1
|
Wang T, Wang J, Sun T, Zhang R, Li Y, Hu T. PU.1 regulates osteoarthritis progression via CSF1R in synovial cells. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167525. [PMID: 39313038 DOI: 10.1016/j.bbadis.2024.167525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 08/24/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
This study elucidates the molecular mechanisms driving osteoarthritis (OA) by focusing on the transcription factor PU.1's role in synovial cells, specifically macrophages and fibroblast-like synoviocytes (FLS). Analyzing OA-related synovial gene expression from the GEO database highlighted immune regulation pathways in OA. Using protein-protein interaction and the JASPAR database, we pinpointed essential genes in OA development. Synovial tissues from OA patients and controls revealed pronounced PU.1 and its target CSF1R presence. In a surgically induced OA mouse model with PU.1 and CSF1R knockdown, ChIP assays confirmed PU.1's binding to the CSF1R promoter. Dual luciferase reporter assays and immunohistochemistry validated PU.1's regulatory impact on CSF1R transcription. Combined analysis of microarrays GSE55235 and GSE206848 showed heightened PU.1 expression in OA, associated with immune regulation in macrophages. In vitro findings aligned with in vivo results, emphasizing PU.1's influence on macrophage polarization and FLS-induced inflammation. PU.1's direct activation of CSF1R transcription underpins its key role in OA progression. This research offers insights into OA's molecular basis, suggesting potential therapeutic targets.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Gerontology, The First Hospital of China Medical University, Shenyang 110001, PR China
| | - Jiakai Wang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang 110001, PR China
| | - Tao Sun
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang 110001, PR China
| | - Rong Zhang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang 110001, PR China
| | - Yishuo Li
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang 110001, PR China.
| | - Tianyu Hu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110001, PR China.
| |
Collapse
|
2
|
Keeble AR, Thomas NT, Balawender PJ, Brightwell CR, Gonzalez-Velez S, O'Daniel MG, Conley CE, Stone AV, Johnson DL, Noehren B, Jacobs CA, Fry CS, Owen AM. CSF1-R inhibition attenuates posttraumatic osteoarthritis and quadriceps atrophy following ligament injury. J Physiol 2024. [PMID: 39709528 DOI: 10.1113/jp286815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024] Open
Abstract
Knee osteoarthritis contributes substantially to worldwide disability. Post-traumatic osteoarthritis (PTOA) develops secondary to joint injury, such as ligament rupture, and there is increasing evidence suggesting a key role for inflammation in the aetiology of PTOA and associated functional deficits. Colony stimulating factor 1 receptor (CSF1-R) has been implicated in the pathogenesis of musculoskeletal degeneration following anterior cruciate ligament (ACL) injury. We sought to assess the efficacy of CSF1-R inhibition to mitigate muscle and joint pathology in a mouse model of PTOA. Four-month-old mice were randomized to receive a CSF1-R inhibitor and studied for 7 or 28 days after joint injury. Additionally, we profiled synovial fluid samples for CSF1-R from patients with injury to their ACL. Transcriptomic analysis of quadriceps muscle and articular cartilage in CSF1-R inhibitor-treated animals at 7 days after injury revealed elevated chondrocyte differentiation within articular cartilage and enhanced metabolic and contractile gene expression within skeletal muscle. At 28 days post-injury, CSF1-R inhibition attenuated PTOA severity and mitigated skeletal muscle atrophy. Patient synovial fluid CSF1-R levels correlated with matrix metalloproteinase 13, a prognostic marker and molecular effector of PTOA. Our findings support an opportunity for CSF1-R targeting to mitigate the severity of PTOA and muscle atrophy after joint injury. KEY POINTS: Posttraumatic osteoarthritis (PTOA) of the knee commonly results from direct injury to the joint, which is characterized by pain, weakness, and disability. Induction of colony stimulating factor one receptor (CSF1-R) is positively associated with knee trauma severity, and the initial acute inflammatory state suppresses muscle recovery and degrades articular cartilage. Skeletal muscle and articular cartilage transcriptomic response following direct joint injury in a murine model of PTOA is rescued by pharmacological inhibition of CSF1-R. CSF1-R inhibition mitigated skeletal muscle atrophy and attenuated PTOA severity and synovitis. Patient synovial fluid CSF1-R levels correlated with matrix metalloproteinase 13, a prognostic marker and molecular effector of PTOA, offering further evidence for CSF1-R as a therapeutic target across musculoskeletal tissues after injury.
Collapse
Affiliation(s)
- Alexander R Keeble
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | | | - Camille R Brightwell
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Sara Gonzalez-Velez
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Caitlin E Conley
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Austin V Stone
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Darren L Johnson
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Brian Noehren
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Cale A Jacobs
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
- Mass General Brigham Sports Medicine, Harvard Medical School, Boston, MA, USA
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Allison M Owen
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
3
|
Ruscitti P, Nunziato M, Caso F, Scarpa R, Di Maggio F, Giacomelli R, Salvatore F. Prevention of rheumatoid arthritis using a familial predictive medicine approach. Autoimmun Rev 2024; 23:103653. [PMID: 39370029 DOI: 10.1016/j.autrev.2024.103653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Most of the chronic-degenerative diseases deserve a very early recognition of symptoms and signs for the earliest secondary prevention, which could be also very useful in many cases for the most precocious clinical approach. The periodic monitoring of a subject at risk of a specific disease, because of genomic predisposition by predictive medicine approach, may help to earlier detection of onset and/or the progression of the pathology itself, through intra-individual monitoring. This is particularly the case of rheumatoid arthritis (RA) for which an early diagnosis is undoubtedly the first step to ensure the most proper therapy for the patient. Thus, the earlier identification of individuals at high risk of RA could lead to ultra-preventive strategies to start for the best lifestyle performances and/or for any other effective therapeutic interventions to contrast the onset, and/or the evolution of the putative RA. This will also optimize both costs and medical resources, according to the health care policies of many countries.
Collapse
Affiliation(s)
- Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marcella Nunziato
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131 Napoli, NA, Italy; CEINGE - Biotecnologie Avanzate - Franco Salvatore, Via Gaetano Salvatore, 486, 80145 Napoli, Italy
| | - Francesco Caso
- Rheumatology Research Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Raffaele Scarpa
- Rheumatology Research Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Federica Di Maggio
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131 Napoli, NA, Italy; CEINGE - Biotecnologie Avanzate - Franco Salvatore, Via Gaetano Salvatore, 486, 80145 Napoli, Italy
| | - Roberto Giacomelli
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128 Rome, Italy; Rheumatology, Immunology and Clinical Medicine Unit, Department of Medicine, University of Rome "Campus Biomedico" School of Medicine, Rome, Italy.
| | - Francesco Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131 Napoli, NA, Italy; CEINGE - Biotecnologie Avanzate - Franco Salvatore, Via Gaetano Salvatore, 486, 80145 Napoli, Italy.
| |
Collapse
|
4
|
Jiang X, Li L, Gao M, Li X, Ding Y, Song Y, Zhao Y, Kong X. Two homologous genes encoding interleukin (IL)-34 in the common carp (Cyprinus carpio L.): Roles in inflammatory modulation and anti-bacterial defense. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109951. [PMID: 39389173 DOI: 10.1016/j.fsi.2024.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
In mammals, interleukin 34 (IL-34) is a ligand for macrophage colony-stimulating factor receptor (M-CSFR), promoting inflammatory responses and inducing the synthesis and secretion of various cytokines. However, studies on its function in lower vertebrates is limited, and its evolutionary relationship with homologous molecules in mammals remains unclear. In this study, two IL-34-encoding genes were cloned and identified in common carp (Cyprinus carpio L.), designated as CcIL-34A and CcIL-34B, with an amino acid sequence similarity of 77.7 %. Gene synteny analysis revealed that the IL-34 gene loci are relatively conserved, and both are located downstream of SF3B3. The expression patterns of CcIL-34s were analyzed using qRT-PCR, and this showed that they are expressed across all tested tissues, with higher levels in the liver, spleen, and head kidney and lower levels in the gills and intestines. Following infection with Aeromonas hydrophila, the mRNA expression levels of CcIL-34s in the gills, head kidney, intestines, and spleen were significantly upregulated. Immunofluorescence was also employed to assess changes in CcIL-34 protein expression, showing a significant increase in carp spleens 24 h after A. hydrophila infection, suggesting that CcIL-34s contribute to host defense against this bacterium. To investigate the immunological function of IL-34 in vivo, pc-CcIL-34A and pc-CcIL-34B eukaryotic expression plasmids were constructed and injected intramuscularly into fish. Five days after injection, the expression levels of inflammation-related cytokines in the head kidney and spleen were significantly altered. Furthermore, 24 h post-A. hydrophila infection, the bacterial loads in the liver, spleen, and kidneys were significantly reduced. Ten days post-infection, the survival rates in the groups with CcIL-34A and CcIL-34B overexpression were 40 % and 36.7 %, respectively, compared to 16.7 % in the control group. These findings suggest that CcIL-34s are involved in modulating inflammatory responses, enhancing the immune response, and improving survival rates in fish following bacterial infection, thus supporting the potential use of IL-34 molecules in aquaculture.
Collapse
Affiliation(s)
- Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China; Hangzhou Xiaoshan Donghai Aquaculture Co., Ltd, Hangzhou, 310012, China; College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Lei Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Mengjie Gao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xudong Li
- Fishery Technology Extension Station of Henan Province, Zhengzhou, Henan, 450000, China
| | - Yi Ding
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yunjie Song
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yanjing Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China; College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
5
|
Hu P, Li B, Yin Z, Peng P, Cao J, Xie W, Liu L, Cao F, Zhang B. Multi-omics characterization of macrophage polarization-related features in osteoarthritis based on a machine learning computational framework. Heliyon 2024; 10:e30335. [PMID: 38774079 PMCID: PMC11106839 DOI: 10.1016/j.heliyon.2024.e30335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/24/2024] Open
Abstract
Background OA imposes a heavy burden on patients and society in that its mechanism is still unclear, and there is a lack of effective targeted therapy other than surgery. Methods The osteoarthritis dataset GSE55235 was downloaded from the GEO database and analyzed for differential genes by limma package, followed by analysis of immune-related modules by xcell immune infiltration combined with the WGCNA method, and macrophage polarization-related genes were downloaded according to the Genecard database, and VennDiagram was used to determine their intersection. These genes were also subjected to gene ontology (GO), disease ontology (DO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses. Using machine learning, the key osteoarthritis genes were finally screened. Using single gene GSEA and GSVA, we examined the significance of these key gene functions in immune cell and macrophage pathways. Next, we confirmed the correctness of the hub gene expression profile using the GSE55457 dataset and the ROC curve. Finally, we projected TF, miRNA, and possible therapeutic drugs using the miRNet, TargetScanHuman, ENCOR, and NetworkAnalyst databases, as well as Enrichr. Results VennDiagram obtained 71 crossover genes for DEGs, WGCNA-immune modules, and Genecards; functional enrichment demonstrated NF-κB, IL-17 signaling pathway play an important role in osteoarthritis-macrophage polarization genes; machine learning finally identified CSF1R, CX3CR1, CEBPB, and TLR7 as hub genes; GSVA analysis showed that CSF1R, CEBPB play essential roles in immune infiltration and macrophage pathway; validation dataset GSE55457 analyzed hub genes were statistically different between osteoarthritis and healthy controls, and the AUC values of ROC for CSF1R, CX3CR1, CEBPB and TLR7 were more outstanding than 0.65. Conclusions CSF1R, CEBPB, CX3CR1, and TLR7 are potential diagnostic biomarkers for osteoarthritis, and CSF1R and CEBPB play an important role in regulating macrophage polarization in osteoarthritis progression and are expected to be new drug targets.
Collapse
Affiliation(s)
- Ping Hu
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Beining Li
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yin
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Peng
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiangang Cao
- Department of Sports Injury and Arthroscopy, Tianjin Hospital of Tianjin University, China
| | - Wanyu Xie
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Liang Liu
- Orthopaedic Center of Beijing Luhe Hospital, Capital Medical University, China
| | - Fujiang Cao
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Zhang
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
6
|
Kapanadze T, Gamrekelashvili J, Sablotny S, Schroth FN, Xu Y, Chen R, Rong S, Shushakova N, Gueler F, Haller H, Limbourg FP. Validation of CSF-1 receptor (CD115) staining for analysis of murine monocytes by flow cytometry. J Leukoc Biol 2024; 115:573-582. [PMID: 38038378 DOI: 10.1093/jleuko/qiad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
CD115, the receptor for colony stimulating factor 1, is essential for survival and differentiation of monocytes and macrophages and is therefore frequently used to define monocyte subsets and their progenitors in immunological assays. However, CD115 surface expression and detection by flow cytometry is greatly influenced by cell isolation and processing methods, organ source, and disease context. In a systematic analysis of murine monocytes, we define experimental conditions that preserve or limit CD115 surface expression and staining by flow cytometry. We also find that, independent of conditions, CD115 surface levels are consistently lower in Ly6Clo monocytes than in Ly6Chi monocytes, with the exception of Ly6Clo monocytes in the bone marrow. Furthermore, in contrast to IL-34, the presence of colony stimulating factor 1 impairs CD115 antibody staining in a dose-dependent manner, which, in a model of ischemic kidney injury with elevated levels of colony stimulating factor 1, influenced quantification of kidney monocytes. Thus, staining and experimental conditions affect quantitative and qualitative analysis of monocytes and may influence experimental conclusions.
Collapse
Affiliation(s)
- Tamar Kapanadze
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Jaba Gamrekelashvili
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Stefan Sablotny
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Frauline Nicole Schroth
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Yuangao Xu
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Rongjun Chen
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Song Rong
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Nelli Shushakova
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
- Phenos GmbH, Hannover, Germany
| | - Faikah Gueler
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Florian P Limbourg
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| |
Collapse
|
7
|
Giordano R, Ghafouri B, Arendt-Nielsen L, Petersen KKS. Inflammatory biomarkers in patients with painful knee osteoarthritis: exploring the potential link to chronic postoperative pain after total knee arthroplasty-a secondary analysis. Pain 2024; 165:337-346. [PMID: 37703399 DOI: 10.1097/j.pain.0000000000003042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/19/2023] [Indexed: 09/15/2023]
Abstract
ABSTRACT Total knee arthroplasty (TKA) is the end-stage treatment of knee osteoarthritis (OA), and approximately 20% of patients experience chronic postoperative pain. Studies indicate that inflammatory biomarkers might be associated with pain in OA and potentially linked to the development of chronic postoperative pain after TKA. This study aimed to (1) evaluate preoperative serum levels of inflammatory biomarkers in patients with OA and healthy control subjects, (2) investigate preoperative differences of inflammatory biomarker profiles in subgroups of patients, and (3) compare subgroups of patients with and without postoperative pain 12 months after surgery. Serum samples from patients with OA scheduled for TKA (n = 127) and healthy participants (n = 39) were analyzed. Patients completed the Knee-injury-and-Osteoarthritis-Outcome-Score (KOOS) questionnaire and rated their clinical pain intensity using a visual analog scale (VAS) before and 12 months after TKA. Hierarchical cluster analysis and Orthogonal Partial Least Squares Discriminant Analysis were used to compare groups (patients vs control subjects) and to identify subgroups of patients in relation to postoperative outcomes. Difference in preoperative and postoperative VAS and KOOS scores were compared across subgroups. Twelve inflammatory markers were differentially expressed in patients when compared with control subjects. Cluster analysis identified 2 subgroups of patients with 23 proteins being significantly different ( P < 0.01). The 12-months postoperative VAS and KOOS scores were significantly different between subgroups of patients ( P < 0.05). This study identified differences in specific inflammatory biomarker profiles when comparing patients with OA and control subjects. Cluster analysis identified 2 subgroups of patients with OA, with one subgroup demonstrating comparatively worse 12-month postoperative pain intensity and function scores.
Collapse
Affiliation(s)
- Rocco Giordano
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Gistrup, Denmark
- Department of Oral and Maxillofacial Surgery, Aalborg University Hospital, Aalborg, Denmark
| | - Bijar Ghafouri
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Gistrup, Denmark
- Center for Mathematical Modeling of Knee Osteoarthritis (MathKOA), Department of Material and Production, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
- Department of Gastroenterology & Hepatology, Mech-Sense, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Clinical Institute, Aalborg University Hospital, Aalborg, Denmark
| | - Kristian Kjær-Staal Petersen
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Gistrup, Denmark
- Center for Mathematical Modeling of Knee Osteoarthritis (MathKOA), Department of Material and Production, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
| |
Collapse
|
8
|
Guillem-Llobat P, Marín M, Rouleau M, Silvestre A, Blin-Wakkach C, Ferrándiz ML, Guillén MI, Ibáñez L. New Insights into the Pro-Inflammatory and Osteoclastogenic Profile of Circulating Monocytes in Osteoarthritis Patients. Int J Mol Sci 2024; 25:1710. [PMID: 38338988 PMCID: PMC10855447 DOI: 10.3390/ijms25031710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative condition of the articular cartilage with chronic low-grade inflammation. Monocytes have a fundamental role in the progression of OA, given their implication in inflammatory responses and their capacity to differentiate into bone-resorbing osteoclasts (OCLs). This observational-experimental study attempted to better understand the molecular pathogenesis of OA through the examination of osteoclast progenitor (OCP) cells from both OA patients and healthy individuals (25 OA patients and healthy samples). The expression of osteoclastogenic and inflammatory genes was analyzed using RT-PCR. The OA monocytes expressed significantly higher levels of CD16, CD115, TLR2, Mincle, Dentin-1, and CCR2 mRNAs. Moreover, a flow cytometry analysis showed a significantly higher surface expression of the CD16 and CD115 receptors in OA vs. healthy monocytes, as well as a difference in the distribution of monocyte subsets. Additionally, the OA monocytes showed a greater osteoclast differentiation capacity and an enhanced response to an inflammatory stimulus. The results of this study demonstrate the existence of significant differences between the OCPs of OA patients and those of healthy subjects. These differences could contribute to a greater understanding of the molecular pathogenesis of OA and to the identification of new biomarkers and potential drug targets for OA.
Collapse
Affiliation(s)
- Paloma Guillem-Llobat
- Department of Biomedical Science, Cardenal Herrera-CEU University, 46115 Valencia, Spain;
| | - Marta Marín
- Department of Pharmacy, Cardenal Herrera-CEU University, 46115 Valencia, Spain;
| | - Matthieu Rouleau
- Laboratory of Molecular PhysioMedicine, UMR 7370, National Centre for Scientific Research, Côte d’Azur University, 06107 Nice, France; (M.R.); (C.B.-W.)
| | - Antonio Silvestre
- Service of Orthopedic Surgery and Traumatology, University Clinical Hospital, 46010 Valencia, Spain;
| | - Claudine Blin-Wakkach
- Laboratory of Molecular PhysioMedicine, UMR 7370, National Centre for Scientific Research, Côte d’Azur University, 06107 Nice, France; (M.R.); (C.B.-W.)
| | - María Luisa Ferrándiz
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia and University of Valencia, 46022 Valencia, Spain;
| | - María Isabel Guillén
- Department of Pharmacy, Cardenal Herrera-CEU University, 46115 Valencia, Spain;
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia and University of Valencia, 46022 Valencia, Spain;
| | - Lidia Ibáñez
- Department of Pharmacy, Cardenal Herrera-CEU University, 46115 Valencia, Spain;
| |
Collapse
|
9
|
Goutakoli P, Papadaki G, Repa A, Avgoustidis N, Kalogiannaki E, Flouri I, Bertsias A, Zoidakis J, Samiotaki M, Bertsias G, Semitekolou M, Verginis P, Sidiropoulos P. A Peripheral Blood Signature of Increased Th1 and Myeloid Cells Combined with Serum Inflammatory Mediators Is Associated with Response to Abatacept in Rheumatoid Arthritis Patients. Cells 2023; 12:2808. [PMID: 38132128 PMCID: PMC10741898 DOI: 10.3390/cells12242808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Abatacept (CTLA4-Ig)-a monoclonal antibody which restricts T cell activation-is an effective treatment for rheumatoid arthritis (RA). Nevertheless, only 50% of RA patients attain clinical responses, while predictors of response are rather limited. Herein, we aimed to investigate for early biomarkers of response to abatacept, based on a detailed immunological profiling of peripheral blood (PB) cells and serum proteins. We applied flow cytometry and proteomics analysis on PB immune cells and serum respectively, of RA patients starting abatacept as the first biologic agent. After 6 months of treatment, 34.5% of patients attained response. At baseline, Th1 and FoxP3+ T cell populations were positively correlated with tender joint counts (p-value = 0.047 and p-value = 0.022, respectively). Upon treatment, CTLA4-Ig effectively reduced the percentages of Th1 and Th17 only in responders (p-value = 0.0277 and p-value = 0.0042, respectively). Notably, baseline levels of Th1 and myeloid cell populations were significantly increased in PB of responders compared to non-responders (p-value = 0.009 and p-value = 0.03, respectively). Proteomics analysis revealed that several inflammatory mediators were present in serum of responders before therapy initiation and strikingly 10 amongst 303 serum proteins were associated with clinical responses. Finally, a composite index based on selected baseline cellular and proteomics' analysis could predict response to abatacept with a high sensitivity (90%) and specificity (88.24%).
Collapse
Affiliation(s)
- Panagiota Goutakoli
- Laboratory of Rheumatology, Autoimmunity and Inflammation, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Garyfalia Papadaki
- Laboratory of Rheumatology, Autoimmunity and Inflammation, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Argyro Repa
- Rheumatology and Clinical Immunology, University Hospital of Heraklion, 71003 Heraklion, Greece; (A.R.); (N.A.); (I.F.)
| | - Nestor Avgoustidis
- Rheumatology and Clinical Immunology, University Hospital of Heraklion, 71003 Heraklion, Greece; (A.R.); (N.A.); (I.F.)
| | - Eleni Kalogiannaki
- Rheumatology and Clinical Immunology, University Hospital of Heraklion, 71003 Heraklion, Greece; (A.R.); (N.A.); (I.F.)
| | - Irini Flouri
- Rheumatology and Clinical Immunology, University Hospital of Heraklion, 71003 Heraklion, Greece; (A.R.); (N.A.); (I.F.)
| | - Antonios Bertsias
- Rheumatology and Clinical Immunology, University Hospital of Heraklion, 71003 Heraklion, Greece; (A.R.); (N.A.); (I.F.)
| | - Jerome Zoidakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
| | - Martina Samiotaki
- Protein Chemistry Facility, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Athens, Greece;
| | - George Bertsias
- Laboratory of Rheumatology, Autoimmunity and Inflammation, Medical School, University of Crete, 71003 Heraklion, Greece
- Rheumatology and Clinical Immunology, University Hospital of Heraklion, 71003 Heraklion, Greece; (A.R.); (N.A.); (I.F.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece
| | - Maria Semitekolou
- Laboratory of Rheumatology, Autoimmunity and Inflammation, Medical School, University of Crete, 71003 Heraklion, Greece
- Laboratory of Cellular Immunology Division of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Prodromos Sidiropoulos
- Laboratory of Rheumatology, Autoimmunity and Inflammation, Medical School, University of Crete, 71003 Heraklion, Greece
- Rheumatology and Clinical Immunology, University Hospital of Heraklion, 71003 Heraklion, Greece; (A.R.); (N.A.); (I.F.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece
| |
Collapse
|
10
|
Alkubaisi BO, Aljobowry R, Ali SM, Sultan S, Zaraei SO, Ravi A, Al-Tel TH, El-Gamal MI. The latest perspectives of small molecules FMS kinase inhibitors. Eur J Med Chem 2023; 261:115796. [PMID: 37708796 DOI: 10.1016/j.ejmech.2023.115796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
FMS kinase is a type III tyrosine kinase receptor that plays a central role in the pathophysiology and management of several diseases, including a range of cancer types, inflammatory disorders, neurodegenerative disorders, and bone disorders among others. In this review, the pathophysiological pathways of FMS kinase in different diseases and the recent developments of its monoclonal antibodies and inhibitors during the last five years are discussed. The biological and biochemical features of these inhibitors, including binding interactions, structure-activity relationships (SAR), selectivity, and potencies are discussed. The focus of this article is on the compounds that are promising leads and undergoing advanced clinical investigations, as well as on those that received FDA approval. In this article, we attempt to classify the reviewed FMS inhibitors according to their core chemical structure including pyridine, pyrrolopyridine, pyrazolopyridine, quinoline, and pyrimidine derivatives.
Collapse
Affiliation(s)
- Bilal O Alkubaisi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Raya Aljobowry
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Salma M Ali
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Sara Sultan
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Seyed-Omar Zaraei
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Anil Ravi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Taleb H Al-Tel
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Mohammed I El-Gamal
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
11
|
Zhao Z, Ito A, Kuroki H, Aoyama T. Analysis of Molecular Changes and Features in Rat Knee Osteoarthritis Cartilage: Progress From Cellular Changes to Structural Damage. Cartilage 2023:19476035231213174. [PMID: 37978830 DOI: 10.1177/19476035231213174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
OBJECTIVE Although knee osteoarthritis (KOA) is a common disease, there is a lack of specific prevention and early treatment methods. Hence, this study aimed to examine the molecular changes occurring at different stages of KOA to elucidate the dynamic nature of the disease. DESIGN Using a low-force compression model and analyzing RNA sequencing data, we identified molecular changes in the transcriptome of knee joint cartilage, including gene expression and molecular pathways, between the cellular changes and structural damage stages of KOA progression. In addition, we validated hub genes using an external dataset. RESULTS Gene set enrichment analysis (GSEA) identified the following pathways to be associated with KOA: "B-cell receptor signaling pathway," "cytokine-cytokine receptor interaction," and "hematopoietic cell lineage." Expression analysis revealed 585 differentially expressed genes, with 579 downregulated and 6 upregulated genes. Enrichment and clustering analyses revealed that the main molecular clusters were involved in cell cycle regulation and immune responses. Furthermore, the hub genes Csf1r, Cxcr4, Cxcl12, and Ptprc were related to immune responses. CONCLUSIONS Our study provides insights into the dynamic nature of early-stage KOA and offers valuable information to support the development of effective intervention strategies to prevent the irreversible damage associated with KOA, thereby addressing a major clinical challenge.
Collapse
Affiliation(s)
- Zixi Zhao
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Aoyama
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Zheng M, Li Z, Feng Y, Hou S, Zhang J, Kang C. The role of CD14 and CSF1R in osteoarthritis and gastritis. Medicine (Baltimore) 2023; 102:e35567. [PMID: 37904379 PMCID: PMC10615460 DOI: 10.1097/md.0000000000035567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/19/2023] [Indexed: 11/01/2023] Open
Abstract
Osteoarthritis (OA) is a non-inflammatory degenerative joint disease that mainly involves articular cartilage damage and involves the whole joint tissue. Gastritis is a common stomach disorder, typically referring to inflammation or lesions of the gastric mucosa. However, the relationship between CD14 and colony stimulating factor-1 receptor (CSF1R) and these 2 diseases is not yet clear. OA datasets GSE46750, GSE82107 and gastritis datasets GSE54043 profiles were downloaded from gene expression omnibus databases generated by GPL10558 and GPL570.The R package limma was used to screen differentially expressed genes (DEGs). Weighted gene co-expression network analysis was performed. The construction and analysis of protein-protein interaction network, functional enrichment analysis, gene set enrichment analysis and comparative toxicogenomics database analysis were performed. TargetScan was used to screen miRNAs regulating central DEGs. A total of 568 DEGs were identified. According to the gene ontology (GO) and biological processes analysis, they were mainly enriched in ATP metabolism negative regulation, toll-like receptor TLR1:TLR2 signaling pathway, and intracellular transport. The enrichment terms for OA and gastritis were similar to the GO and Kyoto encyclopedia of gene and genome enrichment terms of DEGs, mainly enriched in ATP metabolism negative regulation, secretion granules, transmembrane receptor protein kinase activity, cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway, MAPK signaling pathway, and TGF-β signaling pathway. In the Metascape enrichment projects, GO enrichment projects showed functions related to cell-cell receptor interaction, cell secretion, and growth. Two core genes were identified through the construction and analysis of the protein-protein interaction network. The core genes (CD14 and CSF1R) exhibited high expression in OA and gastritis samples and low expression in normal samples. Comparative toxicogenomics database analysis revealed associations between core genes (CD14 and CSF1R) and diseases such as OA, osteoporosis, gastritis, juvenile arthritis, diarrhea, and inflammation. CD14 and CSF1R are highly expressed in OA and gastritis, making them potential therapeutic targets for both diseases.
Collapse
Affiliation(s)
- Meiliang Zheng
- Department of Orthopedics, The Second Central Hospital of Baoding, Zhuozhou City, Hebei Province, China
| | - Zheng Li
- Department of Orthopedics, The Second Central Hospital of Baoding, Zhuozhou City, Hebei Province, China
| | - Yingfa Feng
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shiyang Hou
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, West Xiàzhuāng, Badachu, Shijingshan District, Beijing, China
| | - Jie Zhang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, West Xiàzhuāng, Badachu, Shijingshan District, Beijing, China
| | - Chunbo Kang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, West Xiàzhuāng, Badachu, Shijingshan District, Beijing, China
| |
Collapse
|
13
|
Knights AJ, Farrell EC, Ellis OM, Song MJ, Appleton CT, Maerz T. Synovial macrophage diversity and activation of M-CSF signaling in post-traumatic osteoarthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.559514. [PMID: 37873464 PMCID: PMC10592932 DOI: 10.1101/2023.10.03.559514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Objective Synovium is home to immune and stromal cell types that orchestrate inflammation following a joint injury; in particular, macrophages are central protagonists in this process. We sought to define the cellular and temporal dynamics of the synovial immune niche in a mouse model of post-traumatic osteoarthritis (PTOA), and to identify stromal-immune crosstalk mechanisms that coordinate macrophage function and phenotype. Design We induced PTOA in mice using a non-invasive tibial compression model of anterior cruciate ligament rupture (ACLR). Single cell RNA-seq and flow cytometry were used to assess immune cell populations in healthy (Sham) and injured (7d and 28d post-ACLR) synovium. Characterization of synovial macrophage polarization states was performed, alongside computational modeling of macrophage differentiation, as well as implicated transcriptional regulators and stromal-immune communication axes. Results Immune cell types are broadly represented in healthy synovium, but experience drastic expansion and speciation in PTOA, most notably in the macrophage portion. We identified several polarization states of macrophages in synovium following joint injury, underpinned by distinct transcriptomic signatures, and regulated in part by stromal-derived macrophage colony-stimulating factor signaling. The transcription factors Pu.1, Cebpα, Cebpβ, and Jun were predicted to control differentiation of systemically derived monocytes into pro-inflammatory synovial macrophages. Conclusions We defined different synovial macrophage subpopulations present in healthy and injured mouse synovium. Nuanced characterization of the distinct functions, origins, and disease kinetics of macrophage subtypes in PTOA will be critical for targeting these highly versatile cells for therapeutic purposes.
Collapse
Affiliation(s)
| | - Easton C. Farrell
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Olivia M. Ellis
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Michelle J. Song
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - C. Thomas Appleton
- Department of Physiology and Pharmacology, Western University, London ON, Canada
- Bone and Joint Institute, Western University, London, ON, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine – Division of Rheumatology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Zheng M, Li Z, Feng Y, Zhang X. CD14 and CSF1R as developmental molecular targets for the induction of osteoarthritis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2023; 16:184-198. [PMID: 37693684 PMCID: PMC10492034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/29/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a non-inflammatory degenerative joint disease that mainly involves articular cartilage damage and involves the whole joint tissue. However, the relationship between CD14 and CSF1R and osteoarthritis remains unclear. The aim of this study was to explore the important role of CD14 and CSF1R in osteoarthritis and provide a new direction for its prevention and treatment. METHOD The osteoarthritis datasets GSE46750 and GSE82107 were downloaded from gene expression omnibus (GEO) database generated by GPL10558 and GPL570. R package limma was used to screen differentially expressed genes (DEDs). Weighted gene co-expression network analysis (WGCNA) was performed. The construction and analysis of a protein-protein interaction (PPI) network, functional enrichment analysis, gene set enrichment analysis (GSEA), and comparative toxicogenomics database (CTD) analysis were performed. TargetScan screened miRNAs that regulated central DEGs. RESULTS 687 DEGs were identified. According to gene ontology (GO), they were mainly concentrated in inflammatory response, IL-17 signaling pathway, rheumatoid arthritis, exercise, and regulation of response to external stimuli. The enrichment items are similar to the GO Kyoto Encyclopedia of Gene and Genome (KEGG) enrichment items of DEGs. These were mainly concentrated in exercise, inflammatory response, defense response, collagen containing extracellular matrix, and receptor regulator activity. In an enrichment project of Metascape, GO had inflammatory response, SARS-CoV-2 signal pathway network map, PIDIL8CXCR1 pathway, regulation of bone remodeling and endochondral ossification. 20 core genes were obtained by PPI network construction and analysis. Gene expression heat map showed that core genes (C1QC, CSF1R, CD14, TYROBP, HLA-DRA, C1QB, FCER1G, S100A9, HCLS1, WAS, BTK, TREM1) were highly expressed in osteoarthritis synovial tissues and were low in normal synovial tissues. CTD analysis showed that twelve genes (C1QC, CSF1R, CD14, TYROBP, HLA-DRA, C1QB, FCER1G, S100A9, HCLS1, WAS, BTK, TREM1) were found to be associated with inflammation, necrosis, gout, acute myeloid leukemia and thrombocytopenia. CONCLUSION CD14 and CSF1R are highly expressed in osteoarthritis and may be therapeutic targets for osteoarthritis.
Collapse
Affiliation(s)
- Meiliang Zheng
- Department of Orthopedics, The Second Central Hospital of BaodingNo. 57 Fanyang Zhong Road, Zhuozhou 072750, Hebei, China
| | - Zheng Li
- Department of Orthopedics, The Second Central Hospital of BaodingNo. 57 Fanyang Zhong Road, Zhuozhou 072750, Hebei, China
| | - Yingfa Feng
- Department of Orthopedics, The Fourth Hospital of Hebei Medical UniversityNo. 12 Jiankang Road, Shijiazhuang 050011, Hebei, China
| | - Xiaoyu Zhang
- Department of Orthopedics, The Fourth Hospital of Hebei Medical UniversityNo. 12 Jiankang Road, Shijiazhuang 050011, Hebei, China
| |
Collapse
|
15
|
Gouife M, Ban Z, Yue X, Jiang J, Xie J. Molecular characterization, gene expression and functional analysis of goldfish ( Carassius auratus L.) macrophage colony stimulating factor 2. Front Immunol 2023; 14:1235370. [PMID: 37593738 PMCID: PMC10431942 DOI: 10.3389/fimmu.2023.1235370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
Background Macrophage colony-stimulating factor 2 (MCSF-2) is an important cytokine that controls how cells of the monocyte/macrophage lineage proliferate, differentiate, and survive in vertebrates. Two isoforms of MCSF have been identified in fish, each exhibiting distinct gene organization and expression patterns. In this study, we investigated a goldfish MCSF-2 gene in terms of its immunomodulatory and functional properties. Methods In this study, goldfish were acclimated for 3 weeks and sedated with TMS prior to handling. Two groups of fish were used for infection experiments, and tissues from healthy goldfish were collected for RNA isolation. cDNA synthesis was performed, and primers were designed based on transcriptome database sequences. Analysis of gfMCSF-2 sequences, including nucleotide and amino acid analysis, molecular mass prediction, and signal peptide prediction, was conducted. Real-time quantitative PCR (qPCR) was used to analyze gene expression levels, while goldfish head kidney leukocytes (HKLs) were isolated using standard protocols. The expression of gfMCSF-2 in activated HKLs was investigated, and recombinant goldfish MCSF-2 was expressed and purified. Western blot analysis, cell proliferation assays, and flow cytometric analysis of HKLs were performed. Gene expression analysis of transcription factors and pro-inflammatory cytokines in goldfish head kidney leukocytes exposed to rgMCSF-2 was conducted. Statistical analysis using one-way ANOVA and Dunnett's post hoc test was applied. Results We performed a comparative analysis of MCSF-1 and MCSF-2 at the protein and nucleotide levels using the Needleman-Wunsch algorithm. The results revealed significant differences between the two sequences, supporting the notion that they represent distinct genes rather than isoforms of the same gene. Sequence alignment demonstrated high sequence identity with MCSF-2 homologs from fish species, particularly C. carpio, which was supported by phylogenetic analysis. Expression analysis in various goldfish tissues demonstrated differential expression levels, with the spleen exhibiting the highest expression. In goldfish head kidney leukocytes, gfMCSF-2 expression was modulated by chemical stimuli and bacterial infection, with upregulation observed in response to lipopolysaccharide (LPS) and live Aeromonas hydrophila. Recombinant gfMCSF-2 (rgMCSF-2) was successfully expressed and purified, showing the ability to stimulate cell proliferation in HKLs. Flow cytometric analysis revealed that rgMCSF-2 induced differentiation of sorted leukocytes at a specific concentration. Moreover, rgMCSF-2 treatment upregulated TNFα and IL-1β mRNA levels and influenced the expression of transcription factors, such as MafB, GATA2, and cMyb, in a time-dependent manner. Conclusion Collectively, by elucidating the effects of rgMCSF-2 on cell proliferation, differentiation, and the modulation of pro-inflammatory cytokines and transcription factors, our findings provided a comprehensive understanding of the potential mechanisms underlying gfMCSF-2-mediated immune regulation. These results contribute to the fundamental knowledge of MCSF-2 in teleosts and establish a foundation for further investigations on the role of gfMCSF-2 in fish immune responses.
Collapse
Affiliation(s)
- Moussa Gouife
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ziqi Ban
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xinyuan Yue
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Jianhu Jiang
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Zhejiang Institule of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Jiasong Xie
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
16
|
Uesato N, Kitagawa Y, Matsuo Y, Miyagawa N, Inagaki K, Kakefuda R, Yamaguchi T, Hata T, Ikegashira K, Matsushita M. Therapeutic Effect of Colony Stimulating Factor 1 Receptor Kinase Inhibitor, JTE-952, on Methotrexate-Refractory Pathology in a Rat Model of Rheumatoid Arthritis. Biol Pharm Bull 2023; 46:1223-1230. [PMID: 37661402 DOI: 10.1248/bpb.b23-00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by inflammation and the destruction of bone and cartilage in affected joints. One of the unmet medical needs in the treatment of RA is to effectively prevent the structural destruction of joints, especially bone, which progresses because of resistance to conventional drugs that mainly have anti-inflammatory effects, and directly leads to a decline in the QOL of patients. We previously developed a novel and orally available type II kinase inhibitor of colony-stimulating factor-1 receptor (CSF1R), JTE-952. CSF1R is specifically expressed by monocytic-lineage cells, including bone-resorbing osteoclasts, and is important for promoting the differentiation and proliferation of osteoclasts. In the present study, we investigated the therapeutic effect of JTE-952 on methotrexate (MTX)-refractory joint destruction in a clinically established adjuvant-induced arthritis rat model. JTE-952 did not suppress paw swelling under inflammatory conditions, but it inhibited the destruction of joint structural components including bone and cartilage in the inflamed joints. In addition, decreased range of joint motion and mechanical hyperalgesia after disease onset were suppressed by JTE-952. These results suggest that JTE-952 is expected to prevent the progression of the structural destruction of joints and its associated effects on joint motion and pain by inhibiting CSF1/CSF1R signaling in RA pathology, which is resistant to conventional disease-modifying anti-rheumatic drugs such as MTX.
Collapse
Affiliation(s)
- Naofumi Uesato
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | | | - Yushi Matsuo
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | - Naoki Miyagawa
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | - Koji Inagaki
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | - Reina Kakefuda
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | | | - Takahiro Hata
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | | | | |
Collapse
|
17
|
Raggi F, Bartolucci M, Cangelosi D, Rossi C, Pelassa S, Trincianti C, Petretto A, Filocamo G, Civino A, Eva A, Ravelli A, Consolaro A, Bosco MC. Proteomic profiling of extracellular vesicles in synovial fluid and plasma from Oligoarticular Juvenile Idiopathic Arthritis patients reveals novel immunopathogenic biomarkers. Front Immunol 2023; 14:1134747. [PMID: 37205098 PMCID: PMC10186353 DOI: 10.3389/fimmu.2023.1134747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/28/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction New early low-invasive biomarkers are demanded for the management of Oligoarticular Juvenile Idiopathic Arthritis (OJIA), the most common chronic pediatric rheumatic disease in Western countries and a leading cause of disability. A deeper understanding of the molecular basis of OJIA pathophysiology is essential for identifying new biomarkers for earlier disease diagnosis and patient stratification and to guide targeted therapeutic intervention. Proteomic profiling of extracellular vesicles (EVs) released in biological fluids has recently emerged as a minimally invasive approach to elucidate adult arthritis pathogenic mechanisms and identify new biomarkers. However, EV-prot expression and potential as biomarkers in OJIA have not been explored. This study represents the first detailed longitudinal characterization of the EV-proteome in OJIA patients. Methods Fourty-five OJIA patients were recruited at disease onset and followed up for 24 months, and protein expression profiling was carried out by liquid chromatography-tandem mass spectrometry in EVs isolated from plasma (PL) and synovial fluid (SF) samples. Results We first compared the EV-proteome of SF vs paired PL and identified a panel of EV-prots whose expression was significantly deregulated in SF. Interaction network and GO enrichment analyses performed on deregulated EV-prots through STRING database and ShinyGO webserver revealed enrichment in processes related to cartilage/bone metabolism and inflammation, suggesting their role in OJIA pathogenesis and potential value as early molecular indicators of OJIA development. Comparative analysis of the EV-proteome in PL and SF from OJIA patients vs PL from age/gender-matched control children was then carried out. We detected altered expression of a panel of EV-prots able to differentiate new-onset OJIA patients from control children, potentially representing a disease-associated signature measurable at both the systemic and local levels with diagnostic potential. Deregulated EV-prots were significantly associated with biological processes related to innate immunity, antigen processing and presentation, and cytoskeleton organization. Finally, we ran WGCNA on the SF- and PL-derived EV-prot datasets and identified a few EV-prot modules associated with different clinical parameters stratifying OJIA patients in distinct subgroups. Discussion These data provide novel mechanistic insights into OJIA pathophysiology and an important contribution in the search of new candidate molecular biomarkers for the disease.
Collapse
Affiliation(s)
- Federica Raggi
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Martina Bartolucci
- Core Facilities, Clinical Proteomics and Metabolomics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Davide Cangelosi
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Clinical Bioinformatics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Chiara Rossi
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Simone Pelassa
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Chiara Trincianti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DiNOGMI), University of Genova, Genova, Italy
| | - Andrea Petretto
- Core Facilities, Clinical Proteomics and Metabolomics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Giovanni Filocamo
- Division of Pediatric Immunology and Rheumatology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Adele Civino
- Pediatric Rheumatology and Immunology, Ospedale “Vito Fazzi”, Lecce, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Angelo Ravelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DiNOGMI), University of Genova, Genova, Italy
- Scientific Direction, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Alessandro Consolaro
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DiNOGMI), University of Genova, Genova, Italy
- Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Maria Carla Bosco
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- *Correspondence: Maria Carla Bosco,
| |
Collapse
|
18
|
Sun C, Cao C, Zhao T, Guo H, Fleming BC, Owens B, Beveridge J, McAllister S, Wei L. A2M inhibits inflammatory mediators of chondrocytes by blocking IL-1β/NF-κB pathway. J Orthop Res 2023; 41:241-248. [PMID: 35451533 DOI: 10.1002/jor.25348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/24/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023]
Abstract
A hallmark of osteoarthritis (OA) is cartilage degeneration, which has been previously correlated with dramatic increases in inflammatory enzymes. Specifically, interleukin-1β (IL-1β) and subsequent upregulation of nuclear factor kappa B (NF-κB) is implicated as an important player in the development of posttraumatic osteoarthritis (PTOA). Alpha 2-macroglobulin (A2M) can inhibit this inflammatory pathway, making it a promising therapy for PTOA. Herein, we demonstrate that A2M binds and neutralizes IL-1β, blocking downstream NF-κB-induced catabolism seen in in vitro. Human chondrocytes (cell line C28) were incubated with A2M protein and then treated with IL-1β. A2M was labeled with VivoTag™ 680 to localize the protein postincubation. The degree of binding between A2M and IL-1β was evaluated through immunoprecipitation (IP). Catabolic proteins, including IL-1β and NF-kB, were detected by Western blot. Pro-inflammatory and chondrocyte-related gene expression was examined by qRT-PCR. VivoTag™ 680-labeled A2M was observed in the cytoplasm of C28 human chondrocytes by fluorescence microscopy. IP experiments demonstrated that A2M could bind IL-1β. Additionally, western blot analysis revealed that A2M neutralized IL-1β and NF-κB in a dose-dependent manner. Moreover, A2M decreased levels of MMPs and TNF-α and increased the expression of cartilage protective genes Col2, Type2, Smad4, and aggrecan. Mostly importantly, A2M was shown to directly neutralize IL-1β to downregulate the pro-inflammatory responses mediated by the NF-kB pathway. These results demonstrate a mechanism by which A2M reduces inflammatory catabolic activity and protects cartilage after joint injury. Further in vivo studies are needed to fully understand the potential of A2M as a novel PTOA therapy.
Collapse
Affiliation(s)
- Changqi Sun
- Department of Orthopaedics, Rhode Island Hospital/Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Can Cao
- Department of Orthopaedics, Rhode Island Hospital/Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Ting Zhao
- Department of Orthopaedics, Rhode Island Hospital/Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Hailing Guo
- Department of Orthopaedics, Rhode Island Hospital/Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Braden C Fleming
- Department of Orthopaedics, Rhode Island Hospital/Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Brett Owens
- Department of Orthopaedics, Rhode Island Hospital/Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | | | - Scott McAllister
- Department of Orthopaedics, Rhode Island Hospital/Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Lei Wei
- Department of Orthopaedics, Rhode Island Hospital/Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
19
|
Boruah P, Deka N. Interleukin 34 in Disease Progressions: A Comprehensive Review. Crit Rev Immunol 2023; 43:25-43. [PMID: 37943151 DOI: 10.1615/critrevimmunol.2023050326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
IL-34, a cytokine, discovered a decade before and is known to be a colony stimulating factor CSF-1 receptor (CSF-1R) ligand. Along with CSF-1R, it also interacts with syndecan-1 receptors and protein-tyrosine phosphatase (PTP-ζ). Hence, IL-34 takes part in a number of biological activities owing to its involvement in different signaling pathways. This review was done to analyze the recent studies on the functions of IL-34 in progression of diseases. The role of IL-34 under the physiological and pathological settings is studied by reviewing current data. In the last ten years, studies suggested that the IL-34 was involved in the regulation of morbid states such as inflammatory diseases, infections, transplant rejection, autoimmune diseases, neurologic diseases, and cancer. In general, the involvement of IL-34 is observed in many serious health ailments like metabolic diseases, heart diseases, infections and even cancer. As such, IL-34 can be regarded as a therapeutic target, potential biomarker or as a therapeutic tool, which ought to be assessed in future research activities.
Collapse
Affiliation(s)
- Prerona Boruah
- Shanghai Veterinary Research Institute, Shanghai, China; School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, Navi Mumbai, India
| | - Nikhita Deka
- Department of Life Sciences, Dibrugarh University, Assam, India
| |
Collapse
|
20
|
Xiang C, Li H, Tang W. Targeting CSF-1R represents an effective strategy in modulating inflammatory diseases. Pharmacol Res 2023; 187:106566. [PMID: 36423789 DOI: 10.1016/j.phrs.2022.106566] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Colony-stimulating factor-1 receptor (CSF-1R), also known as FMS kinase, is a type I single transmembrane protein mainly expressed in myeloid cells, such as monocytes, macrophages, glial cells, and osteoclasts. The endogenous ligands, colony-stimulating factor-1 (CSF-1) and Interleukin-34 (IL-34), activate CSF-1R and downstream signaling pathways including PI3K-AKT, JAK-STATs, and MAPKs, and modulate the proliferation, differentiation, migration, and activation of target immune cells. Over the past decades, the promising therapeutic potential of CSF-1R signaling inhibition has been widely studied for decreasing immune suppression and escape in tumors, owing to depletion and reprogramming of tumor-associated macrophages. In addition, the excessive activation of CSF-1R in inflammatory diseases is consecutively uncovered in recent years, which may result in inflammation in bone, kidney, lung, liver and central nervous system. Agents against CSF-1R signaling have been increasingly investigated in preclinical or clinical studies for inflammatory diseases treatment. However, the pathological mechanism of CSF-1R in inflammation is indistinct and whether CSF-1R signaling can be identified as biomarkers remains controversial. With the background information aforementioned, this review focus on the dialectical roles of CSF-1R and its ligands in regulating innate immune cells and highlights various therapeutic implications of blocking CSF-1R signaling in inflammatory diseases.
Collapse
Affiliation(s)
- Caigui Xiang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Li
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Wei Tang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Villar J, Cros A, De Juan A, Alaoui L, Bonte PE, Lau CM, Tiniakou I, Reizis B, Segura E. ETV3 and ETV6 enable monocyte differentiation into dendritic cells by repressing macrophage fate commitment. Nat Immunol 2023; 24:84-95. [PMID: 36543959 PMCID: PMC9810530 DOI: 10.1038/s41590-022-01374-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/31/2022] [Indexed: 12/24/2022]
Abstract
In inflamed tissues, monocytes differentiate into macrophages (mo-Macs) or dendritic cells (mo-DCs). In chronic nonresolving inflammation, mo-DCs are major drivers of pathogenic events. Manipulating monocyte differentiation would therefore be an attractive therapeutic strategy. However, how the balance of mo-DC versus mo-Mac fate commitment is regulated is not clear. In the present study, we show that the transcriptional repressors ETV3 and ETV6 control human monocyte differentiation into mo-DCs. ETV3 and ETV6 inhibit interferon (IFN)-stimulated genes; however, their action on monocyte differentiation is independent of IFN signaling. Instead, we find that ETV3 and ETV6 directly repress mo-Mac development by controlling MAFB expression. Mice deficient for Etv6 in monocytes have spontaneous expression of IFN-stimulated genes, confirming that Etv6 regulates IFN responses in vivo. Furthermore, these mice have impaired mo-DC differentiation during inflammation and reduced pathology in an experimental autoimmune encephalomyelitis model. These findings provide information about the molecular control of monocyte fate decision and identify ETV6 as a therapeutic target to redirect monocyte differentiation in inflammatory disorders.
Collapse
Affiliation(s)
- Javiera Villar
- Institut Curie, PSL Research University, INSERM, U932,, Paris, France
| | - Adeline Cros
- Institut Curie, PSL Research University, INSERM, U932,, Paris, France
| | - Alba De Juan
- Institut Curie, PSL Research University, INSERM, U932,, Paris, France
| | - Lamine Alaoui
- Institut Curie, PSL Research University, INSERM, U932,, Paris, France
| | | | - Colleen M Lau
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ioanna Tiniakou
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Elodie Segura
- Institut Curie, PSL Research University, INSERM, U932,, Paris, France.
| |
Collapse
|
22
|
Park HE, Oh H, Baek JH. Interleukin-34-regulated T-cell responses in rheumatoid arthritis. Front Med (Lausanne) 2022; 9:1078350. [PMID: 36530919 PMCID: PMC9747768 DOI: 10.3389/fmed.2022.1078350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/14/2022] [Indexed: 09/10/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease with a multifaceted etiology, which primarily affects and results in the deterioration of the synovium of patients. While the exact etiology of RA is still largely unknown, there is growing interest in the cytokine interleukin-34 (IL-34) as a driver or modulator of RA pathogenesis on the grounds that IL-34 is drastically increased in the serum and synovium of RA patients. Several studies have so far revealed the relationship between IL-34 levels and RA disease progression. Nevertheless, the significance and role of IL-34 in RA have remained ambiguous, as illustrated by two most recent studies, which reported contrasting effects of genetic IL-34 deletion in RA. Of note, IL-34 is a macrophage growth factor and is increasingly perceived as a master regulator of T-cell responses in RA via macrophage-dependent as well as T cell-intrinsic mechanisms. In this regard, several studies have demonstrated that IL-34 potentiates helper T-cell (Th) responses in RA, whereas studies also suggested that IL-34 alleviates synovial inflammation, potentially by inducing regulatory T-cells (Treg). Herein, we provide an overview of the current understanding of IL-34 involvement in RA and outline IL-34-mediated mechanisms in regulating T-cell responses in RA.
Collapse
Affiliation(s)
| | | | - Jea-Hyun Baek
- School of Life Science, Handong Global University, Pohang, South Korea
| |
Collapse
|
23
|
González-Sánchez HM, Baek JH, Weinmann-Menke J, Ajay AK, Charles JFF, Noda M, Franklin RA, Rodríguez-Morales P, Kelley VR. IL-34 and protein-tyrosine phosphatase receptor type-zeta-dependent mechanisms limit arthritis in mice. J Transl Med 2022; 102:846-858. [PMID: 35288653 DOI: 10.1038/s41374-022-00772-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/09/2022] Open
Abstract
Myeloid cell mediated mechanisms regulate synovial joint inflammation. IL-34, a macrophage (Mø) growth and differentiation molecule, is markedly expressed in neutrophil and Mø-rich arthritic synovium. IL-34 engages a newly identified independent receptor, protein-tyrosine phosphatase, receptor-type, zeta (PTPRZ), that we find is expressed by Mø. As IL-34 is prominent in rheumatoid arthritis, we probed for the IL-34 and PTPRZ-dependent myeloid cell mediated mechanisms central to arthritis using genetic deficient mice in K/BxN serum-transfer arthritis. Unanticipatedly, we now report that IL-34 and PTPRZ limited arthritis as intra-synovial pathology and bone erosion were more severe in IL-34 and PTPRZ KO mice during induced arthritis. We found that IL-34 and PTPRZ: (i) were elevated, bind, and induce downstream signaling within the synovium in arthritic mice and (ii) were upregulated in the serum and track with disease activity in rheumatoid arthritis patients. Mechanistically, IL-34 and PTPRZ skewed Mø toward a reparative phenotype, and enhanced Mø clearance of apoptotic neutrophils, thereby decreasing neutrophil recruitment and intra-synovial neutrophil extracellular traps. With fewer neutrophils and neutrophil extracellular traps in the synovium, destructive inflammation was restricted, and joint pathology and bone erosion diminished. These novel findings suggest that IL-34 and PTPRZ-dependent mechanisms in the inflamed synovium limit, rather than promote, inflammatory arthritis.
Collapse
Affiliation(s)
- Hilda Minerva González-Sánchez
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,CONACyT - Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Jea-Hyun Baek
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,School of Life Science, Handong Global University, Pohang, Gyeongbuk, Republic of Korea
| | - Julia Weinmann-Menke
- Department of Nephrology and Rheumatology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Amrendra Kumar Ajay
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Masaharu Noda
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Ruth Anne Franklin
- Department of Immunology, Harvard Medical School, Boston, MA, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | | | - Vicki Rubin Kelley
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
24
|
Ueland HO, Ueland GÅ, Løvås K, Breivk LE, Thrane AS, Meling Stokland AE, Rødahl E, Husebye ES. Novel inflammatory biomarkers in thyroid eye disease. Eur J Endocrinol 2022; 187:293-300. [PMID: 35675127 PMCID: PMC9723260 DOI: 10.1530/eje-22-0247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/08/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE The aim of this study is to identify biochemical inflammatory markers predicting the presence or risk of developing thyroid eye disease (TED) in patients with Graves' disease (GD). METHODS Patients with GD (n = 100, 77 females) were included from the National Norwegian Registry of Organ-Specific Diseases. Serum samples were analysed for 92 different inflammatory biomarkers using the proximity extension assay. Biomarker levels were compared between groups of patients with and without TED and healthy subjects (HS) (n = 120). RESULTS TED was found in 36 of 100 GD patients. Significant (P < 0.05) differences in the levels of 52 inflammatory biomarkers were found when GD patients and HS were compared (42 elevated and 10 decreased). Out of the 42 elevated biomarkers, a significantly higher serum level of interleukin-6 (IL6) (P = 0.022) and macrophage colony-stimulating factor (CSF1) (P = 0.015) were found in patients with TED compared to patients without TED. Patients with severe TED also had significantly elevated levels of Fms-related tyrosine kinase 3 ligand (FLT3LG) (P = 0.009). Furthermore, fibroblast growth factor 21 (FGF21) was significantly increased (P = 0.008) in patients with GD who had no signs of TED at baseline but developed TED later. CONCLUSION We demonstrate an immunologic fingerprint of GD, as serum levels of several inflammation-related proteins were elevated, while others were decreased. Distinctly increased levels of IL6, CSF1, FLT3LG, and FGF21 were observed in TED, suggesting that these inflammatory proteins could be important in the pathogenesis, and therefore potential new biomarkers for clinical use.
Collapse
Affiliation(s)
- Hans Olav Ueland
- Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway
- Correspondence should be addressed to H O Ueland;
| | - Grethe Åstrøm Ueland
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Correspondence should be addressed to H O Ueland;
| | - Kristian Løvås
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Lars Ertesvåg Breivk
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
| | | | | | - Eyvind Rødahl
- Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Eystein Sverre Husebye
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
| |
Collapse
|
25
|
Xiang C, Fan C, Lu Q, Liu M, Lu H, Feng C, Wu Y, Wu B, Li H, Tang W. Interfering with alternatively activated macrophages by CSF-1R inhibition exerts therapeutic capacity on allergic airway inflammation. Biochem Pharmacol 2022; 198:114952. [PMID: 35149050 DOI: 10.1016/j.bcp.2022.114952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Allergic asthma is a chronic inflammatory disorder with airway hyperresponsiveness and tissue remodeling as the main pathological characteristics. The etiology of asthma is relatively complicated, involving genetic susceptibility, epigenetic regulation, environmental factors, and immune imbalance. Colony stimulating factor 1 receptor (CSF-1R), highly expressed in myeloid monocytes, plays an important role in regulating inflammation. However, the pathological role of CSF-1R and the therapeutic effects of CSF-1R inhibitor in allergic airway inflammation remain indistinct. METHODS The house dust mite (HDM)-triggered allergic airway inflammation model was conducted to fully uncover the efficacies of CSF-1R inhibition, as illustrated by histopathological examinations, biochemical analysis, ELISA, RT-PCR, Western blotting assay, immunofluorescence, and flow cytometry. Furthermore, bone marrow-derived macrophages (BMDMs) were differentiated and polarized upon IL-4/IL-13 induction to clarify the underlying mechanisms of CSF-1R inhibition. RESULTS Herein, we presented that the expression of CSF-1R was increased in HDM-induced experimental asthma and inhibition of CSF-1R displayed dramatic effects on the disease severity of asthma, referring to suppressing the secretion of allergic mediators, dysfunction of airway epithelium, and infiltration of inflammatory cells. Furthermore, CSF-1R inhibitor could markedly restrain the polarization and expression of transcriptional factors of alternatively activated macrophages (AAMs) in the presence of IL-4/IL-13 and reduce the recruitment of CSF-1R-dominant macrophages, both in acute and chronic allergic airway inflammation model. CONCLUSION Collectively, our findings demonstrated the molecular pathological mechanism of CSF-1R in allergic airway diseases and suggested that targeting CSF-1R might be an alternative intervention strategy on the homeostasis of airway immune microenvironment in asthma.
Collapse
Affiliation(s)
- Caigui Xiang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Fan
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qiukai Lu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Moting Liu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Lu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlan Feng
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanwei Wu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bing Wu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Li
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Wei Tang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
26
|
Martínez-Ramos S, Rafael-Vidal C, Pego-Reigosa JM, García S. Monocytes and Macrophages in Spondyloarthritis: Functional Roles and Effects of Current Therapies. Cells 2022; 11:cells11030515. [PMID: 35159323 PMCID: PMC8834543 DOI: 10.3390/cells11030515] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/27/2023] Open
Abstract
Spondyloarthritis (SpA) is a family of chronic inflammatory diseases, being the most prevalent ankylosing spondylitis (AS) and psoriatic arthritis (PsA). These diseases share genetic, clinical and immunological features, such as the implication of human leukocyte antigen (HLA) class I molecule 27 (HLA-B27), the inflammation of peripheral, spine and sacroiliac joints and the presence of extra-articular manifestations (psoriasis, anterior uveitis, enthesitis and inflammatory bowel disease). Monocytes and macrophages are essential cells of the innate immune system and are the first line of defence against external agents. In rheumatic diseases including SpA, the frequency and phenotypic and functional characteristics of both cell types are deregulated and are involved in the pathogenesis of these diseases. In fact, monocytes and macrophages play key roles in the inflammatory processes characteristics of SpA. The aim of this review is analysing the characteristics and functional roles of monocytes and macrophages in these diseases, as well as the impact of different current therapies on these cell types.
Collapse
Affiliation(s)
- Sara Martínez-Ramos
- Rheumatology & Immuno-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (S.M.-R.); (C.R.-V.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo, 36214 Vigo, Spain
| | - Carlos Rafael-Vidal
- Rheumatology & Immuno-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (S.M.-R.); (C.R.-V.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo, 36214 Vigo, Spain
| | - José M. Pego-Reigosa
- Rheumatology & Immuno-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (S.M.-R.); (C.R.-V.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo, 36214 Vigo, Spain
| | - Samuel García
- Rheumatology & Immuno-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (S.M.-R.); (C.R.-V.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo, 36214 Vigo, Spain
- Correspondence: ; Tel.: +34-986-217-463
| |
Collapse
|
27
|
Degboé Y, Poupot R, Poupot M. Repolarization of Unbalanced Macrophages: Unmet Medical Need in Chronic Inflammation and Cancer. Int J Mol Sci 2022; 23:1496. [PMID: 35163420 PMCID: PMC8835955 DOI: 10.3390/ijms23031496] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Monocytes and their tissue counterpart macrophages (MP) constitute the front line of the immune system. Indeed, they are able to rapidly and efficiently detect both external and internal danger signals, thereby activating the immune system to eradicate the disturbing biological, chemical, or physical agents. They are also in charge of the control of the immune response and account for the repair of the damaged tissues, eventually restoring tissue homeostasis. The balance between these dual activities must be thoroughly controlled in space and time. Any sustained unbalanced response of MP leads to pathological disorders, such as chronic inflammation, or favors cancer development and progression. In this review, we take advantage of our expertise in chronic inflammation, especially in rheumatoid arthritis, and in cancer, to highlight the pivotal role of MP in the physiopathology of these disorders and to emphasize the repolarization of unbalanced MP as a promising therapeutic strategy to control these diseases.
Collapse
Affiliation(s)
- Yannick Degboé
- Infinity, Université Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France;
- Département de Rhumatologie, CHU Toulouse, 31029 Toulouse, France
| | - Rémy Poupot
- Infinity, Université Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France;
| | - Mary Poupot
- Centre de Recherche en Cancérologie de Toulouse, Université Toulouse, INSERM, UPS, 31037 Toulouse, France;
| |
Collapse
|
28
|
Vesela B, Zapletalova M, Svandova E, Ramesova A, Doubek J, Lesot H, Matalova E. General Caspase Inhibition in Primary Chondrogenic Cultures Impacts Their Transcription Profile Including Osteoarthritis-Related Factors. Cartilage 2021; 13:1144S-1154S. [PMID: 34496641 PMCID: PMC8804802 DOI: 10.1177/19476035211044823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE The knowledge about functions of caspases, usually associated with cell death and inflammation, keeps expanding also regarding cartilage. Active caspases are present in the growth plate, and caspase inhibition in limb-derived chondroblasts altered the expression of osteogenesis-related genes. Caspase inhibitors were reported to reduce the severity of cartilage lesions in osteoarthritis (OA), and caspase-3 might represent a promising biomarker for OA prognosis. The objective of this investigation was to decipher the transcriptomic regulation of caspase inhibition in chondrogenic cells. DESIGN Limb-derived chondroblasts were cultured in the presence of 2 different inhibitors: Z-VAD-FMK (FMK) and Q-VD-OPH (OPH). A whole transcriptome RNA sequencing was performed as the key analysis. RESULTS The analysis revealed a statistically significant increase in the expression of 252 genes in the FMK samples and 163 genes in the OPH samples compared with controls. Conversely, there was a significant decrease in the expression of 290 genes in the FMK group and 188 in the OPH group. Among the top up- and downregulated genes (more than 10 times changed), almost half of them were associated with OA. Both inhibitors displayed the highest upregulation of the inflammatory chemokine Ccl5, the most downregulated gene was the one for mannose receptors Mrc1. CONCLUSIONS The obtained datasets pointed to a significant impact of caspase inhibition on the expression of several chondro-/osteogenesis-related markers in an in vitro model of endochondral ossification. Notably, the list of these genes included some encoding for factors associated with cartilage/bone pathologies such as OA.
Collapse
Affiliation(s)
- Barbora Vesela
- Department of Physiology, University of
Veterinary Sciences, Brno, Czech Republic,Institute of Animal Physiology and
Genetics, Czech Academy of Sciences, Brno, Czech Republic,Barbora Vesela, Institute of Animal
Physiology and Genetics, Czech Academy of Sciences, v.v.i., Veveri 97, Brno 602
00, Czech Republic.
| | - Martina Zapletalova
- Institute of Animal Physiology and
Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Eva Svandova
- Department of Physiology, University of
Veterinary Sciences, Brno, Czech Republic,Institute of Animal Physiology and
Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Alice Ramesova
- Department of Physiology, University of
Veterinary Sciences, Brno, Czech Republic
| | - Jaroslav Doubek
- Department of Physiology, University of
Veterinary Sciences, Brno, Czech Republic
| | - Hervé Lesot
- Institute of Animal Physiology and
Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Eva Matalova
- Department of Physiology, University of
Veterinary Sciences, Brno, Czech Republic,Institute of Animal Physiology and
Genetics, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
29
|
Sustained microglial activation in the area postrema of collagen-induced arthritis mice. Arthritis Res Ther 2021; 23:273. [PMID: 34715926 PMCID: PMC8556992 DOI: 10.1186/s13075-021-02657-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background Central nervous system (CNS)-mediated symptoms, such as fatigue, depression, and hyperalgesia, are common complications among patients with rheumatoid arthritis (RA). However, it remains unclear how the peripheral pathology of RA spreads to the brain. Accumulated evidence showing an association between serum cytokine levels and aberrant CNS function suggests that humoral factors participate in this mechanism. In contrast to the well-known early responses of microglia (CNS-resident immune cells) in the area postrema [AP; a brain region lacking a blood–brain barrier (BBB)] to experimental inflammation, microglial alterations in the AP during chronic inflammation like RA remain unclear. Therefore, to determine whether microglia in the AP can react to persistent autoimmune-arthritis conditions, we analyzed these cells in a mouse model of collagen-induced arthritis (CIA). Methods Microglial number and morphology were analyzed in the AP of CIA and control mice (administered Freund’s adjuvant or saline). Immunostaining for ionized calcium-binding adaptor molecule-1 was performed at various disease phases: “pre-onset” [post-immunization day (PID) 21], “establishment” (PID 35), and “chronic” (PID 56 and 84). Quantitative analyses of microglial number and morphology were performed, with principal component analysis used to classify microglia. Interleukin-1β (IL-1β) mRNA expression was analyzed by multiple fluorescent in situ hybridization and real-time polymerase chain reaction. Behavioral changes were assessed by sucrose preference test. Results Microglia in the AP significantly increased in density and exhibited changes in morphology during the establishment and chronic phases, but not the pre-onset phase. Non-subjective clustering classification of cell morphology (CIA, 1,256 cells; saline, 852 cells) showed that the proportion of highly activated microglia increased in the CIA group during establishment and chronic phases. Moreover, the density of IL-1β-positive microglia, a hallmark of functional activation, was increased in the AP. Sucrose preferences in CIA mice negatively correlated with IL-1β expression in brain regions containing the AP. Conclusions Our findings demonstrate that microglia in the AP can sustain their activated state during persistent autoimmune arthritis, which suggests that chronic inflammation, such as RA, may affect microglia in brain regions lacking a BBB and have various neural consequences. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02657-x.
Collapse
|
30
|
Clark R, Lira-Junior R, Johannsen G, Boström EA. Colony-stimulating factor-1 receptor blockade attenuates inflammation in inflamed gingival tissue explants. J Periodontal Res 2021; 56:1141-1153. [PMID: 34510422 DOI: 10.1111/jre.12926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/26/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Colony-stimulating factor-1 receptor (CSF-1R) regulates myeloid cell function and mediates osteoclastogenesis. CSF-1R blockade has been suggested as a potential therapeutic target to halt inflammation and bone resorption; however, the expression and function of CSF-1R in human gingiva is yet unknown. METHODS Gingival tissue was collected from 22 non-periodontitis controls and 31 periodontitis (PD) patients. CSF-1R expression in gingival tissue was assessed with q-PCR, western blot, and immunohistochemistry (IHC). Cell surface expression of CSF-1R was analyzed by flow cytometry. The effects of CSF-1R inhibition on the production of inflammatory mediators by inflamed gingival tissue explants and peripheral blood mononuclear cells (PBMCs) were assessed with a bead-based multiplex array and ELISA. RESULTS CSF-1R protein expression was increased in gingival tissue from PD patients compared with controls as assessed with western blot (1.5-fold increase) and IHC (4.5-fold increase). Similar proportions of HLA-DR+ CD64+ cells and comparable CSF-1R expression in this cell population were found in gingival tissue from PD patients and controls. In peripheral blood monocytes, CSF-1R was predominantly expressed by non-classical and intermediate monocytes. Targeting CSF-1R in gingival tissue explants attenuated the production of MMP-1, MMP-2, MMP-12, and MMP-13. The blocking in PBMCs attenuated the production of IL-8 and MMP-9. CONCLUSION These results indicate that CSF-1R is elevated in PD, and its inhibition attenuates inflammatory mediators in the inflamed gingival tissue and circulating myeloid cells. Together these findings suggest that CSF-1R might be involved in regulating inflammatory processes in PD, and a potential therapeutic target to reduce the harmful inflammation.
Collapse
Affiliation(s)
- Reuben Clark
- Department of Dental Medicine, Division of Oral diagnostics and Rehabilitation, Karolinska Institutet, Huddinge, Sweden
| | - Ronaldo Lira-Junior
- Department of Dental Medicine, Division of Oral diagnostics and Rehabilitation, Karolinska Institutet, Huddinge, Sweden
| | - Gunnar Johannsen
- Department of Dental Medicine, Division of Oral Diseases, Karolinska Institutet, Huddinge, Sweden
| | - Elisabeth A Boström
- Department of Dental Medicine, Division of Oral diagnostics and Rehabilitation, Karolinska Institutet, Huddinge, Sweden.,Department of Orofacial Medicine, Folktandvården Stockholms Län AB, Stockholm, Sweden
| |
Collapse
|
31
|
Li X, Lei Y, Gao Z, Wu G, Gao W, Xia L, Lu J, Shen H. IL-34 affects fibroblast-like synoviocyte proliferation, apoptosis and function by regulating IL-17. Sci Rep 2021; 11:16378. [PMID: 34385542 PMCID: PMC8361173 DOI: 10.1038/s41598-021-95839-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by proliferation and insufficient apoptosis of fibroblast-like synoviocytes (FLSs).The biology and functions of interleukin (IL)-34 are only beginning to be uncovered. We previously demonstrated IL-34 could upregulate the expression of IL-17 in RA patients. In this study, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry of Annexin V and PI staining were performed to assess cell proliferation and apoptosis progression in RA-FLSs after stimulated with increasing concentrations of IL-34, respectively. Inflammatory cytokines and angiogenic factors were measured using quantitative real-time PCR, Western blotting and ELISA. We explored the association between IL-34 and RA-FLS proliferation and apoptosis in the context of RA. Stimulating RA-FLSs with different concentrations of IL-34 significantly promoted the proliferation and inhibited the apoptosis of RA-FLSs in a concentration-dependent manner. Neutralization of IL-17 with the IL-17 inhibitor plumbagin (PB) reduced the effects of IL-34. Proinflammatory cytokine (IL-17A IL-6 and tumor necrosis factor-α, TNF-α) and angiogenic factor (vascular endothelial growth factor, VEGF and hypoxia-inducible factor-1α, HIF-1α) expression was markedly upregulated in RA-FLSs stimulated by IL-34. PB-mediated inhibition of IL-17A also decreased the expression of IL-6, TNF-α, HIF-1α and VEGF in RA-FLSs. Taken together, these findings suggest that targeting IL-34 production in RA-FLSs may be a therapeutic strategy for RA.
Collapse
Affiliation(s)
- Xin Li
- Department of Rheumatology, 1st Affiliated Hospital of Jin Zhou Medical University, Jin Zhou, 121000, China.,Department of Rheumatology, 1st Hospital of China Medical University, Shen Yang, 110001, China
| | - Yimeng Lei
- Department of Rheumatology, 1st Hospital of China Medical University, Shen Yang, 110001, China
| | - Ziyu Gao
- 104k Class 86, China Medical University, Shen Yang, 110001, China
| | - Gang Wu
- Department of General Surgery, 1st Affiliated Hospital of Jin Zhou Medical University, Jin Zhou, 121000, China
| | - Wei Gao
- Department of Rheumatology, 1st Affiliated Hospital of Jin Zhou Medical University, Jin Zhou, 121000, China
| | - Liping Xia
- Department of Rheumatology, 1st Hospital of China Medical University, Shen Yang, 110001, China
| | - Jing Lu
- Department of Rheumatology, 1st Hospital of China Medical University, Shen Yang, 110001, China
| | - Hui Shen
- Department of Rheumatology, 1st Hospital of China Medical University, Shen Yang, 110001, China.
| |
Collapse
|
32
|
Zhang L, Zhang Y, Pan J. Immunopathogenic mechanisms of rheumatoid arthritis and the use of anti-inflammatory drugs. Intractable Rare Dis Res 2021; 10:154-164. [PMID: 34466337 PMCID: PMC8397820 DOI: 10.5582/irdr.2021.01022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 11/05/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive autoimmune disease characterized by synovitis and symmetrical joint destruction. RA has become one of the key diseases endangering human health, but its etiology is not clear. Therefore, identifying the immunopathogenic mechanisms of RA and developing therapeutic drugs to treat autoimmune diseases have always been difficult. This article mainly reviews the immunopathogenic mechanism of RA and advances in the study of anti-inflammatory drugs in order to provide a reference for the treatment of RA and drug development in the future.
Collapse
Affiliation(s)
- Ling Zhang
- Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Ji'nan, China
- Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University, Ji'nan, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University, Ji'nan, China
| | - Yihang Zhang
- Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Ji'nan, China
- Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University, Ji'nan, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University, Ji'nan, China
| | - Jihong Pan
- Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Ji'nan, China
- Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University, Ji'nan, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University, Ji'nan, China
- Address correspondence to:Pan Jihong, Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University, # 6699 Qingdao Road, Ji'nan 250117, China. E-mail:
| |
Collapse
|
33
|
Abstract
OBJECTIVES Osteoarthritis (OA) is known to be a slowly progressive disease that alters all tissue compartments of the joint involved with a characteristic degradation of the cartilage, bone remodeling, and inflammation. One of the prominent symptoms in OA patients is pain, but a few radiologic, inflammatory, or structurally related biomarkers have shown few if any associations with pain. This study aimed to assess serum levels of 92 markers involved in inflammatory pathways in patients with knee osteoarthritis (KOA) and evaluate their possible associations with the clinical pain intensity. MATERIALS AND METHODS Serum samples were collected from 127 KOA patients and 39 healthy participants with no knee pain. Each serum sample was analyzed for 92 inflammatory markers using the Proximity Extension Array (PEA) technology. Clinical pain intensity was assessed using a Visual Analog Scale, and patients completed the Knee Injury and Osteoarthritis Outcome Score (KOOS) questionnaire. RESULTS Fifteen markers were significantly different when comparing KOA patients and healthy participants. Two markers, fibroblast growth factor-21 and Eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), correlated positively with pain intensity (R=0.235, P=0.008; R=0.233, P=0.008). Moreover, a linear regression model showed interleukin-6, macrophage colony-stimulating factor 1, fibroblast growth factor-21, and tumor necrosis factor superfamily member 12 (TWEAK) as significant independent parameters for pain intensity. DISCUSSION The associations between specific cytokines and KOA pain intensities provide new insights into the understanding of the underlying factors driving the pain in OA.
Collapse
|
34
|
Age-dependent effects of the recombinant spike protein/SARS-CoV-2 on the M-CSF- and IL-34-differentiated macrophages in vitro. Biochem Biophys Res Commun 2021; 546:97-102. [PMID: 33578295 PMCID: PMC7857081 DOI: 10.1016/j.bbrc.2021.01.104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022]
Abstract
The SARS-CoV-2 virus causes elevated production of senescence-associated secretory phenotype (SASP) markers by macrophages. SARS-CoV-2 enters macrophages through its Spike-protein aided by cathepsin (Cat) B and L, which also mediate SASP production. Since M-CSF and IL-34 control macrophage differentiation, we investigated the age-dependent effects of the Spike-protein on SASP-related pro-inflammatory-cytokines and nuclear-senescence-regulatory-factors, and CatB, L and K, in mouse M-CSF- and IL-34-differentiated macrophages. The Spike-protein upregulated SASP expression in young and aged male M-CSF-macrophages. In contrast, only young and aged male IL-34-macrophages demonstrated significantly reduced pro-inflammatory cytokine expression in response to the Spike-protein in vitro. Furthermore, the S-protein elevated CatB expression in young male M-CSF-macrophages and young female IL-34-macrophages, whereas CatL was overexpressed in young male IL-34- and old male M-CSF-macrophages. Surprisingly, the S-protein increased CatK activity in young and aged male M-CSF-macrophages, indicating that CatK may be also involved in the COVID-19 pathology. Altogether, we demonstrated the age- and sex-dependent effects of the Spike-protein on M-CSF and IL-34-macrophages using a novel in vitro mouse model of SARS-CoV-2/COVID-19.
Collapse
|
35
|
Zaghlool SB, Sharma S, Molnar M, Matías-García PR, Elhadad MA, Waldenberger M, Peters A, Rathmann W, Graumann J, Gieger C, Grallert H, Suhre K. Revealing the role of the human blood plasma proteome in obesity using genetic drivers. Nat Commun 2021; 12:1279. [PMID: 33627659 PMCID: PMC7904950 DOI: 10.1038/s41467-021-21542-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/29/2021] [Indexed: 12/21/2022] Open
Abstract
Blood circulating proteins are confounded readouts of the biological processes that occur in different tissues and organs. Many proteins have been linked to complex disorders and are also under substantial genetic control. Here, we investigate the associations between over 1000 blood circulating proteins and body mass index (BMI) in three studies including over 4600 participants. We show that BMI is associated with widespread changes in the plasma proteome. We observe 152 replicated protein associations with BMI. 24 proteins also associate with a genome-wide polygenic score (GPS) for BMI. These proteins are involved in lipid metabolism and inflammatory pathways impacting clinically relevant pathways of adiposity. Mendelian randomization suggests a bi-directional causal relationship of BMI with LEPR/LEP, IGFBP1, and WFIKKN2, a protein-to-BMI relationship for AGER, DPT, and CTSA, and a BMI-to-protein relationship for another 21 proteins. Combined with animal model and tissue-specific gene expression data, our findings suggest potential therapeutic targets further elucidating the role of these proteins in obesity associated pathologies.
Collapse
Affiliation(s)
- Shaza B Zaghlool
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Sapna Sharma
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Megan Molnar
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
| | - Pamela R Matías-García
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Mohamed A Elhadad
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- German Research Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- German Research Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Biometrics and Epidemiology, German Diabetes Center, Düsseldorf, Germany
| | - Johannes Graumann
- Scientific Service Group Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Max Planck Institute of Heart and Lung Research, Bad Nauheim, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar.
| |
Collapse
|
36
|
Freuchet A, Salama A, Remy S, Guillonneau C, Anegon I. IL-34 and CSF-1, deciphering similarities and differences at steady state and in diseases. J Leukoc Biol 2021; 110:771-796. [PMID: 33600012 DOI: 10.1002/jlb.3ru1120-773r] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Although IL-34 and CSF-1 share actions as key mediators of monocytes/macrophages survival and differentiation, they also display differences that should be identified to better define their respective roles in health and diseases. IL-34 displays low sequence homology with CSF-1 but has a similar general structure and they both bind to a common receptor CSF-1R, although binding and subsequent intracellular signaling shows differences. CSF-1R expression has been until now mainly described at a steady state in monocytes/macrophages and myeloid dendritic cells, as well as in some cancers. IL-34 has also 2 other receptors, protein-tyrosine phosphatase zeta (PTPζ) and CD138 (Syndecan-1), expressed in some epithelium, cells of the central nervous system (CNS), as well as in numerous cancers. While most, if not all, of CSF-1 actions are mediated through monocyte/macrophages, IL-34 has also other potential actions through PTPζ and CD138. Additionally, IL-34 and CSF-1 are produced by different cells in different tissues. This review describes and discusses similarities and differences between IL-34 and CSF-1 at steady state and in pathological situations and identifies possible ways to target IL-34, CSF-1, and its receptors.
Collapse
Affiliation(s)
- Antoine Freuchet
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Apolline Salama
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Séverine Remy
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Carole Guillonneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
37
|
Muñoz-Garcia J, Cochonneau D, Télétchéa S, Moranton E, Lanoe D, Brion R, Lézot F, Heymann MF, Heymann D. The twin cytokines interleukin-34 and CSF-1: masterful conductors of macrophage homeostasis. Theranostics 2021; 11:1568-1593. [PMID: 33408768 PMCID: PMC7778581 DOI: 10.7150/thno.50683] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/03/2020] [Indexed: 12/19/2022] Open
Abstract
Macrophages are specialized cells that control tissue homeostasis. They include non-resident and tissue-resident macrophage populations which are characterized by the expression of particular cell surface markers and the secretion of molecules with a wide range of biological functions. The differentiation and polarization of macrophages relies on specific growth factors and their receptors. Macrophage-colony stimulating factor (CSF-1) and interleukine-34 (IL-34), also known as "twin" cytokines, are part of this regluatory landscape. CSF-1 and IL-34 share a common receptor, the macrophage-colony stimulating factor receptor (CSF-1R), which is activated in a similar way by both factors and turns on identical signaling pathways. However, there is some discrete differential activation leading to specific activities. In this review, we disscuss recent progress in understanding of the role of the twin cytokines in macrophage differentiation, from their interaction with CSF-1R and the activation of signaling pathways, to their implication in macrophage polarization of non-resident and tissue-resident macrophages. A special focus on IL-34, its involvement in pathophsyiological contexts, and its potential as a theranostic target for macrophage therapy will be proposed.
Collapse
Affiliation(s)
- Javier Muñoz-Garcia
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
- SATT Ouest Valorisation, Nantes, France
| | - Denis Cochonneau
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
| | | | - Emilie Moranton
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
| | - Didier Lanoe
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
| | - Régis Brion
- Université de Nantes, INSERM, U1238, Nantes, France
| | | | | | - Dominique Heymann
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| |
Collapse
|
38
|
Dia VP. Plant sources of bioactive peptides. BIOLOGICALLY ACTIVE PEPTIDES 2021:357-402. [DOI: 10.1016/b978-0-12-821389-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
39
|
Li X, Lei Y, Gao Z, Zhang B, Xia L, Lu J, Shen H. Effect of IL-34 on T helper 17 cell proliferation and IL-17 secretion by peripheral blood mononuclear cells from rheumatoid arthritis patients. Sci Rep 2020; 10:22239. [PMID: 33335239 PMCID: PMC7746722 DOI: 10.1038/s41598-020-79312-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-34 is a new pro-inflammatory cytokine with elevated expression in rheumatoid arthritis (RA) patients. Our previous study showed that the frequency of T helper 17 (Th17) cells was also elevated in RA patients. Our study aimed to determine the effects of IL-34 on the proliferation, transcription factor expression and cytokine secretion of different subgroups of CD4 + T cells [Th1, Th2, Th17 and regulatory T (Treg) cells] in RA patients. Peripheral blood mononuclear cells (PBMCs) were isolated from the peripheral blood of 10 RA patients and stimulated with different concentrations of recombinant human (rh) IL-34 (0, 25, 50 and 100 ng/ml). Flow cytometry was used to determine the frequencies of the 4 subgroups of CD4 + T cells. Reverse transcription-PCR, western blotting and enzyme-linked immunosorbent assays were used to determine the mRNA and protein expression levels of transcription factors and cytokines. As a result, the frequency of Th17 cells was obviously increased under IL-34 stimulation. Moreover, the expression of the transcription factor retinoic acid-related orphan receptor (ROR-γt) and secretion of IL-17 by PBMCs were increased by stimulation with IL-34. However, there were no effects of IL-34 on transcription factors or cytokine secretion in Th1, Th2 and Treg cells. In conclusion, IL-34 can improve the proliferation of Th17 cells and expression of IL-17 in RA patients.
Collapse
Affiliation(s)
- Xin Li
- Department of Rheumatology, 1st Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Department of Rheumatology, 1st Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Yimeng Lei
- Department of Rheumatology, 1st Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Ziyu Gao
- 104k class 86, China Medical University, Shenyang, 110001, China
| | - Bei Zhang
- Department of Rheumatology, 1st Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Liping Xia
- Department of Rheumatology, 1st Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Jing Lu
- Department of Rheumatology, 1st Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Hui Shen
- Department of Rheumatology, 1st Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
40
|
Culibrk RA, Hahn MS. The Role of Chronic Inflammatory Bone and Joint Disorders in the Pathogenesis and Progression of Alzheimer's Disease. Front Aging Neurosci 2020; 12:583884. [PMID: 33364931 PMCID: PMC7750365 DOI: 10.3389/fnagi.2020.583884] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Late-onset Alzheimer's Disease (LOAD) is a devastating neurodegenerative disorder that causes significant cognitive debilitation in tens of millions of patients worldwide. Throughout disease progression, abnormal secretase activity results in the aberrant cleavage and subsequent aggregation of neurotoxic Aβ plaques in the cerebral extracellular space and hyperphosphorylation and destabilization of structural tau proteins surrounding neuronal microtubules. Both pathologies ultimately incite the propagation of a disease-associated subset of microglia-the principle immune cells of the brain-characterized by preferentially pro-inflammatory cytokine secretion and inhibited AD substrate uptake capacity, which further contribute to neuronal degeneration. For decades, chronic neuroinflammation has been identified as one of the cardinal pathophysiological driving features of AD; however, despite a number of works postulating the underlying mechanisms of inflammation-mediated neurodegeneration, its pathogenesis and relation to the inception of cognitive impairment remain obscure. Moreover, the limited clinical success of treatments targeting specific pathological features in the central nervous system (CNS) illustrates the need to investigate alternative, more holistic approaches for ameliorating AD outcomes. Accumulating evidence suggests significant interplay between peripheral immune activity and blood-brain barrier permeability, microglial activation and proliferation, and AD-related cognitive decline. In this work, we review a narrow but significant subset of chronic peripheral inflammatory conditions, describe how these pathologies are associated with the preponderance of neuroinflammation, and posit that we may exploit peripheral immune processes to design interventional, preventative therapies for LOAD. We then provide a comprehensive overview of notable treatment paradigms that have demonstrated considerable merit toward treating these disorders.
Collapse
Affiliation(s)
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
41
|
Lelios I, Cansever D, Utz SG, Mildenberger W, Stifter SA, Greter M. Emerging roles of IL-34 in health and disease. J Exp Med 2020; 217:133604. [PMID: 31940023 PMCID: PMC7062519 DOI: 10.1084/jem.20190290] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/11/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
Macrophages are part of the innate immune system and are present in every organ of the body. They fulfill critical roles in tissue homeostasis and development and are involved in various pathologies. An essential factor for the development, homeostasis, and function of mononuclear phagocytes is the colony stimulating factor-1 receptor (CSF-1R), which has two known ligands: CSF-1 and interleukin-34 (IL-34). While CSF-1 has been extensively studied, the biology and functions of IL-34 are only now beginning to be uncovered. In this review, we discuss recent advances of IL-34 biology in health and disease with a specific focus on mononuclear phagocytes.
Collapse
Affiliation(s)
- Iva Lelios
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Dilay Cansever
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sebastian G Utz
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Wiebke Mildenberger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sebastian A Stifter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Hu H, Yang Y, Lan X, Zhang Q, Pan C. Relationships between novel nucleotide variants within the colony-stimulating factor 1 receptor ( CSF1R) gene and mastitis indicators in sheep. Anim Biotechnol 2020; 33:731-738. [PMID: 33043858 DOI: 10.1080/10495398.2020.1830102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Colony-stimulating factor 1 receptor (CSF1R) plays an important role in the process of innate immunity and inflammation, thus it was hypothesized that the CSF1R gene might affect the occurrence of mammalian mastitis. The purpose of this study was to investigate the association between nucleotide variations of CSF1R gene and mastitis in Australian white sheep (AUWs). Two indel variants (Intron5-27 bp and Intron5-22 bp) within the CSF1R gene have been found in AUWs. The Chi-square test for different mastitis symptoms demonstrated that individuals without symptoms of mastitis had higher 'I' allele frequencies and 'II' genotype frequencies (p < 0.01). We found strong correlation between mastitis and lactation score through Pearson correlation analysis. Therefore, we also analyzed the relationship between the two indel loci and lactation, we found that the lactation ability of individuals with type II was stronger than that of DD genotype at the Intron5-22 bp (p < 0.05). Additionally, we found that the combined genotype of the two loci was significantly associated with mastitis (p < 0.01). These findings indicated that CSF1R mutations were significantly associated with mastitis, and could affect lactation performance, suggesting that two deletion sites could be used as the effective molecular markers against mastitis in sheep breeding.
Collapse
Affiliation(s)
- Huina Hu
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuta Yang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianyong Lan
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingfeng Zhang
- Tianjin Aoqun Sheep Industry Research Institute, Tianjin Aoqun Animal Husbandry Company, Tianjin, China
| | - Chuanying Pan
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
43
|
Ifergan I, Miller SD. Potential for Targeting Myeloid Cells in Controlling CNS Inflammation. Front Immunol 2020; 11:571897. [PMID: 33123148 PMCID: PMC7573146 DOI: 10.3389/fimmu.2020.571897] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Multiple Sclerosis (MS) is characterized by immune cell infiltration to the central nervous system (CNS) as well as loss of myelin. Characterization of the cells in lesions of MS patients revealed an important accumulation of myeloid cells such as macrophages and dendritic cells (DCs). Data from the experimental autoimmune encephalomyelitis (EAE) model of MS supports the importance of peripheral myeloid cells in the disease pathology. However, the majority of MS therapies focus on lymphocytes. As we will discuss in this review, multiple strategies are now in place to target myeloid cells in clinical trials. These strategies have emerged from data in both human and mouse studies. We discuss strategies targeting myeloid cell migration, growth factors and cytokines, biological functions (with a focus on miRNAs), and immunological activities (with a focus on nanoparticles).
Collapse
Affiliation(s)
- Igal Ifergan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
44
|
Du X, Xu Y, Chen S, Fang M. Inhibited CSF1R Alleviates Ischemia Injury via Inhibition of Microglia M1 Polarization and NLRP3 Pathway. Neural Plast 2020; 2020:8825954. [PMID: 32908485 PMCID: PMC7474788 DOI: 10.1155/2020/8825954] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/31/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
Ischemia cerebral stroke is one of the common neurological diseases with severe inflammatory response and neuron death. The inhibition of colony-stimulating factor 1 receptor (CSF1R) which especially expressed in microglia/macrophage exerted neuroprotection in stroke. However, the underlying neuroinflammatory regulation effects of CSF1R in ischemia stroke are not clear. In this study, cerebral ischemia stroke mice model was established. The C57/B6J mice were administered with Ki20227, a CSF1R inhibitor, by gavage for 7 consecutive days (0.002 mg/kg/day) before modeling. The Rota-Rod test and neurobehavioral score test were investigated to assess neurobehavioral functions. The area of infarction was assessed by 2, 3, 5-triphenyltetrazolium chloride (TTC) staining. The mRNA expressions of M1/M2 microglia markers were evaluated by real-time PCR. Immunofluorescence and Western blot were utilized to detect the changes of Iba1 and NLRP3 pathway proteins. Results showed that neurobehavioral function improvement was demonstrated by an increased stay time on the Rota-Rod test and a decreased neurobehavioral score in the Ki20227 treatment group. The area of infarction reduced in Ki20227 group when compared to the stroke group. Moreover, the mRNA expression of M1 microglia markers (TNF-α and iNOS) decreased while M2 microglia markers (IL-10 and Arg-1) increased. Meanwhile, compared to the stroke and stroke+PBS group, Ki20227 administration downregulated the expression of NLRP3, active caspase 1, and NF-κB protein in the ischemia penumbra of Ki20227 treatment group mice. In short, the CSF1R inhibitor, Ki20227, played vital neuroprotective roles in ischemia cerebral stroke mice, and the mechanisms may be via inhibiting microglia M1 polarization and NLRP3 inflammasome pathway activation. Our study provides a potential new target for the treatment of ischemic stroke injury.
Collapse
Affiliation(s)
- Xiaoxue Du
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, 310006 Zhejiang, China
- Translational Medicine Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 Zhejiang, China
| | - Yuzhen Xu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Shijia Chen
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, 310006 Zhejiang, China
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, 310006 Zhejiang, China
| |
Collapse
|
45
|
The M-CSF receptor in osteoclasts and beyond. Exp Mol Med 2020; 52:1239-1254. [PMID: 32801364 PMCID: PMC8080670 DOI: 10.1038/s12276-020-0484-z] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
Colony-stimulating factor 1 receptor (CSF1R, also known as c-FMS) is a receptor tyrosine kinase. Macrophage colony-stimulating factor (M-CSF) and IL-34 are ligands of CSF1R. CSF1R-mediated signaling is crucial for the survival, function, proliferation, and differentiation of myeloid lineage cells, including osteoclasts, monocytes/macrophages, microglia, Langerhans cells in the skin, and Paneth cells in the intestine. CSF1R also plays an important role in oocytes and trophoblastic cells in the female reproductive tract and in the maintenance and maturation of neural progenitor cells. Given that CSF1R is expressed in a wide range of myeloid cells, altered CSF1R signaling is implicated in inflammatory, neoplastic, and neurodegenerative diseases. Inhibiting CSF1R signaling through an inhibitory anti-CSF1R antibody or small molecule inhibitors that target the kinase activity of CSF1R has thus been a promising therapeutic strategy for those diseases. In this review, we cover the recent progress in our understanding of the various roles of CSF1R in osteoclasts and other myeloid cells, highlighting the therapeutic applications of CSF1R inhibitors in disease conditions. Drugs directed at a key signaling receptor involved in breaking down bone tissue could help treat diseases marked by pathological bone loss and destruction. In a review article, Kyung-Hyun Park-Min and colleagues from the Hospital for Special Surgery in New York, USA, discuss the essential roles played by the colony-stimulating factor 1 receptor (CSF1R) protein in the survival, function, proliferation and differentiation of myeloid lineage stem cells in the bone marrow, including bone-resorbing osteoclasts. They explore the links between the CSF1R-mediated signaling pathway and diseases such as cancer and neurodegeneration. The authors largely focus on bone conditions, highlighting mouse studies in which CSF1R-blocking drugs were shown to ameliorate bone loss and inflammatory symptoms in models of arthritis, osteoporosis and metastatic cancer. Clinical trials are ongoing to test therapeutic applications.
Collapse
|
46
|
King JD, Rowland G, Villasante Tezanos AG, Warwick J, Kraus VB, Lattermann C, Jacobs CA. Joint Fluid Proteome after Anterior Cruciate Ligament Rupture Reflects an Acute Posttraumatic Inflammatory and Chondrodegenerative State. Cartilage 2020; 11:329-337. [PMID: 30033738 PMCID: PMC7298591 DOI: 10.1177/1947603518790009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The purpose of this study was to evaluate changes in the synovial fluid proteome following acute anterior cruciate ligament (ACL) injury. DESIGN This study represents a secondary analysis of synovial fluid samples collected from the placebo group of a previous randomized trial. Arthrocentesis was performed twice on 6 patients with an isolated acute ACL tear at a mean of 6 and 14 days postinjury. Synovial fluid was analyzed by a highly multiplexed assay of 1129 proteins (SOMAscan version 3, SomaLogic, Inc., Boulder, CO). Pathway analysis using DAVID was performed; genes included met 3 criteria: significant change between the 2 study time points using a paired t test, significant change between the 2 study time points using a Mann-Whitney nonparametric test, and significant Benjamini post hoc analysis. RESULTS Fifteen analytes demonstrated significant increases between time points. Five of the 15 have been previously associated with the onset and/or severity of rheumatoid arthritis, including apoliopoprotein E and isoform E3, vascular cell adhesion protein 1, interleukin-34, and cell surface glycoprotein CD200 receptor 1. Chondrodegenerative enzymes and products of cartilage degeneration all increased over time following injury: MMP-1 (P = 0.08, standardized response mean [SRM] = 1.00), MMP-3 (P = 0.05, SRM = 0.90), ADAM12 (P = 0.03, SRM = 1.31), aggrecan (P = 0.08, SRM = 1.13), and CTX-II (P = 0.07, SRM = 0.56). Notable pathways that were differentially expressed following injury were the cytokine-cytokine receptor interaction and osteoclast differentiation pathways. CONCLUSIONS The proteomic results and pathway analysis demonstrated a pattern of cartilage degeneration, not only consistent with previous findings but also changes consistent with an inflammatory arthritogenic process post-ACL injury.
Collapse
Affiliation(s)
- John D. King
- Department of Orthopedic Surgery,
University of Kentucky, Lexington, KY, USA
| | - Grant Rowland
- Central Texas Sports Medicine &
Orthopedics, Bryan, TX, USA
| | | | - James Warwick
- College of Medicine, University of
Kentucky, Lexington, KY, USA
| | - Virginia B. Kraus
- Duke Molecular Physiology Institute,
Department of Medicine, Duke University School of Medicine, Durham, NC, USA,Division of Rheumatology, Department of
Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Christian Lattermann
- Department of Orthopaedic Surgery,
Harvard Medical School and Brigham and Women’s Hosptial, Chestnut Hill, MS,
USA
| | - Cale A. Jacobs
- Department of Orthopedic Surgery,
University of Kentucky, Lexington, KY, USA,Cale A. Jacobs, Department of Orthopedic
Surgery & Sports Medicine, University of Kentucky, 740 South Limestone
Street, Room K426, Lexington, KY 40536-0284, USA.
| |
Collapse
|
47
|
Interleukin-34 overexpression mediated through tumor necrosis factor-alpha reflects severity of synovitis in knee osteoarthritis. Sci Rep 2020; 10:7987. [PMID: 32409720 PMCID: PMC7224362 DOI: 10.1038/s41598-020-64932-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/22/2020] [Indexed: 01/15/2023] Open
Abstract
This study aimed to investigate whether interleukin-34 (IL-34) mRNA expression is aberrant and modulated by tumor necrosis factor-alpha (TNF-α) in knee osteoarthritis (OA) fibroblast-like synoviocytes (FLS) and determine associations of IL-34 mRNA and protein in the systemic and local joint environments with severity of knee OA synovitis. Transcriptional and translational IL-34 levels in FLS, synovium, synovial fluid, and plasma of knee OA were determined using real-time polymerase chain reaction, immunohistochemistry, and enzyme-linked immunosorbent assay. Relative mRNA expressions of NF-κB signaling molecules were further measured. In knee OA FLS stimulated with TNF-α, IL-34 mRNA expression was significantly up-regulated in a time-dependent manner. In knee OA synovium with severe synovitis, increased IL-34 mRNA expression was directly associated with IL-6, IκB, NF-κB, and MMP-13, in addition to knee OA FLS. Immunostaining score of IL-34 was considerably greater in knee OA synovium with severe synovitis than that in those with mild and no synovitis. Increments in joint fluid and plasma IL-34 levels in knee OA patients with severe synovitis were closely related to its mRNA and protein expressions in knee OA synovium. Transcriptional and translational expressions of IL-34 were positively correlated with synovitis severity. Collectively, IL-34 overexpression would reflect synovitis severity in knee OA.
Collapse
|
48
|
Rauwel B, Degboé Y, Diallo K, Sayegh S, Baron M, Boyer JF, Constantin A, Cantagrel A, Davignon JL. Inhibition of Osteoclastogenesis by the RNA-Binding Protein QKI5: a Novel Approach to Protect from Bone Resorption. J Bone Miner Res 2020; 35:753-765. [PMID: 31834954 DOI: 10.1002/jbmr.3943] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
Increased osteoclastogenesis is a common feature of bone erosion, notably in osteoporosis but also in inflammatory diseases such as rheumatoid arthritis (RA) and osteoarticular infections. Human cytomegalovirus (HCMV) infection has been described to impair monocyte differentiation into macrophages and dendritic cells. However, its effect on monocyte-derived osteoclasts is yet to be determined. We showed here that in vitro HCMV infection is associated with an inhibition of osteoclastogenesis through decreased expression of colony stimulating factor 1 receptor (CSF-1R) and RANK in monocytes, which was mediated by an upregulation of quaking I-5 protein (QKI-5), a cellular RNA-interacting protein. We found that deliberate QKI5 overexpression in the absence of HCMV infection is able to decrease CSF-1R and RANK expression, leading to osteoclastogenesis inhibition. Finally, by using lentiviral vectors in a calvarial bone erosion mouse model, we showed that QKI5 inhibits bone degradation. This work identifies QKI5 as a strong inhibitor of bone resorption. Future research will point out whether QKI5 could be a target for bone pathologies. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Benjamin Rauwel
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France
| | - Yannick Degboé
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Katy Diallo
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France
| | - Souraya Sayegh
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France
| | - Michel Baron
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France
| | - Jean-Frédéric Boyer
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France
| | - Arnaud Constantin
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Alain Cantagrel
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Jean-Luc Davignon
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France
| |
Collapse
|
49
|
Deng YT, Wang JW, Chu H, Wang J, Hu Y, lin Y, Shu M, Lin ZH. 3D-QSAR and Docking Studies on Pyrimidine Derivatives as CSF-1R Inhibitors. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666190329224946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Colony Stimulating Factor-1 Receptor (CSF-1R) is associated with
malignancy, invasiveness and poor prognosis of tumors, and pyrimidine derivatives are considered as
a novel class of CSF-1R inhibitor.
Methods:
To explore the relationship between the structures of substituted pyrimidine derivatives
and their inhibitory activities against CSF-1R, CoMFA and CoMSIA analyses, and molecular
docking studies were performed on a dataset of forty-four compounds.
Results:
We found in CoMFA model including steric and electrostatic fields for the training set, the
cross-validated q2 value was 0.617 and the non-cross-validated r2 value was 0.983. While, the crossvalidated
q2 value was 0.637 and the non-cross-validated r2 value was 0.984 in CoMSIA Model
which include steric, electrostatic and hydrophobic fields. 3D equipotential maps generated from
CoMFA and CoMSIA along with the docking binding structures provided enough information about
the structural requirements for better activity.
Conclusion:
The data generated from the present study helped us to predict the activity of new
inhibitors and further design some novel and potent CSF-1R inhibitors.
Collapse
Affiliation(s)
- Ya-ting Deng
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400055, China
| | - Jun-wei Wang
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400055, China
| | - Han Chu
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400055, China
| | - Juan Wang
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400055, China
| | - Yong Hu
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400055, China
| | - Yong lin
- Department of Chemical Engineering, Chongqing University of Technology, Chongqing 400055, China
| | - Mao Shu
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400055, China
| | - Zhi-hua Lin
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400055, China
| |
Collapse
|
50
|
Zezina E, Sercan‐Alp O, Herrmann M, Biesemann N. Glucose transporter 1 in rheumatoid arthritis and autoimmunity. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1483. [DOI: 10.1002/wsbm.1483] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Ekaterina Zezina
- Sanofi R&D Immunology and Inflammation Therapeutic Area Type 1/17 Inflammation and Arthritis Cluster, Industriepark Hoechst Frankfurt am Main Germany
| | - Oezen Sercan‐Alp
- Sanofi R&D Immunology and Inflammation Therapeutic Area Type 1/17 Inflammation and Arthritis Cluster, Industriepark Hoechst Frankfurt am Main Germany
| | - Matthias Herrmann
- Sanofi R&D Immunology and Inflammation Therapeutic Area Type 1/17 Inflammation and Arthritis Cluster, Industriepark Hoechst Frankfurt am Main Germany
| | - Nadine Biesemann
- Sanofi R&D Immunology and Inflammation Therapeutic Area Type 1/17 Inflammation and Arthritis Cluster, Industriepark Hoechst Frankfurt am Main Germany
| |
Collapse
|