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Jiaotong University, General Hospital of Western Theater Command, Chengdu, China
| | - Jinbao Zhang
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Jiaotong University, General Hospital of Western Theater Command, Chengdu, China
| | - Siyi He
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Jiaotong University, General Hospital of Western Theater Command, Chengdu, China
- Correspondence: Siyi He
| |
Collapse
|
28
|
Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Fugar S, Generoso G, Heard DG, Hiremath S, Ho JE, Kalani R, Kazi DS, Ko D, Levine DA, Liu J, Ma J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Virani SS, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023; 147:e93-e621. [PMID: 36695182 DOI: 10.1161/cir.0000000000001123] [Citation(s) in RCA: 1887] [Impact Index Per Article: 943.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2023 Statistical Update is the product of a full year's worth of effort in 2022 by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. The American Heart Association strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional COVID-19 (coronavirus disease 2019) publications, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
29
|
Yi D, Liu B, Ding H, Li S, Li R, Pan J, Ramirez K, Xia X, Kala M, Singh I, Ye Q, Lee WH, Frye RE, Wang T, Zhao Y, Knox KS, Glembotski CC, Fallon MB, Dai Z. E2F1 Mediates SOX17 Deficiency-Induced Pulmonary Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528740. [PMID: 36824855 PMCID: PMC9949178 DOI: 10.1101/2023.02.15.528740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Rationale Rare genetic variants and genetic variation at loci in an enhancer in SRY-Box Transcription Factor 17 (SOX17) are identified in patients with idiopathic pulmonary arterial hypertension (PAH) and PAH with congenital heart disease. However, the exact role of genetic variants or mutation in SOX17 in PAH pathogenesis has not been reported. Objectives To investigate the role of SOX17 deficiency in pulmonary hypertension (PH) development. Methods Human lung tissue and endothelial cells (ECs) from IPAH patients were used to determine the expression of SOX17. Tie2Cre-mediated and EC-specific deletion of Sox17 mice were assessed for PH development. Single-cell RNA sequencing analysis, human lung ECs, and smooth muscle cell culture were performed to determine the role and mechanisms of SOX17 deficiency. A pharmacological approach was used in Sox17 deficiency mice for therapeutic implication. Measurement and Main Results SOX17 expression was downregulated in the lungs and pulmonary ECs of IPAH patients. Mice with Tie2Cre mediated Sox17 knockdown and EC-specific Sox17 deletion developed spontaneously mild PH. Loss of endothelial Sox17 in EC exacerbated hypoxia-induced PH in mice. Loss of SOX17 in lung ECs induced endothelial dysfunctions including upregulation of cell cycle programming, proliferative and anti-apoptotic phenotypes, augmentation of paracrine effect on pulmonary arterial smooth muscle cells, impaired cellular junction, and BMP signaling. E2F Transcription Factor 1 (E2F1) signaling was shown to mediate the SOX17 deficiency-induced EC dysfunction and PH development. Conclusions Our study demonstrated that endothelial SOX17 deficiency induces PH through E2F1 and targeting E2F1 signaling represents a promising approach in PAH patients.
Collapse
Affiliation(s)
- Dan Yi
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Bin Liu
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Hongxu Ding
- Department of Pharmacy Practice & Science, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Shuai Li
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Rebecca Li
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Jiakai Pan
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Karina Ramirez
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Xiaomei Xia
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Mrinalini Kala
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Indrapal Singh
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Qinmao Ye
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Won Hee Lee
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | | | - Ting Wang
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Environmental Health Science and Center of Translational Science, Florida International University, Port Saint Lucie, Florida, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kenneth S. Knox
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Christopher C. Glembotski
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Michael B. Fallon
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Zhiyu Dai
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Sarver Heart Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
30
|
Eichstaedt CA, Belge C, Chung WK, Gräf S, Grünig E, Montani D, Quarck R, Tenorio-Castano JA, Soubrier F, Trembath RC, Morrell NW. Genetic counselling and testing in pulmonary arterial hypertension: a consensus statement on behalf of the International Consortium for Genetic Studies in PAH. Eur Respir J 2023; 61:2201471. [PMID: 36302552 PMCID: PMC9947314 DOI: 10.1183/13993003.01471-2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease that can be caused by (likely) pathogenic germline genomic variants. In addition to the most prevalent disease gene, BMPR2 (bone morphogenetic protein receptor 2), several genes, some belonging to distinct functional classes, are also now known to predispose to the development of PAH. As a consequence, specialist and non-specialist clinicians and healthcare professionals are increasingly faced with a range of questions regarding the need for, approaches to and benefits/risks of genetic testing for PAH patients and/or related family members. We provide a consensus-based approach to recommendations for genetic counselling and assessment of current best practice for disease gene testing. We provide a framework and the type of information to be provided to patients and relatives through the process of genetic counselling, and describe the presently known disease causal genes to be analysed. Benefits of including molecular genetic testing within the management protocol of patients with PAH include the identification of individuals misclassified by other diagnostic approaches, the optimisation of phenotypic characterisation for aggregation of outcome data, including in clinical trials, and importantly through cascade screening, the detection of healthy causal variant carriers, to whom regular assessment should be offered.
Collapse
Affiliation(s)
- Christina A Eichstaedt
- Center for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Catharina Belge
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), Clinical Department of Respiratory Diseases, University Hospitals, University of Leuven, Leuven, Belgium
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Stefan Gräf
- Department of Medicine, Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- NIHR BioResource for Translational Research - Rare Diseases, University of Cambridge, Cambridge, UK
| | - Ekkehard Grünig
- Center for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - David Montani
- Université Paris-Saclay, AP-HP, French Referral Center for Pulmonary Hypertension, Pulmonary Department, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
- INSERM UMR_S999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Rozenn Quarck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), Clinical Department of Respiratory Diseases, University Hospitals, University of Leuven, Leuven, Belgium
| | - Jair A Tenorio-Castano
- INGEMM, Instituto de Genética Médica y Molecular, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- CIBERER (Centro de Investigación Biomédica en Red de Enfermedades Raras), Madrid, Spain
- ITHACA, European Reference Network, Brussels, Belgium
| | - Florent Soubrier
- Sorbonne Université, AP-HP, Département de Génétique, INSERM UMR_S1166, Sorbonne Université, Institute for Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Richard C Trembath
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Nicholas W Morrell
- Department of Medicine, Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| |
Collapse
|
31
|
Wan Q, Liu H, Xu Y, Zhang Q, Tao L. Upregulated miR-194-5p suppresses retinal microvascular endothelial cell dysfunction and mitigates the symptoms of hypertensive retinopathy in mice by targeting SOX17 and VEGF signaling. Cell Cycle 2023; 22:331-346. [PMID: 36200131 PMCID: PMC9851258 DOI: 10.1080/15384101.2022.2119514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 04/05/2022] [Accepted: 08/11/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Hypertensive retinopathy (HR) is a retinal disease that may lead to vision loss and blindness. Sex-determining region Y (SRY)-box (SOX) family transcription factors have been reported to be involved in HR development. In this study, the role and upstream mechanism of SRY-box transcription factor 17 (SOX17) in HR pathogenesis were investigated. METHODS SOX17 and miR-194-5p levels in Angiotensin II (Ang II)-stimulated human retinal microvascular endothelial cells (HRMECs) and retinas of mice were detected by RT-qPCR. SOX17 protein level as well as levels of tight junction proteins and vascular endothelial growth factor (VEGF) signaling-associated proteins were quantified by western blotting. Tube formation assays were performed to evaluate angiogenesis in HRMECs. The structure of mouse retinal tissues was observed by H&E staining. The interaction between miR-194-5p and SOX17 was confirmed by a luciferase reporter assay. RESULTS SOX17 was upregulated in HRMECs treated with Ang II. SOX17 knockdown inhibited angiogenesis in Ang II-stimulated HRMECs and increased tight junction protein levels. Mechanically, SOX17 was targeted by miR-194-5p. Moreover, miR-194-5p upregulation restrained angiogenesis and increased tight junction protein levels in Ang II-treated HRMECs, and the effect was reversed by SOX17 overexpression. MiR-194-5p elevation inactivated VEGF signaling via targeting SOX17. miR-194-5p alleviated pathological symptoms of HR in Ang II-treated mice, and its expression was negatively correlated with SOX17 expression in the retinas of model mice. CONCLUSIONS MiR-194-5p upregulation suppressed Ang II-stimulated HRMEC dysfunction and mitigates the symptoms of HR in mice by regulating the SOX17/VEGF signaling.
Collapse
Affiliation(s)
- Qianqian Wan
- Department of Ophthalmology, The Second Hospital of Anhui Medical University institution, Hefei, Anhui, China
| | - Heting Liu
- Department of Ophthalmology, The Second Hospital of Anhui Medical University institution, Hefei, Anhui, China
| | - Yuxin Xu
- Department of Ophthalmology, The Second Hospital of Anhui Medical University institution, Hefei, Anhui, China
| | - Qing Zhang
- Department of Ophthalmology, The Second Hospital of Anhui Medical University institution, Hefei, Anhui, China
| | - Liming Tao
- Department of Ophthalmology, The Second Hospital of Anhui Medical University institution, Hefei, Anhui, China
| |
Collapse
|
32
|
Körbelin J, Klein J, Matuszcak C, Runge J, Harbaum L, Klose H, Hennigs JK. Transcription factors in the pathogenesis of pulmonary arterial hypertension-Current knowledge and therapeutic potential. Front Cardiovasc Med 2023; 9:1036096. [PMID: 36684555 PMCID: PMC9853303 DOI: 10.3389/fcvm.2022.1036096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/21/2022] [Indexed: 01/09/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease characterized by elevated pulmonary vascular resistance and pulmonary artery pressure. Mortality remains high in severe cases despite significant advances in management and pharmacotherapy. Since currently approved PAH therapies are unable to significantly reverse pathological vessel remodeling, novel disease-modifying, targeted therapeutics are needed. Pathogenetically, PAH is characterized by vessel wall cell dysfunction with consecutive remodeling of the pulmonary vasculature and the right heart. Transcription factors (TFs) regulate the process of transcribing DNA into RNA and, in the pulmonary circulation, control the response of pulmonary vascular cells to macro- and microenvironmental stimuli. Often, TFs form complex protein interaction networks with other TFs or co-factors to allow for fine-tuning of gene expression. Therefore, identification of the underlying molecular mechanisms of TF (dys-)function is essential to develop tailored modulation strategies in PAH. This current review provides a compendium-style overview of TFs and TF complexes associated with PAH pathogenesis and highlights their potential as targets for vasculoregenerative or reverse remodeling therapies.
Collapse
Affiliation(s)
- Jakob Körbelin
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,*Correspondence: Jakob Körbelin,
| | - Julius Klein
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christiane Matuszcak
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Runge
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Harbaum
- Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Klose
- Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan K. Hennigs
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Jan K. Hennigs,
| |
Collapse
|
33
|
Wang M, Yan Q, Song Y, Zhang Z, Chen X, Gao K, Wan X. Loss-of-function mutations of SOX17 lead to YAP/TEAD activation-dependent malignant transformation in endometrial cancer. Oncogene 2023; 42:322-334. [PMID: 36446891 DOI: 10.1038/s41388-022-02550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022]
Abstract
Aberrant hyperactivation of the Hippo pathway effector YAP/TEAD complex causes tissue overgrowth and tumorigenesis in various cancers, including endometrial cancer (EC). The transcription factor SOX17 (SRY [sex-determining region Y]-box 17) is frequently mutated in EC; however, SOX17 mutations are rare in other cancer types. The molecular mechanisms underlying SOX17 mutation-induced EC tumorigenesis remain poorly understood. Here, we demonstrate that SOX17 serves as a tumor suppressor to restrict the proliferation, migration, invasion, and anchorage-independent growth of EC cells, partly by suppressing the transcriptional outputs of the Hippo-YAP/TEAD pathway. SOX17 binds to TEAD transcription factors through its HMG domain and attenuates the DNA-binding ability of TEAD. SOX17 loss by inactivating mutations leads to the malignant transformation of EC cells, which can be reversed by small-molecule inhibitors of YAP/TEAD or cabozantinib, an FDA-approved drug targeting the YAP/TEAD transcriptional target AXL. Our findings reveal novel molecular mechanisms underlying Hippo-YAP/TEAD pathway-driven EC tumorigenesis, and suggest potential therapeutic strategies targeting the Hippo-YAP/TEAD pathway in SOX17-mutated EC.
Collapse
Affiliation(s)
- Mengfei Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 201204, China
| | - Qin Yan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 201204, China
| | - Yunfeng Song
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 201204, China
| | - Zhenbo Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Xiaojun Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 201204, China.
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 201204, China.
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, China.
| |
Collapse
|
34
|
Li Q, Hujiaaihemaiti M, Wang J, Uddin MN, Li MY, Aierken A, Wu Y. Identifying key transcription factors and miRNAs coregulatory networks associated with immune infiltrations and drug interactions in idiopathic pulmonary arterial hypertension. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:4153-4177. [PMID: 36899621 DOI: 10.3934/mbe.2023194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
BACKGROUND The deregulated genetic factors are critically associated with idiopathic pulmonary arterial hypertension (IPAH) development and progression. However, the identification of hub-transcription factors (TFs) and miRNA-hub-TFs co-regulatory network-mediated pathogenesis in IPAH remains lacking. METHODS We used GSE48149, GSE113439, GSE117261, GSE33463, and GSE67597 for identifying key genes and miRNAs in IPAH. We used a series of bioinformatics approaches, including R packages, protein-protein interaction (PPI) network, and gene set enrichment analysis (GSEA) to identify the hub-TFs and miRNA-hub-TFs co-regulatory networks in IPAH. Also, we employed a molecular docking approach to evaluate the potential protein-drug interactions. RESULTS We found that 14 TFs encoding genes, including ZNF83, STAT1, NFE2L3, and SMARCA2 are upregulated, and 47 TFs encoding genes, including NCOR2, FOXA2, NFE2, and IRF5 are downregulated in IPAH relative to the control. Then, we identified the differentially expressed 22 hub-TFs encoding genes, including four upregulated (STAT1, OPTN, STAT4, and SMARCA2) and 18 downregulated (such as NCOR2, IRF5, IRF2, MAFB, MAFG, and MAF) TFs encoding genes in IPAH. The deregulated hub-TFs regulate the immune system, cellular transcriptional signaling, and cell cycle regulatory pathways. Moreover, the identified differentially expressed miRNAs (DEmiRs) are involved in the co-regulatory network with hub-TFs. The six hub-TFs encoding genes, including STAT1, MAF, CEBPB, MAFB, NCOR2, and MAFG are consistently differentially expressed in the peripheral blood mononuclear cells of IPAH patients, and these hub-TFs showed significant diagnostic efficacy in distinguishing IPAH cases from the healthy individuals. Moreover, we revealed that the co-regulatory hub-TFs encoding genes are correlated with the infiltrations of various immune signatures, including CD4 regulatory T cells, immature B cells, macrophages, MDSCs, monocytes, Tfh cells, and Th1 cells. Finally, we discovered that the protein product of STAT1 and NCOR2 interacts with several drugs with appropriate binding affinity. CONCLUSIONS The identification of hub-TFs and miRNA-hub-TFs co-regulatory networks may provide a new avenue into the mechanism of IPAH development and pathogenesis.
Collapse
Affiliation(s)
- Qian Li
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Minawaer Hujiaaihemaiti
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Jie Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Md Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Ming-Yuan Li
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Alidan Aierken
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Yun Wu
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| |
Collapse
|
35
|
A Novel Frameshift CHD4 Variant Leading to Sifrim-Hitz-Weiss Syndrome in a Proband with a Subclinical Familial t(17;19) and a Large dup(2)(q14.3q21.1). Biomedicines 2022; 11:biomedicines11010012. [PMID: 36672520 PMCID: PMC9855399 DOI: 10.3390/biomedicines11010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The genetic complexity of neurodevelopmental disorders (NDD), combined with a heterogeneous clinical presentation, makes accurate assessment of their molecular bases and pathogenic mechanisms challenging. Our purpose is to reveal the pathogenic variant underlying a complex NDD through identification of the "full" spectrum of structural genomic and genetic variants. Therefore, clinical phenotyping and identification of variants by genome and exome sequencing, together with comprehensive assessment of these and affected candidate genes, were carried out. A maternally-inherited familial translocation [t(17;19)(p13.1;p13.3)mat] disrupting the GSG1 like 2 gene (GSG1L2), a 3.2 Mb dup(2)(q14.3q21.1) encompassing the autosomal dominant OMIM phenotype-associated PROC and HS6ST1 gene, and a novel frameshift c.4442del, p.(Gly1481Valfs*21) variant within exon 30 of the Chromodomain helicase DNA binding protein 4 (CHD4) have been identified. Considering the pathogenic potential of each variant and the proband's phenotype, we conclude that this case basically fits the Sifrim-Hitz-Weiss syndrome or CHD4-associated neurodevelopmental phenotype. Finally, our data highlight the need for identification of the "full" spectrum of structural genomic and genetic variants and of reverse comparative phenotyping, including unrelated patients with variants in same genes, for improved genomic healthcare of patients with NDD.
Collapse
|
36
|
Montani D, Lechartier B, Girerd B, Eyries M, Ghigna MR, Savale L, Jaïs X, Seferian A, Jevnikar M, Boucly A, Riou M, Traclet J, Chaouat A, Levy M, Le Pavec J, Fadel E, Perros F, Soubrier F, Remy-Jardin M, Sitbon O, Bonnet D, Humbert M. An emerging phenotype of pulmonary arterial hypertension patients carrying SOX17 variants. Eur Respir J 2022; 60:2200656. [PMID: 35618278 PMCID: PMC10436756 DOI: 10.1183/13993003.00656-2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/17/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND The phenotype of pulmonary arterial hypertension (PAH) patients carrying SOX17 pathogenic variants remains mostly unknown. METHODS We report the genetic analysis findings, characteristics and outcomes of patients with heritable PAH carrying SOX17 variants from the French Pulmonary Hypertension Network. RESULTS 20 patients and eight unaffected relatives were identified. The median (range) age at diagnosis was 17 (2-53) years, with a female:male ratio of 1.5. At diagnosis, most of the patients (74%) were in New York Heart Association Functional Class III or IV with severe haemodynamic compromise, including a median pulmonary vascular resistance of 14.0 (4.2-31.5) WU. An associated congenital heart disease (CHD) was found in seven PAH patients (35%). Patients with CHD-associated PAH were significantly younger at diagnosis than PAH patients without CHD. Four patients (20%) suffered from recurrent haemoptysis requiring repeated arterial embolisations. 13 out of 16 patients (81%) for whom imaging was available displayed chest computed tomography abnormalities, including dilated, tortuous pulmonary vessels, ground-glass opacities as well as anomalies of the bronchial and nonbronchial arteries. After a median (range) follow-up of 47 (1-591) months, 10 patients underwent lung transplantation and one patient benefited from a heart-lung transplantation due to associated CHD. Histopathological analysis of lung explants showed a congested lung architecture with severe pulmonary arterial remodelling, subpleural vessel dilation and numerous haemorrhagic foci. CONCLUSIONS PAH due to SOX17 pathogenic variants is a severe phenotype, frequently associated with CHD, haemoptysis and radiological abnormalities. Pathological assessment reveals severe pulmonary arterial remodelling and malformations affecting pulmonary vessels and thoracic systemic arteries.
Collapse
Affiliation(s)
- David Montani
- AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- D. Montani and B. Lechartier contributed equally to this work
| | - Benoit Lechartier
- AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- D. Montani and B. Lechartier contributed equally to this work
| | - Barbara Girerd
- AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Mélanie Eyries
- Dépt de Génétique, Hôpital Pitié-Salpêtrière, AP-HP and UMR_S 1166 Sorbonne Université, Paris, France
| | - Maria-Rosa Ghigna
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Service d'Anatomopathologie, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Laurent Savale
- AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Xavier Jaïs
- AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Andrei Seferian
- AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Mitja Jevnikar
- AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Athénais Boucly
- AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Marianne Riou
- Dépt de Pneumologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Julie Traclet
- Université Lyon 1, Hospices Civils de Lyon, Centre de Référence des Maladies Pulmonaires Rares, Centre de Compétences de l'Hypertension Pulmonaire, Hôpital Louis Pradel, Lyon, France
| | - Ari Chaouat
- Université de Lorraine, CHU de Nancy, Pôle des Spécialités Médicales, Dépt de Pneumologie, Vandoeuvre-lès-Nancy, France
| | - Maryline Levy
- Service de Cardiologie Congénitale et Pédiatrique, Hôpital Necker Enfants Malades, AP-HP, Université de Paris, Paris, France
| | - Jerome Le Pavec
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Elie Fadel
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Frédéric Perros
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Florent Soubrier
- Dépt de Génétique, Hôpital Pitié-Salpêtrière, AP-HP and UMR_S 1166 Sorbonne Université, Paris, France
| | - Martine Remy-Jardin
- CHU de Lille, Service d'Imagerie Thoracique, Hôpital Albert Calmette, Lille, France
| | - Olivier Sitbon
- AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Damien Bonnet
- Service de Cardiologie Congénitale et Pédiatrique, Hôpital Necker Enfants Malades, AP-HP, Université de Paris, Paris, France
| | - Marc Humbert
- AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| |
Collapse
|
37
|
Aman J, Morrell NW, Rhodes CJ, Wilkins MR, Bogaard HJ. The SOX17 phenotype in pulmonary arterial hypertension: lessons for pathobiology and clinical management. Eur Respir J 2022; 60:2201438. [PMID: 37651375 DOI: 10.1183/13993003.01438-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/11/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Jurjan Aman
- Dept of Pulmonology, Amsterdam University Medical Center, Location VU Medical Center, Amsterdam, The Netherlands
| | | | - Christopher J Rhodes
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Martin R Wilkins
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Harm Jan Bogaard
- Dept of Pulmonology, Amsterdam University Medical Center, Location VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Dai L, Du L. Genes in pediatric pulmonary arterial hypertension and the most promising BMPR2 gene therapy. Front Genet 2022; 13:961848. [PMID: 36506323 PMCID: PMC9730536 DOI: 10.3389/fgene.2022.961848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare but progressive and lethal vascular disease of diverse etiologies, mainly caused by proliferation of endothelial cells, smooth muscle cells in the pulmonary artery, and fibroblasts, which ultimately leads to right-heart hypertrophy and cardiac failure. Recent genetic studies of childhood-onset PAH report that there is a greater genetic burden in children than in adults. Since the first-identified pathogenic gene of PAH, BMPR2, which encodes bone morphogenetic protein receptor 2, a receptor in the transforming growth factor-β superfamily, was discovered, novel causal genes have been identified and substantially sharpened our insights into the molecular genetics of childhood-onset PAH. Currently, some newly identified deleterious genetic variants in additional genes implicated in childhood-onset PAH, such as potassium channels (KCNK3) and transcription factors (TBX4 and SOX17), have been reported and have greatly updated our understanding of the disease mechanism. In this review, we summarized and discussed the advances of genetic variants underlying childhood-onset PAH susceptibility and potential mechanism, and the most promising BMPR2 gene therapy and gene delivery approaches to treat childhood-onset PAH in the future.
Collapse
|
39
|
Park CS, Kim SH, Yang HY, Kim JH, Schermuly RT, Cho YS, Kang H, Park JH, Lee E, Park H, Yang JM, Noh TW, Lee SP, Bae SS, Han J, Ju YS, Park JB, Kim I. Sox17 Deficiency Promotes Pulmonary Arterial Hypertension via HGF/c-Met Signaling. Circ Res 2022; 131:792-806. [PMID: 36205124 PMCID: PMC9612711 DOI: 10.1161/circresaha.122.320845] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND In large-scale genomic studies, Sox17, an endothelial-specific transcription factor, has been suggested as a putative causal gene of pulmonary arterial hypertension (PAH); however, its role and molecular mechanisms remain to be elucidated. We investigated the functional impacts and acting mechanisms of impaired Sox17 (SRY-related HMG-box17) pathway in PAH and explored its potential as a therapeutic target. METHODS In adult mice, Sox17 deletion in pulmonary endothelial cells (ECs) induced PAH under hypoxia with high penetrance and severity, but not under normoxia. RESULTS Key features of PAH, such as hypermuscularization, EC hyperplasia, and inflammation in lung arterioles, right ventricular hypertrophy, and elevated pulmonary arterial pressure, persisted even after long rest in normoxia. Mechanistically, transcriptomic profiling predicted that the combination of Sox17 deficiency and hypoxia activated c-Met signaling in lung ECs. HGF (hepatocyte grow factor), a ligand of c-Met, was upregulated in Sox17-deficient lung ECs. Pharmacologic inhibition of HGF/c-Met signaling attenuated and reversed the features of PAH in both preventive and therapeutic settings. Similar to findings in animal models, Sox17 levels in lung ECs were repressed in 26.7% of PAH patients (4 of 15), while those were robust in all 14 non-PAH controls. HGF levels in pulmonary arterioles were increased in 86.7% of patients with PAH (13 of 15), but none of the controls showed that pattern. CONCLUSIONS The downregulation of Sox17 levels in pulmonary arterioles increases the susceptibility to PAH, particularly when exposed to hypoxia. Our findings suggest the reactive upregulation of HGF/c-Met signaling as a novel druggable target for PAH treatment.
Collapse
Affiliation(s)
- Chan Soon Park
- Graduate School of Medical Science and Engineering (C.S.P., S.H.K., H.Y.Y., J.-H.K., E.L., H.P., J.M.Y., T.W.N., J.H., Y.S.J., I.K.).,Division of Cardiology, Department of Internal Medicine (C.S.P., Y.S.C., H.K., S.-P.L., J.-B.P.)
| | - Soo Hyun Kim
- Graduate School of Medical Science and Engineering (C.S.P., S.H.K., H.Y.Y., J.-H.K., E.L., H.P., J.M.Y., T.W.N., J.H., Y.S.J., I.K.)
| | - Hae Young Yang
- Graduate School of Medical Science and Engineering (C.S.P., S.H.K., H.Y.Y., J.-H.K., E.L., H.P., J.M.Y., T.W.N., J.H., Y.S.J., I.K.)
| | - Ju-Hee Kim
- Graduate School of Medical Science and Engineering (C.S.P., S.H.K., H.Y.Y., J.-H.K., E.L., H.P., J.M.Y., T.W.N., J.H., Y.S.J., I.K.)
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Justus-Liebig University Giessen, Member of the German Center for Lung Research (DZL), Germany (R.T.S.)
| | - Ye Seul Cho
- Division of Cardiology, Department of Internal Medicine (C.S.P., Y.S.C., H.K., S.-P.L., J.-B.P.)
| | - Hyejeong Kang
- Division of Cardiology, Department of Internal Medicine (C.S.P., Y.S.C., H.K., S.-P.L., J.-B.P.).,Center for Precision Medicine, Seoul National University Hospital and Seoul National University College of Medicine, Republic of Korea (H.K., S.-P.L.)
| | - Jae-Hyeong Park
- Division of Cardiology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea (J.-H.P.)
| | - Eunhyeong Lee
- Graduate School of Medical Science and Engineering (C.S.P., S.H.K., H.Y.Y., J.-H.K., E.L., H.P., J.M.Y., T.W.N., J.H., Y.S.J., I.K.)
| | - HyeonJin Park
- Graduate School of Medical Science and Engineering (C.S.P., S.H.K., H.Y.Y., J.-H.K., E.L., H.P., J.M.Y., T.W.N., J.H., Y.S.J., I.K.)
| | - Jee Myung Yang
- Graduate School of Medical Science and Engineering (C.S.P., S.H.K., H.Y.Y., J.-H.K., E.L., H.P., J.M.Y., T.W.N., J.H., Y.S.J., I.K.).,Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang, South Korea (J.MY.)
| | - Tae Wook Noh
- Graduate School of Medical Science and Engineering (C.S.P., S.H.K., H.Y.Y., J.-H.K., E.L., H.P., J.M.Y., T.W.N., J.H., Y.S.J., I.K.)
| | - Seung-Pyo Lee
- Division of Cardiology, Department of Internal Medicine (C.S.P., Y.S.C., H.K., S.-P.L., J.-B.P.).,Center for Precision Medicine, Seoul National University Hospital and Seoul National University College of Medicine, Republic of Korea (H.K., S.-P.L.).,Center for Nanoparticle Research, Institute for Basic Science, Seoul, Republic of Korea (S.-P.L.)
| | - Sun Sik Bae
- Department of Pharmacology, Pusan National University School of Medicine, Busan, Republic of Korea (S.S.B.)
| | - Jinju Han
- Graduate School of Medical Science and Engineering (C.S.P., S.H.K., H.Y.Y., J.-H.K., E.L., H.P., J.M.Y., T.W.N., J.H., Y.S.J., I.K.).,Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea (J.H., Y.S.J., I.K.)
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering (C.S.P., S.H.K., H.Y.Y., J.-H.K., E.L., H.P., J.M.Y., T.W.N., J.H., Y.S.J., I.K.).,Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea (J.H., Y.S.J., I.K.)
| | - Jun-Bean Park
- Division of Cardiology, Department of Internal Medicine (C.S.P., Y.S.C., H.K., S.-P.L., J.-B.P.)
| | - Injune Kim
- Graduate School of Medical Science and Engineering (C.S.P., S.H.K., H.Y.Y., J.-H.K., E.L., H.P., J.M.Y., T.W.N., J.H., Y.S.J., I.K.).,Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea (J.H., Y.S.J., I.K.)
| |
Collapse
|
40
|
Long-Term Study on Therapeutic Strategy for Treatment of Eisenmenger Syndrome Patients: A Case Series Study. CHILDREN 2022; 9:children9081217. [PMID: 36010107 PMCID: PMC9406527 DOI: 10.3390/children9081217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022]
Abstract
Eisenmenger syndrome (ES) refers to congenital heart diseases (CHD) with reversal flow associated with increased pulmonary pressure and irreversible pulmonary vascular remodeling. Previous reports showed limited therapeutic strategies in ES. In this study, 5 ES patients (2 males and 3 females), who had been followed regularly at our institution from 2010 to 2019, were retrospectively reviewed. We adopted an add-on combination of sildenafil, bosentan, and iloprost and collected the clinical characteristics and outcomes as well as findings of echocardiography, computed tomography, pulmonary perfusion-ventilation scans, positron emission tomography, and biomarkers. The age of diagnosis in these ES patients ranged from 23 to 54 years (38.2 ± 11.1 years; mean ± standard deviation), and they were followed for 7 to 17 years. Their mean pulmonary arterial pressure and pulmonary vascular resistance index were 56.4 ± 11.3 mmHg and 24.7 ± 8.5 WU.m2, respectively. Intrapulmonary arterial thrombosis was found in 4 patients, ischemic stroke was noted in 2 patients, and increased glucose uptake of the right ventricle was observed in 4 patients. No patient mortality was seen within 5 years of follow-up. Subsequently, 2 patients died of right ventricular failure, 1 died of sepsis related to brain abscess, and another died of sudden death. The life span of these patients was 44–62 years. Although these patients showed longer survival, the beneficial data on specific-target pharmacologic interventions in ES is still preliminary. Thus, larger trials are warranted, and the study of cardiac remodeling in ES from various CHD should be explored.
Collapse
|
41
|
Taha F, Southgate L. Molecular genetics of pulmonary hypertension in children. Curr Opin Genet Dev 2022; 75:101936. [PMID: 35772304 PMCID: PMC9763127 DOI: 10.1016/j.gde.2022.101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/20/2022] [Accepted: 05/19/2022] [Indexed: 12/24/2022]
Abstract
Until recently, the molecular aetiology of paediatric pulmonary hypertension (PH) was relatively poorly understood. While the TGF-β/BMP pathway was recognised as central to disease progression, genetic analyses in children were largely confined to targeted screening of risk genes in small cohorts, with clinical management extrapolated from adult data. In recent years, next-generation sequencing has highlighted notable differences in the genetic architecture underlying childhood-onset cases, with a higher genetic burden in children partly explained by comorbidities such as congenital heart disease. Here, we review recent genetic advances in paediatric PH and highlight important risk factors such as dysregulation of the transcription factors SOX17 and TBX4. Given the poorer prognosis in paediatric cases, molecular diagnosis offers a vital tool to enhance clinical care of children with PH.
Collapse
Affiliation(s)
- Fatima Taha
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Laura Southgate
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK.
| |
Collapse
|
42
|
Hao L, Ma J, Wu F, Ma X, Qian M, Sheng W, Yan T, Tang N, Jiang X, Zhang B, Xiao D, Qian Y, Zhang J, Jiang N, Zhou W, Chen W, Ma D, Huang G. WDR62 variants contribute to congenital heart disease by inhibiting cardiomyocyte proliferation. Clin Transl Med 2022; 12:e941. [PMID: 35808830 PMCID: PMC9270576 DOI: 10.1002/ctm2.941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background Congenital heart disease (CHD) is the most common birth defect and has high heritability. Although some susceptibility genes have been identified, the genetic basis underlying the majority of CHD cases is still undefined. Methods A total of 1320 unrelated CHD patients were enrolled in our study. Exome‐wide association analysis between 37 tetralogy of Fallot (TOF) patients and 208 Han Chinese controls from the 1000 Genomes Project was performed to identify the novel candidate gene WD repeat‐containing protein 62 (WDR62). WDR62 variants were searched in another expanded set of 200 TOF patients by Sanger sequencing. Rescue experiments in zebrafish were conducted to observe the effects of WDR62 variants. The roles of WDR62 in heart development were examined in mouse models with Wdr62 deficiency. WDR62 variants were investigated in an additional 1083 CHD patients with similar heart phenotypes to knockout mice by multiplex PCR‐targeting sequencing. The cellular phenotypes of WDR62 deficiency and variants were tested in cardiomyocytes, and the molecular mechanisms were preliminarily explored by RNA‐seq and co‐immunoprecipitation. Results Seven WDR62 coding variants were identified in the 237 TOF patients and all were indicated to be loss of function variants. A total of 25 coding and 22 non‐coding WDR62 variants were identified in 80 (6%) of the 1320 CHD cases sequenced, with a higher proportion of WDR62 variation (8%) found in the ventricular septal defect (VSD) cohort. WDR62 deficiency resulted in a series of heart defects affecting the outflow tract and right ventricle in mouse models, including VSD as the major abnormality. Cell cycle arrest and an increased number of cells with multipolar spindles that inhibited proliferation were observed in cardiomyocytes with variants or knockdown of WDR62. WDR62 deficiency weakened the association between WDR62 and the cell cycle‐regulated kinase AURKA on spindle poles, reduced the phosphorylation of AURKA, and decreased expression of target genes related to cell cycle and spindle assembly shared by WDR62 and AURKA. Conclusions WDR62 was identified as a novel susceptibility gene for CHD with high variant frequency. WDR62 was shown to participate in the cardiac development by affecting spindle assembly and cell cycle pathway in cardiomyocytes.
Collapse
Affiliation(s)
- Lili Hao
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jing Ma
- ENT institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Feizhen Wu
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaojing Ma
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Maoxiang Qian
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Wei Sheng
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Tizhen Yan
- Department of Medical Genetics, Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Ning Tang
- Department of Medical Genetics, Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Xin Jiang
- Medical Laboratory of Nantong ZhongKe, Nantong, Jiangsu
| | - Bowen Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Deyong Xiao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanyan Qian
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenhao Zhou
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Weicheng Chen
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Duan Ma
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guoying Huang
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.,Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
43
|
Almannai M, Marafi D, Abdel-Salam GM, Zaki MS, Duan R, Calame D, Herman I, Levesque FSHA, Elbendary HM, Hegazy I, Chung WK, Kavus H, Saeidi K, Maroofian R, AlHashim A, Al-Otaibi A, Al Madhi A, Aboalseood HM, Alasmari A, Houlden H, Gleeson JG, Hunter JV, Posey JE, Lupski JR, El-Hattab AW. El-Hattab-Alkuraya syndrome caused by biallelic WDR45B pathogenic variants: Further delineation of the phenotype and genotype. Clin Genet 2022; 101:530-540. [PMID: 35322404 PMCID: PMC9359317 DOI: 10.1111/cge.14132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
Abstract
Homozygous pathogenic variants in WDR45B were first identified in six subjects from three unrelated families with global development delay, refractory seizures, spastic quadriplegia, and brain malformations. Since the initial report in 2018, no further cases have been described. In this report, we present 12 additional individuals from seven unrelated families and their clinical, radiological, and molecular findings. Six different variants in WDR45B were identified, five of which are novel. Microcephaly and global developmental delay were observed in all subjects, and seizures and spastic quadriplegia in most. Common findings on brain imaging include cerebral atrophy, ex vacuo ventricular dilatation, brainstem volume loss, and symmetric under-opercularization. El-Hattab-Alkuraya syndrome is associated with a consistent phenotype characterized by early onset cerebral atrophy resulting in microcephaly, developmental delay, spastic quadriplegia, and seizures. The phenotype appears to be more severe among individuals with loss-of-function variants whereas those with missense variants were less severely affected suggesting a potential genotype-phenotype correlation in this disorder. A brain imaging pattern emerges which is consistent among individuals with loss-of-function variants and could potentially alert the neuroradiologists or clinician to consider WDR45B-related El-Hattab-Alkuraya syndrome.
Collapse
Affiliation(s)
- Mohammed Almannai
- Genetics and Precision Medicine department (GPM), King Abdullah Specialized Children’s Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
| | - Ghada M.H. Abdel-Salam
- Clinical Genetics Department, Human Genetics and Genome Research Institute National Research Centre, Cairo, Egypt
| | - Maha S. Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute National Research Centre, Cairo, Egypt
- Genetics Department, Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Ruizhi Duan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Daniel Calame
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Isabella Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Felix SHA Levesque
- Division of medical genetics and metabolic, Department of Paediatrics, Jim Pattison Children’s Hospital, University of Saskatchewan, Saskatoon, Sk, Canada
| | - Hasnaa M Elbendary
- Clinical Genetics Department, Human Genetics and Genome Research Institute National Research Centre, Cairo, Egypt
| | - Ibrahim Hegazy
- Clinical Genetics Department, Human Genetics and Genome Research Institute National Research Centre, Cairo, Egypt
| | - Wendy K. Chung
- Departments of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Haluk Kavus
- Departments of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Kolsoum Saeidi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Maroofian
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Aqeela AlHashim
- Department of Pediatric Neurology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ali Al-Otaibi
- Department of Pediatric Neurology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Asma Al Madhi
- Department of Pediatric Neurology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hager M. Aboalseood
- Section of Medical Genetics, Children’s Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ali Alasmari
- Section of Medical Genetics, Children’s Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Henry Houlden
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Joseph G Gleeson
- Rady Children’s Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, CA 92123, USA
| | - Jill V Hunter
- Texas Children’s Hospital, Houston, Texas, 77030, USA
- Department of Radiology, Baylor College of Medicine, Houston, Texas, 77030
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Ayman W. El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Genetics Clinics, University Hospital Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
44
|
Gong L, Wang C, Xie H, Gao J, Li T, Qi S, Wang B, Wang J. Identification of a novel heterozygous SOX9 variant in a Chinese family with congenital heart disease. Mol Genet Genomic Med 2022; 10:e1909. [PMID: 35218327 PMCID: PMC9034670 DOI: 10.1002/mgg3.1909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 12/02/2022] Open
Abstract
Background Previous studies of individuals with hereditary or sporadic congenital heart disease (CHD) have provided strong evidence for a genetic basis for CHD. The aim of this study was to identify novel pathogenic genes and variants in a Chinese CHD family. Methods Three generations of a family with CHD were recruited. We performed whole exome sequencing for the affected individuals and the proband's unaffected aunt to investigate the genetic causes of CHD in this family. Heterozygous variants carried by the proband and her maternal grandmother, but not the proband's aunt, were selected. The frequencies of the variants detected were assessed using public databases, and their influences on protein function were predicted using online prediction software. The candidate variant was further confirmed by Sanger sequencing of other members of the family. Results On the basis of the family's pedigree, the mode of inheritance was speculated to be autosomal dominant with incomplete penetrance. We identified a novel heterozygous missense variant in SOX9 in all affected individuals and one asymptomatic family member, suggesting an inheritance pattern with incomplete penetrance. The variant was not found in any public database. In addition, the variant was highly conserved among mammals, and was predicted to be deleterious by online software programs. Conclusions We report for the first time a novel heterozygous missense variant in SOX9 (NM_000346:c.931G>T:p.Gly311Cys) in a Chinese CHD family. Our results provide further evidence supporting a causative role for SOX9 variants in CHD.
Collapse
Affiliation(s)
- Li Gong
- Department of Cardiothoracic Surgery, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Chunyan Wang
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Haiyang Xie
- Department of Cardiothoracic Surgery, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jun Gao
- Department of Ultrasound imaging, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Tengyan Li
- Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Shenggui Qi
- Qinghai High Altitude Medical Research Institute, Xining, China
| | - Binbin Wang
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Jing Wang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
45
|
Aldred MA, Morrell NW, Guignabert C. New Mutations and Pathogenesis of Pulmonary Hypertension: Progress and Puzzles in Disease Pathogenesis. Circ Res 2022; 130:1365-1381. [PMID: 35482831 PMCID: PMC9897592 DOI: 10.1161/circresaha.122.320084] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a complex multifactorial disease with poor prognosis characterized by functional and structural alterations of the pulmonary circulation causing marked increase in pulmonary vascular resistance, ultimately leading to right heart failure and death. Mutations in the gene encoding BMPRII-a receptor for the TGF-β (transforming growth factor-beta) superfamily-account for over 70% of families with PAH and ≈20% of sporadic cases. In recent years, however, less common or rare mutations in other genes have been identified. This review will consider how these newly discovered PAH genes could help to provide a better understanding of the molecular and cellular bases of the maintenance of the pulmonary vascular integrity, as well as their role in the PAH pathogenesis underlying occlusion of arterioles in the lung. We will also discuss how insights into the genetic contributions of these new PAH-related genes may open up new therapeutic targets for this, currently incurable, cardiopulmonary disorder.
Collapse
Affiliation(s)
- Micheala A Aldred
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicholas W Morrell
- University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, UK
| | - Christophe Guignabert
- INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France,Université Paris-Saclay, Faculté de Médecine, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
46
|
Huang Y, Su D, Ye B, Huang Y, Qin S, Chen C, Zhao Y, Pang Y. Expression and clinical significance of circular RNA hsa_circ_0003416 in pediatric pulmonary arterial hypertension associated with congenital heart disease. J Clin Lab Anal 2022; 36:e24273. [PMID: 35165927 PMCID: PMC8993640 DOI: 10.1002/jcla.24273] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 12/27/2022] Open
Abstract
Background Circular RNAs (circRNAs) have been found to be involved in the development of pulmonary arterial hypertension (PAH). However, their diagnostic value in pediatric PAH remains unclear. This study aimed to examine the characteristic expression of the circRNA hsa_circ_0003416 in the plasma of children with PAH caused by congenital heart disease (CHD); the potential of hsa_circ_0003416 as a diagnostic biomarker was also investigated. Methods The plasma expression levels of hsa_circ_0003416 were determined via quantitative reverse transcription–polymerase chain reaction in 50 CHD patients, 50 PAH patients, and 20 healthy subjects; the associations between hsa_circ_0003416 levels and clinical data were analyzed thereafter. Receiver operating characteristic curves were employed to determine the diagnostic capacity of this circRNA. Results Expression levels of hsa_circ_0003416 in plasma were lower in the PAH‐CHD group than in the CHD and healthy control groups (p = 0.009 vs. healthy control group, p = 0.026 vs. CHD group). Moreover, hsa_circ_0003416 was found to be negatively associated with B‐type natriuretic peptide (r = −0.342, p = 0.013). In addition, the area under the curve of hsa_circ_0003416 levels in plasma was 0.721 (95% confidence intervals = 0.585–0.857, p = 0.004), suggesting that it has a promising diagnostic value. Conclusions Overall, hsa_circ_0003416 was found to be significantly downregulated in children with PAH‐CHD and to be potent as a biomarker for PAH‐CHD diagnosis.
Collapse
Affiliation(s)
- Yanyun Huang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Danyan Su
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bingbing Ye
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuqin Huang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Suyuan Qin
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Cheng Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yijue Zhao
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yusheng Pang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
47
|
Predescu DN, Mokhlesi B, Predescu SA. The Impact of Sex Chromosomes in the Sexual Dimorphism of Pulmonary Arterial Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:582-594. [PMID: 35114193 PMCID: PMC8978209 DOI: 10.1016/j.ajpath.2022.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/14/2021] [Accepted: 01/11/2022] [Indexed: 02/09/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a sex-biased disease with a poorly understood female prevalence. Emerging research suggests that nonhormonal factors, such as the XX or XY sex chromosome complement and sex bias in gene expression, may also lead to sex-based differences in PAH incidence, penetrance, and progression. Typically, one of females' two X chromosomes is epigenetically silenced to offer a gender-balanced gene expression. Recent data demonstrate that the long noncoding RNA X-inactive specific transcript, essential for X chromosome inactivation and dosage compensation of X-linked gene expression, shows elevated levels in female PAH lung specimens compared with controls. This molecular event leads to incomplete inactivation of the females' second X chromosome, abnormal expression of X-linked gene(s) involved in PAH pathophysiology, and a pulmonary artery endothelial cell (PAEC) proliferative phenotype. Moreover, the pathogenic proliferative p38 mitogen-activated protein kinase/ETS transcription factor ELK1 (Elk1)/cFos signaling is mechanistically linked to the sexually dimorphic proliferative response of PAECs in PAH. Apprehending the complicated relationship between long noncoding RNA X-inactive specific transcript and X-linked genes and how this relationship integrates into a sexually dimorphic proliferation of PAECs and PAH sex paradox remain challenging. We highlight herein new findings related to how the sex chromosome complement and sex-differentiated epigenetic mechanisms to control gene expression are decisive players in the sexual dimorphism of PAH. Pharmacologic interventions in the light of the newly elucidated mechanisms are discussed.
Collapse
Affiliation(s)
- Dan N Predescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois.
| | - Babak Mokhlesi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Sanda A Predescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
48
|
Liu CF, Ni Y, Thachil V, Morley M, Moravec CS, Tang WHW. Differential expression of members of SOX family of transcription factors in failing human hearts. Transl Res 2022; 242:66-78. [PMID: 34695607 PMCID: PMC8891044 DOI: 10.1016/j.trsl.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
The Sry-related high-mobility-group box (SOX) gene family, with 20 known transcription factors in humans, plays an essential role during development and disease processes. Several SOX proteins (SOX4, 11, and 9) are required for normal heart morphogenesis. SOX9 was shown to contribute to cardiac fibrosis. However, differential expression of other SOXs and their roles in the failing human myocardium have not been explored. Here, we used the whole-transcriptome sequencing (RNA-seq), gene co-expression, and meta-analysis to examine whether any SOX factors might play a role in the failing human myocardium. RNA-seq analysis was performed for cardiac tissue samples from heart failure (HF) patients due to dilated cardiomyopathy (DCM), or hypertrophic cardiomyopathy (HCM) and healthy donors (NF). The RNA levels of 20 SOX genes from RNA-seq data were extracted and compared to the 3 groups. Four SOX genes whose RNA levels were significantly upregulated in DCM or HCM compared to NF. However, only SOX4 and SOX8 proteins were markedly increased in the HF groups. A moderate to strong correlation was observed between the RNA level of SOX4/8 and fibrotic genes among each individual. Gene co-expression network analysis identified genes associated and respond similarly to perturbations with SOX4 in cardiac tissues. Using a meta-analysis combining epigenetics and genome-wide association data, we reported several genomic variants associated with HF phenotype linked to SOX4 or SOX8. In summary, our results implicate that SOX4 and SOX8 have a role in cardiomyopathy, leading to HF in humans. The molecular mechanism associated with them in HF warrants further investigation.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ying Ni
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Varun Thachil
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio
| | - Michael Morley
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christine S Moravec
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Wai Hong Wilson Tang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
49
|
Gene panel diagnostics reveals new pathogenic variants in pulmonary arterial hypertension. Respir Res 2022; 23:74. [PMID: 35346192 PMCID: PMC8962083 DOI: 10.1186/s12931-022-01987-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/14/2022] [Indexed: 12/13/2022] Open
Abstract
Background A genetic predisposition can lead to the rare disease pulmonary arterial hypertension (PAH). Most mutations have been identified in the gene BMPR2 in heritable PAH. However, as of today 15 further PAH genes have been described. The exact prevalence across these genes particularly in other PAH forms remains uncertain. We present the distribution of mutations across PAH genes identified at the largest German referral centre for genetic diagnostics in PAH over a course of > 3 years. Methods Our PAH-specific gene diagnostics panel was used to sequence 325 consecutive PAH patients from March 2017 to October 2020. For the first year the panel contained thirteen PAH genes: ACVRL1, BMPR1B, BMPR2, CAV1, EIF2AK4, ENG, GDF2, KCNA5, KCNK3, KLF2, SMAD4, SMAD9 and TBX4.These were extended by the three genes ATP13A3, AQP1 and SOX17 from March 2018 onwards following the genes’ discovery. Results A total of 79 mutations were identified in 74 patients (23%). Of the variants 51 (65%) were located in the gene BMPR2 while the other 28 variants were found in ten further PAH genes. We identified disease-causing variants in the genes AQP1, KCNK3 and SOX17 in families with at least two PAH patients. Mutations were not only detected in patients with heritable and idiopathic but also with associated PAH. Conclusions Genetic defects were identified in 23% of the patients in a total of 11 PAH genes. This illustrates the benefit of the specific gene panel containing all known PAH genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-01987-x.
Collapse
|
50
|
Huang RT, Guo YH, Yang CX, Gu JN, Qiu XB, Shi HY, Xu YJ, Xue S, Yang YQ. SOX7 loss-of-function variation as a cause of familial congenital heart disease. Am J Transl Res 2022; 14:1672-1684. [PMID: 35422912 PMCID: PMC8991148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION As the most frequent type of birth defect in humans, congenital heart disease (CHD) leads to a large amount of morbidity and mortality as well as a tremendous socioeconomic burden. Accumulating studies have convincingly substantiated the pivotal roles of genetic defects in the occurrence of familial CHD, and deleterious variations in a great number of genes have been reported to cause various types of CHD. However, owing to pronounced genetic heterogeneity, the hereditary components underpinning CHD remain obscure in most cases. This investigation aimed to identify novel genetic determinants underlying CHD. METHODS AND RESULTS A four-generation pedigree with high incidence of autosomal-dominant CHD was enrolled from the Chinese Han race population. Using whole-exome sequencing and Sanger sequencing assays of the family members available, a novel SOX7 variation in heterozygous status, NM_031439.4: c.310C>T; p.(Gln104*), was discovered to be in co-segregation with the CHD phenotype in the whole family. The truncating variant was absent in 500 unrelated healthy subjects utilized as control individuals. Functional measurements by dual-luciferase reporter analysis revealed that Gln104*-mutant SOX7 failed to transactivate its two important target genes, GATA4 and BMP2, which are both responsible for CHD. In addition, the nonsense variation invalidated the cooperative transactivation between SOX7 and NKX2.5, which is another recognized CHD-causative gene. CONCLUSION The present study demonstrates for the first time that genetically defective SOX7 predisposes to CHD, which sheds light on the novel molecular mechanism underpinning CHD, and implies significance for precise prevention and personalized treatment in a subset of CHD patients.
Collapse
Affiliation(s)
- Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200127, China
| | - Yu-Han Guo
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai 200030, China
| | - Hong-Yu Shi
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan UniversityShanghai 200940, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200127, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
- Department of Cardiovascular Research Laboratory, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
- Department of Central Laboratory, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
| |
Collapse
|