1
|
Musetti B, Kun A, Menchaca D, Rodríguez-Haralambides A, Varela J, Thomson L, Bahnson EM. Cannabis sativa extracts inhibit LDL oxidation and the formation of foam cells in vitro, acting as potential multi-step inhibitors of atherosclerosis development. PLoS One 2024; 19:e0310777. [PMID: 39705234 DOI: 10.1371/journal.pone.0310777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/04/2024] [Indexed: 12/22/2024] Open
Abstract
Atherosclerotic disease is the leading cause of death world-wide. Our goal was to explore the effect of phytocannabinoids on the molecular mechanisms triggering the development of the atheromatous lesion. Three cannabis sativa extracts of different chemotypes were chemically characterized by UPLC-DAD. The capacity of the extracts to prevent the oxidation of LDL, the formation of foam cells and the activation of an inflammatory response by J774 cells, were monitored by UV-Vis spectrometry, confocal-microscopy and western blot. Three varieties of cannabis sativa, with high (E1), intermediate (E2) and low (E3) THC/CBD ratios were selected. The three cannabis extracts inhibited the oxidation of LDL by copper ions and the formation of foam cells by J774.1 cells challenged with oxLDL (ED50 5-12 μg mL-1). The effect of the cannabinoid extracts on the endocytic process was independent of the canonical cannabinoid receptors, CB1 and CB2, but related to the action of non-canonical receptors (TRPV1, TRPV4 and GPR55), involved in calcium signaling. Decreased levels of CD36 and OLR1 scavenger receptors were, at least partially, responsible for the diminished uptake of oxLDL induced by phytocannabinoids. The downregulation of CD36 and OLR1 could be explained by the observed inhibitory effect of the cannabis extracts on the activation of the NFκB pathway by oxLDL. Phytocannabinoids interfere with the main events leading to the development of the atheromatous plaque, opening new venues on atherosclerosis therapy.
Collapse
Affiliation(s)
- Bruno Musetti
- Facultad de Ciencias, Instituto de Química Biológica, Laboratorio de Enzimología, Universidad de la República, Montevideo, Uruguay
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Alejandra Kun
- Facultad de Ciencias, Biología Celular del Sistema Nervioso Periférico-DPAN-IIBCE, Instituto de Investigaciones Biológicas Clemente Estable, Sección Bioquímica, Montevideo, Uruguay
- CIBERNED-España, Madrid, Spain
| | - David Menchaca
- Laboratorio Química Bioanalítica, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Uruguay
| | - Alejandra Rodríguez-Haralambides
- Laboratorio Química Bioanalítica, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Uruguay
| | - Javier Varela
- Facultad de Ciencias, Laboratorio de Química Orgánica y Medicinal, de la República, Uruguay
| | - Leonor Thomson
- Facultad de Ciencias, Instituto de Química Biológica, Laboratorio de Enzimología, Universidad de la República, Montevideo, Uruguay
| | - Edward M Bahnson
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
2
|
Yang N, Li M, Li X, Wu L, Wang W, Xu Y, Wang Z, Zhu C, Geng D. MAGL blockade alleviates steroid-induced femoral head osteonecrosis by reprogramming BMSC fate in rat. Cell Mol Life Sci 2024; 81:418. [PMID: 39368012 PMCID: PMC11455816 DOI: 10.1007/s00018-024-05443-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/01/2024] [Accepted: 09/08/2024] [Indexed: 10/07/2024]
Abstract
The leading cause of steroid-induced femoral head osteonecrosis (ONFH) is the imbalance of bone homeostasis. Bone marrow-derived mesenchymal stem cell (BMSC) differentiation and fate are closely associated with bone homeostasis imbalance. Blocking monoacylglycerol lipase (MAGL) could effectively ameliorate ONFH by mitigating oxidative stress and apoptosis in BMSCs induced by glucocorticoids (GC). Nevertheless, whether MAGL inhibition can modulate the balance during BMSC differentiation, and therefore improve ONFH, remains elusive. Our study indicates that MAGL inhibition can effectively rescue the enhanced BMSC adipogenic differentiation caused by GC and promote their differentiation toward osteogenic lineages. Cannabinoid receptor 2 (CB2) is the direct downstream target of MAGL in BMSCs, rather than cannabinoid receptor 1(CB1). Using RNA sequencing analyses and a series of in vitro experiments, we confirm that the MAGL blockade-induced enhancement of BMSC osteogenic differentiation is primarily mediated by the phosphoinositide 3-kinases (PI3K)/ the serine/threonine kinase (AKT)/ (glycogen synthase kinase-3 beta) GSK3β pathway. Additionally, MAGL blockade can also reduce GC-induced bone resorption by directly suppressing osteoclastogenesis and indirectly reducing the expression of receptor activator of nuclear factor kappa-Β ligand (RANKL) in BMSCs. Thus, our study proposes that the therapeutic effect of MAGL blockade on ONFH is partly mediated by restoring the balance of bone homeostasis and MAGL may be an effective therapeutic target for ONFH.
Collapse
Affiliation(s)
- Ning Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, 215006, China
- Department of Orthopaedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Meng Li
- Department of Orthopaedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xuefeng Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, 215006, China
| | - Lunan Wu
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, Hefei, 230001, China
| | - Wenzhi Wang
- Department of Orthopaedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, 215006, China
| | - Zhen Wang
- Department of Orthopaedics, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, 215000, China
| | - Chen Zhu
- Department of Orthopaedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
3
|
Devinsky O, Jones NA, Cunningham MO, Jayasekera BAP, Devore S, Whalley BJ. Cannabinoid treatments in epilepsy and seizure disorders. Physiol Rev 2024; 104:591-649. [PMID: 37882730 DOI: 10.1152/physrev.00049.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023] Open
Abstract
Cannabis has been used to treat convulsions and other disorders since ancient times. In the last few decades, preclinical animal studies and clinical investigations have established the role of cannabidiol (CBD) in treating epilepsy and seizures and support potential therapeutic benefits for cannabinoids in other neurological and psychiatric disorders. Here, we comprehensively review the role of cannabinoids in epilepsy. We briefly review the diverse physiological processes mediating the central nervous system response to cannabinoids, including Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol, and terpenes. Next, we characterize the anti- and proconvulsive effects of cannabinoids from animal studies of acute seizures and chronic epileptogenesis. We then review the clinical literature on using cannabinoids to treat epilepsy, including anecdotal evidence and case studies as well as the more recent randomized controlled clinical trials that led to US Food and Drug Administration approval of CBD for some types of epilepsy. Overall, we seek to evaluate our current understanding of cannabinoids in epilepsy and focus future research on unanswered questions.
Collapse
Affiliation(s)
- Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, United States
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York, United States
| | | | - Mark O Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - B Ashan P Jayasekera
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Neurosurgery, Royal Victoria Hospital, Newcastle upon Tyne, United Kingdom
| | - Sasha Devore
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, United States
| | | |
Collapse
|
4
|
Elnahriry KA, Wai DCC, Ashwood LM, Naseem MU, Szanto TG, Guo S, Panyi G, Prentis PJ, Norton RS. Structural and functional characterisation of Tst2, a novel TRPV1 inhibitory peptide from the Australian sea anemone Telmatactis stephensoni. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140952. [PMID: 37640250 DOI: 10.1016/j.bbapap.2023.140952] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Sea anemone venoms are complex mixtures of biologically active compounds, including disulfide-rich peptides, some of which have found applications as research tools, and others as therapeutic leads. Our recent transcriptomic and proteomic studies of the Australian sea anemone Telmatactis stephensoni identified a transcript for a peptide designated Tst2. Tst2 is a 38-residue peptide showing sequence similarity to peptide toxins known to interact with a range of ion channels (NaV, TRPV1, KV and CaV). Recombinant Tst2 (rTst2, which contains an additional Gly at the N-terminus) was produced by periplasmic expression in Escherichia coli, enabling the production of both unlabelled and uniformly 13C,15N-labelled peptide for functional assays and structural studies. The LC-MS profile of the recombinant Tst2 showed a pure peak with molecular mass 6 Da less than that of the reduced form of the peptide, indicating the successful formation of three disulfide bonds from its six cysteine residues. The solution structure of rTst2 was determined using multidimensional NMR spectroscopy and revealed that rTst2 adopts an inhibitor cystine knot (ICK) structure. rTst2 was screened using various functional assays, including patch-clamp electrophysiological and cytotoxicity assays. rTst2 was inactive against voltage-gated sodium channels (NaV) and the human voltage-gated proton (hHv1) channel. rTst2 also did not possess cytotoxic activity when assessed against Drosophila melanogaster flies. However, the recombinant peptide at 100 nM showed >50% inhibition of the transient receptor potential subfamily V member 1 (TRPV1) and slight (∼10%) inhibition of transient receptor potential subfamily A member 1 (TRPA1). Tst2 is thus a novel ICK inhibitor of the TRPV1 channel.
Collapse
Affiliation(s)
- Khaled A Elnahriry
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Lauren M Ashwood
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - Tibor G Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - Shaodong Guo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - Peter J Prentis
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
5
|
Asiedu K. Neurophysiology of corneal neuropathic pain and emerging pharmacotherapeutics. J Neurosci Res 2024; 102:e25285. [PMID: 38284865 DOI: 10.1002/jnr.25285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/12/2023] [Accepted: 12/02/2023] [Indexed: 01/30/2024]
Abstract
The altered activity generated by corneal neuronal injury can result in morphological and physiological changes in the architecture of synaptic connections in the nervous system. These changes can alter the sensitivity of neurons (both second-order and higher-order projection) projecting pain signals. A complex process involving different cell types, molecules, nerves, dendritic cells, neurokines, neuropeptides, and axon guidance molecules causes a high level of sensory rearrangement, which is germane to all the phases in the pathomechanism of corneal neuropathic pain. Immune cells migrating to the region of nerve injury assist in pain generation by secreting neurokines that ensure nerve depolarization. Furthermore, excitability in the central pain pathway is perpetuated by local activation of microglia in the trigeminal ganglion and alterations of the descending inhibitory modulation for corneal pain arriving from central nervous system. Corneal neuropathic pain may be facilitated by dysfunctional structures in the central somatosensory nervous system due to a lesion, altered synaptogenesis, or genetic abnormality. Understanding these important pathways will provide novel therapeutic insight.
Collapse
Affiliation(s)
- Kofi Asiedu
- School of Optometry & Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Ho TJ, Lin CF, Chen JK, Kung YL, Wu LK, Chang Chien CY, Huang CP. Electroacupuncture attenuates inflammatory pain via peripheral cannabinoid receptor type 1 signaling pathway in mice. PLoS One 2023; 18:e0295432. [PMID: 38060514 PMCID: PMC10703209 DOI: 10.1371/journal.pone.0295432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Pain is strongly associated with neuro-immune activation. Thus, the emerging role of the endocannabinoid system in neuro-inflammation is important. Acupuncture has been used for over 2500 years and is widely accepted for the management of pain. Our study aimed to investigate the effects of electroacupuncture on the regulation of cannabinoid receptor type 1 within the peripheral nervous system. Inflammatory pain was induced by injecting Complete Freund's adjuvant to induce mechanical and thermal hyperalgesia. Electroacupuncture significantly attenuated the mechanical and thermal sensitivities, and AM251, a cannabinoid receptor type 1 antagonist, eliminated these effects. Dual immunofluorescence staining demonstrated that electroacupuncture elevated expression of cannabinoid receptor type 1, co-localized with Nav 1.8. Furthermore, electroacupuncture significantly reduced levels of Nav 1.8 and COX-2 by western blot analysis, but not vice versa as AM251 treatment. Our data indicate that electroacupuncture mediates antinociceptive effects through peripheral endocannabinoid system signaling pathway and provide evidence that electroacupuncture is beneficial for pain treatment.
Collapse
Affiliation(s)
- Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
- School of Post‑Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ching-Fang Lin
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Jhong-Kuei Chen
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
- School of Post‑Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yen-Lun Kung
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Li-Kung Wu
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Chen-Ying Chang Chien
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Chun-Ping Huang
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
| |
Collapse
|
7
|
CBD supplementation reduces arterial blood pressure via modulation of the sympatho-chromaffin system: A substudy from the HYPER-H21-4 trial. Biomed Pharmacother 2023; 160:114387. [PMID: 36780785 DOI: 10.1016/j.biopha.2023.114387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
Data concerning the effects of cannabidiol (CBD) on blood pressure (BP) is controversial. HYPER-H21-4 was a randomized, placebo-controlled, crossover trial which sought to elucidate if 5-week administration of CBD will reduce BP in hypertensive patients. In the substudy of this trial, we aimed to establish the mechanistic background of CBD-induced BP reduction. Specifically, we explored the dynamic of catestatin, a sympathoinhibitory peptide implicated in the pathophysiology of hypertension. In the present analysis, 54 patients with Grade 1 hypertension were included. 5-week administration of CBD but not placebo reduced serum catestatin concentration in comparison to baseline (13.50 [10.85-19.05] vs. 9.65 [6.37-12.26] ng/mL, p < 0.001). Serum catestatin levels at the start of the treatment period demonstrated a negative correlation with the extent of reduction in mean arterial pressure (r = -0.474, p < 0.001). Moreover, the extent of change in catestatin serum levels showed a strong correlation with the extent of mean arterial pressure reduction (r = 0.712, p < 0.001). Overall, the results of the present study imply that the antihypertensive effects of CBD may be explained by its interaction with the sympatho-chromaffin system, although further research is warranted.
Collapse
|
8
|
Cannabinoids in the Modulation of Oxidative Signaling. Int J Mol Sci 2023; 24:ijms24032513. [PMID: 36768835 PMCID: PMC9916673 DOI: 10.3390/ijms24032513] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/03/2023] Open
Abstract
Cannabis sativa-derived compounds, such as delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), and components of the endocannabinoids system, such as N-arachidonoylethanolamide (anandamide, AEA) and 2-arachidonoylglycerol (2-AG), are extensively studied to investigate their numerous biological effects, including powerful antioxidant effects. Indeed, a series of recent studies have indicated that many disorders are characterized by alterations in the intracellular antioxidant system, which lead to biological macromolecule damage. These pathological conditions are characterized by an unbalanced, and most often increased, reactive oxygen species (ROS) production. For this study, it was of interest to investigate and recapitulate the antioxidant properties of these natural compounds, for the most part CBD and THC, on the production of ROS and the modulation of the intracellular redox state, with an emphasis on their use in various pathological conditions in which the reduction of ROS can be clinically useful, such as neurodegenerative disorders, inflammatory conditions, autoimmunity, and cancers. The further development of ROS-based fundamental research focused on cannabis sativa-derived compounds could be beneficial for future clinical applications.
Collapse
|
9
|
Niu M, Zhao F, Chen R, Li P, Bi L. The transient receptor potential channels in rheumatoid arthritis: Need to pay more attention. Front Immunol 2023; 14:1127277. [PMID: 36926330 PMCID: PMC10013686 DOI: 10.3389/fimmu.2023.1127277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by the augment of vascular permeability, increased inflammatory cells infiltration, dysregulated immune cells activation, pannus formation and unbearable pain hyperalgesia. Ca2+ affect almost every aspect of cellular functions, involving cell migration, signal transduction, proliferation, and apoptosis. Transient receptor potential channels (TRPs) as a type of non-selective permeable cation channels, can regulate Ca2+ entry and intracellular Ca2+ signal in cells including immune cells and neurons. Researches have demonstrated that TRPs in the mechanisms of inflammatory diseases have achieved rapid progress, while the roles of TRPs in RA pathogenesis and pain hyperalgesia are still not well understood. To solve this problem, this review presents the evidence of TRPs on vascular endothelial cells in joint swelling, neutrophils activation and their trans-endothelial migration, as well as their bridging role in the reactive oxygen species/TRPs/Ca2+/peptidyl arginine deiminases networks in accelerating citrullinated proteins formation. It also points out the distinct functions of TRPs subfamilies expressed in the nervous systems of joints in cold hyperalgesia and neuro-inflammation mutually influenced inflammatory pain in RA. Thus, more attention could be paid on the impact of TRPs in RA and TRPs are useful in researches on the molecular mechanisms of anti-inflammation and analgesic therapeutic strategies.
Collapse
Affiliation(s)
- Mengwen Niu
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Feng Zhao
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rui Chen
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ping Li
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liqi Bi
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Gao N, Li M, Wang W, Liu Z, Guo Y. A bibliometrics analysis and visualization study of TRPV1 channel. Front Pharmacol 2023; 14:1076921. [PMID: 37025492 PMCID: PMC10070874 DOI: 10.3389/fphar.2023.1076921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
Background: At the end of the 1990s, transient receptor potential vanilloid 1 (TRPV1) was first identified and cloned, serving as a key pain and heat sensor in humans. A large body of evidence have revealed its polymodal structure, complex function and wide-spread distribution, the specific mechanism of the ion channel remains unclear. Our goal here is to perform a bibliometric analysis and visualization study to present hotspots and trends in TRPV1 channel. Materials and Methods: TRPV1-related publications from inception to 2022 were retrieved from the Web of Science database. Excel, VOSviewer, and CiteSpace software were utilized for co-authorship, co-citation and co-occurrence analysis. Results: There were 9,113 publications included in the study, the number of publications increased rapidly after 1989, from 7 in 1990 to 373 in 2007, during which the number of citations per publication (CPP) also reached a peak in 2000 (CPP = 106.52). A total of 1,486 journals published TRPV1 articles, mainly belong to Q1 or Q2 divisions; The United States published the most articles (TP = 3,080), followed by Japan (TP = 1,221), China (TP = 1,217), and England (TP = 734); In recent years, the TRPV1-related research direction has been broaden to multiple fields related to inflammation, oxidative stress, and apoptosis; Keyword clustering refined the topic distributions and could be generalized as neuralgia, endogenous cannabinoid system, TRPV1 mediated airway hyperresponsiveness, involvement of apoptosis, TRPV1 antagonists as therapy targets. Conclusion: By conducting an exhaustive bibliographic search, this review refined the topic distributions and generalized as neuralgia, endogenous cannabinoid system, TRPV1 mediated airway hyperresponsiveness, involvement of apoptosis, TRPV1 antagonists as therapy targets. It is currently being clarified how exactly TRPV1 works as an ion channel, and much more in-depth basic research is needed in the future.
Collapse
Affiliation(s)
- Ning Gao
- Department of Acupuncture and Moxibustion, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meng Li
- Department of Gastroenterology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiming Wang
- Department of Acupuncture and Moxibustion, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhen Liu
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Zhen Liu, ; Yufeng Guo,
| | - Yufeng Guo
- Department of Acupuncture and Moxibustion, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Zhen Liu, ; Yufeng Guo,
| |
Collapse
|
11
|
Salivary Endocannabinoid Profiles in Chronic Orofacial Pain and Headache Disorders: An Observational Study Using a Novel Tool for Diagnosis and Management. Int J Mol Sci 2022; 23:ijms232113017. [PMID: 36361803 PMCID: PMC9659113 DOI: 10.3390/ijms232113017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/28/2022] Open
Abstract
The endocannabinoid system is involved in physiological and pathological processes, including pain generation, modulation, and sensation. Its role in certain types of chronic orofacial pain (OFP) has not been thoroughly examined. By exploring the profiles of specific salivary endocannabinoids (eCBs) in individuals with different types of OFP, we evaluated their use as biomarkers and the influence of clinical parameters and pain characteristics on eCB levels. The salivary levels of anandamide (AEA), 2-arachidonoyl glycerol (2-AG), and their endogenous breakdown product arachidonic acid (AA), as well as the eCB-like molecules N-palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA), were assessed in 83 OFP patients and 43 pain-free controls using liquid chromatography/tandem mass spectrometry. Patients were grouped by diagnosis: post-traumatic neuropathy (PTN), trigeminal neuralgia (TN), temporomandibular disorder (TMD), migraine, tension-type headache (TTH), and burning mouth syndrome (BMS). Correlation analyses between a specific diagnosis, pain characteristics, and eCB levels were conducted. Significantly lower levels of 2-AG were found in the TN and TTH groups, while significantly lower PEA levels were found in the migraine group. BMS was the only group with elevated eCBs (AEA) versus the control. Significant correlations were found between levels of specific eCBs and gender, health-related quality of life (HRQoL), BMI, pain duration, and sleep awakenings. In conclusion, salivary samples exhibited signature eCBs profiles for major OFP disorders, especially migraine, TTH, TN, and BMS. This finding may pave the way for using salivary eCBs biomarkers for more accurate diagnoses and management of chronic OFP patients.
Collapse
|
12
|
Kra G, Daddam JR, Moallem U, Kamer H, Kočvarová R, Nemirovski A, Contreras GA, Tam J, Zachut M. Effects of omega-3 supplementation on components of the endocannabinoid system and metabolic and inflammatory responses in adipose and liver of peripartum dairy cows. J Anim Sci Biotechnol 2022; 13:114. [PMID: 36183098 PMCID: PMC9526899 DOI: 10.1186/s40104-022-00761-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/31/2022] [Indexed: 12/18/2022] Open
Abstract
Background Dietary supplementation of omega-3 fatty acids can reduce the activation of the endocannabinoid system (ECS) by decreasing the availability of arachidonic acid, thus lowering endocannabinoids (eCBs) levels. The ECS is a modulator of energy metabolism, stress response and inflammation in mammals, yet there is little information on the roles of the ECS in transition dairy cows. During the periparturient period, the adipose tissue and liver are the main metabolic organs that participate in the adaptations of dairy cows to onset of lactation; however, exceeded adipose tissue lipolysis and accumulation of lipids in the liver have adverse effects on cows’ physiology. Here we aimed to examine whether omega-3 supplementation during the transition period will modulate ECS activation and affect metabolic and inflammatory indices in postpartum dairy cows, by supplementing twenty-eight transition Holstein dairy cows with either saturated fat (CTL) or encapsulated flaxseed oil (FLX). Components of the ECS, metabolic and inflammatory markers were measured in blood, liver, and subcutaneous adipose tissue. Results FLX supplementation reduced feed intake by 8.1% (P < 0.01) and reduced plasma levels of arachidonic acid (by 44.2%; P = 0.02) and anandamide (by 49.7%; P = 0.03) postpartum compared to CTL. The mRNA transcription levels of the cannabinoid receptor 1 (CNR1/CB1) tended to be lower (2.5 folds) in white blood cells of FLX than in CTL (P = 0.10), and protein abundance of ECS enzyme monoacylglycerol lipase was higher in peripheral blood mononuclear cells of FLX than in CTL (P = 0.04). In adipose tissue, palmitoylethanolamide levels were lower in FLX than in CTL (by 61.5%; P = 0.02), relative mRNA transcription of lipogenic genes were higher, and the protein abundance of cannabinoid receptor 2 (P = 0.08) and monoacylglycerol lipase (P = 0.10) tended to be higher in FLX compared to CTL. Hepatic 2-arachidonoylglycerol tended to be higher (by 73.1%; P = 0.07), and interlukin-6 mRNA transcription level was 1.5 folds lower in liver of FLX than in CTL (P = 0.03). Conclusions Nutritional supplementation of omega-3 fatty acids seems to partly modulate ECS activation, which could be related to lower feed intake. The altered ECS components in blood, adipose tissue and liver are associated with moderate modulations in lipid metabolism in the adipose and inflammation in liver of peripartum dairy cows. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00761-9.
Collapse
Affiliation(s)
- Gitit Kra
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZion, Israel.,Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jayasimha Rayalu Daddam
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZion, Israel
| | - Uzi Moallem
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZion, Israel
| | - Hadar Kamer
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZion, Israel
| | - Radka Kočvarová
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZion, Israel.
| |
Collapse
|
13
|
Ranjbar H, Soti M, Razavinasab M, Kohlmeier KA, Shabani M. The neglected role of endocannabinoid actions at TRPC channels in ataxia. Neurosci Biobehav Rev 2022; 141:104860. [PMID: 36087758 DOI: 10.1016/j.neubiorev.2022.104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/24/2022] [Accepted: 09/03/2022] [Indexed: 12/01/2022]
Abstract
Transient receptor potential (TRP) channels are highly expressed in cells of the cerebellum including in the dendrites and somas of Purkinje cells (PCs). Their endogenous activation promotes influx of Ca2+ and Na+, resulting in depolarization. TRP channels can be activated by endogenous endocannabinoids (eCBs) and activity of TRP channels has been shown to modulate GABA and glutamate transmission. Ataxia is caused by disruption of multiple intracellular pathways which often involve changes in Ca2+ homeostasis that can result in neural cellular dysfunction and cell death. Based on available literature, alteration of transmission of eCBs would be expected to change activity of cerebellar TRP channels. Antagonists of the endocannabinoid system (ECS) including enzymes which break eCBs down have been shown to result in reductions in postsynaptic excitatory activity mediated by TRPC channels. Further, TRPC channel antagonists could modulate both pre and postsynaptically-mediated glutamatergic and GABAergic transmission, resulting in reductions in cell death due to excitotoxicity and dysfunctions caused by abnormal inhibitory signaling. Accordingly, TRP channels, and in particular the TRPC channel, represent a potential therapeutic target for management of ataxia.
Collapse
Affiliation(s)
- Hoda Ranjbar
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Monavareh Soti
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Moazamehosadat Razavinasab
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
14
|
Delta-9-tetrahydrocannabinol increases vascular endothelial growth factor (VEGF) secretion through a cyclooxygenase-dependent mechanism in rat granulosa cells. Reprod Toxicol 2022; 111:59-67. [PMID: 35588954 DOI: 10.1016/j.reprotox.2022.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 11/21/2022]
Abstract
While the effects of delta-9-tetrahydrocannabinol (THC), the psychoactive component of cannabis, have been studied extensively in the central nervous system, there is limited knowledge about its effects on the female reproductive system. The aim of this study was to assess the effect of THC on the expression and secretion of the angiogenic factor vascular endothelial growth factor (VEGF) in the ovary, and to determine if these effects were mediated by prostaglandins. Spontaneously immortalized rat granulosa cells (SIGCs) were exposed to THC for 24hours. Gene expression, proliferation and TNFα-induced apoptosis were evaluated in the cells and concentrations of VEGF and prostaglandin E2 (PGE2), a known regulator of VEGF production, were determined in the media. To evaluate the role of the prostanoid pathway, cells were pre-treated with cyclooxygenase (COX) inhibitors prior to THC exposure. THC-exposed SIGCs had a significant increase in VEGF and PGE2 secretion, along with an increase in proliferation and cell survival when challenged with an apoptosis-inducing factor. Pre-treatment with COX inhibitors reversed the THC-induced increase in both PGE2 and VEGF secretion. Alterations in granulosa cell function, such as the ones observed after THC exposure, may impact essential ovarian processes including folliculogenesis and ovulation, which could in turn affect female reproductive health and fertility. With the ongoing increase in cannabis use and potency, further study on the impact of cannabis and its constituents on female reproductive health is required.
Collapse
|
15
|
Lowin T, Kok C, Smutny S, Pongratz G. Impact of Δ 9-Tetrahydrocannabinol on Rheumatoid Arthritis Synovial Fibroblasts Alone and in Co-Culture with Peripheral Blood Mononuclear Cells. Biomedicines 2022; 10:1118. [PMID: 35625855 PMCID: PMC9138512 DOI: 10.3390/biomedicines10051118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/05/2022] Open
Abstract
δ9-Tetrahydrocannabinol (THC) has demonstrated anti-inflammatory effects in animal models of arthritis, but its mechanism of action and cellular targets are still unclear. The purpose of this study is to elucidate the effects of THC (0.1-25 µM) on synovial fibroblasts from patients with rheumatoid arthritis (RASF) and peripheral blood mononuclear cells (PBMC) from healthy donors in respect to proliferation, calcium mobilization, drug uptake, cytokine and immunoglobulin production. Intracellular calcium and drug uptake were determined by fluorescent dyes Cal-520 and PoPo3, respectively. Cytokine and immunoglobulin production were evaluated by ELISA. Cannabinoid receptors 1 and 2 (CB1 and CB2) were detected by flow cytometry. RASF express CB1 and CB2 and the latter was increased by tumor necrosis factor (TNF). In RASF, THC (≥5 µM) increased intracellular calcium levels/PoPo3 uptake in a TRPA1-dependent manner and reduced interleukin-8 (IL-8) and matrix metalloprotease 3 (MMP-3) production at high concentrations (25 µM). Proliferation was slightly enhanced at intermediate THC concentrations (1-10 µM) but was completely abrogated at 25 µM. In PBMC alone, THC decreased interleukin-10 (IL-10) production and increased immunoglobulin G (IgG). In PBMC/RASF co-culture, THC decreased TNF production when cells were stimulated with interferon-γ (IFN-γ) or CpG. THC provides pro- and anti-inflammatory effects in RASF and PBMC. This is dependent on the activating stimulus and concentration of THC. Therefore, THC might be used to treat inflammation in RA but it might need titrating to determine the effective concentration.
Collapse
Affiliation(s)
- Torsten Lowin
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, 40225 Duesseldorf, Germany; (C.K.); (S.S.); (G.P.)
| | | | | | | |
Collapse
|
16
|
Jamieson BB, Kim JS, Iremonger KJ. Cannabinoid and vanilloid pathways mediate opposing forms of synaptic plasticity in corticotropin-releasing hormone neurons. J Neuroendocrinol 2022; 34:e13084. [PMID: 35034400 DOI: 10.1111/jne.13084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 01/18/2023]
Abstract
Activity-dependent release of retrograde signaling molecules form micro-feedback loops to regulate synaptic function in neural circuits. Single neurons can release multiple forms of these signaling molecules, including endocannabinoids and endovanilloids, which act via cannabinoid (CB) receptors and transient receptor potential vanilloid 1 (TRPV1) receptors. In hypothalamic corticotrophin-releasing hormone (CRH) neurons, endocannabinoids acting via CB1 receptors have been shown to play an important role in regulating excitability and hence stress hormone secretion. However, the importance of endovanilloid signaling in CRH neurons is currently unclear. Here, we show that, in response to postsynaptic depolarization, CRH neurons release endocannabinoid/endovanilloid molecules that can activate CB1 and TRPV1 receptors. Activation of CB1 receptors suppresses glutamate neurotransmission whereas activation of TRPV1 enhances spontaneous glutamate transmission. However, the excitatory effects of TRPV1 are normally masked by the inhibitory effects of CB1. When the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) was inhibited, this revealed tonic activation of CB1 receptors, suggesting tonic endocannabinoid release. However, we found no evidence for tonic activation of TRPV1 receptors under similar conditions. These findings show that activation of CRH neurons can drive the release of signaling molecules that activate parallel endocannabinoid and endovanilloid receptor pathways to mediate opposing forms of synaptic plasticity.
Collapse
Affiliation(s)
- Bradley B Jamieson
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Joon S Kim
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Karl J Iremonger
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
Abidi AH, Alghamdi SS, Derefinko K. A critical review of cannabis in medicine and dentistry: A look back and the path forward. Clin Exp Dent Res 2022; 8:613-631. [PMID: 35362240 PMCID: PMC9209799 DOI: 10.1002/cre2.564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/20/2022] Open
Abstract
Introduction In the last two decades, our understanding of the therapeutic utility and medicinal properties of cannabis has greatly changed. This change has been accompanied by widespread cannabis use in various communities and different age groups, especially within the United States. With this increase, we should consider the potential effects of cannabis–hemp on general public health and how they could alter therapeutic outcomes. Material and Methods The present investigation examined cannabis use for recreational and therapeutic use and a review of pertinent indexed literature was performed. The focused question evaluates “how cannabis or hemp products impact health parameters and do they provide potential therapeutic value in dentistry, and how do they interact with conventional medicines (drugs).” Indexed databases (PubMed/Medline, EMBASE) were searched without any time restrictions but language was restricted to English. Results The review highlights dental concerns of cannabis usage, the need to understand the endocannabinoid system (ECS), cannabinoid receptor system, its endogenous ligands, pharmacology, metabolism, current oral health, and medical dilemma to ascertain the detrimental or beneficial effects of using cannabis–hemp products. The pharmacological effects of pure cannabidiol (CBD) have been studied extensively while cannabis extracts can vary significantly and lack empirical studies. Several metabolic pathways are affected by cannabis use and could pose a potential drug interaction. The chronic use of cannabis is associated with health issues, but the therapeutic potential is multifold since there is a regulatory role of ECS in many pathologies. Conclusion Current shortcomings in understanding the benefits of cannabis or hemp products are limited due to pharmacological and clinical effects not being predictable, while marketed products vary greatly in phytocompounds warrant further empirical investigation. Given the healthcare challenges to manage acute and chronic pain, this review highlights both cannabis and CBD‐hemp extracts to help identify the therapeutic application for patient populations suffering from anxiety, inflammation, and dental pain.
Collapse
Affiliation(s)
- Ammaar H Abidi
- College of Dentistry, Department of Bioscience Research, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.,College of Dentistry, Department of General Dentistry, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Sahar S Alghamdi
- Department of Phamaceutical Sciences, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Karen Derefinko
- College of Medicine, Department of Pharmacology, Addiction Science, and Toxicology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.,College of Medicine, Department of Preventive Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
18
|
Sionov RV, Steinberg D. Anti-Microbial Activity of Phytocannabinoids and Endocannabinoids in the Light of Their Physiological and Pathophysiological Roles. Biomedicines 2022; 10:biomedicines10030631. [PMID: 35327432 PMCID: PMC8945038 DOI: 10.3390/biomedicines10030631] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance has become an increasing challenge in the treatment of various infectious diseases, especially those associated with biofilm formation on biotic and abiotic materials. There is an urgent need for new treatment protocols that can also target biofilm-embedded bacteria. Many secondary metabolites of plants possess anti-bacterial activities, and especially the phytocannabinoids of the Cannabis sativa L. varieties have reached a renaissance and attracted much attention for their anti-microbial and anti-biofilm activities at concentrations below the cytotoxic threshold on normal mammalian cells. Accordingly, many synthetic cannabinoids have been designed with the intention to increase the specificity and selectivity of the compounds. The structurally unrelated endocannabinoids have also been found to have anti-microbial and anti-biofilm activities. Recent data suggest for a mutual communication between the endocannabinoid system and the gut microbiota. The present review focuses on the anti-microbial activities of phytocannabinoids and endocannabinoids integrated with some selected issues of their many physiological and pharmacological activities.
Collapse
|
19
|
Morales P, Muller C, Jagerovic N, Reggio PH. Targeting CB2 and TRPV1: Computational Approaches for the Identification of Dual Modulators. Front Mol Biosci 2022; 9:841190. [PMID: 35281260 PMCID: PMC8914543 DOI: 10.3389/fmolb.2022.841190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Both metabotropic (CBRs) and ionotropic cannabinoid receptors (ICRs) have implications in a range of neurological disorders. The metabotropic canonical CBRs CB1 and CB2 are highly implicated in these pathological events. However, selective targeting at CB2 versus CB1 offers optimized pharmacology due to the absence of psychoactive outcomes. The ICR transient receptor potential vanilloid type 1 (TRPV1) has also been reported to play a role in CNS disorders. Thus, activation of both targets, CB2 and TRPV1, offers a promising polypharmacological strategy for the treatment of neurological events including analgesia and neuroprotection. This brief research report aims to identify chemotypes with a potential dual CB2/TRPV1 profile. For this purpose, we have rationalized key structural features for activation and performed virtual screening at both targets using curated chemical libraries.
Collapse
Affiliation(s)
- Paula Morales
- Medicinal Chemistry Institute, Spanish National Research Council, Madrid, Spain
| | - Chanté Muller
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Nadine Jagerovic
- Medicinal Chemistry Institute, Spanish National Research Council, Madrid, Spain
| | - Patricia H. Reggio
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
20
|
TRPV1 Contributes to Modulate the Nitric Oxide Pathway and Oxidative Stress in the Isolated and Perfused Rat Heart during Ischemia and Reperfusion. Molecules 2022; 27:molecules27031031. [PMID: 35164296 PMCID: PMC8839190 DOI: 10.3390/molecules27031031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
The transient vanilloid receptor potential type 1 (TRPV1) regulates neuronal and vascular functions mediated by nitric oxide (NO) and by the calcitonin gene-related peptide (CGRP). Here, we study the participation of TRPV1 in the regulation of myocardial injury caused by ischemia-reperfusion and in the control of NO, tetrahydrobiopterin (BH4), the cGMP pathway, CGRP, total antioxidant capacity (TAC), malondialdehyde (MDA) and phosphodiesterase-3 (PDE-3). Isolated hearts of Wistar rats perfused according to the Langendorff technique were used to study the effects of an agonist of TRPV1, capsaicin (CS), an antagonist, capsazepine (CZ), and their combination CZ+CS. The hearts were subjected to three conditions: (1) control, (2) ischemia and (3) ischemia-reperfusion. We determined cardiac mechanical activity and the levels of NO, cGMP, BH4, CGRP, TAC, MDA and PDE-3 in ventricular tissue after administration of CS, CZ and CZ+CS. Western blots were used to study the expressions of eNOS, iNOS and phosphorylated NOS (pNOS). Structural changes were determined by histological evaluation. CS prevented damage caused by ischemia-reperfusion by improving cardiac mechanical activity and elevating the levels of NO, cGMP, BH4, TAC and CGRP. TRPV1 and iNOS expression were increased under ischemic conditions, while eNOS and pNOS were not modified. We conclude that the activation of TRPV1 constitutes a therapeutic possibility to counteract the damage caused by ischemia and reperfusion by regulating the NO pathway through CGRP.
Collapse
|
21
|
Laudanski K, Wain J. Considerations for Cannabinoids in Perioperative Care by Anesthesiologists. J Clin Med 2022; 11:jcm11030558. [PMID: 35160010 PMCID: PMC8836924 DOI: 10.3390/jcm11030558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Increased usage of recreational and medically indicated cannabinoid compounds has been an undeniable reality for anesthesiologists in recent years. These compounds’ complicated pharmacology, composition, and biological effects result in challenging issues for anesthesiologists during different phases of perioperative care. Here, we review the existing formulation of cannabinoids and their biological activity to put them into the context of the anesthesia plan execution. Perioperative considerations should include a way to gauge the patient’s intake of cannabinoids, the ability to gain consent properly, and vigilance to the increased risk of pulmonary and airway problems. Intraoperative management in individuals with cannabinoid use is complicated by the effects cannabinoids have on general anesthetics and depth of anesthesia monitoring while simultaneously increasing the potential occurrence of intraoperative hemodynamic instability. Postoperative planning should involve higher vigilance to the risk of postoperative strokes and acute coronary syndromes. However, most of the data are not up to date, rending definite conclusions on the importance of perioperative cannabinoid intake on anesthesia management difficult.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (K.L.); (J.W.)
| | - Justin Wain
- School of Osteopathic Medicine, Campbell University, Buies Creek, NC 27506, USA
- Correspondence: (K.L.); (J.W.)
| |
Collapse
|
22
|
Bakshi HA, Faruck HL, Ravesh Z, Ansari P, Hannan JMA, Hashimoto R, Takayama K, Farzand R, Nasef MM, Mensah A, Aljabali AAA, Mishra V, Charbe NB, Goyal R, Negi P, Serrano-Aroca Á, Bahar B, El-Tanani M, Courtenay AJ, McCarron P, Jack IG, Tambuwala MM. Therapeutic Potential of Cannabinoids on Tumor Microenvironment: A Molecular Switch in Neoplasia Transformation. Integr Cancer Ther 2022; 21:15347354221096766. [PMID: 35796303 PMCID: PMC9425895 DOI: 10.1177/15347354221096766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The efficacy of chemotherapy depends on the tumor microenvironment. This microenvironment consists of a complex cellular network that can exert both stimulatory and inhibitory effects on tumor genesis. Given the increasing interest in the effectiveness of cannabis, cannabinoids have gained much attention as a potential chemotherapy drug. Cannabinoids are a group of marker compounds found in Cannabis sativa L., more commonly known as marijuana, a psychoactive drug used since ancient times for pain management. Although the anticancer potential of C. sativa, has been recognized previously, increased attention was generated after discovering the endocannabinoid system and the successful production of cannabinoid receptors. In vitro and in vivo studies on various tumor models have shown therapeutic efficiency by modifying the tumor microenvironment. However, despite extensive attention regarding potential therapeutic implications of cannabinoids, considerable clinical and preclinical analysis is needed to adequately define the physiological, pharmacological, and medicinal aspects of this range of compounds in various disorders covered in this review. This review summarizes the key literature surrounding the role of cannabinoids in the tumor microenvironment and their future promise in cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rabia Farzand
- University of Huddersfield, Queensgate, Huddersfield, UK
| | | | | | | | - Vijay Mishra
- Lovely Professional University, Phagwara, Punjab, India
| | | | - Rohit Goyal
- Shoolini University, Solan, Himachal Pradesh, India
| | - Poonam Negi
- Shoolini University, Solan, Himachal Pradesh, India
| | | | | | | | | | - Paul McCarron
- Ulster University, Coleraine, County Londonderry, UK
| | - Iain G Jack
- Ulster University, Coleraine, County Londonderry, UK
| | | |
Collapse
|
23
|
Wilkerson JL, Alberti LB, Thakur GA, Makriyannis A, Milligan ED. Peripherally administered cannabinoid receptor 2 (CB 2R) agonists lose anti-allodynic effects in TRPV1 knockout mice, while intrathecal administration leads to anti-allodynia and reduced GFAP, CCL2 and TRPV1 expression in the dorsal spinal cord and DRG. Brain Res 2022; 1774:147721. [PMID: 34774500 PMCID: PMC10763621 DOI: 10.1016/j.brainres.2021.147721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022]
Abstract
The transient receptor potential (TRP) superfamily of cation channels, of which the TRP vanilloid type 1 (TRPV1) receptor plays a critical role in inflammatory and neuropathic pain, is expressed on nociceptors and spinal cord dorsal horn neurons. TRPV1 is also expressed on spinal astrocytes and dorsal root ganglia (DRG) satellite cells. Agonists of the cannabinoid type 2 receptor (CB2R) suppress allodynia, with some that can bind TRPV1. The neuroimmune C-C class chemokine-2 (CCL2) expressed on injured DRG nociceptor cell bodies, Schwann cells and spinal astrocytes, stimulates immune cell accumulation in DRG and spinal cord, a known critical element in chronic allodynia. The current report examined whether two CB2R agonists, AM1710 and AM1241, previously shown to reverse light touch mechanical allodynia in rodent models of sciatic neuropathy, require TRPV1 activation that leads to receptor insensitivity resulting in reversal of allodynia. Global TRPV1 knockout (KO) mice with sciatic neuropathy given intrathecal or intraperitoneal AM1710 were examined for anti-allodynia followed by immunofluorescent microscopy analysis of lumbar spinal cord and DRG of astrocyte and CCL2 markers. Additionally, immunofluorescent analysis following intrathecal AM1710 and AM1241 in rat was performed. Data reveal that intrathecal AM1710 resulted in mouse anti-allodynia, reduced spinal astrocyte activation and CCL2 expression independent of TRPV1 gene deletion. Conversely, peripheral AM1710 in TRPV1-KO mice failed to reverse allodynia. In rat, intrathecal AM1710 and AM1241 reduced spinal and DRG TRPV1 expression, with CCL2-astrocyte and -microglial co-expression. These data support that CB2R agonists can impact spinal and DRG TRPV1 expression critical for anti-allodynia.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Neurosciences, Health Sciences Center, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA; Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Lauren B Alberti
- Department of Neurosciences, Health Sciences Center, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ganesh A Thakur
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | | | - Erin D Milligan
- Department of Neurosciences, Health Sciences Center, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
24
|
Application potential of modulation of cyclooxygenase-2 activity: a cognitive approach. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Cognitive functions of the brain depend largely on the condition of the cell membranes and the proportion of fatty acids. It is known and accepted that arachidonic acid (AA) is one of the main ω-6 fatty acids (phospholipids) in brain cells. Metabolism of that fatty acid depends on the functionality and presence of cyclooxygenase (COX). COX is a primary enzyme in the cycle of transformation of AA to prostanoids, which may mediate response of immune cells, contributing to brain function and cognition. Two COX isoforms (COX-1 and COX-2), as well as a splice variant (COX-3), have been detected in the brain. Findings released in the last decade showed that COX-2 may play an important role in cognition. There are many preclinical and clinical reports showing its engagement in Alzheimer disease, spatial learning, and plasticity. This manuscript focuses on summarizing the above-mentioned discoveries.
Collapse
|
25
|
Baban B, Khodadadi H, Salles ÉL, Costigliola V, Morgan JC, Hess DC, Vaibhav K, Dhandapani KM, Yu JC. Inflammaging and Cannabinoids. Ageing Res Rev 2021; 72:101487. [PMID: 34662745 PMCID: PMC8662707 DOI: 10.1016/j.arr.2021.101487] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/02/2021] [Accepted: 10/12/2021] [Indexed: 01/07/2023]
Abstract
Aging is a complex phenomenon associated with a wide spectrum of physical and physiological changes affecting every part of all metazoans, if they escape death prior to reaching maturity. Critical to survival, the immune system evolved as the principal component of response to injury and defense against pathogen invasions. Because how significantly immune system affects and is affected by aging, several neologisms now appear to encapsulate these reciprocal relationships, such as Immunosenescence. The central part of Immunosenescence is Inflammaging -a sustained, low-grade, sterile inflammation occurring after reaching reproductive prime. Once initiated, the impact of Inflammaging and its adverse effects determine the direction and magnitudes of further Inflammaging. In this article, we review the nature of this vicious cycle, we will propose that phytocannabinoids as immune regulators may possess the potential as effective adjunctive therapies to slow and, in certain cases, reverse the pathologic senescence to permit a more healthy aging.
Collapse
Affiliation(s)
- Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA; Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta, Augusta University, Augusta, GA, USA; Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA; Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta, Augusta University, Augusta, GA, USA
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA; Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta, Augusta University, Augusta, GA, USA
| | | | - John C Morgan
- Parkinson's Foundation Center of Excellence, Movement Disorders, Program, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jack C Yu
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
26
|
Cannabigerol and cannabichromene in Cannabis sativa L. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:355-364. [PMID: 36654096 DOI: 10.2478/acph-2021-0021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 01/20/2023]
Abstract
In addition to delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), other phytocannabinoids, such as cannabigerol (CBG) and cannabichromene (CBC), also have beneficial effects on human health. A high content of CBG is found in plants with the B0 genotype, whereas CBC is independent of the allelic chemotype locus B. In basic research models such as mice or rats, CBG has demonstrated anticancer properties, particularly against breast cancer. CBG has shown anti-inflammatory effects on murine colitis and on inflammatory bowel disease as well as stimulatory effects on the feeding behaviors of mice. It has also exhibited inhibition of aldose reductase, which is known to cause an accumulation of sorbitol and increase glucose levels in the blood, which may lead to diabetes. Cannabinoid CBC has also shown anti-inflammatory effects and reduced hypermobility in the gut and has displayed potential in vitro effect on adult neural stem progenitor cells. CBC also exerts modest analgesic properties in rodents, as well as anti-fungal, anti-bacterial, pro-apoptotic, and anti-proliferative effects in tumor cells.
Collapse
|
27
|
The Impact of Early Life Exposure to Cannabis: The Role of the Endocannabinoid System. Int J Mol Sci 2021; 22:ijms22168576. [PMID: 34445282 PMCID: PMC8395329 DOI: 10.3390/ijms22168576] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 01/14/2023] Open
Abstract
Cannabis use during pregnancy has continued to rise, particularly in developed countries, as a result of the trend towards legalization and lack of consistent, evidence-based knowledge on the matter. While there is conflicting data regarding whether cannabis use during pregnancy leads to adverse outcomes such as stillbirth, preterm birth, low birthweight, or increased admission to neonatal intensive care units, investigations into long-term effects on the offspring’s health are limited. Historically, studies have focused on the neurobehavioral effects of prenatal cannabis exposure on the offspring. The effects of cannabis on other physiological aspects of the developing fetus have received less attention. Importantly, our knowledge about cannabinoid signaling in the placenta is also limited. The endocannabinoid system (ECS) is present at early stages of development and represents a potential target for exogenous cannabinoids in utero. The ECS is expressed in a broad range of tissues and influences a spectrum of cellular functions. The aim of this review is to explore the current evidence surrounding the effects of prenatal exposure to cannabinoids and the role of the ECS in the placenta and the developing fetus.
Collapse
|
28
|
Kyriakou I, Yarandi N, Polycarpou E. Efficacy of cannabinoids against glioblastoma multiforme: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 88:153533. [PMID: 33812759 DOI: 10.1016/j.phymed.2021.153533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/09/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION The increased incidence of Glioblastoma Multiforme, the most aggressive and most common primary brain tumour, is evident worldwide. Survival rates are reaching only 15 months due to its high recurrence and resistance to current combination therapies including oncotomy, radiotherapy and chemotherapy. Light has been shed in the recent years on the anticancer properties of cannabinoids from Cannabis sativa. OBJECTIVE To determine whether cannabinoids alone or in combination with radiotherapy and/or chemotherapy inhibit tumour progression, induce cancer cell death, inhibit metastasis and invasiveness and the mechanisms that underlie these actions. METHOD PubMed and Web of Science were used for a systemic search to find studies on the anticancer effects of natural cannabinoids on glioma cancer cells in vitro and/or in vivo. RESULTS A total of 302 papers were identified, of which 14 studies were found to fit the inclusion criteria. 5 studies were conducted in vitro, 2 in vivo and 7 were both in vivo and in vitro. 3 studies examined the efficacy of CBD, THC and TMZ, 1 study examined CBD and radiation, 2 studies examined efficacy of THC only and 3 studies examined the efficacy of CBD only. 1 study examined the efficacy of CBD, THC and radiotherapy, 2 studies examined the combination of CBD and THC and 2 more studies examined the efficacy of CBD and TMZ. CONCLUSION The evidence in this systematic review leads to the conclusion that cannabinoids possess anticancer potencies against glioma cells, however this effect varies with the combinations and dosages used. Studies so far were conducted on cells in culture and on mice as well as a small number of studies that were conducted on humans. Hence in order to have more accurate results, higher quality studies mainly including human clinical trials with larger sample sizes are necessitated urgently for GBM treatment.
Collapse
Affiliation(s)
- Ismini Kyriakou
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| | - Niousha Yarandi
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK.
| | - Elena Polycarpou
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| |
Collapse
|
29
|
Estrada JA, Contreras I. Endocannabinoid Receptors in the CNS: Potential Drug Targets for the Prevention and Treatment of Neurologic and Psychiatric Disorders. Curr Neuropharmacol 2021; 18:769-787. [PMID: 32065105 PMCID: PMC7536826 DOI: 10.2174/1570159x18666200217140255] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/14/2019] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system participates in the regulation of CNS homeostasis and functions, including neurotransmission, cell signaling, inflammation and oxidative stress, as well as neuronal and glial cell proliferation, differentiation, migration and survival. Endocannabinoids are produced by multiple cell types within the CNS and their main receptors, CB1 and CB2, are expressed in both neurons and glia. Signaling through these receptors is implicated in the modulation of neuronal and glial alterations in neuroinflammatory, neurodegenerative and psychiatric conditions, including Alzheimer’s, Parkinson’s and Huntington’s disease, multiple sclerosis, amyotrophic lateral sclerosis, stroke, epilepsy, anxiety and depression. The therapeutic potential of endocannabinoid receptors in neurological disease has been hindered by unwelcome side effects of current drugs used to target them; however, due to their extensive expression within the CNS and their involvement in physiological and pathological process in nervous tissue, they are attractive targets for drug development. The present review highlights the potential applications of the endocannabinoid system for the prevention and treatment of neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- José Antonio Estrada
- Neurochemistry Laboratory, Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Irazú Contreras
- Neurochemistry Laboratory, Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
30
|
Wei C, Huang L, Zheng Y, Cai X. Selective activation of cannabinoid receptor 2 regulates Treg/Th17 balance to ameliorate neutrophilic asthma in mice. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1015. [PMID: 34277815 PMCID: PMC8267324 DOI: 10.21037/atm-21-2778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022]
Abstract
Background The cannabinoid receptor 2 (CNR2) plays a critical role in relieving asthma, with the mechanism still unclear. We aimed to investigate the mechanism of the CNR2 agonist (β-caryophyllene, β-Car) in regulating the balance of regulatory T cells (Treg) and T helper cell 17 (Th17) and thus its role in asthma. Methods The study group of 50 pathogen-free female BALB/c mice were randomly divided at 6–8 weeks old into five groups of Control, Asthma, Asthma + β-Car (10 mg/kg), Asthma + β-Car + SR144528 (specific CNR2 antagonist, 3 mg/kg), and Asthma + β-Car + CMD178 (inhibitor of Treg cell, 10 mg/kg). ELISA was conducted to evaluate the main inflammatory cytokines [interleukin (IL)-6, IL-8, and tumor necrosis factor-α], and those secreted by Treg (transforming growth factor-β and IL-10), and Th17 (IL-17A and IL-22). Markers of Treg and Th17 cells were assessed by flow cytometry. In vitro, the CD4+ T cells were sorted and directed to differentiate to Treg and Th17 cells. The expression levels of CNR2, STAT5 and JNK1/2 were investigated by western blot and immunofluorescence assay. Results β-Car relieved neutrophilic asthma severity in mice by elevating the marker genes’ expression of Treg and inhibiting those of Th17, causing an increased proportion of Treg to Th17. β-Car also promoted the directed differentiation of CD4+ T cells into Treg, but not Th17. Activation of the CNR2 regulated the Treg/Th17 balance and relieved neutrophilic asthma possibly through promotion of phosphorylation of STAT5 and JNK1/2. Conclusions The effect of the selective CNR2 agonist activating STAT5 and JNK1/2 signaling was to change the Treg/Th17 balance and reduce the inflammatory reaction, thus ameliorating neutrophilic asthma in a mouse model.
Collapse
Affiliation(s)
- Chaochao Wei
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Haikou, China
| | - Linhui Huang
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Haikou, China
| | - Yamei Zheng
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Haikou, China
| | - Xingjun Cai
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Haikou, China
| |
Collapse
|
31
|
Ghosh S, Stansak K, Walters BJ. Cannabinoid Signaling in Auditory Function and Development. Front Mol Neurosci 2021; 14:678510. [PMID: 34079440 PMCID: PMC8165240 DOI: 10.3389/fnmol.2021.678510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022] Open
Abstract
Plants of the genus Cannabis have been used by humans for millennia for a variety of purposes. Perhaps most notable is the use of certain Cannabis strains for their psychoactive effects. More recently, several biologically active molecules within the plants of these Cannabis strains, called phytocannabinoids or simply cannabinoids, have been identified. Furthermore, within human cells, endogenous cannabinoids, or endocannabinoids, as well as the receptors and secondary messengers that give rise to their neuromodulatory effects, have also been characterized. This endocannabinoid system (ECS) is composed of two primary ligands-anandamide and 2-arachidonyl glycerol; two primary receptors-cannabinoid receptors 1 and 2; and several enzymes involved in biosynthesis and degradation of endocannabinoid ligands including diacylglycerol lipase (DAGL) and monoacylglycerol lipase (MAGL). Here we briefly summarize cannabinoid signaling and review what has been discerned to date with regard to cannabinoid signaling in the auditory system and its roles in normal physiological function as well as pathological conditions. While much has been uncovered regarding cannabinoid signaling in the central nervous system, less attention has been paid to the auditory system specifically. Still, evidence is emerging to suggest that cannabinoid signaling is critical for the development, maturation, function, and survival of cochlear hair cells (HCs) and spiral ganglion neurons (SGNs). Furthermore, cannabinoid signaling can have profound effects on synaptic connectivity in CNS structures related to auditory processing. While clinical cases demonstrate that endogenous and exogenous cannabinoids impact auditory function, this review highlights several areas, such as SGN development, where more research is warranted.
Collapse
Affiliation(s)
- Sumana Ghosh
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Kendra Stansak
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Bradley J Walters
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
32
|
Cankara FN, Çelik ZB, Günaydın C. Cannabinoid receptor-1 has an effect on CD200 under rotenone and alpha-synuclein induced stress. Neurosci Lett 2021; 755:135908. [PMID: 33892001 DOI: 10.1016/j.neulet.2021.135908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
Decades after identifying cannabinoids and their beneficial effects on Parkinson's disease (PD), many gaps are still missing. Although, CB2-dependent actions have been shown as underlying positive effects of cannabinoid treatment, in recent years, another receptor of cannabinoids, CB1, emerged as a valuable player in cannabinoid-induced neuroprotection. Remarkably, the effects of CB1 are mainly related to immune cells in the CNS, microglia, and astrocytes. However, oxidative stress, α-syn accumulation, and immune disbalance are essential aspects of both neurons and glial cells. Therefore, in this study, we investigated the effects of the CB1 on both α-syn and rotenone-treated SH-SY5Y and C8-D1A cells. ACEA and AM-251 were used as CB1 agonists and antagonists. Cell viability, IL-1β, IL-6, TNF-α levels, and CD200 expressions were determined in culture mediums. Our results demonstrated that preformed fibril form (pFF) of α-syn did not cause any significant change in SH-SY5Y cells compared to C8-D1A cells. Rotenone significantly increased the expression of IL-1β, IL-6, and TNF-α levels in both cells. pFF α-syn and rotenone treatment caused a decrease in CD200 expression. Surprisingly both ACEA and AM-251 alleviated rotenone-induced increase in cytokine levels in both cell lines. Although ACEA prevented pFF α-syn induced increase in cytokine levels and decrease in CD200 expression in C8-D1A cells, AM-251 failed to affect CD200 expression levels. Additionally, ACEA + AM-251 abolished the protective effects of both ACEA and AM-251 against rotenone and α-syn insults in both cell lines. The current study suggests that cannabinoid receptor agonism alleviates rotenone and α-syn-dependent inflammation in neurons and astrocytes.
Collapse
Affiliation(s)
- Fatma Nihan Cankara
- Süleyman Demirel University, Faculty of Medicine, Department of Pharmacology, Isparta, Turkey.
| | - Zülfinaz Betül Çelik
- Ondokuz Mayıs University, Faculty of Medicine, Department of Medical Biology, Samsun, Turkey.
| | - Caner Günaydın
- Ondokuz Mayıs University, Faculty of Medicine, Department of Pharmacology, Samsun, Turkey.
| |
Collapse
|
33
|
Myers MN, Zachut M, Tam J, Contreras GA. A proposed modulatory role of the endocannabinoid system on adipose tissue metabolism and appetite in periparturient dairy cows. J Anim Sci Biotechnol 2021; 12:21. [PMID: 33663611 PMCID: PMC7934391 DOI: 10.1186/s40104-021-00549-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
To sustain the nutrient demands of rapid fetal growth, parturition, and milk synthesis, periparturient dairy cows mobilize adipose tissue fatty acid stores through lipolysis. This process induces an inflammatory response within AT that is resolved as lactation progresses; however, excessive and protracted lipolysis compounds the risk for metabolic and inflammatory diseases. The suppression of lipolytic action and inflammation, along with amplification of adipogenesis and lipogenesis, serve as prospective therapeutic targets for improving the health of periparturient dairy cows. Generally, the activation of cannabinoid receptors by endocannabinoids enhances adipogenesis and lipogenesis, suppresses lipolysis, and increases appetite in mammals. These biological effects of activating the endocannabinoid system open the possibility of harnessing the endocannabinoid system through nutritional intervention in dairy herds as a potential tool to improve dairy cows' health, although much is still to be revealed in this context. This review summarizes the current knowledge surrounding the components of the endocannabinoid system, elaborates on the metabolic effects of its activation, and explores the potential to modulate its activity in periparturient dairy cows.
Collapse
Affiliation(s)
- Madison N Myers
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization / Volcani Center, 7505101, Rishon LeZion, Israel.
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112001, Jerusalem, Israel
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
34
|
Wang F, Xue Y, Fu L, Wang Y, He M, Zhao L, Liao X. Extraction, purification, bioactivity and pharmacological effects of capsaicin: a review. Crit Rev Food Sci Nutr 2021; 62:5322-5348. [PMID: 33591238 DOI: 10.1080/10408398.2021.1884840] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide), a well-known vanilloid, which is the main spicy component in chili peppers, showing several biological activities and the potential applications range from food flavorings to therapeutics. Traditional extraction of capsaicin by organic solvents was time-consuming, some new methods such as aqueous two-phase method and ionic liquid extraction method have been developed. During past few decades, an ample variety of biological effects of capsaicin have been evaluated. Capsaicin can be used in biofilms and antifouling coatings due to its antimicrobial activity, allowing it has a promising application in food packaging, food preservation, marine environment and dental therapy. Capsaicin also play a crucial role in metabolic disorders, including weight loss, pressure lowing and insulin reduction effects. In addition, capsaicin was identified effective on preventing human cancers, such as lung cancer, stomach cancer, colon cancer and breast cancer by inducing apoptosis and inhibiting cell proliferation of tumor cells. Previous research also suggest the positive effects of capsaicin on pain relief and cognitive impairment. Capsaicin, the agonist of transient receptor potential vanilloid type 1 (TRPV1), could selectively activate TRPV1, inducing Ca2+ influx and related signaling pathways. Recently, gut microbiota was also involved in some diseases therapeutics, but its influence on the effects of capsaicin still need to be deeply studied. In this review, different extraction and purification methods of capsaicin, its biological activities and pharmacological effects were systematically summarized, as well as the possible mechanisms were also deeply discussed. This article will give an updated and better understanding of capsaicin-related biological effects and provide theoretical basis for its further research and applications in human health and manufacture development.
Collapse
Affiliation(s)
- Fengzhang Wang
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, China
| | - Yong Xue
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, China
| | - Lin Fu
- ACK Company, Urumqi, Xinjiang, China
| | - Yongtao Wang
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, China
| | - Minxia He
- ACK Company, Urumqi, Xinjiang, China
| | - Liang Zhao
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, China.,Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, Jiangsu, China
| | - Xiaojun Liao
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Lago-Fernandez A, Zarzo-Arias S, Jagerovic N, Morales P. Relevance of Peroxisome Proliferator Activated Receptors in Multitarget Paradigm Associated with the Endocannabinoid System. Int J Mol Sci 2021; 22:1001. [PMID: 33498245 PMCID: PMC7863932 DOI: 10.3390/ijms22031001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Cannabinoids have shown to exert their therapeutic actions through a variety of targets. These include not only the canonical cannabinoid receptors CB1R and CB2R but also related orphan G protein-coupled receptors (GPCRs), ligand-gated ion channels, transient receptor potential (TRP) channels, metabolic enzymes, and nuclear receptors. In this review, we aim to summarize reported compounds exhibiting their therapeutic effects upon the modulation of CB1R and/or CB2R and the nuclear peroxisome proliferator-activated receptors (PPARs). Concomitant actions at CBRs and PPARα or PPARγ subtypes have shown to mediate antiobesity, analgesic, antitumoral, or neuroprotective properties of a variety of phytogenic, endogenous, and synthetic cannabinoids. The relevance of this multitargeting mechanism of action has been analyzed in the context of diverse pathologies. Synergistic effects triggered by combinatorial treatment with ligands that modulate the aforementioned targets have also been considered. This literature overview provides structural and pharmacological insights for the further development of dual cannabinoids for specific disorders.
Collapse
Affiliation(s)
| | | | - Nadine Jagerovic
- Medicinal Chemistry Institute, Spanish Research Council, Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.-F.); (S.Z.-A.)
| | - Paula Morales
- Medicinal Chemistry Institute, Spanish Research Council, Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.-F.); (S.Z.-A.)
| |
Collapse
|
36
|
García-Baos A, Alegre-Zurano L, Cantacorps L, Martín-Sánchez A, Valverde O. Role of cannabinoids in alcohol-induced neuroinflammation. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110054. [PMID: 32758518 DOI: 10.1016/j.pnpbp.2020.110054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Alcohol is a psychoactive substance highly used worldwide, whose harmful use might cause a broad range of mental and behavioural disorders. Underlying brain impact, the neuroinflammatory response induced by alcohol is recognised as a key contributing factor in the progression of other neuropathological processes, such as neurodegeneration. These sequels are determined by multiple factors, including age of exposure. Strikingly, it seems that the endocannabinoid system modulation could regulate the alcohol-induced neuroinflammation. Although direct CB1 activation can worsen alcohol consequences, targeting other components of the expanded endocannabinoid system may counterbalance the pro-inflammatory response. Indeed, specific modulations of the expanded endocannabinoid system have been proved to exert anti-inflammatory effects, primarily through the CB2 and PPARγ signalling. Among them, some endo- and exogeneous cannabinoids can block certain pro-inflammatory mediators, such as NF-κB, thereby neutralizing the neuroinflammatory intracellular cascades. Furthermore, a number of cannabinoids are able to activate complementary anti-inflammatory pathways, which are necessary for the transition from chronically overactivated microglia to a regenerative microglial phenotype. Thus, cannabinoid modulation provides cooperative anti-inflammatory mechanisms that may be advantageous to resolve a pathological neuroinflammation in an alcohol-dependent context.
Collapse
Affiliation(s)
- Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laia Alegre-Zurano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ana Martín-Sánchez
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
37
|
Muzaffar A, Ullah S, Subhan F, Nazar Z, Hussain SM, Khuda F, Khan A, Khusro A, Sahibzada MUK, Albogami S, El-Shehawi AM, Emran TB, Javed B, Ali J. Clinical Investigation on the Impact of Cannabis Abuse on Thyroid Hormones and Associated Psychiatric Manifestations in the Male Population. Front Psychiatry 2021; 12:730388. [PMID: 34925083 PMCID: PMC8678041 DOI: 10.3389/fpsyt.2021.730388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/01/2021] [Indexed: 12/03/2022] Open
Abstract
Cannabis abuse is a common public health issue and may lead to considerable adverse effects. Along with other effects, the dependence on cannabis consumption is a serious problem which has significant consequences on biochemical and clinical symptoms. This study intends to evaluate the harmful effects of the use of cannabis on thyroid hormonal levels, cardiovascular indicators, and psychotic symptoms in the included patients. This prospective multicenter study was conducted on cannabis-dependent patients with psychotic symptoms (n = 40) vs. healthy control subjects (n = 40). All participants were evaluated for psychiatric, biochemical, and cardiovascular physiological effects. Patients were selected through Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV criteria and urine samples, exclusively for the evaluation of cannabis presence. Serum thyroid stimulating hormone (TSH), T3, and T4 levels were measured using the immunoassay technique. Patients were assessed for severity of depressive, schizophrenic, and manic symptoms using international ranking scales. Various quantifiable factors were also measured for the development of tolerance by cannabis. Among the patients of cannabis abuse, 47.5% were found with schizophrenia, 20% with schizoaffective symptoms, 10% with manic symptoms, and 22.5% with both manic and psychotic symptoms. In the group-group and within-group statistical analysis, the results of thyroid hormones and cardiovascular parameters were non-significant. The psychiatric assessment has shown highly significant (p < 0.001) difference of positive, negative, general psychopathology, and total scores [through Positive and Negative Syndrome Scale (PANSS) rating scales] in patients vs. the healthy control subjects. The study revealed that cannabis abuse did not significantly alter thyroid hormones and cardiovascular parameters due to the development of tolerance. However, the cannabis abuse might have a significant contributing role in the positive, negative, and manic symptoms in different psychiatric disorders.
Collapse
Affiliation(s)
- Anum Muzaffar
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Sami Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Fazal Subhan
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Zahid Nazar
- Department of Psychiatry, Lady Reading Hospital MTI Peshawar, Peshawar, Pakistan
| | | | - Fazli Khuda
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Abuzar Khan
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Ameer Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College, Chennai, India
| | | | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ahmed M El-Shehawi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Binish Javed
- Atal Bihari Vajpayee Institute of Medical Sciences, Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
38
|
Qin L, Li J. Nerve growth factor in muscle afferent neurons of peripheral artery disease and autonomic function. Neural Regen Res 2021; 16:694-699. [PMID: 33063730 PMCID: PMC8067946 DOI: 10.4103/1673-5374.293132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In peripheral artery disease patients, the blood supply directed to the lower limbs is reduced. This results in severe limb ischemia and thereby enhances pain sensitivity in lower limbs. The painful perception is induced and exaggerate during walking, and is relieved by rest. This symptom is termed by intermittent claudication. The limb ischemia also amplifies autonomic responses during exercise. In the process of pain and autonomic responses originating exercising muscle, a number of receptors in afferent nerves sense ischemic changes and send signals to the central nervous system leading to autonomic responses. This review integrates recent study results in terms of perspectives including how nerve growth factor affects muscle sensory nerve receptors in peripheral artery disease and thereby alters responses of sympathetic nerve activity and blood pressure to active muscle. For the sensory nerve receptors, we emphasize the role played by transient receptor potential vanilloid type 1, purinergic P2X purinoceptor 3 and acid sensing ion channel subtype 3 in amplified sympathetic nerve activity responses in peripheral artery disease.
Collapse
Affiliation(s)
- Lu Qin
- Heart & Vascular Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Jianhua Li
- Heart & Vascular Institute, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
39
|
Xie B, Lu H, Xu J, Luo H, Hu Y, Chen Y, Geng Q, Song X. Targets of hydroxychloroquine in the treatment of rheumatoid arthritis. A network pharmacology study. Joint Bone Spine 2020; 88:105099. [PMID: 33160044 DOI: 10.1016/j.jbspin.2020.105099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE This study was performed to investigate the multi-targets mechanism of hydroxychloroquine (HCQ) in the treatment of rheumatoid arthritis (RA). METHODS The predicted targets of HCQ and the proteins related to RA were returned from databases. Followed by protein-protein interaction (PPI) network, the intersection of the two group of proteins was studied. Furthermore, gene ontology (GO) and KyotoEncyclopediaofGenesandGenomes (KEGG) enrichment was used to analyse these proteins in a macro perspective. Finally, the candidate targets were checked by molecular docking. RESULTS The results suggested that HCQ in the treatment of RA was mainly associated with 4 targets that are smoothened homolog (SMO), sphingosine kinase (SPHK) 1, SPHK2 and gatty-acid amide hydrolase (FAAH), with their related 3276 proteins' network which regulate ErbB, HIF-1, NF-κB, FoxO, chemokines, MAPK, PI3K/Akt pathways and so forth. Biological process were mainly focused in the regulation of cell activation, myeloid leukocyte activation, regulated exocytosis and so forth. Molecular docking analysis showed that hydrogen bonding and π-π stacking were the main forms of chemical force. CONCLUSIONS Our research provides protein targets affected by HCQ in the treatment of RA. SMO, SPHK1, SPHK2 and FAAH involving 3276 proteins become the multi-targets mechanism of HCQ in the treatment of RA.
Collapse
Affiliation(s)
- Bo Xie
- Zhejiang Chinese medical university, The Third People's hospital of Hangzhou, West Lake road 38, 310009 Hangzhou, People's Republic of China
| | - Haojie Lu
- Zhejiang Chinese medical university, The Third People's hospital of Hangzhou, West Lake road 38, 310009 Hangzhou, People's Republic of China
| | - Jinhui Xu
- Zhejiang Chinese medical university, The Third People's hospital of Hangzhou, West Lake road 38, 310009 Hangzhou, People's Republic of China
| | - Haixin Luo
- Zhejiang Chinese medical university, The Third People's hospital of Hangzhou, West Lake road 38, 310009 Hangzhou, People's Republic of China
| | - Yebei Hu
- Zhejiang Chinese medical university, The Third People's hospital of Hangzhou, West Lake road 38, 310009 Hangzhou, People's Republic of China
| | - Yi Chen
- Zhejiang Chinese medical university, The Third People's hospital of Hangzhou, West Lake road 38, 310009 Hangzhou, People's Republic of China
| | - Qingwei Geng
- Zhejiang Chinese medical university, The Third People's hospital of Hangzhou, West Lake road 38, 310009 Hangzhou, People's Republic of China
| | - Xiuzu Song
- Zhejiang Chinese medical university, The Third People's hospital of Hangzhou, West Lake road 38, 310009 Hangzhou, People's Republic of China.
| |
Collapse
|
40
|
Peyravian N, Deo S, Daunert S, Jimenez JJ. Cannabidiol as a Novel Therapeutic for Immune Modulation. Immunotargets Ther 2020; 9:131-140. [PMID: 32903924 PMCID: PMC7445536 DOI: 10.2147/itt.s263690] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
The immune-suppressive effects of cannabidiol (CBD) are attributed to the modulation of essential immunological signaling pathways and receptors. Mechanistic understanding of the pharmacological effects of CBD emphasizes the therapeutic potential of CBD as a novel immune modulator. Studies have observed that the antagonists of CB1 and CB2 receptors and transient receptor potential vanilloid 1 reverse the immunomodulatory effects of CBD. CBD also inhibits critical activators of the Janus kinase/signal transducer and activator of transcription signaling pathway, as well as the nucleotide-binding oligomerization domain-like receptor signaling pathway, in turn decreasing pro-inflammatory cytokine production. Furthermore, CBD protects against cellular damage incurred during immune responses by modulating adenosine signaling. Ultimately, the data overwhelmingly support the immunosuppressive effects of CBD and this timely review draws attention to the prospective development of CBD as an effective immune modulatory therapeutic.
Collapse
Affiliation(s)
- Nadia Peyravian
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.,Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, Miami, FL, USA
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.,Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, Miami, FL, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.,Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, Miami, FL, USA.,University of Miami Clinical and Translational Science Institute, Miami, FL, USA
| | - Joaquin J Jimenez
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.,Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, Miami, FL, USA.,Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
41
|
Palomares B, Garrido-Rodriguez M, Gonzalo-Consuegra C, Gómez-Cañas M, Saen-Oon S, Soliva R, Collado JA, Fernández-Ruiz J, Morello G, Calzado MA, Appendino G, Muñoz E. Δ 9 -Tetrahydrocannabinolic acid alleviates collagen-induced arthritis: Role of PPARγ and CB 1 receptors. Br J Pharmacol 2020; 177:4034-4054. [PMID: 32510591 DOI: 10.1111/bph.15155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Δ9 -Tetrahydrocannabinolic acid (Δ9 -THCA-A), the precursor of Δ9 -THC, is a non-psychotropic phytocannabinoid that shows PPARγ agonist activity. Here, we investigated the ability of Δ9 -THCA-A to modulate the classic cannabinoid CB1 and CB2 receptors and evaluated its anti-arthritis activity in vitro and in vivo. EXPERIMENTAL APPROACH Cannabinoid receptors binding and intrinsic activity, as well as their downstream signalling, were analysed in vitro and in silico. The anti-arthritis properties of Δ9 -THCA-A were studied in human chondrocytes and in the murine model of collagen-induced arthritis (CIA). Plasma disease biomarkers were identified by LC-MS/MS based on proteomic and elisa assays. KEY RESULTS Functional and docking analyses showed that Δ9 -THCA-A can act as an orthosteric CB1 receptor agonist and also as a positive allosteric modulator in the presence of CP-55,940. Also, Δ9 -THCA-A seemed to be an inverse agonist for CB2 receptors. In vivo, Δ9 -THCA-A reduced arthritis in CIA mice, preventing the infiltration of inflammatory cells, synovium hyperplasia, and cartilage damage. Furthermore, Δ9 -THCA-A inhibited expression of inflammatory and catabolic genes on knee joints. The anti-arthritic effect of Δ9 -THCA-A was blocked by either SR141716 or T0070907. Analysis of plasma biomarkers, and determination of cytokines and anti-collagen antibodies confirmed that Δ9 -THCA-A mediated its activity mainly through PPARγ and CB1 receptor pathways. CONCLUSION AND IMPLICATIONS Δ9 -THCA-A modulates CB1 receptors through the orthosteric and allosteric binding sites. In addition, Δ9 -THCA-A exerts anti-arthritis activity through CB1 receptors and PPARγ pathways, highlighting its potential for the treatment of chronic inflammatory diseases such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Belén Palomares
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Córdoba, Spain.,Department of Cellular Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain
| | - Martín Garrido-Rodriguez
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Córdoba, Spain.,Department of Cellular Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain
| | - Claudia Gonzalo-Consuegra
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María Gómez-Cañas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | | | | | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - Marco A Calzado
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Córdoba, Spain.,Department of Cellular Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain
| | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara, Italy
| | - Eduardo Muñoz
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Córdoba, Spain.,Department of Cellular Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain
| |
Collapse
|
42
|
Wolf J, Urits I, Orhurhu V, Peck J, Orhurhu MS, Giacomazzi S, Smoots D, Piermarini C, Manchikanti L, Kaye AD, Kaye RJ, Viswanath O. The Role of the Cannabinoid System in Pain Control: Basic and Clinical Implications. Curr Pain Headache Rep 2020; 24:35. [PMID: 32506272 DOI: 10.1007/s11916-020-00873-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide a comprehensive update of the different known components of the endogenous cannabinoid system and the mechanisms of action, as it applies to analgesia. RECENT FINDINGS Following the discovery of the endogenous cannabinoid system in the early 1990s and the subsequent characterization of the cannabinoid receptor, there has been a renewed interest in cannabinoid research. Recent work has demonstrated its efficacy as a pharmacologic agent. There is limited evidence in the literature about the understanding of the endocannabinoid system and its role in the treatment and management of acute and chronic pain. Further work may elucidate additional roles for the endocannabinoid system within our nervous system and, moreover, additional subtypes of cannabinoid receptors have yet to be discovered. Cannabinoid compounds mediate their biological effects via binding and subsequent activation of cannabinoid receptors. These receptors are located throughout the body and make up the endocannabinoid system. These receptors are best understood and have been cloned, type 1 (CB1) and type 2 (CB2) [ (1, 2)] [ (1, 2)] [ (1, 2)] [ (1, 2)] [ (1, 2)] [ (1, 2)] [ (1, 2)] [ (1, 2)] [ (1, 2)] [ (1, 2)] [ (1, 2)] [ (1, 2)] [ (1, 2)] [ (1, 2)] [ (1, 2)] [ (1, 2)] [ (1, 2)] [ (1, 2)] [ (1, 2)] [ (1, 2)] [ (1, 2)] [ (1, 2)] [ (1, 2)]. The CB2 receptor is located primarily in the immune system. CB1 receptors are primarily located in the nervous system with the highest concentrations in the brain and lower concentrations in the spine and peripheral nervous tissues. Cannabinoids may be promising treatments for neuropathic pain with limited evidence, whereas, the evidence for other uses is insufficient.
Collapse
Affiliation(s)
- John Wolf
- Creighton University School of Medicine, Phoenix Regional Campus, Phoenix, AZ, USA
| | - Ivan Urits
- Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.
| | - Vwaire Orhurhu
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jacquelin Peck
- Department of Anesthesiology, Mount Sinai Medical Center of Florida, Miami Beach, FL, USA
| | - Mariam Salisu Orhurhu
- Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Stephen Giacomazzi
- Creighton University School of Medicine, Phoenix Regional Campus, Phoenix, AZ, USA
| | - Daniel Smoots
- Creighton University School of Medicine, Phoenix Regional Campus, Phoenix, AZ, USA
| | | | | | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Rachel J Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Omar Viswanath
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.,Valley Anesthesiology and Pain Consultants, Envision Physician Services, Phoenix, AZ, USA.,Department of Anesthesiology, University of Arizona College of Medicine, Phoenix, Phoenix, AZ, USA.,Department of Anesthesiology, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
43
|
Lowin T, Schneider M, Pongratz G. Joints for joints: cannabinoids in the treatment of rheumatoid arthritis. Curr Opin Rheumatol 2020; 31:271-278. [PMID: 30920973 DOI: 10.1097/bor.0000000000000590] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW An increasing number of patients with rheumatoid arthritis (RA) are using cannabis to treat their symptoms, although systematic studies regarding efficacy in RA are lacking. Within this review we will give an overview on the overall effects of cannabinoids in inflammation and why they might be useful in the treatment of RA. RECENT FINDINGS Peripherally, cannabinoids show anti-inflammatory effects by activating cannabinoid type 2 receptors (CB2) which decrease cytokine production and immune cell mobilization. In contrast, cannabinoid type 1 receptor (CB1) activation on immune cells is proinflammatory while CB1 antagonism provides anti-inflammatory effects by increasing β2-adrenergic signaling in the joint and secondary lymphoid organs. In addition, the nonpsychotropic cannabinoid, cannabidiol (CBD) demonstrated antiarthritic effects independent of cannabinoid receptors. In addition to controlling inflammation, cannabinoids reduce pain by activating central and peripheral CB1, peripheral CB2 receptors and CBD-sensitive noncannabinoid receptor targets. SUMMARY Cannabinoids might be a suitable treatment for RA, but it is important to target the right receptors in the right place. For clinical studies, we propose a combination of a CB2 agonist to decrease cytokine production, a peripheral CB1 antagonist to prevent detrimental CB1 signaling and to support anti-inflammatory effects of CB2 via activation of β2-adrenergic receptors and CBD to induce cannabinoid-receptor-independent anti-inflammatory effects.
Collapse
Affiliation(s)
- Torsten Lowin
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, Duesseldorf, Germany
| | | | | |
Collapse
|
44
|
Abstract
This article reports a case of pronounced, chronic lumboischialgia, which was not satisfactorily controlled by conventional analgesic treatment. The level of pain under high-dose dronabinol treatment with oral and inhalative administration as well as the way to reimburse the cost of medicinal cannabis flowers, the treatment success and criteria of the economic prescription procedure are presented.
Collapse
|
45
|
Abstract
As medical use of cannabis is increasingly legalized worldwide, a better understanding of the medical and hazardous effects of this drug is imperative. The pain associated with rheumatic diseases is considered a prevalent indication for medicinal cannabis in various countries. Thus far, preliminary clinical trials have explored the effects of cannabis on rheumatoid arthritis, osteoarthritis and fibromyalgia; preliminary evidence has also found an association between the cannabinoid system and other rheumatic conditions, including systemic sclerosis and juvenile idiopathic arthritis. The potential medicinal effects of cannabis could be attributable to its influence on the immune system, as it exerts an immunomodulatory effect on various immune cells, including T cells, B cells and macrophages. However, the available evidence is not yet sufficient to support the recommendation of cannabinoid treatment for rheumatic diseases.
Collapse
|
46
|
The role of transient receptor potential vanilloid receptor 1 and peroxisome proliferator-activated receptors-α in mediating the antinociceptive effects of palmitoylethanolamine in rats. Neuroreport 2019; 30:32-37. [PMID: 30418420 DOI: 10.1097/wnr.0000000000001161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Palmitoylethanolamine (PEA) is a ligand at peroxisome proliferator-activated receptors-α (PPARα), a nuclear receptor that has anti-inflammatory effects. Herein, complete Freund's adjuvant (CFA)-induced inflammatory pain model in rats and in-vitro calcium imaging studies were used to evaluate the mechanisms that underlie the antinociceptive effects of PEA, including modulating the activity of the transient receptor potential vanilloid receptor 1, which is a key receptor involved in the development of inflammatory pain. Adult male Sprague-Dawley rats (180-250 g) received subcutaneous injections of CFA (0.1 ml) into the plantar surface of the left hind paw. Von Frey filaments were used to determine the paw withdrawal threshold. PEA (50 µg), WY14643 (50 µg, a selective PPARα agonist) were injected into the plantar surface of the left hind paw at day 7 after CFA injection, and behavioral tests were repeated 6 h after drug administration. Rats were killed and dorsal root ganglia neurons were dissected and prepared for calcium imaging. Neurons were loaded with the calcium-sensitive ratiometric dye Fura-2AM. Changes in [Ca]i were measured as ratios of peak florescence at excitation wavelengths of 340 and 380 nm and expressed as a percentage of the KCl (60 mM) response. Both PEA and WY14643 significantly restored the paw withdrawal threshold in a PPARα-dependent fashion (P<0.01). Capsaicin of 15 nM produced 63.9±13.4% of KCl response. Preincubation of dorsal root ganglia neurons with PEA 6 h before stimulation with capsaicin, significantly reduce capsaicin-evoked calcium responses (42.9±6.4% of KCl response, n=54, P<0.001). In conclusion, modulating transient receptor potential vanilloid receptor 1 activity could provide the mechanism that underlies PEA antinociceptive effects observed in vivo.
Collapse
|
47
|
Muller C, Morales P, Reggio PH. Cannabinoid Ligands Targeting TRP Channels. Front Mol Neurosci 2019; 11:487. [PMID: 30697147 PMCID: PMC6340993 DOI: 10.3389/fnmol.2018.00487] [Citation(s) in RCA: 356] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
Transient receptor potential (TRP) channels are a group of membrane proteins involved in the transduction of a plethora of chemical and physical stimuli. These channels modulate ion entry, mediating a variety of neural signaling processes implicated in the sensation of temperature, pressure, and pH, as well as smell, taste, vision, and pain perception. Many diseases involve TRP channel dysfunction, including neuropathic pain, inflammation, and respiratory disorders. In the pursuit of new treatments for these disorders, it was discovered that cannabinoids can modulate a certain subset of TRP channels. The TRP vanilloid (TRPV), TRP ankyrin (TRPA), and TRP melastatin (TRPM) subfamilies were all found to contain channels that can be modulated by several endogenous, phytogenic, and synthetic cannabinoids. To date, six TRP channels from the three subfamilies mentioned above have been reported to mediate cannabinoid activity: TRPV1, TRPV2, TRPV3, TRPV4, TRPA1, and TRPM8. The increasing data regarding cannabinoid interactions with these receptors has prompted some researchers to consider these TRP channels to be “ionotropic cannabinoid receptors.” Although CB1 and CB2 are considered to be the canonical cannabinoid receptors, there is significant overlap between cannabinoids and ligands of TRP receptors. The first endogenous agonist of TRPV1 to be discovered was the endocannabinoid, anandamide (AEA). Similarly, N-arachidonyl dopamine (NADA) and AEA were the first endogenous TRPM8 antagonists discovered. Additionally, Δ9-tetrahydrocannabinol (Δ9-THC), the most abundant psychotropic compound in cannabis, acts most potently at TRPV2, moderately modulates TRPV3, TRPV4, TRPA1, and TRPM8, though Δ9-THC is not reported to modulate TRPV1. Moreover, TRP receptors may modulate effects of synthetic cannabinoids used in research. One common research tool is WIN55,212-2, a CB1 agonist that also exerts analgesic effects by desensitizing TRPA1 and TRPV1. In this review article, we aim to provide an overview and classification of the cannabinoid ligands that have been reported to modulate TRP channels and their therapeutic potential.
Collapse
Affiliation(s)
- Chanté Muller
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Paula Morales
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Patricia H Reggio
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
48
|
Hypoglycaemic effect of capsaicinoids via elevation of insulin level and inhibition of glucose absorption in streptozotocin-induced diabetic rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
49
|
|
50
|
Wu L, Tai Y, Hu S, Zhang M, Wang R, Zhou W, Tao J, Han Y, Wang Q, Wei W. Bidirectional Role of β2-Adrenergic Receptor in Autoimmune Diseases. Front Pharmacol 2018; 9:1313. [PMID: 30538630 PMCID: PMC6277539 DOI: 10.3389/fphar.2018.01313] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
Disorder of the sympathetic nervous system (SNS) is closely related to the pathogenesis of various autoimmune diseases (ADs). Catecholamine triggered beta2-adrenergic receptor (β2-AR) signaling is important in creating a bidirectional response in the progression of ADs due to factors including diverse expression patterns, single nucleotide polymorphisms (SNPs), biased signals, and desensitization of β2-AR, as well as different subtypes of Gα binding to β2-AR. In this review, we summarize the actions of β2-AR signaling in regulating the functions of immunocytes and in the pathogenesis of ADs, and the application of β2-AR agonists or antagonists in treating major types of ADs is also discussed. We suggest that restoring the immune balance via a soft regulation of the expression or activation of β2-AR is one of the promising therapeutic strategies for systematic ADs.
Collapse
Affiliation(s)
- Li Wu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu Tai
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Shanshan Hu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Mei Zhang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Rui Wang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Weijie Zhou
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Juan Tao
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yongsheng Han
- Department of Emergency Medicine, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Qingtong Wang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|