1
|
Xu S, Jia J, Mao R, Cao X, Xu Y. Mitophagy in acute central nervous system injuries: regulatory mechanisms and therapeutic potentials. Neural Regen Res 2025; 20:2437-2453. [PMID: 39248161 PMCID: PMC11801284 DOI: 10.4103/nrr.nrr-d-24-00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/11/2024] [Accepted: 07/22/2024] [Indexed: 09/10/2024] Open
Abstract
Acute central nervous system injuries, including ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, traumatic brain injury, and spinal cord injury, are a major global health challenge. Identifying optimal therapies and improving the long-term neurological functions of patients with acute central nervous system injuries are urgent priorities. Mitochondria are susceptible to damage after acute central nervous system injury, and this leads to the release of toxic levels of reactive oxygen species, which induce cell death. Mitophagy, a selective form of autophagy, is crucial in eliminating redundant or damaged mitochondria during these events. Recent evidence has highlighted the significant role of mitophagy in acute central nervous system injuries. In this review, we provide a comprehensive overview of the process, classification, and related mechanisms of mitophagy. We also highlight the recent developments in research into the role of mitophagy in various acute central nervous system injuries and drug therapies that regulate mitophagy. In the final section of this review, we emphasize the potential for treating these disorders by focusing on mitophagy and suggest future research paths in this area.
Collapse
Affiliation(s)
- Siyi Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China
| | - Junqiu Jia
- Department of Neurology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, Jiangsu Province, China
| | - Rui Mao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu Province, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu Province, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China
- Department of Neurology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, Jiangsu Province, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu Province, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu Province, China
| |
Collapse
|
2
|
Geng Z, Deng G, Wang Z, Xu X, Yin X, Zhang S, Shao J, Wen J. Distinct roles of A1/A2 astrocytes in blood-brain barrier injury following cerebral I/R via the ROCK/NF-κB and STAT3 pathways. Int Immunopharmacol 2025; 151:114338. [PMID: 40020465 DOI: 10.1016/j.intimp.2025.114338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 03/03/2025]
Abstract
Astrocytes may fail to perform their neuroprotective roles against cerebral ischemia/reperfusion (I/R) injury due to phenotypic transformation. We aimed to demonstrate the distinct roles of A1 astrocytes and A2 astrocytes on the blood-brain barrier (BBB) injury following cerebral I/R, and explore whether H2S-mediated A2 astrocytes polarization protects against BBB injury via inhibiting ROCK/NF-κB pathway. The mice cerebral I/R model and the oxygen-glucose deprivation/re‑oxygenation (OGD/R) model of astrocytes were used in present study. Cerebral I/R-induced BBB injury is evidenced by increased EB dye leakage and reduced expressions of ZO-1 and occludin in mice hippocampal tissues. We found that H2S-mediated A2 polarization and lipopolysaccharide (LPS)-induced polarization of A1 astrocytes respectively display beneficial and harmful role in BBB injury. Besides, harmful roles of A1 astrocytes in BBB injury can be reduced by H2S. Additionally, A1 astrocytes exhibit excessive activation of NF-κB and enhanced expressions of MMP9 and AQP4, which can be inhibited by H2S. Moreover, H2S-mediated polarization of A2 astrocyte displays enhanced phosphorylation and nuclear translocation of STAT3 and reduced expressions of MMP9 and AQP4. Importantly, ROCK inhibitor Fasudil likewise inhibits the activation of NF-κB and promotes STAT3 activation in OGD/R astrocytes, and NF-κB inhibitor BAY11-7082 reduces the expressions of MMP9 and AQP4 in OGD/R astrocytes. In conclusion, H2S-mediated polarization of A2 astrocyte protects against BBB injury following cerebral I/R, the mechanisms may be related to inhibition of ROCK/NF-κB pathway, and activation of STAT3.
Collapse
Affiliation(s)
- Zhifeng Geng
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Guoyi Deng
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Ziyu Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xin Xu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xiaojiao Yin
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Sen Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jiale Shao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
3
|
Li J, Cheng XY, Ma RX, Zou B, Zhang Y, Wu MM, Yao Y, Li J. Nicotinamide mononucleotide combined with PJ-34 protects microglial cells from lipopolysaccharide-induced mitochondrial impairment through NMNAT3-PARP1 axis. J Transl Med 2025; 23:279. [PMID: 40050860 PMCID: PMC11884077 DOI: 10.1186/s12967-025-06280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/20/2025] [Indexed: 03/10/2025] Open
Abstract
Lipopolysaccharide (LPS) is known to induce cell injury and mitochondrial dysfunction, which are pivotal in neuroinflammation and related disorders. Recent studies have demonstrated the potential of nicotinamide mononucleotide (NMN) and poly(ADP-ribose) polymerase-1 (PARP1) inhibitors to enhance mitochondrial function. However, the underlying mechanisms have not been fully elucidated. This study investigates the impact of NMN in conjunction with PJ-34, a PARP1 inhibitor, on LPS-induced mitochondrial damage, focusing on nicotinamide mononucleotide adenylyl transferase 3 (NMNAT3) -PARP1 axis. The results showed that LPS treatment led to down-regulation of NMNAT3 (decreased 58.72% at 1 µM), up-regulation of PARP1 (enhanced 22.78% at 1 µM), thereby impairing mitophagy and mitochondrial function. The negative effects can be mitigated through supplementation with NMN and PJ-34. Specifically, compared to the LPS group, the expression of NMNAT3 increased by 63.29% and PARP1 decreased by 27.94% at a concentration of 400 µM NMN. Additionally, when 400 µM NMN was combined with 5 µM PJ-34, PARP1 expression decreased by 21.99%. Mechanistic studies reveal that NMN and PJ-34 counteracted the detrimental effects by promoting the binding of FoxO1 to the PINK1 promoter to activate the PINK1/Parkin mediated mitophagy pathway. Further experimental results demonstrate that the down-regulation of NMNAT3 can activate PARP1 and inhibit the initiation of autophagic processes. Consequently, targeting the NMNAT3-PARP1 signaling pathway holds promise for the development of novel therapeutic strategies to alleviate mitochondrial damage-related disorders.
Collapse
Affiliation(s)
- Jia Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Xiao-Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China
| | - Rui-Xia Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Bin Zou
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Yue Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Miao-Miao Wu
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Yao Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, People's Republic of China.
| | - Juan Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People's Republic of China.
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ningxia Engineering and Technology Research Center for Modernization of Characteristic Chinese Medicine, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, People's Republic of China.
| |
Collapse
|
4
|
Chang H, Zhang W, Xu L, Li Z, Lin C, Shen Y, Zhang G, Mao L, Ma C, Liu N, Lu H. Copper aggravated synaptic damage after traumatic brain injury by downregulating BNIP3-mediated mitophagy. Autophagy 2025; 21:548-564. [PMID: 39415457 PMCID: PMC11849941 DOI: 10.1080/15548627.2024.2409613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024] Open
Abstract
Synaptic damage is a crucial pathological process in traumatic brain injury. However, the mechanisms driving this process remain poorly understood. In this report, we demonstrate that the accumulation of damaged mitochondria, resulting from impaired mitphagy, plays a significant role in causing synaptic damage. Moreover, copper induced downregulation of BNIP3 is a key player in regulating mitophagy. DMSA alleviates synaptic damage and mitochondrial dysfunction by promoting urinary excretion of copper. Mechanistically, we find that copper downregulate BNIP3 by increasing the nuclear translocation of NFKB, which is triggered by TRIM25-mediated ubiquitination-dependent degradation of NFKBIA. Our study underscores the importance of copper accumulation in the regulation of BNIP3-mediated mitophagy and suggests that therapeutic targeting of the copper-TRIM25-NFKB-BNIP3 axis holds promise to attenuate synaptic damage after traumatic brain injury.
Collapse
Affiliation(s)
- Hanxiao Chang
- Department of Neurosurgery, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Weiwei Zhang
- Department of Ophthalmology, Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lei Xu
- Department of Neurosurgery, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Zheng Li
- Department of Neurosurgery, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Chao Lin
- Department of Neurosurgery, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Yuqi Shen
- Department of Neurosurgery, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Guangjian Zhang
- Department of Neurosurgery, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Lei Mao
- Department of Neurosurgery, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Chencheng Ma
- Department of Neurosurgery, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Ning Liu
- Department of Neurosurgery, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Hua Lu
- Department of Neurosurgery, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Wang S, Zhang Y, Wang M, Zhai Z, Tan Y, Xu W, Ren X, Hu X, Mo J, Liu J, Yang Y, Chen D, Jiang B, Huang H, Huang J, Xiong K. Noncanonical feedback loop between "RIP3-MLKL" and "4EBP1-eIF4E" promotes neuronal necroptosis. MedComm (Beijing) 2025; 6:e70107. [PMID: 39974664 PMCID: PMC11836343 DOI: 10.1002/mco2.70107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/22/2024] [Accepted: 01/14/2025] [Indexed: 02/21/2025] Open
Abstract
Stroke is a leading risk factor for disability and death. Necroptosis is involved in stroke pathogenesis. However, the molecular mechanisms underlying necroptosis in stroke remain unclear. The mammalian target of rapamycin complex 1 (mTORC1) modulates necroptosis in the gut epithelium. Eukaryotic translation initiation factor 4E (eIF4E)-binding protein-1 (4EPB1) is one of the main downstream molecules of mTORC1. This study addresses the role of the 4EBP1-eIF4E pathway in necroptosis. The 4EBP1-eIF4E pathway was found to be activated in both necroptotic HT-22 and mouse middle cerebral artery occlusion (MCAO) models. Functionally, 4EBP1 overexpression, eIF4E knockdown, and eIF4E inhibition suppressed necroptosis, respectively. Furthermore, a positive feedback circuit was observed between the 4EBP1-eIF4E and receptor-interacting protein-3 (RIP3)-mixed lineage kinase domain-like protein (MLKL) pathways, in which RIP3-MLKL activates the 4EBP1-eIF4E pathway by degrading 4EBP1 and activating eIF4E. This in turn enhanced RIP3-MLKL pathway activation. The eIF4E activation derived from this loop may stimulate cytokine production, which is a key factor associated with necroptosis. Finally, using a mouse MCAO model, the application of eIF4E, RIP3, and MLKL inhibitors was found to have a regulatory mechanism similar to that in the in vitro study, reducing the infarct volume and improving neurological function in MCAO mice.
Collapse
Affiliation(s)
- Shuchao Wang
- Department of OphthalmologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Center for Medical ResearchThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yun Zhang
- National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Department of AnesthesiologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medical SciencesCentral South UniversityChangshaHunanChina
| | - Meijuan Wang
- Medical Imaging CenterQingdao West Coast New District People's HospitalQingdaoShandongChina
| | - Zhihao Zhai
- Department of NeurosurgeryThe Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| | - Yating Tan
- Center for Medical ResearchThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medical SciencesCentral South UniversityChangshaHunanChina
| | - Weiye Xu
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medical SciencesCentral South UniversityChangshaHunanChina
| | - Xiaozhen Ren
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medical SciencesCentral South UniversityChangshaHunanChina
| | - Ximin Hu
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medical SciencesCentral South UniversityChangshaHunanChina
| | - Jinyou Mo
- Center for Medical ResearchThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Jia Liu
- Center for Medical ResearchThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yunfeng Yang
- Department of NeurosurgeryThe Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| | - Dan Chen
- Department of AnesthesiologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medical SciencesCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of OphthalmologyChangshaHunanChina
| | - Bing Jiang
- Department of OphthalmologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Hunan Clinical Research Center of Ophthalmic DiseaseChangshaHunanChina
| | - Hualin Huang
- National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Reproductive Medicine Center, Department of Obstetrics and GynecologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Jufang Huang
- National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medical SciencesCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of OphthalmologyChangshaHunanChina
- Department of RadiologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Biobank of the Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Kun Xiong
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medical SciencesCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of OphthalmologyChangshaHunanChina
| |
Collapse
|
6
|
Fang M, Zhou Y, He K, Lu Y, Tao F, Huang H. Glucose Metabolic Reprogramming in Microglia: Implications for Neurodegenerative Diseases and Targeted Therapy. Mol Neurobiol 2025:10.1007/s12035-025-04775-y. [PMID: 39987285 DOI: 10.1007/s12035-025-04775-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
As intrinsic immune cells in the central nervous system, microglia play a crucial role in maintaining brain homeostasis. Microglia can transition from homeostasis to various responsive states in reaction to different external stimuli, undergoing corresponding alterations in glucose metabolism. In neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), microglial glucose metabolic reprogramming is widespread. This reprogramming leads to changes in microglial function, exacerbating neuroinflammation and the accumulation of pathological products, thereby driving the progression of neurodegeneration. This review summarizes the specific alterations in glucose metabolism within microglia in AD, PD, ALS, and MS, as well as the corresponding treatments aimed at reprogramming glucose metabolism. Compounds that inhibit key glycolytic enzymes like hexokinase 2 (HK2) and pyruvate kinase M2 (PKM2), or activate regulators of energy metabolism such as AMP-activated protein kinase (AMPK), have shown significant potential in the treatment of various neurodegenerative diseases. However, current research faces numerous challenges, including side effects and blood-brain barrier (BBB) penetration of compounds. Screening relevant drugs from natural products, especially flavonoids, is a reliable approach. On the one hand, longtime herbal medical practices provide a certain degree of assurance regarding clinical safety, and their chemical properties contribute to effective BBB permeability. On the other hand, the concurrent anti-tumor and anti-neuroinflammatory activities of flavonoids suggest that regulation of glucose metabolism reprogramming might be a potential common mechanism of action. Notably, considering the dynamic nature of microglial metabolism, there is an urgent need to develop technologies for real-time monitoring of glucose metabolism processes, which would significantly advance research in this field.
Collapse
Affiliation(s)
- Mengqi Fang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yuan Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, China
| | - Keren He
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yangyuxiao Lu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Fangfang Tao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, China.
| | - Hong Huang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
7
|
Tang MB, Liu YX, Hu ZW, Luo HY, Zhang S, Shi CH, Xu YM. Study insights in the role of PGC-1α in neurological diseases: mechanisms and therapeutic potential. Front Aging Neurosci 2025; 16:1454735. [PMID: 40012862 PMCID: PMC11861300 DOI: 10.3389/fnagi.2024.1454735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/30/2024] [Indexed: 02/28/2025] Open
Abstract
Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), which is highly expressed in the central nervous system, is known to be involved in the regulation of mitochondrial biosynthesis, metabolic regulation, neuroinflammation, autophagy, and oxidative stress. This knowledge indicates a potential role of PGC-1α in a wide range of functions associated with neurological diseases. There is emerging evidence indicating a protective role of PGC-1α in the pathogenesis of several neurological diseases. As such, a deeper and broader understanding of PGC-1α and its role in neurological diseases is urgently needed. The present review provides a relatively complete overview of the current knowledge on PGC-1α, including its functions in different types of neurons, basic structural characteristics, and its interacting transcription factors. Furthermore, we present the role of PGC-1α in the pathogenesis of various neurological diseases, such as intracerebral hemorrhage, ischemic stroke, Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Huntington's disease, and other PolyQ diseases. Importantly, we discuss some compounds or drug-targeting strategies that have been studied to ameliorate the pathology of these neurological diseases and introduce the possible mechanistic pathways. Based on the available studies, we propose that targeting PGC-1α could serve as a promising novel therapeutic strategy for one or more neurological diseases.
Collapse
Affiliation(s)
- Mi-bo Tang
- Department of Geriatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yi-xuan Liu
- Department of Geriatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zheng-wei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Hai-yang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Chang-he Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yu-ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Shi D, Bai Y, Long R, Xia J, Xu W, Qin D, Yang X, Ding M, Hou XY. Neuronal LAMP2A-mediated reduction of adenylyl cyclases induces acute neurodegenerative responses and neuroinflammation after ischemic stroke. Cell Death Differ 2025; 32:337-352. [PMID: 39341961 PMCID: PMC11802923 DOI: 10.1038/s41418-024-01389-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
Lysosomes regulate cellular metabolism to maintain cell survival, but the mechanisms whereby they determine neuronal cell fate after acute metabolic stress are unknown. Neuron-enriched lysosomal membrane protein LAMP2A is involved in selective chaperone-mediated autophagy and exosome loading. This study demonstrates that abnormalities in the neuronal LAMP2A-lysosomal pathway cause neurological deficits following ischemic stroke and that this is an early inducer of the PANoptosis-like molecular pathway and neuroinflammation, simultaneously inducing upregulation of FADD, RIPK3, and MLKL after ischemia. Quantitative proteomic and pharmacological analysis showed that after acute metabolic stress, the neuronal LAMP2A pathway induced acute synaptic degeneration and PANoptosis-like responses involving downregulation of protein kinase A (PKA) signaling. LAMP2A directed post-stroke lysosomal degradation of adenylyl cyclases (ADCY), including ADCY1 and ADCY3 in cortical neurons. Post-stroke treatment with cAMP mimetic or ADCY activator salvaged cortical neurons from PANoptosis-like responses and neuroinflammation, suggesting that the neuronal ADCY-cAMP-PKA axis is an upstream arrester of the pathophysiological process following an ischemic stroke. This study demonstrates that the neuronal LAMP2A-lysosmal pathway drives intricate acute neurodegenerative and neuroinflammatory responses after brain metabolic stress by downregulating the ADCY-PKA signaling cascade, and highlights the therapeutic potential of PKA signal inducers for improving stroke outcomes.
Collapse
Affiliation(s)
- Dingfang Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yunhao Bai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ruiling Long
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jing Xia
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenxuan Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Dongshen Qin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xuejun Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ming Ding
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Xiao-Yu Hou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
9
|
Pan Y, Nie L, Chen W, Guan D, Li Y, Yang C, Duan L, Wan T, Zhuang L, Lai J, Li W, Zhang Y, Wang Q. Buyang Huanwu Decoction prevents hemorrhagic transformation after delayed t-PA infusion via inhibiting NLRP3 inflammasome/pyroptosis associated with microglial PGC-1α. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119275. [PMID: 39710159 DOI: 10.1016/j.jep.2024.119275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/30/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Delayed tissue-type plasminogen activator (t-PA) thrombolysis, which has a restrictive therapeutic time window within 4.5 h following ischemic stroke (IS), increases the risk of hemorrhagic transformation (HT) and subsequent neurotoxicity. Studies have shown that the NLRP3 inflammasome activation reversely regulated by the PGC-1α leads to microglial polarization and pyroptosis to cause damage to nerve cells and the blood-brain barrier. The effect of Buyang Huanwu Decoction (BHD), a traditional Chinese medicine prescription widely used in the recovery of IS, on HT injury after delayed t-PA treatment had been found with clinical studies, while the underlying mechanisms are reminded to be further clarified. AIM OF THE STUDY This study sought to investigate the therapeutic effect and the underlying mechanisms of BHD in ischemic rat brains with delayed t-PA treatment. MATERIALS AND METHODS The components of BHD extracts were identified by High Performance Liquid Chromatography (HPLC) and the effective components in the rat brains from BHD were analyzed by liquid chromatography-mass spectrometry (LC-MS). In vivo experiment was carried out by 5 h of middle cerebral artery occlusion (MCAO) following by t-PA infusion for 0.5 h plus reperfusion 19 h, while the in vitro BV2 cells were stimulated by lipopolysaccharide (LPS)-adenosine triphosphate (ATP) to activate microglia pyroptosis, of which the MCC950 (NLRP3 inhibitor) and NSA (GSDMD inhibitor) were adopted as reverse validation. PGC-1α siRNA was utilized to study the mechanisms of BHD against microglial polarization and pyroptosis in BV2 cells. RESULTS HPLC analysis demonstrated the fingerprint of BHD with six reference standards (Hydroxysafflor yellow A, Calycosin-7-glucoside, Paeoniflorin, Formononetin, Ferulic acid and Amygdalin), the last two of which can be found in rat brains by LC-MS analysis. In the following experiments, we found the major discoveries as follow: (1) BHD improved the neurological outcomes, the structural integrity of the blood-brain barrier and the neuronal structure in HT rats with MCAO following by delayed t-PA infusion; (2) the presence of t-PA promoted the suppression of PGC-1α and the activation of microglial NLRP3 inflammasome and pyroptosis in the HT rats; (3) BHD promoted the transformation of microglia from M1 to M2 type for inhibiting inflammatory response; (4) BHD restrained NLRP3 inflammasome/pyroptosis activation in microglia, prevented the translocations of NF-κB into the nucleus, as well as enhanced microglia-specific PGC-1α in ischemic rats following t-PA delayed thrombolysis; (5) BHD suppressed NLRP3 inflammasome assembly and increased PGC-1α expression in the LPS-ATP-induced BV2 cells; (6) PGC-1α silencing withdrew the protective role of BHD against NLRP3 inflammasome/pyroptosis. CONCLUSION Mechanistically, BHD existed the protective effect against HT injury after delayed t-PA treatment through up-regulating microglial PGC-1α to inhibit NLRP3 inflammasome and pyroptosis, and serves as a potential adjuvant therapy for HT injury.
Collapse
Affiliation(s)
- Yaru Pan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Linlin Nie
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Weitao Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Danni Guan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yongyi Li
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Cong Yang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Lining Duan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Ting Wan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Lixing Zhuang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Jianbo Lai
- Shenzhen Integrated Traditional Chinese and Western Medicine Hospital, Shenzhen, Guangdong, 518100, China
| | - Weirong Li
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Yifan Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
| | - Qi Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
10
|
Wu X, Liu H, Wang J, Zhang S, Hu Q, Wang T, Cui W, Shi Y, Bai H, Zhou J, Han L, Li L, Zhao T, Wu Y, Luo J, Feng D, Guo W, Ge S, Qu Y. The m 6A methyltransferase METTL3 drives neuroinflammation and neurotoxicity through stabilizing BATF mRNA in microglia. Cell Death Differ 2025; 32:100-117. [PMID: 38902548 PMCID: PMC11742445 DOI: 10.1038/s41418-024-01329-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Persistent neuroinflammation and progressive neuronal loss are defining features of acute brain injury including traumatic brain injury (TBI) and cerebral stroke. Microglia, the most abundant type of brain-resident immune cells, continuously surveil the environment and play a central role in shaping the inflammatory state of the central nervous system (CNS). In the study, we discovered that the protein expression of METTL3 (a m6A methyltransferase) was upregulated in inflammatory microglia independent of increased Mettl3 gene transcription following TBI in both human and mouse subjects. Subsequently, we identified TRIP12, a HECT-domain E3 ubiquitin ligase, as a negative regulator of METTL3 protein expression by facilitating METTL3 K48-linked polyubiquitination. Importantly, selective ablation of Mettl3 inhibited microglial pathogenic activities, diminished neutrophil infiltration, rescued neuronal loss and facilitated functional recovery post-TBI. Using MeRIP-seq and CUT&Tag sequencing, we identified that METTL3 promoted the expression of Basic Leucine Zipper Transcriptional Factor ATF-Like (BATF), which in turn directly bound to a cohort of characteristic inflammatory cytokines and chemokine genes. Enhanced activities of BATF in microglia elicited TNF-dependent neurotoxicity and can also promote neutrophil recruitment through releasing CXCL2. Pharmacological inhibition of METTL3 using a BBB-penetrating drug-loaded nano-system showed satisfactory therapeutic effects in both TBI and stroke mouse models. Collectively, our findings identified METTL3-m6A-BATF axis as a potential therapeutic target for terminating detrimental neuroinflammation and progressive neuronal loss following acute brain injury. METTL3 protein is significantly up-regulated in inflammatory microglia due to the decreased proteasomal degradation mediated by TRIP12 and ERK-USP5 pathways. METTL3 stabilized BATF mRNA stability and promoted BATF expression through the m6A-IGF2BP2-dependent mechanism. Elevated expression of BATF elicits a pro-inflammatory gene program in microglia, and aggravates neuroinflammatory response including local immune responses and peripheral immune cell infiltration. Genetic deletion or pharmaceutically targeting METTL3-BATF axis suppressed microglial pro-inflammatory activities and promoted neurological recovery following TBI and stroke.
Collapse
Affiliation(s)
- Xun Wu
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Haixiao Liu
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jin Wang
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, Hangzhou, 310000, Zhejiang, China
| | - Shenghao Zhang
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Qing Hu
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Tinghao Wang
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Wenxing Cui
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yingwu Shi
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hao Bai
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jinpeng Zhou
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Liying Han
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Leiyang Li
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Tianzhi Zhao
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jianing Luo
- Department of Neurosurgery, West Theater General Hospital, Chengdu, 610083, Sichuan, China
| | - Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Wei Guo
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Shunnan Ge
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
11
|
Xu S, Wang Z, Guo F, Zhang Y, Peng H, Zhang H, Liu Z, Cao C, Xin G, Chen YY, Fu J. Mitophagy in ischemic heart disease: molecular mechanisms and clinical management. Cell Death Dis 2024; 15:934. [PMID: 39737905 DOI: 10.1038/s41419-024-07303-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025]
Abstract
The influence of the mitochondrial control system on ischemic heart disease has become a major focus of current research. Mitophagy, as a very crucial part of the mitochondrial control system, plays a special role in ischemic heart disease, unlike mitochondrial dynamics. The published reviews have not explored in detail the unique function of mitophagy in ischemic heart disease, therefore, the aim of this paper is to summarize how mitophagy regulates the progression of ischemic heart disease. We conclude that mitophagy affects ischemic heart disease by promoting cardiomyocyte hypertrophy and fibrosis, the progression of oxidative stress, the development of inflammation, and cardiomyocyte death, and that the specific mechanisms of mitophagy are worthy of further investigation.
Collapse
Affiliation(s)
- Shujuan Xu
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Zihan Wang
- Department of Oral Implantology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110122, China
| | - Fan Guo
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yehao Zhang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Han Peng
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Huiyu Zhang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Zixin Liu
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Ce Cao
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Gaojie Xin
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yuan Yuan Chen
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jianhua Fu
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
12
|
Si WY, Yang CL, Wei SL, Du T, Li LK, Dong J, Zhou Y, Li H, Zhang P, Liu QJ, Duan RS, Duan RN. Therapeutic potential of microglial SMEK1 in regulating H3K9 lactylation in cerebral ischemia-reperfusion. Commun Biol 2024; 7:1701. [PMID: 39725685 DOI: 10.1038/s42003-024-07425-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Acute ischemic stroke (AIS) triggers immune responses and neuroinflammation, contributing to brain injury. Histone lactylation, a metabolic stress-related histone modification, plays a critical role in various diseases, but its involvement in cerebral ischemia remains unclear. This study utilized a transient middle cerebral artery occlusion/reperfusion (MCAO/R) model and an oxygen-glucose deprivation/reoxygenation (OGD/R) model to investigate the role of microglial histone lactylation in ischemia-reperfusion injury. Lactate overload post-AIS increased histone lactylation, while reduced SMEK1 expression in microglia correlated with elevated lactate and neuroinflammation. Microglia-specific SMEK1 deficiency enhanced lactate production by inhibiting the pyruvate dehydrogenase kinase 3-pyruvate dehydrogenase (PDK3-PDH) pathway, increasing H3 lysine 9 lactylation (H3K9la), activating Ldha and Hif-1α transcription, and promoting glycolysis. SMEK1 overexpression improved neurological recovery in ischemic mice. This study highlights SMEK1 as a novel regulator of histone lactylation and a potential therapeutic target for mitigating neuroinflammation and enhancing recovery after AIS.
Collapse
Affiliation(s)
- Wei-Yue Si
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Chun-Lin Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, PR China
- Shandong Institute of Neuroimmunology, Jinan, People's Republic of China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan, People's Republic of China
| | - Shu-Li Wei
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Tong Du
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, PR China
- Shandong Institute of Neuroimmunology, Jinan, People's Republic of China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan, People's Republic of China
| | - Liang-Kang Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Jing Dong
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, PR China
| | - Yang Zhou
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, PR China
| | - Heng Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, PR China
- Shandong Institute of Neuroimmunology, Jinan, People's Republic of China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan, People's Republic of China
| | - Peng Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, PR China
- Shandong Institute of Neuroimmunology, Jinan, People's Republic of China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan, People's Republic of China
| | - Qi-Ji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, PR China
- Shandong Institute of Neuroimmunology, Jinan, People's Republic of China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan, People's Republic of China
| | - Ruo-Nan Duan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
13
|
Wang X, Hu J, Xie S, Li W, Zhang H, Huang L, Qian Z, Zhao C, Zhang L. Hidden role of microglia during neurodegenerative disorders and neurocritical care: A mitochondrial perspective. Int Immunopharmacol 2024; 142:113024. [PMID: 39217875 DOI: 10.1016/j.intimp.2024.113024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The incidence of aging-related neurodegenerative disorders and neurocritical care diseases is increasing worldwide. Microglia, the main inflammatory cells in the brain, could be potential viable therapeutic targets for treating neurological diseases. Interestingly, mitochondrial functions, including energy metabolism, mitophagy and transfer, fission and fusion, and mitochondrial DNA expression, also change in activated microglia. Notably, mitochondria play an active and important role in the pathophysiology of neurodegenerative disorders and neurocritical care diseases. This review briefly summarizes the current knowledge on mitochondrial dysfunction in microglia in neurodegenerative disorders and neurocritical care diseases and comprehensively discusses the prospects of the application of neurological injury prevention and treatment targets by mitochondria.
Collapse
Affiliation(s)
- Xinrun Wang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Jiyun Hu
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Shucai Xie
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Wenchao Li
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Haisong Zhang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Li Huang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Zhaoxin Qian
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Chunguang Zhao
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China.
| | - Lina Zhang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China.
| |
Collapse
|
14
|
Zhang W, Yan Y, Yi C, Jiang X, Guo L, Huang S, Xia T, Huang F, Jiao Y, Li H, Yu B, Dai Y. Targeting ferroptosis in the neurovascular unit: A promising approach for treating diabetic cognitive impairment. Int Immunopharmacol 2024; 142:113146. [PMID: 39298819 DOI: 10.1016/j.intimp.2024.113146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
The cognitive decline associated with chronic metabolic disease diabetes has garnered extensive scrutiny, yet its pathogenesis remains incompletely understood, and the advancement of targeted therapeutics has posed a persistent challenge. Ferroptosis, a novel form of cell death characterized by intracellular lipid peroxidation and iron overload, has recently emerged as a significant factor. Numerous contemporary studies have corroborated that ferroptosis within the neurovascular unit is intimately associated with the onset of diabetes-induced cognitive impairment. Numerous contemporary studies have corroborated that ferroptosis within the neurovascular unit is intimately associated with the onset of diabetic cognitive impairment (DCI). This article initially conducts a profound analysis of the mechanism of ferroptosis, followed by a detailed elucidation of the specific manifestations of neurovascular unit ferroptosis in the context of diabetic cognitive function impairment. Furthermore, an exhaustive review of pertinent literature from April 2020 to March 2024 has been undertaken, resulting in the selection of 31 documents of significant reference value. These documents encompass studies on 11 distinct drugs, all of which are centered around investigating methods to inhibit the ferroptosis pathway as a potential treatment for DCI. Simultaneously, we conducted a review of 12 supplementary literary sources that presented 10 pharmacological agents with anti-ferroptosis properties in other neurodegenerative disorders. This article critically examines the potential influence of neurovascular unit ferroptosis on the progression of cognitive impairment in diabetes, from the three aforementioned perspectives, and organizes the existing and potential therapeutic drugs. It is our aspiration that this article will serve as a theoretical foundation for scholars in related disciplines when conceptualizing, investigating, and developing novel clinical drugs for DCI.
Collapse
Affiliation(s)
- Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yijing Yan
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunmei Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shanshan Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tong Xia
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fayin Huang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yike Jiao
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
15
|
Zhang W, Wu CC, Ge MM, Yuan XM, Han SY, Zhao FT, Zhang XY, Gao F, Tian YK, Zhang GX, Tian XB. The PGC-1α/ERRα/ULK1 pathway contributes to Perioperative neurocognitive disorders by inducing mitochondrial dysfunction and activating NLRP3 inflammasome in aged mice. Neuropharmacology 2024; 260:110119. [PMID: 39197819 DOI: 10.1016/j.neuropharm.2024.110119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024]
Abstract
Perioperative neurocognitive disorders (PND) are intractable, indistinct, and considerably diminish the postoperative quality of life of patients. It has been proved that Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) was involved in neurodegenerative diseases by regulating mitochondrial biogenesis. The underlying mechanisms of PGC-1α and Nod-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome in PND are not well understood. In this study, we constructed a model of laparotomy in aged mice, and then examined the cognition changes with novel object recognition tests and fear condition tests. The protein levels of PGC-1α and NLRP3 in the hippocampus were detect after surgery. Our results showed that NLRP3 and downstream PI3K/AKT pathway expressions were augmented in the hippocampus after surgery, whereas, the expressions of PGC-1α/estrogen-related receptor α (ERRα)/Unc-51-like autophagy activating kinase 1 (ULK1) pathway were diminished after surgery. In addition, we found that NLRP3 was mainly co-localized with neurons in the hippocampus, and synaptic-related proteins were reduced after surgery. At the same time, transmission electron microscopy (TEM) showed that mitochondria were impaired after surgery. Pharmacological treatment of MCC950, a selective NLRP3 inhibitor, effectively alleviated PND. Activation of PGC-1α with ZLN005 significantly ameliorated PND by enhancing the PGC-1α/ERRα/ULK1 signaling pathway, and further suppressing NLRP3 activation. As a result, we conclude that suppression of the PGC-1α/ERRα/ULK1 signaling pathway is the primary mechanism of PND which caused mitochondrial dysfunction, and activated NLRP3 inflammasome and downstream PI3K/AKT pathway, eventually improved cognitive dysfunction.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cui-Cui Wu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng-Meng Ge
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao-Man Yuan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Si-Yi Han
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng-Tian Zhao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao-Yu Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu-Ke Tian
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guang-Xiong Zhang
- Department of Anesthesiology, Hubei Province Corps Hospital of The Chinese Armed Police Force (CAPF), Wuhan, China.
| | - Xue-Bi Tian
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
16
|
Wang S, Li C, Kang X, Su X, Liu Y, Wang Y, Liu S, Deng X, Huang H, Li T, Lu D, Cai W, Lu Z, Wei L, Lu T. Agomelatine promotes differentiation of oligodendrocyte precursor cells and preserves white matter integrity after cerebral ischemic stroke. J Cereb Blood Flow Metab 2024; 44:1487-1500. [PMID: 38853430 PMCID: PMC11574932 DOI: 10.1177/0271678x241260100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
White matter injury contributes to neurological disorders after acute ischemic stroke (AIS). The repair of white matter injury is dependent on the re-myelination by oligodendrocytes. Both melatonin and serotonin antagonist have been proved to protect against post-stroke white matter injury. Agomelatine (AGM) is a multi-functional treatment which is both a melatonin receptor agonist and selective serotonin receptor antagonist. Whether AGM protects against white matter injury after stroke and the underlying mechanisms remain elusive. Here, using the transient middle cerebral artery occlusion (tMCAO) model, we evaluated the therapeutic effects of AGM in stroke mice. Sensorimotor and cognitive functions, white matter integrity, oligodendroglial regeneration and re-myelination in stroke hemisphere after AGM treatment were analyzed. We found that AGM efficiently preserved white matter integrity, reduced brain tissue loss, attenuated long-term sensorimotor and cognitive deficits in tMCAO models. AGM treatment promoted OPC differentiation and enhanced re-myelination both in vitro, ex vivo and in vivo, although OPC proliferation was unaffected. Mechanistically, AGM activated low density lipoprotein receptor related protein 1 (LRP1), peroxisome proliferator-activated receptor γ (PPARγ) signaling thus promoted OPC differentiation and re-myelination after stroke. Inhibition of PPARγ or knock-down of LRP1 in OPCs reversed the beneficial effects of AGM. Altogether, our data indicate that AGM represents a novel therapy against white matter injury after cerebral ischemia.
Collapse
Affiliation(s)
- Shisi Wang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunyi Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinmei Kang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaotao Su
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuge Wang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sanxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaohui Deng
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huipeng Huang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tiemei Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Danli Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Cai
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Wei
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tingting Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Xie P, Xia M, Long T, Guo D, Cao W, Sun P, Yu W. GIV/Girdin Modulation of Microglial Activation in Ischemic Stroke: Impact of FTO-Mediated m6A Modification. Mol Neurobiol 2024:10.1007/s12035-024-04604-8. [PMID: 39560901 DOI: 10.1007/s12035-024-04604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/12/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024]
Abstract
Ischemic stroke (IS) is one of the most common causes of death in the world. The lack of effective pharmacological treatments for IS was primarily due to a lack of understanding of its pathogenesis. Gα-Interacting vesicle-associated protein (GIV/Girdin) is a multi-modular signal transducer and guanine nucleotide exchange factor that controls important signaling downstream of multiple receptors. The purpose of this study was to investigate the role of GIV in IS. In the present study, we found that GIV is highly expressed in the central nervous system (CNS). GIV protein level was decreased, while GIV transcript level was increased in the middle cerebral artery occlusion reperfusion (MCAO/R) mice model. Additionally, GIV was insensitive lipopolysaccharide (LPS) exposure. Interestingly, we found that GIV overexpression dramatically restrained microglial activation, inflammatory response, and M1 polarization in BV-2 microglia induced by oxygen-glucose deprivation and reoxygenation (OGD/R). On the contrary, GIV knockdown had the opposite impact. Mechanistically, we found that GIV activated the Wnt/β-catenin signaling pathway by interacting with DVL2 (disheveled segment polarity protein 2). Notably, m6A demethylase fat mass and obesity-associated protein (FTO) decreased the N6-methyladenosine (m6A) modification-mediated increase of GIV expression and attenuated the inflammatory response in BV-2 stimulated by OGD/R. Taken together, our results demonstrate that GIV inhibited the inflammatory response via activating the Wnt/β-catenin signaling pathway which expression regulated in an FTO-mediated m6A modification in IS. These results broaden our understanding of the role of the FTO-GIV axis in IS development.
Collapse
Affiliation(s)
- Peng Xie
- Key Laboratory of Molecular Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.
- Department of Human AnatomySchool of Basic Medical ScienceGuian New District, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Mingyan Xia
- Key Laboratory of Molecular Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Human AnatomySchool of Basic Medical ScienceGuian New District, Guizhou Medical University, Guiyang, Guizhou, China
| | - Tingting Long
- Department of Human AnatomySchool of Basic Medical ScienceGuian New District, Guizhou Medical University, Guiyang, Guizhou, China
| | - Dongfen Guo
- Key Laboratory of Molecular Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Human AnatomySchool of Basic Medical ScienceGuian New District, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wenpeng Cao
- Department of Human AnatomySchool of Basic Medical ScienceGuian New District, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ping Sun
- Department of Neurology, The Second People's Hospital of Guiyang, Guiyang, Guiyang, China
| | - Wenfeng Yu
- Key Laboratory of Molecular Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.
- Department of Human AnatomySchool of Basic Medical ScienceGuian New District, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
18
|
Wang S, Qin M, Fan X, Jiang C, Hou Q, Ye Z, Zhang X, Yang Y, Xiao J, Wallace K, Rastegar-Kashkooli Y, Peng Q, Jin D, Wang J, Wang M, Ding R, Tao J, Kim YT, Bhawal UK, Wang J, Chen X, Wang J. The role of metal ions in stroke: Current evidence and future perspectives. Ageing Res Rev 2024; 101:102498. [PMID: 39243890 DOI: 10.1016/j.arr.2024.102498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Metal ions play a pivotal role in maintaining optimal brain function within the human body. Nevertheless, the accumulation of these ions can result in irregularities that lead to brain damage and dysfunction. Disruptions of metal ion homeostasis can result in various pathologies, including inflammation, redox dysregulation, and blood-brain barrier disruption. While research on metal ions has chiefly focused on neurodegenerative diseases, little attention has been given to their involvement in the onset and progression of stroke. Recent studies have identified cuproptosis and confirmed ferroptosis as significant factors in stroke pathology, underscoring the importance of metal ions in stroke pathology, including abnormal ion transport, neurotoxicity, blood-brain barrier damage, and cell death. Additionally, it provides an overview of contemporary metal ion chelators and detection techniques, which may offer novel approaches to stroke treatment.
Collapse
Affiliation(s)
- Shaoshuai Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Non-commissioned Officer School of Army Medical University, Shijiazhuang, Hebei 050000, China
| | - Mengzhe Qin
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Chao Jiang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Qingchuan Hou
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ziyi Ye
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xinru Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yunfan Yang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jingyu Xiao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kevin Wallace
- College of Mathematical and Natural Sciences, University of Maryland, College Park, MD 20742, USA
| | - Yousef Rastegar-Kashkooli
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qinfeng Peng
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Dongqi Jin
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Junyang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Menglu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ruoqi Ding
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jin Tao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ujjal K Bhawal
- Center for Global Health Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India; Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
19
|
Zhai X, Wang Z, Gao J. Quercetin alleviates microglial-induced inflammation after traumatic brain injury via the PGC-1α/Nrf2 pathway dependent on HDAC3 inhibition. Brain Res Bull 2024; 217:111080. [PMID: 39277018 DOI: 10.1016/j.brainresbull.2024.111080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Inflammation and neuronal apoptosis play a key role in traumatic brain injury (TBI). Quercetin (Que) has been shown to exhibit a neuroprotective effect after TBI, but the underlying molecular mechanism remains unclear. In this study, We established a weight-drop mouse model to illustrate the effects of Que on microglial-induced inflammation in TBI. Mice were divided into four groups: the Sham group, TBI group, TBI+vehicle group, and TBI+Que group. The TBI+Que group was treated with Que 30 min after TBI. Brain water content, neurological score, and neuronal apoptosis were measured. Western blotting, TUNEL staining, Nissl staining, quantitative polymerase chain reaction, and immunofluorescence staining were performed to assess the activation of the PGC-1α/Nrf2 pathway and nuclear translocation of HDAC3 with Que treatment. The results showed that Que administration alleviated TBI-induced neurobehavioral deficits, encephaledema, and neuron apoptosis. Que also restrained TBI-induced microglial activity and the subsequent expression of the inflammatory factor in the contusion cortex. Moreover, Que treatment activated the PGC-1α/Nrf2 pathway, attributable to the inhibition of HDAC3 translocation to the nucleus. Overall, these results reveal the role of Que in protecting against TBI-induced neuroinflammation and promoting neurological functional recovery, which is achieved through the negative regulation of HDAC3.
Collapse
Affiliation(s)
- Xiaofu Zhai
- Department of Neurosurgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu 210029, China; Department of Neurosurgery, Lianshui People's Hosptial of Kangda College Affiliated to Nanjing Medical University, Huai'an, Jiangsu 223499, China
| | - Ziyu Wang
- Department of Neurosurgery, The Second People's Hospital of Huai'an, Xuzhou Medical College, Huai'an, Jiangsu 223002, China
| | - Juemin Gao
- Department of Neurosurgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu 210029, China.
| |
Collapse
|
20
|
Zhao M, Wang J, Zhu S, Wang M, Chen C, Wang L, Liu J. Mitochondrion-based organellar therapies for central nervous system diseases. Cell Commun Signal 2024; 22:487. [PMID: 39390521 PMCID: PMC11468137 DOI: 10.1186/s12964-024-01843-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
As most traditional drugs used to treat central nervous system (CNS) diseases have a single therapeutic target, many of them cannot treat complex diseases or diseases whose mechanism is unknown and cannot effectively reverse the root changes underlying CNS diseases. This raises the question of whether multiple functional components are involved in the complex pathological processes of CNS diseases. Organelles are the core functional units of cells, and the replacement of damaged organelles with healthy organelles allows the multitargeted and integrated modulation of cellular functions. The development of therapies that target independent functional units in the cell, specifically, organelle-based therapies, is rapidly progressing. This article comprehensively discusses the pathogenesis of mitochondrial homeostasis disorders, which involve mitochondria, one of the most important organelles in CNS diseases, and the machanisms of mitochondrion-based therapies, as well as current preclinical and clinical studies on the efficacy of therapies targeting mitochondrial to treat CNS diseases, to provide evidence for use of organelle-based treatment strategies in the future.
Collapse
Affiliation(s)
- Mengke Zhao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Jiayi Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Shuaiyu Zhu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Meina Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Chong Chen
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China.
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China.
| |
Collapse
|
21
|
Sheng B, Gao S, Chen X, Liu Y, Lai N, Dong J, Sun J, Zhou Y, Wu L, Hang CH, Li W. Exosomes-mediated delivery of miR-486-3p alleviates neuroinflammation via SIRT2-mediated inhibition of mitophagy after subarachnoid hemorrhage. Stroke Vasc Neurol 2024:svn-2024-003509. [PMID: 39357894 DOI: 10.1136/svn-2024-003509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Neuroinflammation participates in the pathogenesis of subarachnoid haemorrhage (SAH); however, no effective treatments exist. MicroRNAs regulate several aspects of neuronal dysfunction. In a previous study, we found that exosomal miR-486-3p is involved in the pathophysiology of SAH. Targeted delivery of miR-486-3p without blood-brain barrier (BBB) restriction to alleviate SAH is a promising neuroinflammation approach. METHODS In this study, we modified exosomes (Exo) to form an RVG-miR-486-3p-Exo (Exo/miR) to achieve targeted delivery of miR-486-3p to the brain. Neurological scores, brain water content, BBB damage, flow cytometry and FJC staining were used to determine the effect of miR-486-3p on SAH. Western blot analysis, ELISA and RT-qPCR were used to measure relevant protein and mRNA levels. Immunofluorescence staining and laser confocal detection were used to measure the expression of mitochondria, lysosomes and autophagosomes, and transmission electron microscopy was used to observe the level of mitophagy in the brain tissue of mice after SAH. RESULTS Tail vein injection of Exo/miR improved targeting of miR-486-3p to the brains of SAH mice. The injection reduced levels of neuroinflammation-related factors by changing the phenotype switching of microglia, inhibiting the expression of sirtuin 2 (SIRT2) and enhancing mitophagy. miR-486-3p treatment alleviated neurobehavioral disorders, brain oedema, BBB damage and neurodegeneration. Further research found that the mechanism was achieved by regulating the acetylation level of peroxisome proliferator-activated receptor γ coactivator l alpha (PGC-1α) after SIRT2 enters the nucleus. CONCLUSION Exo/miR treatment attenuates neuroinflammation after SAH by inhibiting SIRT2 expression and stimulating mitophagy, suggesting potential clinical applications.
Collapse
Affiliation(s)
- Bin Sheng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Sen Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - XiangXin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yang Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Niansheng Lai
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Jin Dong
- Department of Outpatient, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Jiaqing Sun
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Lingyun Wu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
22
|
Wang Y, Zhang L, Lyu T, Cui L, Zhao S, Wang X, Wang M, Wang Y, Li Z. Association of DNA methylation/demethylation with the functional outcome of stroke in a hyperinflammatory state. Neural Regen Res 2024; 19:2229-2239. [PMID: 38488557 PMCID: PMC11034580 DOI: 10.4103/1673-5374.392890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 04/24/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202410000-00024/figure1/v/2024-02-06T055622Z/r/image-tiff Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effect of DNA methylation on stroke at high levels of inflammation is unclear. In this study, we constructed a hyperinflammatory cerebral ischemia mouse model and investigated the effect of hypomethylation and hypermethylation on the functional outcome. We constructed a mouse model of transient middle cerebral artery occlusion and treated the mice with lipopolysaccharide to induce a hyperinflammatory state. To investigate the effect of DNA methylation on stroke, we used small molecule inhibitors to restrain the function of key DNA methylation and demethylation enzymes. 2,3,5-Triphenyltetrazolium chloride staining, neurological function scores, neurobehavioral tests, enzyme-linked immunosorbent assay, quantitative reverse transcription PCR and western blot assay were used to evaluate the effects after stroke in mice. We assessed changes in the global methylation status by measuring DNA 5-mc and DNA 5-hmc levels in peripheral blood after the use of the inhibitor. In the group treated with the DNA methylation inhibitor, brain tissue 2,3,5-triphenyltetrazolium chloride staining showed an increase in infarct volume, which was accompanied by a decrease in neurological scores and worsening of neurobehavioral performance. The levels of inflammatory factors interleukin 6 and interleukin-1 beta in ischemic brain tissue and plasma were elevated, indicating increased inflammation. Related inflammatory pathway exploration showed significant overactivation of nuclear factor kappa B. These results suggested that inhibiting DNA methylation led to poor functional outcome in mice with high inflammation following stroke. Further, the effects were reversed by inhibition of DNA demethylation. Our findings suggest that DNA methylation regulates the inflammatory response in stroke and has an important role in the functional outcome of hyperinflammatory stroke.
Collapse
Affiliation(s)
- Yubo Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ling Zhang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tianjie Lyu
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lu Cui
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shunying Zhao
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuechun Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Meng Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yongjun Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| | - Zixiao Li
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| |
Collapse
|
23
|
Tan L, Liu Q, Chen S, You R, Li X, Wen T, Peng Z. Neuroprotective effects of all-trans-retinoic acid are mediated via downregulation of TLR4/NF-κB signaling in a rat model of middle cerebral artery occlusion. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2024; 29:276-283. [PMID: 39379083 PMCID: PMC11460776 DOI: 10.17712/nsj.2024.4.20240010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/14/2024] [Indexed: 10/10/2024]
Abstract
OBJECTIVES To determine the effects of all-trans-retinoic acid (ATRA) on the post-stroke inflammatory response and elucidate the underlying molecular mechanisms. METHODS This animal experiment was conducted at Central Laboratory, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China during 2020-2022. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 1.5 h, and treated with ATRA at 2 and 24 h after reperfusion. Neurological deficit scores on behavioral tests, and cerebral infarct volume, microglial polarization, and the expression levels of inflammatory cytokines and proteins associated with TLR4/NF-κB signaling were assessed. RESULTS The ATRA administration reduced cerebral infarct volume and ameliorated neurological deficit scores in MCAO rats. Additionally, ATRA relieved cerebral edema and downregulated the secretion of proinflammatory cytokines after stroke. Finally, ATRA attenuated the polarization of the microglia toward the M1 phenotype and promoted the activation of the beneficial M2 phenotype; the underlying mechanism potentially involved the suppression of the TLR4/NF-κB signaling pathway. CONCLUSION The ATRA treatment promoted functional recovery in an experimental model of ischemic stroke by attenuating neural inflammation. ATRA potentially modulated microglia-mediated neuroinflammation via the downregulation of the TLR4/NF-κB signaling pathway, which makes it a candidate treatment for post-stroke neuroinflammation.
Collapse
Affiliation(s)
- Lixi Tan
- From the Department of Neurology (Tan, Chen, You, Li, Wen, Peng), and from First Affiliated Hospital of Guangdong Pharmaceutical College, and from Liwan Central Hospital of Guangzhou (Tan), Guangzhou, China
| | - Qian Liu
- From the Department of Neurology (Tan, Chen, You, Li, Wen, Peng), and from First Affiliated Hospital of Guangdong Pharmaceutical College, and from Liwan Central Hospital of Guangzhou (Tan), Guangzhou, China
| | - Songfa Chen
- From the Department of Neurology (Tan, Chen, You, Li, Wen, Peng), and from First Affiliated Hospital of Guangdong Pharmaceutical College, and from Liwan Central Hospital of Guangzhou (Tan), Guangzhou, China
| | - Rongjiao You
- From the Department of Neurology (Tan, Chen, You, Li, Wen, Peng), and from First Affiliated Hospital of Guangdong Pharmaceutical College, and from Liwan Central Hospital of Guangzhou (Tan), Guangzhou, China
| | - Xinyue Li
- From the Department of Neurology (Tan, Chen, You, Li, Wen, Peng), and from First Affiliated Hospital of Guangdong Pharmaceutical College, and from Liwan Central Hospital of Guangzhou (Tan), Guangzhou, China
| | - Tao Wen
- From the Department of Neurology (Tan, Chen, You, Li, Wen, Peng), and from First Affiliated Hospital of Guangdong Pharmaceutical College, and from Liwan Central Hospital of Guangzhou (Tan), Guangzhou, China
| | - Zhongxing Peng
- From the Department of Neurology (Tan, Chen, You, Li, Wen, Peng), and from First Affiliated Hospital of Guangdong Pharmaceutical College, and from Liwan Central Hospital of Guangzhou (Tan), Guangzhou, China
| |
Collapse
|
24
|
Lu Q, Chen X, Zhang Q. PGC1α enhances macrophage efferocytosis in ox-LDL-stimulated RAW264.7 cells by regulating the NLRP3/PPARα axis. Tissue Cell 2024; 90:102476. [PMID: 39047550 DOI: 10.1016/j.tice.2024.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Defective clearance of apoptotic and foam cells achieved by arterial macrophage efferocytosis propels the progression of inflammatory atherosclerosis, but related molecular mechanisms in this process remain unclear. Herein, this study is engineered to probe into the mechanism of peroxisome-proliferator-activated receptor-γ coactivator-1α (PGC1α) on atherosclerosis. METHODS The PGC1α/NLR family pyrin domain containing 3 (NLRP3)/peroxisome proliferator activated receptor alpha (PPARα) axis in oxidized low-density lipoprotein (ox-LDL)-induced RAW264.7 cells was verified using Western blot. Inflammatory response, NLRP3 activation, efferocytotic efficiency and lipid uptake of the ox-LDL-stimulated cells overexpressing PGC1α or/and silencing PPARα were detected by enzyme-linked immunosorbent assay, immunofluorescence, tracing of apoptotic Jurkat cells and Oil red O staining. RESULTS PGC1α and PPARα levels were decreased, but NLRP3 level was increased in ox-LDL-stimulated RAW264.7 cells (P<0.001). PGC1α overexpression repressed the levels of IL-1β, IL-6 and TNF-α, NLRP3 expression or activation and foam cell formation (P<0.05), but enhanced efferocytosis as well as expressions of AXL, MERTK and TYRO3 in ox-LDL-stimulated cells (P<0.001). PGC1α overexpression increased PPARα expression. However, PPARα silencing reversed the effects of PGC1α overexpression on protecting macrophages against ox-LDL-induced inflammation, efferocytotic impairment and foam cell formation (P<0.05). CONCLUSION Overexpression PGC1α decreased NLRP3 activation to promoted the expression of PPARα, which alleviated the impairment of macrophage efferocytosis and inhibited the development of atherosclerosis development.
Collapse
Affiliation(s)
- Qi Lu
- Department of Cardiology, The Affiliated People's Hospital of Ningbo University, China.
| | - Xujiao Chen
- Department of Ultrasound, East ward of Ningbo Medical Center Lihuili Hospital, China
| | - Qijun Zhang
- Department of Cardiology, The Affiliated People's Hospital of Ningbo University, China
| |
Collapse
|
25
|
Liang F, Huang S. PGC-1α inhibits NLRP3 signaling through transcriptional activation of POP1 to alleviate inflammation and strengthen osteogenic differentiation of lipopolysaccharide-induced human periodontal stem cells. Prostaglandins Other Lipid Mediat 2024; 174:106853. [PMID: 38763227 DOI: 10.1016/j.prostaglandins.2024.106853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Periodontitis is a chronic infectious disease that affects the oral health of adults. Periodontal stem cells (PDLSCs) have good self-renewal and multipotential differentiation abilities to maintain the integrity of periodontal support structure and repair defects. This study aimed to elucidate the role of peroxisome proliferator activated receptor-γ co-activator 1-α (PGC-1α) in lipopolysaccharide (LPS)-induced PDLSCs and the underlying mechanisms related to predicated that pyrin domain (PYD)-only protein 1 (POP1). Notably downregulated PGC-1α and POP1 expression was observed in LPS-induced PDLSCs. PGC-1α or POP1 overexpression significantly reduced the inflammation and enhanced the osteogenic differentiation of LPS-treated PDLSCs. Particularly, PGC-1 bound to POP1 promoter region and upregulated POP1 expression. Moreover, POP1 knockdown ameliorated the impacts of PGC-1α overexpression on the inflammation and osteogenic differentiation in LPS-induced PDLSCs. Besides, PGC-1α inactivated NLRP3 signaling in LPS-treated PDLSCs, which was reversed by POP1 knockdown. Taken together, PGC-1α inhibits NLRP3 signaling through transcriptional activation of POP1, thereby alleviating inflammation and strengthening osteogenic differentiation of LPS-induced PDLSCs.
Collapse
Affiliation(s)
- Fuying Liang
- Department of Stomatology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518100, China
| | - Shanshan Huang
- Department of Dentistry and Endodontics, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan 65000, China.
| |
Collapse
|
26
|
Yin L, Yuan L, Luo Z, Tang Y, Lin X, Wang S, Liang P, Huang L, Jiang B. COX-2 optimizes cardiac mitochondrial biogenesis and exerts a cardioprotective effect during sepsis. Cytokine 2024; 182:156733. [PMID: 39128194 DOI: 10.1016/j.cyto.2024.156733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Septic cardiomyopathy is a component of multiple organ dysfunction in sepsis. Mitochondrial dysfunction plays an important role in septic cardiomyopathy. Studies have shown that cyclooxygenase-2 (COX-2) had a protective effect on the heart, and prostaglandin E2 (PGE2), the downstream product of COX-2, was increasingly recognized to have a protective effect on mitochondrial function. OBJECTIVE This study aims to demonstrate that COX-2/PGE2 can protect against septic cardiomyopathy by regulating mitochondrial function. METHODS Cecal ligation and puncture (CLP) was used to establish a mouse model of sepsis and RAW264.7 macrophages and H9C2 cells were used to simulate sepsis in vitro. The NS-398 and celecoxib were used to inhibit the activity of COX-2. ZLN005 and SR18292 were used to activate or inhibit the PGC-1α activity. The mitochondrial biogenesis was examined through the Mitotracker Red probe, mtDNA copy number, and ATP content detection. RESULTS The experimental data suggested that COX-2 inhibition attenuated PGC-1α expression thus decreasing mitochondrial biogenesis, whereas increased PGE2 could promote mitochondrial biogenesis by activating PGC-1α. The results also showed that the effect of COX-2/PGE2 on PGC-1α was mediated by the activation of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB). Finally, the effect of COX-2/PGE2 on the heart was also verified in the septic mice. CONCLUSION Collectively, these results suggested that COX-2/PGE2 pathway played a cardioprotective role in septic cardiomyopathy through improving mitochondrial biogenesis, which has changed the previous understanding that COX-2/PGE2 only acted as an inflammatory factor.
Collapse
Affiliation(s)
- Leijing Yin
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Ludong Yuan
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Zhengyang Luo
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Yuting Tang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Xiaofang Lin
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Shuxin Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Lingjin Huang
- Department of Cardiothoracic Surgery, Xiangya Hospital Central South University, Changsha, PR China.
| | - Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China.
| |
Collapse
|
27
|
Liu D, Wu W, Wang T, Zhan G, Zhang Y, Gao J, Gong Q. Lithocarpus polystachyus Rehd. ameliorates cerebral ischemia/reperfusion injury through inhibiting PI3K/AKT/NF-κB pathway and regulating NLRP3-mediated pyroptosis. Front Pharmacol 2024; 15:1365642. [PMID: 39380903 PMCID: PMC11458458 DOI: 10.3389/fphar.2024.1365642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Ischemic stroke (IS) is a serious threat to human life and health, and cerebral ischemia/reperfusion injury (CIRI) exacerbates IS by enhancing neuroinflammation and oxidative stress. Sweet tea (ST) comprises several bioactive components, such as phlorizin, trilobatin, and phloretin, with diverse pharmacological activities. However, it remains uncertain whether ST can confer protection against CIRI. In this study, we aimed to investigate the impact and potential underlying mechanism of ST in the context of CIRI. Methods CIRI model were established in male sprague dawley (SD) rats. The neurobehavioral assessment, the volume of cerebral infarction and the morphology of neurons were measured to complete the preliminary pharmacodynamic study. The therapeutic targets and pathways of ST on IS were obtained by protein-protein interaction, molecular docking and Metascape database. The predicted results were further verified in vivo. Results Our results revealed that ST treatment significantly ameliorated brain damage in rats subjected to CIRI by mitigating mitochondrial oxidative stress and neuroinflammation. Additionally, we identified the PI3K/AKT/NF-κB pathway and the NLRP3-mediated pyroptosis axis as crucial processes, with molecular docking suggested direct interactions between the main compounds of ST and NLRP3. Conclusion ST safeguards against CIRI-induced neuronal loss, neuroinflammation and oxidative stress through the inhibition of the PI3K/AKT/NF-κB pathway and the regulation of NLRP3-mediated pyroptosis.
Collapse
Affiliation(s)
- Daifang Liu
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wendan Wu
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Tingting Wang
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Guiyu Zhan
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yuandong Zhang
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jianmei Gao
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
28
|
Wculek SK, Forisch S, Miguel V, Sancho D. Metabolic homeostasis of tissue macrophages across the lifespan. Trends Endocrinol Metab 2024; 35:793-808. [PMID: 38763781 DOI: 10.1016/j.tem.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Macrophages are present in almost all organs. Apart from being immune sentinels, tissue-resident macrophages (TRMs) have organ-specific functions that require a specialized cellular metabolism to maintain homeostasis. In addition, organ-dependent metabolic adaptations of TRMs appear to be fundamentally distinct in homeostasis and in response to a challenge, such as infection or injury. Moreover, TRM function becomes aberrant with advancing age, contributing to inflammaging and organ deterioration, and a metabolic imbalance may underlie TRM immunosenescence. Here, we outline current understanding of the particular metabolic states of TRMs across organs and the relevance for their function. Moreover, we discuss the concomitant aging-related decline in metabolic plasticity and functions of TRMs, highlighting potential novel therapeutic avenues to promote healthy aging.
Collapse
Affiliation(s)
- Stefanie K Wculek
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Stephan Forisch
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Verónica Miguel
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| |
Collapse
|
29
|
Lu W, Wen J. Crosstalk Among Glial Cells in the Blood-Brain Barrier Injury After Ischemic Stroke. Mol Neurobiol 2024; 61:6161-6174. [PMID: 38279077 DOI: 10.1007/s12035-024-03939-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Blood-brain barrier (BBB) is comprised of brain microvascular endothelial cells (ECs), astrocytes, perivascular microglia, pericytes, neuronal processes, and the basal lamina. As a complex and dynamic interface between the blood and the central nervous system (CNS), BBB is responsible for transporting nutrients essential for the normal metabolism of brain cells and hinders many toxic compounds entering into the CNS. The loss of BBB integrity following stroke induces tissue damage, inflammation, edema, and neural dysfunction. Thus, BBB disruption is an important pathophysiological process of acute ischemic stroke. Understanding the mechanism underlying BBB disruption can uncover more promising biological targets for developing treatments for ischemic stroke. Ischemic stroke-induced activation of microglia and astrocytes leads to increased production of inflammatory mediators, containing chemokines, cytokines, matrix metalloproteinases (MMPs), etc., which are important factors in the pathological process of BBB breakdown. In this review, we discussed the current knowledges about the vital and dual roles of astrocytes and microglia on the BBB breakdown during ischemic stroke. Specifically, we provided an updated overview of phenotypic transformation of microglia and astrocytes, as well as uncovered the crosstalk among astrocyte, microglia, and oligodendrocyte in the BBB disruption following ischemic stroke.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
30
|
Yang Y, Ke J, Cao Y, Gao Y, Lin C. Melatonin regulates microglial M1/M2 polarization via AMPKα2-mediated mitophagy in attenuating sepsis-associated encephalopathy. Biomed Pharmacother 2024; 177:117092. [PMID: 38976956 DOI: 10.1016/j.biopha.2024.117092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a disease characterized by neuroinflammation and cognitive dysfunction caused by systemic infection. Inflammation-induced microglial activation is closely associated with neuroinflammation in SAE. It is widely understood that melatonin has strong anti-inflammatory and immunomodulatory properties beneficial for sepsis-related brain damage. However, the mechanism of melatonin action in SAE has not been fully elucidated. METHODS The SAE cell model and SAE mouse model were induced by lipopolysaccharide (LPS). Behavioral tests were performed to analyze cognitive function. Microglial markers and M1/M2 markers were measured by immunofluorescence. Mitophagy was assessed by western blot, mt-Keima and transmission electron microscopy experiments. Immunoprecipitation and co-immunoprecipitation assays investigated the interactions between AMP-activated protein kinase α2 (AMPKα2) and PTEN-induced putative kinase 1 (PINK1). RESULTS Melatonin suppresses LPS-induced microglia M1 polarization by enhancing mitophagy, thereby attenuating LPS-induced neuroinflammation and behavioral deficits. However, inhibition or knockdown of AMPKα2 can inhibit the enhancement of melatonin on mitophagy, then weaken its promotion of microglia polarization towards M2 phenotype, and eliminate its protective effect on brain function. Furthermore, melatonin enhances mitophagy through activating AMPKα2, promotes PINK1 Ser495 site phosphorylation, and ultimately regulates microglial polarization from M1 to M2. CONCLUSIONS Our findings demonstrate that melatonin facilitates microglia polarization towards M2 phenotype to alleviate LPS-induced neuroinflammation, primarily through AMPKα2-mediated enhancement of mitophagy.
Collapse
Affiliation(s)
- Yang Yang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Jinyong Ke
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Yang Cao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Yue Gao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Chunshui Lin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
31
|
Zhao C, Sun L, Zhang Y, Shu X, Hu Y, Chen D, Zhang Z, Xia S, Yang H, Bao X, Li J, Xu Y. Thymol improves ischemic brain injury by inhibiting microglia-mediated neuroinflammation. Brain Res Bull 2024; 215:111029. [PMID: 39009094 DOI: 10.1016/j.brainresbull.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/20/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Microglia-mediated inflammation is a critical factor in the progression of ischemic stroke. Consequently, mitigating excessive microglial activation represents a potential therapeutic strategy for ischemic injury. Thymol, a monophenol derived from plant essential oils, exhibits diverse beneficial biological activities, including anti-inflammatory and antioxidant properties, with demonstrated protective effects in various disease models. However, its specific effects on ischemic stroke and microglial inflammation remain unexplored. METHODS Rodent transient middle cerebral artery occlusion (tMCAO) model was established to simulate ischemic stroke. TTC staining, modified neurological function score (mNSS), and behavioral tests were used to assess the severity of neurological damage. Then immunofluorescence staining and cytoskeleton analysis were used to determine activation of microglia. Lipopolysaccharide (LPS) was utilized to induce the inflammatory response of primary microglia in vitro. Quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and enzyme-linked immunosorbent assay (ELISA) were performed to exam the expression of inflammatory cytokines. And western blot was used to investigate the mechanism of the anti-inflammatory effect of thymol. RESULTS In this study, we found that thymol treatment could ameliorate post-stroke neurological impairment and reduce infarct volume by mitigating microglial activation and pro-inflammatory response (IL-1β, IL-6, and TNF-α). Mechanically, thymol could inhibit the phosphorylation of phosphatidylinositol-3-kinase (PI3K), sink serine/threonine kinase (Akt), and mammalian target of rapamycin (mTOR), thereby suppressing the activation of nuclear factor-κB (NF-κB). CONCLUSIONS Our study demonstrated that thymol could reduce the microglial inflammation by targeting PI3K/Akt/mTOR/NF-κB signaling pathway, ultimately alleviating ischemic brain injury. These findings suggest that thymol is a promising candidate as a neuroprotective agent against ischemic stroke.
Collapse
Affiliation(s)
- Chenchen Zhao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Liang Sun
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yuxin Zhang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xin Shu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yujie Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Duo Chen
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhi Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Haiyan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Jingwei Li
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China.
| |
Collapse
|
32
|
Benkő S, Dénes Á. Microglial Inflammatory Mechanisms in Stroke: The Jury Is Still Out. Neuroscience 2024; 550:43-52. [PMID: 38364965 DOI: 10.1016/j.neuroscience.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Microglia represent the main immune cell population in the CNS with unique homeostatic roles and contribution to broad neurological conditions. Stroke is associated with marked changes in microglial phenotypes and induction of inflammatory responses, which emerge as key modulators of brain injury, neurological outcome and regeneration. However, due to the limited availability of functional studies with selective targeting of microglia and microglia-related inflammatory pathways in stroke, the vast majority of observations remain correlative and controversial. Because extensive review articles discussing the role of inflammatory mechanisms in different forms of acute brain injury are available, here we focus on some specific pathways that appear to be important for stroke pathophysiology with assumed contribution by microglia. While the growing toolkit for microglia manipulation increasingly allows targeting inflammatory pathways in a cell-specific manner, reconsideration of some effects devoted to microglia may also be required. This may particularly concern the interpretation of inflammatory mechanisms that emerge in response to stroke as a form of sterile injury and change markedly in chronic inflammation and common stroke comorbidities.
Collapse
Affiliation(s)
- Szilvia Benkő
- Laboratory of Inflammation-Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest H-1083, Hungary.
| |
Collapse
|
33
|
Przepiórska-Drońska K, Wnuk A, Pietrzak-Wawrzyńska BA, Łach A, Biernat W, Wójtowicz AK, Kajta M. Amorfrutin B Compromises Hypoxia/Ischemia-induced Activation of Human Microglia in a PPARγ-dependent Manner: Effects on Inflammation, Proliferation Potential, and Mitochondrial Status. J Neuroimmune Pharmacol 2024; 19:34. [PMID: 38949694 PMCID: PMC11217078 DOI: 10.1007/s11481-024-10135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Amorfrutin B is a selective PPARγ modulator that we demonstrated to be a promising neuroprotective compound in cellular models of stroke and perinatal asphyxia. Although neuronal mechanisms of amorfrutin B-evoked neuroprotection have been identified, none of them reflects the actions of the compound on microglia, which play a pivotal role in brain response to hypoxia/ischemia. Here, we provide evidence for amorfrutin B-induced effects on human microglia subjected to hypoxia/ischemia; the compound counteracts inflammation, and influences mitochondrial status and proliferation potential in a PPARγ-dependent manner. Post-treatment with amorfrutin B decreased the IBA1 fluorescence intensity, reduced caspase-1 activity, and downregulated IL1B/IL-1β and TNFA but not IL10/IL-10 expression, which was upregulated. Amorfrutin B also stimulated PPARγ signaling, as evidenced by increased mRNA and/or protein levels of PPARγ and PGC1α. In addition, amorfrutin B reversed the hypoxia/ischemia-evoked effects on mitochondria-related parameters, such as mitochondrial membrane potential, BCL2/BCL2 expression and metabolic activity, which were correlated with diminished proliferation potential of microglia. Interestingly, the inhibitory effect of amorfrutin B on the proliferation potential and mitochondrial function of microglia is opposite to the stimulatory effect of amorfrutin B on mouse neuronal survival, as evidenced by increased neuronal viability and reduced neurodegeneration. In summary, this study showed for the first time that amorfrutin B compromises hypoxia/ischemia-induced activation of human microglia in a PPARγ-dependent manner, which involves inhibiting inflammation, normalizing mitochondrial status, and controlling proliferation potential. These data extend the protective potential of amorfrutin B in the pharmacotherapy of hypoxic/ischemic brain injury, targeting not only neurons but also activated microglia.
Collapse
Affiliation(s)
- Karolina Przepiórska-Drońska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Neuropharmacology and Epigenetics, Smetna Street 12, 31-343, Krakow, Poland
| | - Agnieszka Wnuk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Neuropharmacology and Epigenetics, Smetna Street 12, 31-343, Krakow, Poland
| | - Bernadeta Angelika Pietrzak-Wawrzyńska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Neuropharmacology and Epigenetics, Smetna Street 12, 31-343, Krakow, Poland
| | - Andrzej Łach
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Neuropharmacology and Epigenetics, Smetna Street 12, 31-343, Krakow, Poland
| | - Weronika Biernat
- Faculty of Animal Sciences, Department of Nutrition, Animal Biotechnology and Fisheries, University of Agriculture, Adama Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Anna Katarzyna Wójtowicz
- Faculty of Animal Sciences, Department of Nutrition, Animal Biotechnology and Fisheries, University of Agriculture, Adama Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Małgorzata Kajta
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Neuropharmacology and Epigenetics, Smetna Street 12, 31-343, Krakow, Poland.
| |
Collapse
|
34
|
Wang L, Li M, Liu B, Zheng R, Zhang X, Yu S. miR-30a-5p mediates ferroptosis of hippocampal neurons in chronic cerebral hypoperfusion-induced cognitive dysfunction by modulating the SIRT1/NRF2 pathway. Brain Res Bull 2024; 212:110953. [PMID: 38636610 DOI: 10.1016/j.brainresbull.2024.110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVE Chronic cerebral hypoperfusion (CCH) is a common cause of brain dysfunction. As a microRNA (also known as miRNAs or miRs), miR-30a-5p participates in neuronal damage and relates to ferroptosis. We explored the in vivo and in vitro effects and functional mechanism of miR-30a-5p in CCH-triggered cognitive impairment through the silent information regulator 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway. METHODS After 1 month of CCH modeling through bilateral common carotid artery stenosis, mice were injected with 2 μL antagomir (also known as anti-miRNAs) miR-30a-5p, with cognitive function evaluated by Morris water maze and novel object recognition tests. In vitro HT-22 cell oxygen glucose deprivation (OGD) model was established, followed by miR-30a-5p inhibitor and/or si-SIRT1 transfections, with Fe2+ concentration, malonaldehyde (MDA) and glutathione (GSH) contents, reactive oxygen species (ROS), miR-30a-5p and SIRT1 and glutathione peroxidase 4 (GPX4) protein levels, NRF2 nuclear translocation, and miR-30a-5p-SIRT1 targeting relationship assessed. RESULTS CCH-induced mice showed obvious cognitive impairment, up-regulated miR-30a-5p, and down-regulated SIRT1. Ferroptosis occurred in hippocampal neurons, manifested by elevated Fe2+ concentration and ROS and MDA levels, mitochondrial atrophy, and diminished GSH content. Antagomir miR-30a-5p or miR-30a-5p inhibitor promoted SIRT1 expression and NRF2 nuclear translocation, increased GPX4, cell viability and GSH content, and reduced Fe2+ concentration and ROS and MDA levels. miR-30a-5p negatively regulated SIRT1. In vitro, miR-30a-5p knockout increased NRF2 nuclear translocation by up-regulating SIRT1, inhibiting OGD-induced ferroptosis in HT-22 cells. CONCLUSION miR-30a-5p induces hippocampal neuronal ferroptosis and exacerbates post-CCH cognitive dysfunction by targeting SIRT1 and reducing NRF2 nuclear translocation.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China.
| | - Mingjie Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China
| | - Bing Liu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China
| | - Ruihan Zheng
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China
| | - Xinyi Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China
| | - Shuoyi Yu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China
| |
Collapse
|
35
|
Zhao Q, Chen L, Zhang X, Yang H, Li Y, Li P. β-elemene promotes microglial M2-like polarization against ischemic stroke via AKT/mTOR signaling axis-mediated autophagy. Chin Med 2024; 19:86. [PMID: 38879549 PMCID: PMC11179363 DOI: 10.1186/s13020-024-00946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/14/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Resident microglia- and peripheric macrophage-mediated neuroinflammation plays a predominant role in the occurrence and development of ischemic stroke. Microglia undergo polarization to M1/M2-like phenotype under stress stimulation, which mediates intracellular inflammatory response. β-elemene is a natural sesquiterpene and possesses potent anti-inflammatory activity. This study aimed to investigate the anti-inflammatory efficacy and mechanism of β-elemene in ischemic stroke from the perspective of balancing microglia M1/M2-like polarization. METHODS The middle cerebral artery occlusion (MCAO) model and photothrombotic stroke model were established to explore the regulation effect of β-elemene on the cerebral ischemic injury. The LPS and IFN-γ stimulated BV-2 cells were used to demonstrate the anti-inflammatory effects and potential mechanism of β-elemene regulating M1/M2-like polarization in vitro. RESULTS In C57BL/6 J mice subjected to MCAO model and photothrombotic stroke model, β-elemene attenuated neurological deficit, reduced the infarction volume and neuroinflammation, thus improving ischemic stroke injury. β-elemene promoted the phenotype transformation of microglia from M1-like to M2-like, which prevented neurons from oxygen and glucose deprivation/reoxygenation (OGD/R) injury by inhibiting inflammatory factor release, thereby reducing neuronal apoptosis. Mechanically, β-elemene prevented the activation of TLR4/NF-κΒ and MAPK signaling pathway and increased AKT/mTOR mediated-autophagy, thereby promoting M2-like polarization of microglia. CONCLUSIONS These results indicated that β-elemene improved cerebral ischemic injury and promoted the transformation of microglia phenotype from M1-like to M2-like, at least in part, through AKT/mTOR-mediated autophagy. This study demonstrated that β-elemene might serve as a promising drug for alleviating ischemic stroke injury.
Collapse
Affiliation(s)
- Qiong Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, 211198, China
| | - Lu Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, 211198, China
| | - Xin Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, 211198, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, 211198, China
| | - Yi Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, 211198, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, 211198, China.
| |
Collapse
|
36
|
Yang D, Peng M, Fu F, Zhao W, Zhang B. Diosmetin ameliorates psoriasis-associated inflammation and keratinocyte hyperproliferation by modulation of PGC-1α / YAP signaling pathway. Int Immunopharmacol 2024; 134:112248. [PMID: 38749332 DOI: 10.1016/j.intimp.2024.112248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Psoriasis, characterized by aberrant epidermal keratinocyte proliferation and differentiation, is a chronic inflammatory immune-related skin disease. Diosmetin (Dios), derived from citrus fruits, exhibits anti-inflammatory and anti-proliferative properties. In this study, IL-17A-induced HaCaT cell model and Imiquimod (IMQ)-induced mouse model were utilized to investigate the effects of Dios against psoriasis. The morphology and biomarkers of psoriasis were regarded as the preliminary evaluation including PASI score, skin thickness, H&E staining, EdU staining and inflammatory factors. Transcriptomics analysis revealed PGC-1α as a key target for Dios in ameliorating psoriasis. Specifically, Dios, through PGC-1α, suppressed YAP-mediated proliferation and inflammatory responses in psoriatic keratinocytes. In conclusion, Dios shows promise in psoriasis treatment and holds potential for development as targeted medications for application in psoriasis.
Collapse
Affiliation(s)
- Dailin Yang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Mingwei Peng
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Fengping Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Wenjuan Zhao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Baoshun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China.
| |
Collapse
|
37
|
Li Z, Gao T, Wang J, Zhang X, Zhang Y, Zhang L, Yang P, Liu J. Ferroptosis mediated by TNFSF9 interferes in acute ischaemic stroke reperfusion injury with the progression of acute ischaemic stroke. J Neurochem 2024; 168:1030-1044. [PMID: 38344886 DOI: 10.1111/jnc.16058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 05/31/2024]
Abstract
In this study, we investigated the potential involvement of TNFSF9 in reperfusion injury associated with ferroptosis in acute ischaemic stroke patients, mouse models and BV2 microglia. We first examined TNFSF9 changes in peripheral blood from stroke patients with successful reperfusion, and constructed oxygen-glucose deprivation-reperfusion (OGD-R) on BV2 microglia, oxygen-glucose deprivation for 6 h followed by reoxygenation and re-glucose for 24 h, and appropriate over-expression or knockdown of TNFSF9 manipulation on BV2 cells and found that in the case of BV2 cells encountering OGD-R over-expression of TNFSF9 resulted in increased BV2 apoptosis. Still, the knockdown of TNFSF9 ameliorated apoptosis and ferroptosis. In an in vivo experiment, we constructed TNFSF9 over-expression or knockout mice by intracerebral injection of TNFSF9-OE or sh-TNFSF9 adenovirus. We performed the middle cerebral artery occlusion (MCAO) model on day four, 24 h after ligation of the proximal artery, for half an hour to recanalize. As luck would have it, over-expression of TNFSF9 resulted in increased brain infarct volumes, neurological function scores and abnormalities in TNFSF9-related TRAF1 and ferroptosis-related pathways, but knockdown of TNFSF9 improved brain infarcts in mice as well as reversing TNFSF9-related signalling pathways. In conclusion, our data provide the first evidence that TNFSF9 triggers microglia activation by activating the ferroptosis signalling pathway following ischaemic stroke, leading to brain injury and neurological deficits.
Collapse
Affiliation(s)
- Zifu Li
- Neurovascular center, Changhai Hospital, Shanghai, P. R. China
| | - Tianxiang Gao
- University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Jing Wang
- Neurovascular center, Changhai Hospital, Shanghai, P. R. China
| | - Xiaoxi Zhang
- Neurovascular center, Changhai Hospital, Shanghai, P. R. China
| | - Yongxin Zhang
- Neurovascular center, Changhai Hospital, Shanghai, P. R. China
| | - Lei Zhang
- Neurovascular center, Changhai Hospital, Shanghai, P. R. China
| | - Pengfei Yang
- Neurovascular center, Changhai Hospital, Shanghai, P. R. China
| | - Jianmin Liu
- Neurovascular center, Changhai Hospital, Shanghai, P. R. China
| |
Collapse
|
38
|
Liu BH, Xu CZ, Liu Y, Lu ZL, Fu TL, Li GR, Deng Y, Luo GQ, Ding S, Li N, Geng Q. Mitochondrial quality control in human health and disease. Mil Med Res 2024; 11:32. [PMID: 38812059 PMCID: PMC11134732 DOI: 10.1186/s40779-024-00536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.
Collapse
Affiliation(s)
- Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Qing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
39
|
Dai L, Wu Z, Yin L, Cheng L, Zhou Q, Ding F. Exogenous Functional Mitochondria Derived from Bone Mesenchymal Stem Cells That Respond to ROS Can Rescue Neural Cells Following Ischemic Stroke. J Inflamm Res 2024; 17:3383-3395. [PMID: 38803690 PMCID: PMC11129787 DOI: 10.2147/jir.s463692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Background Upon uptake by stressed cells, functional mitochondria can perform their normal functions, ultimately enhancing the survival of host cells. However, despite the promising results of this approach, there is still a lack of understanding of the specific relationship between nerve cells and functional mitochondria. Methods Functional mitochondria (F-Mito) were isolated from bone marrow-derived mesenchymal stem cells (BMSCs). The ability of microglia cells to internalize F-Mito was evaluated using a middle cerebral artery occlusion (MCAO) model in C57BL/6J mice and an oxygen-glucose deprivation/reoxygenation (OGD/R) cell model. After OGD/R and F-Mito treatment, the temporal dynamics of intracellular reactive oxygen species (ROS) levels were examined.The relationship between ROS levels and F-Mito uptake was assessed at the individual cell level using MitoSOX, Mitotracker, and HIF-1α labeling. Results Our findings indicate that microglia cells exhibit enhanced mitochondrial uptake compared to astrocytes. Furthermore, internalized F-Mito reduced ROS levels and HIF-1α levels. Importantly, we found that the ROS response in microglia cells following ischemia is a critical regulator of F-Mito internalization, and promoting autophagy in microglia cells might reduce the uptake of ROS and HIF-1α levels. Conclusion It is verified that F-Mito derived from BMSCs play a protective role in ischemia-reperfusion injury, as their weakening reduces microglial cell activation and alleviates neuroinflammation.
Collapse
Affiliation(s)
- Lihua Dai
- Department of Emergency, Shidong Hospital, ShangHai, People’s Republic of China
| | - Zheqian Wu
- Department of Emergency, Shidong Hospital, ShangHai, People’s Republic of China
| | - Liili Yin
- Department of Emergency, Shidong Hospital, ShangHai, People’s Republic of China
| | - Longjian Cheng
- Department of Emergency, Shidong Hospital, ShangHai, People’s Republic of China
| | - Qiang Zhou
- Department of General Surgery, Eighth People’s Hospital, ShangHai, People’s Republic of China
| | - Fei Ding
- Department of Emergency, Shidong Hospital, ShangHai, People’s Republic of China
| |
Collapse
|
40
|
Guan X, Zhu S, Song J, Liu K, Liu M, Xie L, Wang Y, Wu J, Xu X, Pang T. Microglial CMPK2 promotes neuroinflammation and brain injury after ischemic stroke. Cell Rep Med 2024; 5:101522. [PMID: 38701781 PMCID: PMC11148565 DOI: 10.1016/j.xcrm.2024.101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/08/2024] [Accepted: 03/28/2024] [Indexed: 05/05/2024]
Abstract
Neuroinflammation plays a significant role in ischemic injury, which can be promoted by oxidized mitochondrial DNA (Ox-mtDNA). Cytidine/uridine monophosphate kinase 2 (CMPK2) regulates mtDNA replication, but its role in neuroinflammation and ischemic injury remains unknown. Here, we report that CMPK2 expression is upregulated in monocytes/macrophages and microglia post-stroke in humans and mice, respectively. Microglia/macrophage CMPK2 knockdown using the Cre recombination-dependent adeno-associated virus suppresses the inflammatory responses in the brain, reduces infarcts, and improves neurological outcomes in ischemic CX3CR1Cre/ERT2 mice. Mechanistically, CMPK2 knockdown limits newly synthesized mtDNA and Ox-mtDNA formation and subsequently blocks NLRP3 inflammasome activation in microglia/macrophages. Nordihydroguaiaretic acid (NDGA), as a CMPK2 inhibitor, is discovered to reduce neuroinflammation and ischemic injury in mice and prevent the inflammatory responses in primary human monocytes from ischemic patients. Thus, these findings identify CMPK2 as a promising therapeutic target for ischemic stroke and other brain disorders associated with neuroinflammation.
Collapse
Affiliation(s)
- Xin Guan
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Sitong Zhu
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Jinqian Song
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Kui Liu
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Mei Liu
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, P.R. China
| | - Luyang Xie
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yifang Wang
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, P.R. China
| | - Jin Wu
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, P.R. China.
| | - Xiaojun Xu
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Center for Innovative Traditional Chinese Medicine Target and New Drug Research, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang Province 322000, P.R. China.
| | - Tao Pang
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P.R. China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, P.R. China.
| |
Collapse
|
41
|
Ma Y, Liu Z, Deng L, Du J, Fan Z, Ma T, Xiong J, Xiuyun X, Gu N, Di Z, Zhang Y. FGF21 attenuates neuroinflammation following subarachnoid hemorrhage through promoting mitophagy and inhibiting the cGAS-STING pathway. J Transl Med 2024; 22:436. [PMID: 38720350 PMCID: PMC11077765 DOI: 10.1186/s12967-024-05239-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) represents a form of cerebrovascular event characterized by a notable mortality and morbidity rate. Fibroblast growth factor 21 (FGF21), a versatile hormone predominantly synthesized by the hepatic tissue, has emerged as a promising neuroprotective agent. Nevertheless, the precise impacts and underlying mechanisms of FGF21 in the context of SAH remain enigmatic. METHODS To elucidate the role of FGF21 in inhibiting the microglial cGAS-STING pathway and providing protection against SAH-induced cerebral injury, a series of cellular and molecular techniques, including western blot analysis, real-time polymerase chain reaction, immunohistochemistry, RNA sequencing, and behavioral assays, were employed. RESULTS Administration of recombinant fibroblast growth factor 21 (rFGF21) effectively mitigated neural apoptosis, improved cerebral edema, and attenuated neurological impairments post-SAH. Transcriptomic analysis revealed that SAH triggered the upregulation of numerous genes linked to innate immunity, particularly those involved in the type I interferon (IFN-I) pathway and microglial function, which were notably suppressed upon adjunctive rFGF21 treatment. Mechanistically, rFGF21 intervention facilitated mitophagy in an AMP-activated protein kinase (AMPK)-dependent manner, thereby preventing mitochondrial DNA (mtDNA) release into the cytoplasm and dampening the activation of the DNA-sensing cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. Conditional knockout of STING in microglia markedly ameliorated the inflammatory response and mitigated secondary brain injuries post-SAH. CONCLUSION Our results present the initial evidence that FGF21 confers a protective effect against neuroinflammation-associated brain damage subsequent to SAH. Mechanistically, we have elucidated a novel pathway by which FGF21 exerts this neuroprotection through inhibition of the cGAS-STING signaling cascade.
Collapse
Affiliation(s)
- Yue Ma
- Department of Neurology, The affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, 710032, Shaanxi, China
| | - Zhiqin Liu
- Department of Neurology, The affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, 710032, Shaanxi, China
| | - Lele Deng
- Department of Scientific Research Section, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Jingjing Du
- Department of Neurology, The affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, 710032, Shaanxi, China
| | - Zenghui Fan
- Department of Scientific Research Section, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Tian Ma
- Department of Scientific Research Section, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Jing Xiong
- Department of Neurology, The affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, 710032, Shaanxi, China
| | - Xue Xiuyun
- Department of Neurology, The affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, 710032, Shaanxi, China
| | - Naibing Gu
- Department of Neurology, The affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, 710032, Shaanxi, China
| | - Zhengli Di
- Department of Neurology, The affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, 710032, Shaanxi, China.
| | - Yu Zhang
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
42
|
Chen Q, Wu M, Tang Q, Yan P, Zhu L. Age-Related Alterations in Immune Function and Inflammation: Focus on Ischemic Stroke. Aging Dis 2024; 15:1046-1074. [PMID: 37728582 PMCID: PMC11081165 DOI: 10.14336/ad.2023.0721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/21/2023] [Indexed: 09/21/2023] Open
Abstract
The aging of the global population poses significant scientific challenges. Moreover, the biological process of aging is the most significant risk factor for most chronic illnesses; therefore, understanding the molecular and cellular mechanisms underlying these aging-related challenges is crucial for extending the healthy lifespan of older individuals. Preventing brain aging remains a priority public health goal, and integrative and comprehensive aging analyses have revealed that immunosenescence is a potential cause of age-related brain damage and disease (e.g., stroke). Importantly, the neuroinflammatory and immune systems present two-way contact and thus can affect each other. Emerging evidence supports the numerous effects of immunosenescence- and inflammation-mediated immunity in neurologically injured brains. In this study, we briefly outline how aging alters the pathophysiology and transcriptional amplitude in patients who experienced stroke and then discuss how the immune system and its cellular components and molecular mechanisms are affected by age after stroke. Finally, we highlight emerging interventions with the potential to slow down or reduce aging and prevent stroke onset.
Collapse
Affiliation(s)
- Qiuxin Chen
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Minmin Wu
- Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Qiang Tang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Peiyu Yan
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Luwen Zhu
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| |
Collapse
|
43
|
Sun L, Chen D, Zhao C, Hu Y, Xu Y, Xia S, Yang H, Bao X, Zhang Z, Zhou C, Zhang Q, Xu Y. Echinatin protects from ischemic brain injury by attenuating NLRP3-related neuroinflammation. Neurochem Int 2024; 175:105676. [PMID: 38336256 DOI: 10.1016/j.neuint.2024.105676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/30/2023] [Accepted: 01/05/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Microglia-mediated neuroinflammation is the major contributor to the secondary brain injury of ischemic stroke. NLRP3 is one of the major components of ischemia-induced microglial activation. Echinatin, a chalcone found in licorice, was reported to have the activity of anti-inflammation and antioxidant. However, the relative study of echinatin in microglia or ischemic stroke is still unclear. METHODS We intravenously injected echinatin or vehicle into adult ischemic male C57/BL6J mice induced by 60-min transient middle cerebral artery occlusion (tMCAO). The intraperitoneal injection was performed 4.5 h after reperfusion and then daily for 2 more days. Infarct size, blood brain barrier (BBB) leakage, neurobehavioral tests, and microglial-mediated inflammatory reaction were examined to assess the outcomes of echinatin treatment. LPS and LPS/ATP stimulation on primary microglia were used to explore the underlying anti-inflammatory mechanism of echinatin. RESULTS Echinatin treatment efficiently decreased the infarct size, alleviated blood brain barrier (BBB) damage, suppressed microglial activation, reduced the production of inflammatory factors (e.g., IL-1β, IL-6, IL-18, TNF-α, iNOS, COX2), and relieved post-stroke neurological defects in tMCAO mice. Mechanistically, we found that echinatin could suppress the NLRP3 assembly and reduce the production of inflammatory mediators independently of NF-κB and monoamine oxidase (MAO). CONCLUSION Based on our study, we have identified echinatin as a promising therapeutic strategy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Liang Sun
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Duo Chen
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Chenchen Zhao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yujie Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Yuhao Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Haiyan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Zhi Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Chao Zhou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Qingxiu Zhang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China.
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
44
|
Lénárt N, Cserép C, Császár E, Pósfai B, Dénes Á. Microglia-neuron-vascular interactions in ischemia. Glia 2024; 72:833-856. [PMID: 37964690 DOI: 10.1002/glia.24487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Cerebral ischemia is a devastating condition that results in impaired blood flow in the brain leading to acute brain injury. As the most common form of stroke, occlusion of cerebral arteries leads to a characteristic sequence of pathophysiological changes in the brain tissue. The mechanisms involved, and comorbidities that determine outcome after an ischemic event appear to be highly heterogeneous. On their own, the processes leading to neuronal injury in the absence of sufficient blood supply to meet the metabolic demand of the cells are complex and manifest at different temporal and spatial scales. While the contribution of non-neuronal cells to stroke pathophysiology is increasingly recognized, recent data show that microglia, the main immune cells of the central nervous system parenchyma, play previously unrecognized roles in basic physiological processes beyond their inflammatory functions, which markedly change during ischemic conditions. In this review, we aim to discuss some of the known microglia-neuron-vascular interactions assumed to contribute to the acute and delayed pathologies after cerebral ischemia. Because the mechanisms of neuronal injury have been extensively discussed in several excellent previous reviews, here we focus on some recently explored pathways that may directly or indirectly shape neuronal injury through microglia-related actions. These discoveries suggest that modulating gliovascular processes in different forms of stroke and other neurological disorders might have presently unexplored therapeutic potential in combination with neuroprotective and flow restoration strategies.
Collapse
Affiliation(s)
- Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Cserép
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Eszter Császár
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
45
|
Liu L, Ma Z, Han Q, Meng W, Wang H, Guan X, Shi Q. Myricetin Oligomer Triggers Multi-Receptor Mediated Penetration and Autophagic Restoration of Blood-Brain Barrier for Ischemic Stroke Treatment. ACS NANO 2024; 18:9895-9916. [PMID: 38533773 DOI: 10.1021/acsnano.3c09532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Restoration of blood-brain barrier (BBB) dysfunction, which drives worse outcomes of ischemic stroke, is a potential target for therapeutic opportunities, whereas a sealed BBB blocks the therapeutics entrance into the brain, making the BBB protection strategy paradoxical. Post ischemic stroke, hypoxia/hypoglycemia provokes the up-regulation of transmembrane glucose transporters and iron transporters due to multiple metabolic disorders, especially in brain endothelial cells. Herein, we develop a myricetin oligomer-derived nanostructure doped with Ce to bypass the BBB which is cointermediated by glucose transporters and iron transporters such as glucose transporters 1 (GLUT1), sodium/glucose cotransporters 1 (SGLT1), and transferrin(Tf) reporter (TfR). Moreover, it exhibits BBB restoration capacity by regulating the expression of tight junctions (TJs) through the activation of protective autophagy. The myricetin oligomers scaffold not only acts as targeting moiety but is the prominent active entity that inherits all diverse pharmacological activities of myricetin. The suppression of oxidative damage, M1 microglia activation, and inflammatory factors makes it a multitasking nanoagent with a single component as the scaffold, targeting domain and curative components.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Qiaoyi Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wei Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Haozheng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xinghua Guan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
46
|
Chen N, Zhan RN, Liu DQ, Zhang Y, Tian YK, Zhou YQ. PGC-1α activation ameliorates cancer-induced bone pain via inhibiting apoptosis of GABAergic interneurons. Biochem Pharmacol 2024; 222:116053. [PMID: 38354958 DOI: 10.1016/j.bcp.2024.116053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/26/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Cancer-induced bone pain (CIBP) stands out as one of the most challenging issues in clinical practice due to its intricate and not fully elucidated pathophysiological mechanisms. Existing evidence has pointed toward the significance of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) down-regulation in contributing to pain behaviors in various rodent models of neuropathic pain. In our current study, we aimed to investigate the role of PGC-1α in CIBP. Our results unveiled a reduction in PGC-1α expression within the spinal cord of CIBP rats, particularly in GABAergic interneurons. Notably, intrathecal administration of the PGC-1α activator ZLN005 suppressed the loss of spinal GABAergic interneurons. This suppression was achieved by inhibiting caspase-3-mediated apoptosis, ultimately leading to the alleviation of mechanical allodynia in CIBP rats. Further exploration into the mechanism revealed that PGC-1α activation played a pivotal role in mitigating ATP depletion and reactive oxygen species accumulation linked to mitochondrial dysfunction. This was achieved through the restoration of mitochondrial biogenesis and the activation of the SIRT3-SOD2 pathway. Impressively, the observed effects were prominently reversed upon the application of SR18292, a specific PGC-1α inhibitor. In conclusion, our findings strongly suggest that PGC-1α activation acts as a potent inhibitor of apoptosis in spinal GABAergic interneurons. This inhibition is mediated by the improvement of mitochondrial function, facilitated in part through the enhancement of mitochondrial biogenesis and the activation of the SIRT3-SOD2 pathway. The results of our study shed light on potential therapeutic avenues for addressing CIBP.
Collapse
Affiliation(s)
- Nan Chen
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ruo-Nan Zhan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu-Ke Tian
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
47
|
Wang H, Ye J, Peng Y, Ma W, Chen H, Sun H, Feng Z, He W, Li G, Chu S, Zhang Z, Chen N. CKLF induces microglial activation via triggering defective mitophagy and mitochondrial dysfunction. Autophagy 2024; 20:590-613. [PMID: 37908119 PMCID: PMC10936627 DOI: 10.1080/15548627.2023.2276639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023] Open
Abstract
Although microglial activation is induced by an increase in chemokines, the role of mitophagy in this process remains unclear. This study aimed to elucidate the role of microglial mitophagy in CKLF/CKLF1 (chemokine-like factor 1)-induced microglial activation and neuroinflammation, as well as the underlying molecular mechanisms following CKLF treatment. This study determined that CKLF, an inducible chemokine in the brain, leads to an increase in mitophagy markers, such as DNM1L, PINK1 (PTEN induced putative kinase 1), PRKN, and OPTN, along with a simultaneous increase in autophagosome formation, as evidenced by elevated levels of BECN1 and MAP1LC3B (microtubule-associated protein 1 light chain 3 beta)-II. However, SQSTM1, a substrate of autophagy, was also accumulated by CKLF treatment, suggesting that mitophagy flux was reduced and mitophagosomes accumulated. These findings were confirmed by transmission electron microscopy and confocal microscopy. The defective mitophagy observed in our study was caused by impaired lysosomal function, including mitophagosome-lysosome fusion, lysosome generation, and acidification, resulting in the accumulation of damaged mitochondria in microglial cells. Further analysis revealed that pharmacological blocking or gene-silencing of mitophagy inhibited CKLF-mediated microglial activation, as evidenced by the expression of the microglial marker AIF1 (allograft inflammatory factor 1) and the mRNA of proinflammatory cytokines (Tnf and Il6). Ultimately, defective mitophagy induced by CKLF results in microglial activation, as observed in the brains of adult mice. In summary, CKLF induces defective mitophagy, microglial activation, and inflammation, providing a potential approach for treating neuroinflammatory diseases.Abbreviation: 3-MA: 3-methyladenine; AIF1: allograft inflammatory factor 1; ANOVA: analysis of variance; BAF: bafilomycin A1; BSA: bovine serum albumin; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; cGAMP: cyclic GMP-AMP; CGAS: cyclic GMP-AMP synthase; CKLF/CKLF1: chemokine-like factor 1; CNS: central nervous system; DMEM: Dulbecco's Modified Eagle Medium; DNM1L: dynamin 1 like; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescence protein; IRF3: interferon regulatory factor 3; IgG: immunoglobulin G; LAMP1: lysosomal-associated membrane protein 1; LAPTM4A: lysosomal-associated protein transmembrane 4A; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; Mdivi-1: mitochondrial division inhibitor 1; mRFP: monomeric red fluorescent protein; mtDNA: mitochondrial DNA; MTORC1: mechanistic target of rapamycin kinase complex 1; OPTN: optineurin; PBS: phosphate-buffered saline; PCR: polymerase chain reaction; PINK1: PTEN induced putative kinase 1; PLL: poly-L-lysine; PRKN: parkin RBR E3 ubiquitin protein ligase; qPCR: quantitative polymerase chain reaction; ROS: reactive oxygen species; SQSTM1: sequestosome 1; TBK1: TANK-binding kinase 1; TFEB: transcription factor EB; VDAC: voltage-dependent anion channel.
Collapse
Affiliation(s)
- Hongyun Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junrui Ye
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Peng
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Wenyu Ma
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haodong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongshuo Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhongping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Wenbin He
- National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Shanxi, Taiyuan, China
| | - Gang Li
- Graduate school, Inner Mongolian Medical University, Hohhot, Inner Mongolia, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
48
|
Li YY, Qin ZH, Sheng R. The Multiple Roles of Autophagy in Neural Function and Diseases. Neurosci Bull 2024; 40:363-382. [PMID: 37856037 PMCID: PMC10912456 DOI: 10.1007/s12264-023-01120-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/11/2023] [Indexed: 10/20/2023] Open
Abstract
Autophagy involves the sequestration and delivery of cytoplasmic materials to lysosomes, where proteins, lipids, and organelles are degraded and recycled. According to the way the cytoplasmic components are engulfed, autophagy can be divided into macroautophagy, microautophagy, and chaperone-mediated autophagy. Recently, many studies have found that autophagy plays an important role in neurological diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, neuronal excitotoxicity, and cerebral ischemia. Autophagy maintains cell homeostasis in the nervous system via degradation of misfolded proteins, elimination of damaged organelles, and regulation of apoptosis and inflammation. AMPK-mTOR, Beclin 1, TP53, endoplasmic reticulum stress, and other signal pathways are involved in the regulation of autophagy and can be used as potential therapeutic targets for neurological diseases. Here, we discuss the role, functions, and signal pathways of autophagy in neurological diseases, which will shed light on the pathogenic mechanisms of neurological diseases and suggest novel targets for therapies.
Collapse
Affiliation(s)
- Yan-Yan Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
49
|
Tang X, Yan T, Wang S, Liu Q, Yang Q, Zhang Y, Li Y, Wu Y, Liu S, Ma Y, Yang L. Treatment with β-sitosterol ameliorates the effects of cerebral ischemia/reperfusion injury by suppressing cholesterol overload, endoplasmic reticulum stress, and apoptosis. Neural Regen Res 2024; 19:642-649. [PMID: 37721296 PMCID: PMC10581587 DOI: 10.4103/1673-5374.380904] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/30/2023] [Accepted: 05/27/2023] [Indexed: 09/19/2023] Open
Abstract
β-Sitosterol is a type of phytosterol that occurs naturally in plants. Previous studies have shown that it has anti-oxidant, anti-hyperlipidemic, anti-inflammatory, immunomodulatory, and anti-tumor effects, but it is unknown whether β-sitosterol treatment reduces the effects of ischemic stroke. Here we found that, in a mouse model of ischemic stroke induced by middle cerebral artery occlusion, β-sitosterol reduced the volume of cerebral infarction and brain edema, reduced neuronal apoptosis in brain tissue, and alleviated neurological dysfunction; moreover, β-sitosterol increased the activity of oxygen- and glucose-deprived cerebral cortex neurons and reduced apoptosis. Further investigation showed that the neuroprotective effects of β-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke. In addition, β-sitosterol showed high affinity for NPC1L1, a key transporter of cholesterol, and antagonized its activity. In conclusion, β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.
Collapse
Affiliation(s)
- Xiuling Tang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Tao Yan
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Saiying Wang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Qingqing Liu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Qi Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Yongqiang Zhang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Yujiao Li
- Department of Clinical Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Yumei Wu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Shuibing Liu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Yulong Ma
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
50
|
Zhang L, Tan X, Song F, Li D, Wu J, Gao S, Sun J, Liu D, Zhou Y, Mei W. Activation of G-protein-coupled receptor 39 reduces neuropathic pain in a rat model. Neural Regen Res 2024; 19:687-696. [PMID: 37721302 PMCID: PMC10581569 DOI: 10.4103/1673-5374.380905] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/13/2023] [Accepted: 06/14/2023] [Indexed: 09/19/2023] Open
Abstract
Activated G-protein-coupled receptor 39 (GPR39) has been shown to attenuate inflammation by interacting with sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α). However, whether GPR39 attenuates neuropathic pain remains unclear. In this study, we established a Sprague-Dawley rat model of spared nerve injury-induced neuropathic pain and found that GPR39 expression was significantly decreased in neurons and microglia in the spinal dorsal horn compared with sham-operated rats. Intrathecal injection of TC-G 1008, a specific agonist of GPR39, significantly alleviated mechanical allodynia in the rats with spared nerve injury, improved spinal cord mitochondrial biogenesis, and alleviated neuroinflammation. These changes were abolished by GPR39 small interfering RNA (siRNA), Ex-527 (SIRT1 inhibitor), and PGC-1α siRNA. Taken together, these findings show that GPR39 activation ameliorates mechanical allodynia by activating the SIRT1/PGC-1α pathway in rats with spared nerve injury.
Collapse
Affiliation(s)
- Longqing Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xi Tan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fanhe Song
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Danyang Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiayi Wu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shaojie Gao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jia Sun
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Daiqiang Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yaqun Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Mei
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|