1
|
van Oostveen WM, Huizinga TWJ, Fehres CM. Pathogenic role of anti-nuclear autoantibodies in systemic sclerosis: Insights from other rheumatic diseases. Immunol Rev 2024; 328:265-282. [PMID: 39248128 PMCID: PMC11659924 DOI: 10.1111/imr.13390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Systemic sclerosis (SSc) is a severe autoimmune disease characterized by vasculopathy, fibrosis, and dysregulated immunity, with hallmark autoantibodies targeting nuclear antigens such as centromere protein (ACA) and topoisomerase I (ATA). These autoantibodies are highly prevalent and disease-specific, rarely coexisting, thus serving as crucial biomarkers for SSc diagnosis. Despite their diagnostic value, their roles in SSc pathogenesis remain unclear. This review summarizes current literature on ACA and ATA in SSc, comparing them to autoantibodies in other rheumatic diseases to elucidate their potential pathogenic roles. Similarities are drawn with anti-citrullinated protein antibodies (ACPA) in rheumatoid arthritis, particularly regarding disease specificity and minimal pathogenic impact of antigen binding. In addition, differences between ANA and ACPA in therapeutic responses and Fab glycosylation patterns are reviewed. While ACA and ATA are valuable for disease stratification and monitoring activity, understanding their origins and the associated B cell responses is critical for advancing therapeutic strategies for SSc.
Collapse
Affiliation(s)
| | - Tom W. J. Huizinga
- Department of RheumatologyLeiden University Medical CenterLeidenThe Netherlands
| | - Cynthia M. Fehres
- Department of RheumatologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
2
|
Możdżan M, Węgiel A, Biskup L, Brzezińska O, Makowska J. Anti-Th/To Antibodies in Scleroderma: Good Prognosis or Serious Concern? J Clin Med 2024; 13:3022. [PMID: 38892733 PMCID: PMC11172938 DOI: 10.3390/jcm13113022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Systemic sclerosis (SSc) represents a rare and intricate autoimmune connective tissue disease, the pathophysiology of which has not been fully understood. Its key features include progressive fibrosis of the skin and internal organs, vasculopathy and aberrant immune activation. While various anti-nuclear antibodies can serve as biomarkers for the classification and prognosis of SSc, their direct role in organ dysfunction remains unclear. Anti-Th/To antibodies are present in approximately 5% of SSc patients, and are particularly prevalent among those with the limited subtype of the disease. Although the presence of these autoantibodies is associated with a mild course of the disease, there is a strong connection between them and severe clinical manifestations of SSc, including interstitial lung disease, pulmonary arterial hypertension and gastrointestinal involvement. Also, the additional clinical correlations, particularly with malignancies, need further research. Moreover, the disease's course seems to be influenced by antibodies, specific serum cytokines and TLR signaling pathways. Understanding the relationships between presence of anti-Th/To, its molecular aspects and response to treatment options is crucial for the development of novel, personalized therapeutic techniques and should undergo profound analysis in future studies.
Collapse
Affiliation(s)
- Maria Możdżan
- Department of Rheumatology, Medical University of Lodz, 90-549 Lodz, Poland; (A.W.); (L.B.); (O.B.)
| | | | | | | | - Joanna Makowska
- Department of Rheumatology, Medical University of Lodz, 90-549 Lodz, Poland; (A.W.); (L.B.); (O.B.)
| |
Collapse
|
3
|
Kong X, Jiang S, He Q, Shi X, Pu W, Huang Y, Ma Y, Liu Q, Sun D, Huang D, Wu F, Li P, Tu W, Zhao Y, Wang L, Chen Y, Wu W, Tang Y, Zhao X, Zhu Q, Gao J, Xu W, Shui X, Qian F, Wang J. TLR8 aggravates skin inflammation and fibrosis by activating skin fibroblasts in systemic sclerosis. Rheumatology (Oxford) 2024; 63:1710-1719. [PMID: 37665747 DOI: 10.1093/rheumatology/kead456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/28/2023] [Accepted: 06/08/2023] [Indexed: 09/06/2023] Open
Abstract
OBJECTIVES Innate immunity significantly contributes to SSc pathogenesis. TLR8 is an important innate immune mediator that is implicated in autoimmunity and fibrosis. However, the expression, mechanism of action, and pathogenic role of TLR8 in SSc remain unclear. The aim of this study was to explore the roles and underlying mechanisms of TLR8 in SSc. METHODS The expression of TLR8 was analysed, based on a public dataset, and then verified in skin tissues and skin fibroblasts of SSc patients. The role of TLR8 in inflammation and fibrosis was investigated using a TLR8-overexpression vector, activator (VTX-2337), inhibitor (cu-cpt-8m), and TLR8 siRNA in skin fibroblasts. The pathogenic role of TLR8 in skin inflammation and fibrosis was further validated in a bleomycin (BLM)-induced mouse skin inflammation and fibrosis model. RESULTS TLR8 levels were significantly elevated in SSc skin tissues and myofibroblasts, along with significant activation of the TLR8 pathway. In vitro studies showed that overexpression or activation of TLR8 by a recombinant plasmid or VTX-2337 upregulated IL-6, IL-1β, COL I, COL III and α-SMA in skin fibroblasts. Consistently, both TLR8-siRNA and cu-cpt-8m reversed the phenotypes observed in TLR8-activating fibroblasts. Mechanistically, TLR8 induces skin fibrosis and inflammation in a manner dependent on the MAPK, NF-κB and SMAD2/3 pathways. Subcutaneous injection of cu-cpt-8m significantly alleviated BLM-induced skin inflammation and fibrosis in vivo. CONCLUSION TLR8 might be a promising therapeutic target for improving the treatment strategy for skin inflammation and fibrosis in SSc.
Collapse
Affiliation(s)
- Xiangzhen Kong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Shuai Jiang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai, China
| | - Qiuyu He
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiangguang Shi
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Weilin Pu
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, China
| | - Yan Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yanyun Ma
- Institute for Six-sector Economy, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Dayan Sun
- Department of Neonatal Surgery, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Delin Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Fei Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Pengcheng Li
- Department of Pancreatic Surgery, Fudan University Cancer Hospital, Shanghai, China
| | - Wenzhen Tu
- Division of Rheumatology, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Yinhuan Zhao
- Division of Rheumatology, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Lei Wang
- Division of Rheumatology, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Yuanyuan Chen
- Division of Rheumatology, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yulong Tang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiansheng Zhao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Zhu
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Gao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Zhangjiang Fudan International Innovation Center, Human Phenome Institute and School of Life Sciences, Fudan University, Shanghai, China
| | - Weihong Xu
- Laboratory Department of Tongren Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, China
| | - Xiaochuan Shui
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Feng Qian
- Ministry of Education Key Laboratory of Contemporary Anthropology, Zhangjiang Fudan International Innovation Center, Human Phenome Institute and School of Life Sciences, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing, China
- Institute of Rheumatology, Immunology, and Allergy, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Ah Kioon MD, Laurent P, Chaudhary V, Du Y, Crow MK, Barrat FJ. Modulation of plasmacytoid dendritic cells response in inflammation and autoimmunity. Immunol Rev 2024; 323:241-256. [PMID: 38553621 DOI: 10.1111/imr.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The discovery of toll-like receptors (TLRs) and the subsequent recognition that endogenous nucleic acids (NAs) could serve as TLR ligands have led to essential insights into mechanisms of healthy immune responses as well as pathogenic mechanisms relevant to systemic autoimmune and inflammatory diseases. In systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis, NA-containing immune complexes serve as TLR ligands, with distinct implications depending on the additional immune stimuli available. Plasmacytoid dendritic cells (pDCs), the robust producers of type I interferon (IFN-I), are providing critical insights relevant to TLR-mediated healthy immune responses and tissue repair, as well as generation of inflammation, autoimmunity and fibrosis, processes central to the pathogenesis of many autoimmune diseases. In this review, we describe recent data characterizing the role of platelets and NA-binding chemokines in modulation of TLR signaling in pDCs, as well as implications for how the IFN-I products of pDCs contribute to the generation of inflammation and wound healing responses by monocyte/macrophages. Chemokine modulators of TLR-mediated B cell tolerance mechanisms and interactions between TLR signaling and metabolic pathways are also considered. The modulators of TLR signaling and their contribution to the pathogenesis of systemic autoimmune diseases suggest new opportunities for identification of novel therapeutic targets.
Collapse
Affiliation(s)
| | - Paôline Laurent
- HSS Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Vidyanath Chaudhary
- HSS Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Yong Du
- HSS Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Mary K Crow
- HSS Research Institute, Hospital for Special Surgery, New York, New York, USA
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Franck J Barrat
- HSS Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
5
|
Li Q, Liu H, Yin G, Xie Q. Efferocytosis: Current status and future prospects in the treatment of autoimmune diseases. Heliyon 2024; 10:e28399. [PMID: 38596091 PMCID: PMC11002059 DOI: 10.1016/j.heliyon.2024.e28399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
Billions of apoptotic cells are swiftly removed from the human body daily. This clearance process is regulated by efferocytosis, an active anti-inflammatory process during which phagocytes engulf and remove apoptotic cells. However, impaired clearance of apoptotic cells is associated with the development of various autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, and inflammatory bowel disease. In this review, we conducted a comprehensive search of relevant studies published from January 1, 2000, to the present, focusing on efferocytosis, autoimmune disease pathogenesis, regulatory mechanisms governing efferocytosis, and potential treatments targeting this process. Our review highlights the key molecules involved in different stages of efferocytosis-namely, the "find me," "eat me," and "engulf and digest" phases-while elucidating their relevance to autoimmune disease pathology. Furthermore, we explore the therapeutic potential of modulating efferocytosis to restore immune homeostasis and mitigate autoimmune responses. By providing theoretical underpinnings for the targeting of efferocytosis in the treatment of autoimmune diseases, this review contributes to the advancement of therapeutic strategies in this field.
Collapse
Affiliation(s)
- Qianwei Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Geng Yin
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
6
|
Bodio C, Milesi A, Lonati PA, Chighizola CB, Mauro A, Pradotto LG, Meroni PL, Borghi MO, Raschi E. Fibroblasts and Endothelial Cells in Three-Dimensional Models: A New Tool for Addressing the Pathogenesis of Systemic Sclerosis as a Prototype of Fibrotic Vasculopathies. Int J Mol Sci 2024; 25:2780. [PMID: 38474040 DOI: 10.3390/ijms25052780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Two-dimensional in vitro cultures have represented a milestone in biomedical and pharmacological research. However, they cannot replicate the architecture and interactions of in vivo tissues. Moreover, ethical issues regarding the use of animals have triggered strategies alternative to animal models. The development of three-dimensional (3D) models offers a relevant tool to investigate disease pathogenesis and treatment, modeling in vitro the in vivo environment. We aimed to develop a dynamic 3D in vitro model for culturing human endothelial cells (ECs) and skin fibroblasts, simulating the structure of the tissues mainly affected in systemic sclerosis (SSc), a prototypical autoimmune fibrotic vasculopathy. Dermal fibroblasts and umbilical vein ECs grown in scaffold or hydrogel, respectively, were housed in bioreactors under flow. Fibroblasts formed a tissue-like texture with the deposition of a new extracellular matrix (ECM) and ECs assembled tube-shaped structures with cell polarization. The fine-tuned dynamic modular system allowing 3D fibroblast/EC culture connection represents a valuable model of the in vivo interplay between the main players in fibrotic vasculopathy as SSc. This model can lead to a more accurate study of the disease's pathogenesis, avoiding the use of animals, and to the development of novel therapies, possibly resulting in improved patient management.
Collapse
Affiliation(s)
- Caterina Bodio
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Auxologico Italiano, 20095 Cusano Milanino, Italy
| | - Alessandra Milesi
- Laboratory of Clinical Neurobiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Auxologico Italiano, 28824 Piancavallo, Italy
| | - Paola Adele Lonati
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Auxologico Italiano, 20095 Cusano Milanino, Italy
| | - Cecilia Beatrice Chighizola
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- U.O.C. Clinica Reumatologica Pediatrica, ASST G. Pini-CTO, 20122 Milan, Italy
| | - Alessandro Mauro
- Laboratory of Clinical Neurobiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Auxologico Italiano, 28824 Piancavallo, Italy
- Department of Neuroscience, University of Turin, 10124 Turin, Italy
| | - Luca Guglielmo Pradotto
- Laboratory of Clinical Neurobiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Auxologico Italiano, 28824 Piancavallo, Italy
- Department of Neuroscience, University of Turin, 10124 Turin, Italy
| | - Pier Luigi Meroni
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Auxologico Italiano, 20095 Cusano Milanino, Italy
| | - Maria Orietta Borghi
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Auxologico Italiano, 20095 Cusano Milanino, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Elena Raschi
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Auxologico Italiano, 20095 Cusano Milanino, Italy
| |
Collapse
|
7
|
Yang F, Hu Y, Shi Z, Liu M, Hu K, Ye G, Pang Q, Hou R, Tang K, Zhu Y. The occurrence and development mechanisms of esophageal stricture: state of the art review. J Transl Med 2024; 22:123. [PMID: 38297325 PMCID: PMC10832115 DOI: 10.1186/s12967-024-04932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/26/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Esophageal strictures significantly impair patient quality of life and present a therapeutic challenge, particularly due to the high recurrence post-ESD/EMR. Current treatments manage symptoms rather than addressing the disease's etiology. This review concentrates on the mechanisms of esophageal stricture formation and recurrence, seeking to highlight areas for potential therapeutic intervention. METHODS A literature search was conducted through PUBMED using search terms: esophageal stricture, mucosal resection, submucosal dissection. Relevant articles were identified through manual review with reference lists reviewed for additional articles. RESULTS Preclinical studies and data from animal studies suggest that the mechanisms that may lead to esophageal stricture include overdifferentiation of fibroblasts, inflammatory response that is not healed in time, impaired epithelial barrier function, and multimethod factors leading to it. Dysfunction of the epithelial barrier may be the initiating mechanism for esophageal stricture. Achieving perfect in-epithelialization by tissue-engineered fabrication of cell patches has been shown to be effective in the treatment and prevention of esophageal strictures. CONCLUSION The development of esophageal stricture involves three stages: structural damage to the esophageal epithelial barrier (EEB), chronic inflammation, and severe fibrosis, in which dysfunction or damage to the EEB is the initiating mechanism leading to esophageal stricture. Re-epithelialization is essential for the treatment and prevention of esophageal stricture. This information will help clinicians or scientists to develop effective techniques to treat esophageal stricture in the future.
Collapse
Affiliation(s)
- Fang Yang
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yiwei Hu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Zewen Shi
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
- Ningbo No.2 Hospital, Ningbo, 315001, People's Republic of China
| | - Mujie Liu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Kefeng Hu
- The First Affiliated Hospital of Ningbo University, Ningbo, 315000, People's Republic of China
| | - Guoliang Ye
- The First Affiliated Hospital of Ningbo University, Ningbo, 315000, People's Republic of China
| | - Qian Pang
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Ruixia Hou
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Keqi Tang
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China.
| |
Collapse
|
8
|
Clark KEN, Xu S, Attah M, Ong VH, Buckley CD, Denton CP. Single-cell analysis reveals key differences between early-stage and late-stage systemic sclerosis skin across autoantibody subgroups. Ann Rheum Dis 2023; 82:1568-1579. [PMID: 37580109 PMCID: PMC10646865 DOI: 10.1136/ard-2023-224184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/24/2023] [Indexed: 08/16/2023]
Abstract
OBJECTIVES The severity of skin involvement in diffuse cutaneous systemic sclerosis (dcSSc) depends on stage of disease and differs between anti-RNA-polymerase III (ARA) and anti-topoisomerase antibody (ATA) subsets. We have investigated cellular differences in well-characterised dcSSc patients compared with healthy controls (HCs). METHODS We performed single-cell RNA sequencing on 4 mm skin biopsy samples from 12 patients with dcSSc and HCs (n=3) using droplet-based sequencing (10× genomics). Patients were well characterised by stage (>5 or <5 years disease duration) and autoantibody (ATA+ or ARA+). Analysis of whole skin cell subsets and fibroblast subpopulations across stage and ANA subgroup were used to interpret potential cellular differences anchored by these subgroups. RESULTS Fifteen forearm skin biopsies were analysed. There was a clear separation of SSc samples, by disease, stage and antibody, for all cells and fibroblast subclusters. Further analysis revealed differing cell cluster gene expression profiles between ATA+ and ARA+ patients. Cell-to-cell interaction suggest differing interactions between early and late stages of disease and autoantibody. TGFβ response was mainly seen in fibroblasts and smooth muscle cells in early ATA+dcSSc skin samples, whereas in early ARA+dcSSc patient skin samples, the responding cells were endothelial, reflect broader differences between clinical phenotypes and distinct skin score trajectories across autoantibody subgroups of dcSSc. CONCLUSIONS We have identified cellular differences between the two main autoantibody subsets in dcSSc (ARA+ and ATA+). These differences reinforce the importance of considering autoantibody and stage of disease in management and trial design in SSc.
Collapse
Affiliation(s)
| | - Shiwen Xu
- Centre for Rheumatology, Royal Free Campus, University College London, London, UK
| | - Moustafa Attah
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Voon H Ong
- Centre for Rheumatology, Royal Free Campus, University College London, London, UK
| | | | - Christopher P Denton
- Centre for Rheumatology, Royal Free Campus, University College London, London, UK
| |
Collapse
|
9
|
Lescoat A, Kato H, Varga J. Emerging cellular and immunotherapies for systemic sclerosis: from mesenchymal stromal cells to CAR-T cells and vaccine-based approaches. Curr Opin Rheumatol 2023; 35:356-363. [PMID: 37650691 DOI: 10.1097/bor.0000000000000970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
PURPOSE OF REVIEW Although two targeted therapies have received recent approval for systemic sclerosis (SSc)-associated interstitial lung disease, they do not show major disease-modifying activity, highlighting the need for novel therapies and innovative paradigms. To that end, cellular therapies may represent a new opportunity for the treatment of SSc. The purpose of this review is to provide an up-to-date overview of emerging cell-based disease-modifying therapies in SSc. RECENT FINDINGS Initial small studies in patients with severe refractory systemic lupus erythematosus (SLE) using engineered regulatory cells show promising results. CD19-directed CAR-T have shown promising results in one case report of refractory diffuse cutaneous SSc patients. T cells engineered to express a chimeric autoantibody receptor (CAAR-T cells) may be even more relevant via the specific elimination of auto-reactive B cells. Targeting pro-fibrotic or senescence-related pathways may also constitute promising approaches in SSc. SUMMARY Building on the classification of the clinical phenotype and prediction of clinical trajectory based on individual patients' autoantigen and/or autoantibody profile, cellular therapies targeting the same autoantigen or related autoreactive cells may represent an unprecedented opportunity to implement personalized medicine in SSc.
Collapse
Affiliation(s)
- Alain Lescoat
- University of Rennes CHU Rennes, Inserm, EHESP, Irset -Institut de Recherche en Santé, Environnement et Travail-UMRS
- Department of Internal Medicine and Clinical Immunology, CHU Rennes, Rennes, France
| | - Hiroshi Kato
- University of Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - John Varga
- University of Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Lescoat A, Bellando-Randone S, Campochiaro C, Del Galdo F, Denton CP, Farrington S, Galetti I, Khanna D, Kuwana M, Truchetet ME, Allanore Y, Matucci-Cerinic M. Beyond very early systemic sclerosis: deciphering pre‑scleroderma and its trajectories to open new avenues for preventive medicine. THE LANCET. RHEUMATOLOGY 2023; 5:e683-e694. [PMID: 38251534 DOI: 10.1016/s2665-9913(23)00212-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/09/2023] [Accepted: 08/01/2023] [Indexed: 01/23/2024]
Abstract
The identification of individuals with systemic sclerosis in an oligosymptomatic phase preceding the very early manifestations of the disease represents a challenge in the search for a new window of opportunity in systemic sclerosis. This phase could be identified in a clinical scenario as the pre-scleroderma phase, in which the disease would still be far from systemic sclerosis-related fibrotic or irreversible manifestations in skin or organs. In this Personal View, we discuss parameters and candidate definitions for a conceptual framework of pre-scleroderma, from the identification of populations at risk to autoantibodies and their potential functional activities. We discuss how this new paradigm of pre-scleroderma could represent a game-changing approach in the management of systemic sclerosis, allowing the treatment of patients at high risk of organ involvement or skin fibrosis before such events occur.
Collapse
Affiliation(s)
- Alain Lescoat
- Department of Internal Medicine and Clinical Immunology, CHU Rennes, University of Rennes 1, Rennes, France; Institut de Recherche en Sante, Environnement, et Travail, CHU Rennes, University of Rennes, Inserm, EHESP, Rennes, France.
| | - Silvia Bellando-Randone
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Division of Rheumatology, AOUC, Florence, Italy
| | - Corrado Campochiaro
- Unit of Immunology, Rheumatology, Allergy, and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Del Galdo
- Department of Rheumatology, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Christopher P Denton
- Centre for Rheumatology, Division of Medicine, Royal Free Campus, University College London, London, UK
| | - Sue Farrington
- Scleroderma & Raynaud Society UK, London, UK; Federation of European Scleroderma Associations, Copenhagen, Denmark; Federation of European Scleroderma Associations, Budapest, Hungary; Federation of European Scleroderma Associations, London, UK
| | - Ilaria Galetti
- Federation of European Scleroderma Associations, Brussels, Belgium
| | - Dinesh Khanna
- University of Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Marie-Elise Truchetet
- Department of Rheumatology, UMR5164 ImmunoConcept, Bordeaux University, Bordeaux University Hospital, CNRS, Bordeaux, France
| | - Yannick Allanore
- INSERM U1016 UMR 8104, Université Paris Cité, Hôpital Cochin, Paris, France
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Division of Rheumatology, AOUC, Florence, Italy; Unit of Immunology, Rheumatology, Allergy, and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
11
|
Ramahi A, Lescoat A, Roofeh D, Nagaraja V, Namas R, Huang S, Varga J, O’Dwyer D, Wang B, Flaherty K, Kazerooni E, Khanna D. Risk factors for lung function decline in systemic sclerosis-associated interstitial lung disease in a large single-centre cohort. Rheumatology (Oxford) 2023; 62:2501-2509. [PMID: 36377780 PMCID: PMC10321078 DOI: 10.1093/rheumatology/keac639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/02/2022] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVES The aim of this study was to identify risk factors of percent predicted forced vital capacity (ppFVC) decline in patients with SSc-associated interstitial lung disease (SSc-ILD). METHODS We identified 484 patients with SSc who had HRCT Chest, of which 312 with ILD. Those with serial pulmonary function tests were included in a longitudinal analysis (n = 184). Linear mixed effect models were fitted to assess the decline in ppFVC over time, and to explore the effect of demographics and baseline characteristics on ppFVC decline. RESULTS The majority of SSc-ILD patients were female (76.3%) and 51.3% had diffuse cutaneous subset. The mean (s.d.) age was 53.6 (12.7) years, median disease duration since first non-RP symptoms was 2.6 years, and 48.4% of the patients had ILD extent >20% on HRCT. In the univariate analysis, longer disease duration (>2.37 years), ILD extent >20%, and anti-topoisomerase I (ATA) positivity were significantly associated with ppFVC decline. In the multivariate analysis, the only statistically significant variable associated with ppFVC decline was ATA positivity. The overall group's mean decline in ppFVC was -0.28% (P-value 0.029), with -0.13% (n = 163) in those who were alive and -8.28% (P-value 0.0002 for the change in ppFVC trajectory) in patients who died within 2 years. CONCLUSION Our study confirms that ppFVC is a marker of survival in SSc-ILD, supporting its use for risk stratification to identify patients who may benefit from earlier interventions and treatment. Our study also supports the role of ATA positivity as a predictive marker for ppFVC decline in this population.
Collapse
Affiliation(s)
- Ahmad Ramahi
- Division of Rheumatology and Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Alain Lescoat
- Inserm, EHESP, Irset – Institut de Recherche en Sante, Environnement et Travail-UMRS, University of Rennes CHU Rennes, Rennes, France
| | - David Roofeh
- Division of Rheumatology and Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Vivek Nagaraja
- Division of Rheumatology and Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rajaie Namas
- Division of Rheumatology, Department of Internal Medicine, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - Suiyuan Huang
- Division of Rheumatology and Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - John Varga
- Division of Rheumatology and Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - David O’Dwyer
- Division of Pulmonary and Critical care, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Bonnie Wang
- Division of Pulmonary and Critical care, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kevin Flaherty
- Division of Pulmonary and Critical care, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ella Kazerooni
- Division of Cardiothoracic Radiology, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Dinesh Khanna
- Division of Rheumatology and Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Lescoat A, Roofeh D, Kuwana M, Lafyatis R, Allanore Y, Khanna D. Therapeutic Approaches to Systemic Sclerosis: Recent Approvals and Future Candidate Therapies. Clin Rev Allergy Immunol 2023; 64:239-261. [PMID: 34468946 PMCID: PMC9034469 DOI: 10.1007/s12016-021-08891-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 02/06/2023]
Abstract
Systemic sclerosis is the rheumatic disease with the highest individual mortality. The severity of the disease is determined by the extent of fibrotic changes to cutaneous and internal organ tissues, the most life-threatening visceral manifestations being interstitial lung disease, SSc-associated-pulmonary arterial hypertension and myocardial involvement. The heterogeneity of the disease has initially hindered the design of successful clinical trials, but considerations on classification criteria have improved patient selection in trials, allowing the identification of more homogeneous groups of patients based on progressive visceral manifestations or the extent of skin involvement with a focus of patients with early disease. Two major subsets of systemic sclerosis are classically described: limited cutaneous systemic sclerosis characterized by distal skin fibrosis and the diffuse subset with distal and proximal skin thickening. Beyond this dichotomic subgrouping of systemic sclerosis, new phenotypic considerations based on antibody subtypes have provided a better understanding of the heterogeneity of the disease, anti-Scl70 antibodies being associated with progressive interstitial lung disease regardless of cutaneous involvement. Two targeted therapies, tocilizumab (a monoclonal antibody targeting interleukin-6 receptors (IL-6R)) and nintedanib (a tyrosine kinase inhibitor), have recently been approved by the American Food & Drug Administration to limit the decline of lung function in patients with SSc-associated interstitial lung disease, demonstrating that such better understanding of the disease pathogenesis with the identification of key targets can lead to therapeutic advances in the management of some visceral manifestations of the disease. This review will provide a brief overview of the pathogenesis of SSc and will present a selection of therapies recently approved or evaluated in this context. Therapies evaluated and approved in SSc-ILD will be emphasized and a review of recent phase II trials in diffuse cutaneous systemic sclerosis will be proposed. We will also discuss selected therapeutic pathways currently under investigation in systemic sclerosis that still lack clinical data in this context but that may show promising results in the future based on preclinical data.
Collapse
Affiliation(s)
- Alain Lescoat
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| | - David Roofeh
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yannick Allanore
- INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
- Université de Paris, Université Paris Descartes, Paris, France
- Service de Rhumatologie, Hôpital Cochin, AP-HP.CUP, Paris, France
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Gualtierotti R, Fox SE, Da Silva Lameira F, Giachi A, Valenti L, Borghi MO, Meroni PL, Cugno M, Peyvandi F. Nailfold Videocapillaroscopic Alterations as Markers of Microangiopathy in COVID-19 Patients. J Clin Med 2023; 12:jcm12113727. [PMID: 37297922 DOI: 10.3390/jcm12113727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Nailfold videocapillaroscopic alterations have been described in COVID-19, but their correlations with biomarkers of inflammation, coagulation and endothelial perturbation are still unclear, and no information is available on nailfold histopathology. Nailfold videocapillaroscopy was performed on fifteen patients with COVID-19 in Milan, Italy and the signs of microangiopathy were correlated with plasma biomarkers of inflammation (C reactive protein [CRP], ferritin), coagulation (D-dimer, fibrinogen), endothelial perturbation (Von Willebrand factor [VWF]) and angiogenesis (vascular endothelial growth factor [VEGF]) along with genetic drivers of COVID-19 susceptibility. Histopathological analysis of autoptic nailfold excisions was performed on fifteen patients who died for COVID-19 in New Orleans, United States. All COVID-19 patients studied with videocapillaroscopy showed alterations rarely seen in healthy individuals consistent with microangiopathy, such as hemosiderin deposits (sign of microthrombosis and microhemorrhages) and enlarged loops (sign of endotheliopathy). The number of hemosiderin deposits correlated both with ferritin and CRP levels (r = 0.67, p = 0.008 for both) and the number of enlarged loops significantly correlated with the levels of VWF (r = 0.67, p = 0.006). Ferritin levels were higher in non-O groups, determined by the rs657152 C > A cluster, (median 619, min-max 551-3266 mg/dL) than in the O group (373, 44-581 mg/dL, p = 0.006). Nailfold histology revealed microvascular damage, i.e., mild perivascular lymphocyte and macrophage infiltration and microvascular ectasia in the dermal vessels of all cases, and microthrombi within vessels in five cases. Alterations in nailfold videocapillaroscopy and elevated biomarkers of endothelial perturbation that match histopathologic findings open new perspectives in the possibility of non-invasively demonstrating microangiopathy in COVID-19.
Collapse
Affiliation(s)
- Roberta Gualtierotti
- S.C. Medicina-Emostasi e Trombosi, Centro Emofilia e Trombosi Angelo Bianchi Bonomi, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, 20122 Milan, Italy
| | - Sharon E Fox
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA 70802, USA
- Pathology and Laboratory Medicine Service, Southeast Louisiana Veterans Healthcare System, New Orleans, LA 70119, USA
| | - Fernanda Da Silva Lameira
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA 70802, USA
| | - Andrea Giachi
- S.C. Medicina-Emostasi e Trombosi, Centro Emofilia e Trombosi Angelo Bianchi Bonomi, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, 20122 Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, 20122 Milan, Italy
- Omic Science and Precision Medicine Laboratory, Biological Resource Center, Transfusion Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Maria Orietta Borghi
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milan, Italy
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, 20095 Milan, Italy
| | - Pier Luigi Meroni
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, 20095 Milan, Italy
| | - Massimo Cugno
- S.C. Medicina-Emostasi e Trombosi, Centro Emofilia e Trombosi Angelo Bianchi Bonomi, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, 20122 Milan, Italy
| | - Flora Peyvandi
- S.C. Medicina-Emostasi e Trombosi, Centro Emofilia e Trombosi Angelo Bianchi Bonomi, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
14
|
Autoreactive B cell responses targeting nuclear antigens in systemic sclerosis: Implications for disease pathogenesis. Semin Arthritis Rheum 2023; 58:152136. [PMID: 36403538 DOI: 10.1016/j.semarthrit.2022.152136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
A hallmark of disease pathogenesis of systemic sclerosis (SSc) is the presence of autoreactive B cell responses targeting nuclear proteins. Almost all SSc-patients harbour circulating antinuclear autoantibodies of which anti-topoisomerase 1, anti-centromere protein, anti-RNA polymerase III and anti-fibrillarin autoantibodies (ATA, ACA, ARA and AFA, respectively) are the most common and specific for SSc. In clinical practice, autoantibodies serve as diagnostic biomarkers and can aid in the identification of clinical phenotypes of the disease. However, factors driving disease progression in SSc are still poorly understood, and it is difficult to predict disease trajectories in individual patients. Moreover, treatment decisions remain rather empirical, with variable response rates in clinical trials due to patient heterogeneity. Current evidence has indicated that certain patients may benefit from B cell targeting therapies. Hence, it is important to understand the contribution of the antinuclear autoantibodies and their underlying B cell response to the disease pathogenesis of SSc.
Collapse
|
15
|
Immune complexome analysis of a rich variety of serum immune complexes identifies disease-characteristic immune complex antigens in systemic sclerosis. J Autoimmun 2023; 134:102954. [PMID: 36436353 DOI: 10.1016/j.jaut.2022.102954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/27/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by vascular endothelial dysfunction and skin fibrosis. Recently, the presence and pathogenic role of immune complexes (ICs) of SSc patients were reported. However, the identities of antigens in these ICs are unknown. Therefore, we examined ICs in the serum of SSc patients to elucidate SSc pathogenesis. In this study, IC concentrations in serum samples from SSc and systemic lupus erythematosus (SLE) patients were measured by C1q enzyme-linked immunosorbent assays; immune complex analysis was used for comprehensive identification and comparison of antigens incorporated into ICs (IC-antigens). The expression patterns of SSc-specific IC-antigens in skin sections were investigated by immunohistochemistry. Compared with SLE patients who developed disease because of IC deposition, SSc patients had a greater number of IC-antigens and a smaller difference in IC concentrations, suggesting that SSc pathogenesis is affected by the proteins present in ICs. In contrast, the IC concentration and number of IC-antigens did not significantly differ according to the clinical phenotype of SSc. We identified 478 IC-antigens in SSc patients, including multiple RNAP II-associated proteins that were targeted by antibodies previously associated with SSc pathogenesis. The most frequently detected RNAP II-associated protein, RNA polymerase II transcription subunit 30 (MED30), was strongly expressed at lesion sites and reportedly regulates endothelial differentiation. Therefore, increased expression of MED30 in lesions may have an antigenic effect, and MED30 function may be impaired or inhibited by IC formation. RNAP II-associated proteins may SSc pathogenesis through mechanisms such as the MED30 pathway.
Collapse
|
16
|
Chepy A, Vivier S, Bray F, Ternynck C, Meneboo JP, Figeac M, Filiot A, Guilbert L, Jendoubi M, Rolando C, Launay D, Dubucquoi S, Marot G, Sobanski V. Effects of Immunoglobulins G From Systemic Sclerosis Patients in Normal Dermal Fibroblasts: A Multi-Omics Study. Front Immunol 2022; 13:904631. [PMID: 35844491 PMCID: PMC9276964 DOI: 10.3389/fimmu.2022.904631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
Autoantibodies (Aabs) are frequent in systemic sclerosis (SSc). Although recognized as potent biomarkers, their pathogenic role is debated. This study explored the effect of purified immunoglobulin G (IgG) from SSc patients on protein and mRNA expression of dermal fibroblasts (FBs) using an innovative multi-omics approach. Dermal FBs were cultured in the presence of sera or purified IgG from patients with diffuse cutaneous SSc (dcSSc), limited cutaneous SSc or healthy controls (HCs). The FB proteome and transcriptome were explored using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and microarray assays, respectively. Proteomic analysis identified 3,310 proteins. SSc sera and purified IgG induced singular protein profile patterns. These FB proteome changes depended on the Aab serotype, with a singular effect observed with purified IgG from anti-topoisomerase-I autoantibody (ATA) positive patients compared to HC or other SSc serotypes. IgG from ATA positive SSc patients induced enrichment in proteins involved in focal adhesion, cadherin binding, cytosolic part, or lytic vacuole. Multi-omics analysis was performed in two ways: first by restricting the analysis of the transcriptomic data to differentially expressed proteins; and secondly, by performing a global statistical analysis integrating proteomics and transcriptomics. Transcriptomic analysis distinguished 764 differentially expressed genes and revealed that IgG from dcSSc can induce extracellular matrix (ECM) remodeling changes in gene expression profiles in FB. Global statistical analysis integrating proteomics and transcriptomics confirmed that IgG from SSc can induce ECM remodeling and activate FB profiles. This effect depended on the serotype of the patient, suggesting that SSc Aab might play a pathogenic role in some SSc subsets.
Collapse
Affiliation(s)
- Aurélien Chepy
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE ( Institute for Translational Research) in Inflammation, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France, Lille, France
| | - Solange Vivier
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE ( Institute for Translational Research) in Inflammation, Lille, France
| | - Fabrice Bray
- Univ. Lille, CNRS, USR 3290, Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - Camille Ternynck
- Univ. Lille, CHU Lille, ULR 2694, METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, Lille, France
| | - Jean-Pascal Meneboo
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41—UAR 2014-PLBS, Lille, France
| | - Martin Figeac
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41—UAR 2014-PLBS, Lille, France
| | - Alexandre Filiot
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE ( Institute for Translational Research) in Inflammation, Lille, France
| | - Lucile Guilbert
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE ( Institute for Translational Research) in Inflammation, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Manel Jendoubi
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE ( Institute for Translational Research) in Inflammation, Lille, France
| | - Christian Rolando
- Univ. Lille, CNRS, USR 3290, Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - David Launay
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE ( Institute for Translational Research) in Inflammation, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France, Lille, France
- *Correspondence: David Launay,
| | - Sylvain Dubucquoi
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE ( Institute for Translational Research) in Inflammation, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Guillemette Marot
- Univ. Lille, CHU Lille, ULR 2694, METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, Lille, France
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41—UAR 2014-PLBS, Lille, France
- Inria, Models for Data Analysis and Learning, Lille, France
| | - Vincent Sobanski
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE ( Institute for Translational Research) in Inflammation, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France, Lille, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
17
|
Chepy A, Bourel L, Koether V, Launay D, Dubucquoi S, Sobanski V. Can Antinuclear Antibodies Have a Pathogenic Role in Systemic Sclerosis? Front Immunol 2022; 13:930970. [PMID: 35837382 PMCID: PMC9274282 DOI: 10.3389/fimmu.2022.930970] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 12/30/2022] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disease characterized by extensive fibrosis of the skin and internal organs, associated with vasculopathy and autoimmune features. Antinuclear antibodies (ANA) are found in almost all SSc patients and constitute strong diagnosis and prognosis biomarkers. However, it remains unclear whether ANA are simple bystanders or if they can have a role in the pathophysiology of the disease. One might think that the nuclear nature of their targets prevents any accessibility to autoantibodies. Nevertheless, recent data suggest that ANA could be pathogenic or at least contribute to the perennation of the disease. We review here first the indirect clues of the contribution of ANA to SSc: they are associated to the disease subtypes, they may precede disease onset, their titer correlates with disease activity and severity, there is an association between molecular subsets, and some patients can respond to B-cell targeting therapy. Then, we describe in a second part the mechanisms of ANA production in SSc from individual genetic background to post-transcriptional modifications of neoantigens. Finally, we elaborate on the potential mechanisms of pathogenicity: ANA could be pathogenic through immune-complex-mediated mechanisms; other processes potentially involve molecular mimicry and ANA penetration into the target cell, with a focus on anti-topoisomerase-I antibodies, which are the most probable candidate to play a role in the pathophysiology of SSc. Finally, we outline some technical and conceptual ways to improve our understanding in this field.
Collapse
Affiliation(s)
- Aurélien Chepy
- Univ. Lille, Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
| | - Louisa Bourel
- Univ. Lille, Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, Lille, France
| | - Vincent Koether
- Univ. Lille, Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
| | - David Launay
- Univ. Lille, Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
| | - Sylvain Dubucquoi
- Univ. Lille, Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Vincent Sobanski
- Univ. Lille, Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
18
|
Cavazzana I, Vojinovic T, Airo' P, Fredi M, Ceribelli A, Pedretti E, Lazzaroni MG, Garrafa E, Franceschini F. Systemic Sclerosis-Specific Antibodies: Novel and Classical Biomarkers. Clin Rev Allergy Immunol 2022; 64:412-430. [PMID: 35716254 PMCID: PMC10167150 DOI: 10.1007/s12016-022-08946-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 11/28/2022]
Abstract
Disease-specific autoantibodies are considered the most important biomarkers for systemic sclerosis (SSc), due to their ability to stratify patients with different severity and prognosis. Anti-nuclear antibodies (ANA), occurring in subjects with isolated Raynuad's phenomenon, are considered the strongest independent predictors of definite SSc and digital microvascular damage, as observed by nailfold videocapillaroscopy. ANA are present in more than 90% of SSc, but ANA negativity does not exclude SSc diagnosis: a little rate of SSc ANA negative exists and shows a distinct subtype of disease, with less vasculopathy, but more frequent lower gastrointestinal involvement and severe disease course. Anti-centromere, anti-Th/To, and anti-Topoisomerase I antibodies could be considered as classical biomarkers, covering about 60% of SSc and defining patients with well-described cardio-pulmonary complications. In particular, anti-Topoisomerase I represent a risk factor for development of diffuse cutaneous involvement and digital ulcers in the first 3 years of disease, as well as severe interstitial lung disease (ILD). Anti-RNA polymerase III is a biomarker with new clinical implications: very rapid skin thickness progression, gastric antral vascular ectasia, the occurrence of synchronous cancers, and possible association with silicone breast implants rupture. Moreover, novel SSc specific autoantibodies have been globally described in about 10% of "seronegative" SSc patients: anti-elF2B, anti-RuvBL1/2 complex, anti-U11/U12 RNP, and anti-BICD2 depict specific SSc subtypes with severe organ complications. Many autoantibodies could be considered markers of overlap syndromes, including SSc. Anti-Ku are found in 2-7% of SSc, strictly defining the PM/SSc overlap. They are associated with synovitis, joint contractures, myositis, and negatively associated with vascular manifestation of disease. Anti-U3RNP are associated with a well-defined clinical phenotype: Afro-Caribbean male patients, younger at diagnosis, and higher risk of pulmonary hypertension and gastrointestinal involvement. Anti-PM/Scl define SSc patients with high frequency of ILD, calcinosis, dermatomyositis skin changes, and severe myositis. The accurate detection of autoantibodies SSc specific and associated with overlap syndromes is crucial for patients' stratification. ANA should be correctly identified using indirect immunofluorescent assay and a standardized way of patterns' interpretation. The gold-standard technique for autoantibodies' identification in SSc is still considered immunoprecipitation, for its high sensitivity and specificity, but other assays have been widely used in routine practice. The identification of SSc autoantibodies with high diagnostic specificity and high predictive value is mandatory for early diagnosis, a specific follow-up and the possible definition of the best therapy for every SSc subsets. In addition, the validation of novel autoantibodies is mandatory in wider cohorts in order to restrict the gap of so-called seronegative SSc patients.
Collapse
Affiliation(s)
- Ilaria Cavazzana
- Rheumatology and Clinical Immunology Unit, ASST Spedali Civili, piazzale Spedali Civili 1, Brescia, 25123, Italy.
| | - Tamara Vojinovic
- Rheumatology and Clinical Immunology Unit, ASST Spedali Civili, piazzale Spedali Civili 1, Brescia, 25123, Italy
| | - Paolo Airo'
- Rheumatology and Clinical Immunology Unit, ASST Spedali Civili, piazzale Spedali Civili 1, Brescia, 25123, Italy
| | - Micaela Fredi
- Rheumatology and Clinical Immunology Unit, ASST Spedali Civili, piazzale Spedali Civili 1, Brescia, 25123, Italy.,Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Angela Ceribelli
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital IRCCS, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Eleonora Pedretti
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Maria Grazia Lazzaroni
- Rheumatology and Clinical Immunology Unit, ASST Spedali Civili, piazzale Spedali Civili 1, Brescia, 25123, Italy.,Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Emirena Garrafa
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Department of Laboratory Diagnostics, ASST Spedali Civili, Brescia, Italy
| | - Franco Franceschini
- Rheumatology and Clinical Immunology Unit, ASST Spedali Civili, piazzale Spedali Civili 1, Brescia, 25123, Italy.,Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
19
|
Elevated expression of TLR2 and its correlation with disease activity and clinical manifestations in adult-onset Still's disease. Sci Rep 2022; 12:10240. [PMID: 35715478 PMCID: PMC9205149 DOI: 10.1038/s41598-022-14004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
This study investigated the role of Toll-like receptor 1 (TLR1), TLR2, TLR4, TLR7, and TLR9 in patients with adult-onset Still’s disease (AOSD). This study included 20 patients with AOSD and 15 healthy controls (HCs). TLR expression in the peripheral blood was quantified using flow cytometry; TLR expression pattern, in the skin lesions and lymph nodes (LNs) of patients with AOSD, was evaluated immunohistochemically. Significantly higher mean intensities of cells presenting TLR2 and TLR7 from whole blood were observed in patients with AOSD than in HCs. TLR2 expression in whole cells correlated with systemic scores, levels of lactate dehydrogenase and ferritin and serum levels of interleukin-1β (IL-1β), IL-6, and IL-18. The percentage of TLR2-positive inflammatory cells was higher in skin biopsy samples from patients with AOSD than those in HCs. TLR9-expressing positive inflammatory cell counts were higher in skin lesions from patients with AOSD than those in the HC, eczema, and psoriasis groups. The expression levels of TLR1, TLR4, TLR7, and TLR9 were higher in LNs of patients with AOSD than in those with T cell lymphoma and reactive lymphadenopathy. Circulating TLR2- and TLR7-positive cells may contribute to the pathogenesis of AOSD. Furthermore, immunohistochemical staining for TLRs in skin lesions and LNs may aid in differentiating AOSD from similar conditions.
Collapse
|
20
|
Kuley R, Stultz RD, Duvvuri B, Wang T, Fritzler MJ, Hesselstrand R, Nelson JL, Lood C. N-Formyl Methionine Peptide-Mediated Neutrophil Activation in Systemic Sclerosis. Front Immunol 2022; 12:785275. [PMID: 35069556 PMCID: PMC8766990 DOI: 10.3389/fimmu.2021.785275] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
Exaggerated neutrophil activation and formation of neutrophil extracellular traps (NETs) are reported in systemic sclerosis (SSc) but its involvement in SSc pathogenesis is not clear. In the present study we assessed markers of neutrophil activation and NET formation in SSc patients in relation to markers of inflammation and disease phenotype. Factors promoting neutrophil activation in SSc remain largely unknown. Among the neutrophil activating factors, mitochondrial-derived N-formyl methionine (fMet) has been reported in several autoinflammatory conditions. The aim of the current study is to assess whether SSc patients have elevated levels of fMet and the role of fMet in neutrophil-mediated inflammation on SSc pathogenesis. Markers of neutrophil activation (calprotectin, NETs) and levels of fMet were analyzed in plasma from two SSc cohorts (n=80 and n=20, respectively) using ELISA. Neutrophil activation assays were performed in presence or absence of formyl peptide receptor 1 (FPR1) inhibitor cyclosporin H. Elevated levels of calprotectin and NETs were observed in SSc patients as compared to healthy controls (p<0.0001) associating with SSc clinical disease characteristics. Further, SSc patients had elevated levels of circulating fMet as compared to healthy controls (p<0.0001). Consistent with a role for fMet-mediated neutrophil activation, fMet levels correlated with levels of calprotectin and NETs (r=0.34, p=0.002; r=0.29, p<0.01 respectively). Additionally, plasma samples from SSc patients with high levels of fMet induced de novo neutrophil activation through FPR1-dependent mechanisms. Our data for the first time implicates an important role for the mitochondrial component fMet in promoting neutrophil-mediated inflammation in SSc.
Collapse
Affiliation(s)
- Runa Kuley
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Ryan D Stultz
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Bhargavi Duvvuri
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Ting Wang
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Marvin J Fritzler
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Roger Hesselstrand
- Department of Clinical Sciences Lund University, Section of Rheumatology, Lund, Sweden
| | - J Lee Nelson
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Christian Lood
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| |
Collapse
|
21
|
Hinchcliff M, Garcia-Milian R, Di Donato S, Dill K, Bundschuh E, Galdo FD. Cellular and Molecular Diversity in Scleroderma. Semin Immunol 2021; 58:101648. [PMID: 35940960 DOI: 10.1016/j.smim.2022.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the increasing armamentarium of high-throughput tools available at manageable cost, it is attractive and informative to determine the molecular underpinnings of patient heterogeneity in systemic sclerosis (SSc). Given the highly variable clinical outcomes of patients labelled with the same diagnosis, unravelling the cellular and molecular basis of disease heterogeneity will be crucial to predicting disease risk, stratifying management and ultimately informing a patient-centered precision medicine approach. Herein, we summarise the findings of the past several years in the fields of genomics, transcriptomics, and proteomics that contribute to unraveling the cellular and molecular heterogeneity of SSc. Expansion of these findings and their routine integration with quantitative analysis of histopathology and imaging studies into clinical care promise to inform a scientifically driven patient-centred personalized medicine approach to SSc in the near future.
Collapse
Affiliation(s)
- Monique Hinchcliff
- Yale School of Medicine, Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, USA.
| | | | - Stefano Di Donato
- Raynaud's and Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, UK
| | | | - Elizabeth Bundschuh
- Yale School of Medicine, Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, USA
| | - Francesco Del Galdo
- Raynaud's and Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, UK.
| |
Collapse
|
22
|
Contribution of monocytes and macrophages to the pathogenesis of systemic sclerosis: recent insights and therapeutic implications. Curr Opin Rheumatol 2021; 33:463-470. [PMID: 34506339 DOI: 10.1097/bor.0000000000000835] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW To discuss recent studies addressing the role of monocytes and macrophages in the pathogenesis of systemic sclerosis (SSc) based on human and mouse models. RECENT FINDINGS Studies indicate that monocyte adhesion could be increased in SSc secondary to an interferon-dependent loss of CD52, and chemotaxis up-regulated through the CCR3/CCL24 pathway. Beyond the conventional M1/M2 paradigm of macrophage subpopulations, new subpopulations of macrophages have been recently described in skin and lung biopsies from SSc patients. Notably, single-cell ribonucleic acid sequencing has provided evidence for SPP1+ lung macrophages or FCGR3A+ skin macrophages in SSc. Impaired pro-resolving capacities of macrophages such as efferocytosis, i.e. the ability to phagocyte apoptotic cells, could also participate in the inflammatory and autoimmune features in SSc. SUMMARY Through their potential pro-fibrotic and pro-inflammatory properties, macrophages are at the cross-road of key SSc pathogenic processes and associated manifestations. Investigative drugs targeting macrophage polarization, such as pan-janus kinase inhibitors (tofacitinib or ruxolitinib) impacting both M1 and M2 activations, or Romilkimab inhibiting IL-4 and IL-13, have shown promising results in preclinical models or phase I/II clinical trials in SSc and other fibro-inflammatory disorders. Macrophage-based cellular therapy may also represent an innovative approach for the treatment of SSc, as initial training of macrophages may modulate the severity of fibrotic and autoimmune manifestations of the disease.
Collapse
|
23
|
Clark KEN, Campochiaro C, Csomor E, Taylor A, Nevin K, Galwey N, Morse MA, Singh J, Teo YV, Ong VH, Derrett-Smith E, Wisniacki N, Flint SM, Denton CP. Molecular basis for clinical diversity between autoantibody subsets in diffuse cutaneous systemic sclerosis. Ann Rheum Dis 2021; 80:1584-1593. [PMID: 34230031 DOI: 10.1136/annrheumdis-2021-220402] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/25/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Clinical heterogeneity is a cardinal feature of systemic sclerosis (SSc). Hallmark SSc autoantibodies are central to diagnosis and associate with distinct patterns of skin-based and organ-based complications. Understanding molecular differences between patients will benefit clinical practice and research and give insight into pathogenesis of the disease. We aimed to improve understanding of the molecular differences between key diffuse cutaneous SSc subgroups as defined by their SSc-specific autoantibodies METHODS: We have used high-dimensional transcriptional and proteomic analysis of blood and the skin in a well-characterised cohort of SSc (n=52) and healthy controls (n=16) to understand the molecular basis of clinical diversity in SSc and explore differences between the hallmark antinuclear autoantibody (ANA) reactivities. RESULTS Our data define a molecular spectrum of SSc based on skin gene expression and serum protein analysis, reflecting recognised clinical subgroups. Moreover, we show that antitopoisomerase-1 antibodies and anti-RNA polymerase III antibodies specificities associate with remarkably different longitudinal change in serum protein markers of fibrosis and divergent gene expression profiles. Overlapping and distinct disease processes are defined using individual patient pathway analysis. CONCLUSIONS Our findings provide insight into clinical diversity and imply pathogenetic differences between ANA-based subgroups. This supports stratification of SSc cases by ANA antibody subtype in clinical trials and may explain different outcomes across ANA subgroups in trials targeting specific pathogenic mechanisms.
Collapse
Affiliation(s)
| | - Corrado Campochiaro
- Centre for Rheumatology and Connective Tissue Diseases, UCL Division of Medicine, London, UK
| | - Eszter Csomor
- Clinical Pharmacology & Experimental Medicine, GlaxoSmithKline Research and Development, Stevenage, UK
| | - Adam Taylor
- Clinical Pharmacology & Experimental Medicine, GlaxoSmithKline Research and Development, Stevenage, UK
| | - Katherine Nevin
- Clinical Pharmacology & Experimental Medicine, GlaxoSmithKline Research and Development, Stevenage, UK
| | - Nicholas Galwey
- Clinical Pharmacology & Experimental Medicine, GlaxoSmithKline Research and Development, Stevenage, UK
| | - Mary A Morse
- Clinical Pharmacology & Experimental Medicine, GlaxoSmithKline Research and Development, Stevenage, UK
| | - Jennifer Singh
- Clinical Pharmacology & Experimental Medicine, GlaxoSmithKline Research and Development, Stevenage, UK
| | - Yee Voan Teo
- Clinical Pharmacology & Experimental Medicine, GlaxoSmithKline Research and Development, Stevenage, UK
| | - Voon H Ong
- Centre for Rheumatology and Connective Tissue Diseases, UCL Division of Medicine, London, UK
| | - Emma Derrett-Smith
- Centre for Rheumatology and Connective Tissue Diseases, UCL Division of Medicine, London, UK
| | - Nicolas Wisniacki
- Clinical Pharmacology & Experimental Medicine, GlaxoSmithKline Research and Development, Stevenage, UK
| | - Shaun M Flint
- Clinical Pharmacology & Experimental Medicine, GlaxoSmithKline Research and Development, Stevenage, UK
| | - Christopher P Denton
- Centre for Rheumatology and Connective Tissue Diseases, UCL Division of Medicine, London, UK
| |
Collapse
|
24
|
Lescoat A, Varga J, Matucci-Cerinic M, Khanna D. New promising drugs for the treatment of systemic sclerosis: pathogenic considerations, enhanced classifications, and personalized medicine. Expert Opin Investig Drugs 2021; 30:635-652. [PMID: 33909517 PMCID: PMC8292968 DOI: 10.1080/13543784.2021.1923693] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Introduction: Systemic sclerosis (SSc), also known as scleroderma, is a complex orphan disease characterized by early inflammatory features, vascular hyper-reactivity, and fibrosis of the skin and internal organs. Although substantial progress has been made in the understanding of the pathogenesis of SSc, there is still no disease-modifying drug that could significantly impact the natural history of the disease.Areas covered: This review discusses the rationale, preclinical evidence, first clinical eevidence,and pending issues concerning new promising therapeutic options that are under investigation in SSc. The search strategy was based on PubMed database and clinical trial.gov, highlighting recent key pathogenic aspects and phase I or II trials of investigational drugs in SSc.Expert opinion: The identification of new molecular entities that potentially impact inflammation and fibrosis may constitute promising options for a disease modifying-agent in SSc. The early combinations of antifibrotic drugs (such as pirfenidone) with immunomodulatory agents (such as mycophenolate mofetil) may also participate to achieve such a goal. A more refined stratification of patients, based on clinical features, molecular signatures, and identification of subpopulations with distinct clinical trajectories, may also improve management strategies in the future.
Collapse
Affiliation(s)
- Alain Lescoat
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
25
|
De Pieri A, Korman BD, Jüngel A, Wuertz-Kozak K. Engineering Advanced In Vitro Models of Systemic Sclerosis for Drug Discovery and Development. Adv Biol (Weinh) 2021; 5:e2000168. [PMID: 33852183 PMCID: PMC8717409 DOI: 10.1002/adbi.202000168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/19/2022]
Abstract
Systemic sclerosis (SSc) is a complex multisystem disease with the highest case-specific mortality among all autoimmune rheumatic diseases, yet without any available curative therapy. Therefore, the development of novel therapeutic antifibrotic strategies that effectively decrease skin and organ fibrosis is needed. Existing animal models are cost-intensive, laborious and do not recapitulate the full spectrum of the disease and thus commonly fail to predict human efficacy. Advanced in vitro models, which closely mimic critical aspects of the pathology, have emerged as valuable platforms to investigate novel pharmaceutical therapies for the treatment of SSc. This review focuses on recent advancements in the development of SSc in vitro models, sheds light onto biological (e.g., growth factors, cytokines, coculture systems), biochemical (e.g., hypoxia, reactive oxygen species) and biophysical (e.g., stiffness, topography, dimensionality) cues that have been utilized for the in vitro recapitulation of the SSc microenvironment, and highlights future perspectives for effective drug discovery and validation.
Collapse
Affiliation(s)
- Andrea De Pieri
- Dr. A. De Pieri, Prof. K. Wuertz-Kozak, Department of Biomedical Engineering, Rochester Institute of Technology (RIT), 106 Lomb Memorial Rd., Rochester, NY, 14623, USA
| | - Benjamin D Korman
- Prof. B. D. Korman, Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Astrid Jüngel
- Prof. A. Jüngel, Center of Experimental Rheumatology, University Clinic of Rheumatology, Balgrist University Hospital, University Hospital Zurich, Zurich, 8008, Switzerland
- Prof. A. Jüngel, Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Zurich, 8008, Switzerland
| | - Karin Wuertz-Kozak
- Dr. A. De Pieri, Prof. K. Wuertz-Kozak, Department of Biomedical Engineering, Rochester Institute of Technology (RIT), 106 Lomb Memorial Rd., Rochester, NY, 14623, USA
- Prof. K. Wuertz-Kozak, Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), Munich, 81547, Germany
| |
Collapse
|
26
|
Raschi E, Privitera D, Bodio C, Lonati PA, Borghi MO, Ingegnoli F, Meroni PL, Chighizola CB. Scleroderma-specific autoantibodies embedded in immune complexes mediate endothelial damage: an early event in the pathogenesis of systemic sclerosis. Arthritis Res Ther 2020; 22:265. [PMID: 33168071 PMCID: PMC7654597 DOI: 10.1186/s13075-020-02360-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Consistently with their diagnostic and prognostic value, autoantibodies specific for systemic sclerosis (SSc) embedded in immune complexes (ICs) elicited a pro-inflammatory and pro-fibrotic cascade in healthy skin fibroblasts, engaging Toll-like receptors (TLRs) via their nucleic acid components. The objective of this study was to investigate the pathogenicity of SSc-ICs in endothelial cells. METHODS ICs were purified from the sera of SSc patients bearing different autoantibody specificities (antibodies against DNA topoisomerase I, centromeric proteins, RNA polymerase, and Th/To), patients with systemic lupus erythematosus (SLE) and primary anti-phospholipid syndrome (PAPS), or healthy controls (NHS) using polyethylene glycol precipitation. Human umbilical vein endothelial cells (HUVECs) were incubated with ICs, positive and negative controls. mRNA levels of endothelin-1 (et-1), collagenIα1 (colIα1), interferon (IFN)-α, and IFN-β were investigated by real-time PCR; et-1 and il-6 mRNA levels were assessed after pre-treatment with bafilomycin. ICAM-1 expression was evaluated by cell ELISA; secretion of IL-6, IL-8, and transforming growth factor (TGF)-β1 in culture supernatants was measured by ELISA. The expression of Fcγ receptors (CD64, CD32, and CD16) was assessed in endothelial cells at FACS analysis. Intracellular signaling pathways culminating with NFκB, p38MAPK, SAPK-JNK, and Akt were assessed by Western blotting. Healthy skin fibroblasts were stimulated with supernatants from HUVECs incubated with ICs, and TGF-β1 secretion and mRNA levels of colIα1 and matrix metalloproteinase (mmp)-1, protein expression of α smooth muscle actin (α-SMA), and IL-6 were evaluated by Western blotting; et-1 mRNA levels were assessed in fibroblasts pre-treated with IL-6 and TGF-β inhibitors and stimulated with ATA-ICs. RESULTS All SSc stimulated IL-6 secretion; ACA-ICs and anti-Th/To-ICs increased ICAM-1 expression; all SSc-ICs but anti-Th/To-ICs augmented IL-8 levels; all SSc-ICs but ACA-ICs and ARA-ICs upregulated et-1, and all SSc-ICs but ARA-ICs affected TGF-β1 secretion. colIα1, IFN-α, and IFN-β mRNA levels were not affected by any SSc-IC. FcγRII (CD32) and FcγRIII (CD16) were not detectable on HUVECs, while FcγRI (CD64) was minimally expressed. A differential modulation of tlr expression was observed: tlr2, tlr3, and tlr4 were upregulated by ATA-ICs and ACA-ICs, while anti-Th/To-ICs resulted in tlr9 upregulation. Pre-treatment with bafilomycin did not affect the upregulation of et-1 and il-6 induced by ATA-ICs, ACA-ICs, and anti-Th/To-ICs; a 23% reduction in both genes was reported for ARA-ICs. All SSc-ICs activated p38MAPK and Akt, and all SSc-ICs but ARA-ICs yielded the activation of NFκB; ATA-ICs and ACA-ICs increased the activation rate of both subunits of SAPK-JNK. When healthy skin fibroblasts were stimulated with supernatants from HUVECs incubated with SSc-ICs, TGF-β1 secretion, colIα1, α-SMA, and IL-6 expression levels were significantly modulated. Pre-treatment with IL-6 and TGF-β inhibitors prevented et-1 upregulation induced by ATA-ICs by 85% and 77%, respectively. CONCLUSIONS These data provide the first demonstration of the pathogenicity of ICs from scleroderma patients with different autoantibodies on the endothelium. Endothelial activation induced by SSc-ICs ultimately led to a pro-fibrotic phenotype in healthy skin fibroblasts.
Collapse
Affiliation(s)
- Elena Raschi
- Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy
| | - Daniela Privitera
- Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy
| | - Caterina Bodio
- Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy
| | - Paola Adele Lonati
- Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy
| | - Maria Orietta Borghi
- Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Francesca Ingegnoli
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy.,Division of Clinical Rheumatology, Research Center for Adult and Pediatric Rheumatic Diseases, ASST G. Pini, Piazza C Ferrari 1, 20122, Milan, Italy
| | - Pier Luigi Meroni
- Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy.,Allergology, Clinical Immunology and Rheumatology Unit, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy
| | - Cecilia Beatrice Chighizola
- Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy. .,Allergology, Clinical Immunology and Rheumatology Unit, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy.
| |
Collapse
|
27
|
Saulle I, Vanetti C, Goglia S, Vicentini C, Tombetti E, Garziano M, Clerici M, Biasin M. A New ERAP2/Iso3 Isoform Expression Is Triggered by Different Microbial Stimuli in Human Cells. Could It Play a Role in the Modulation of SARS-CoV-2 Infection? Cells 2020; 9:E1951. [PMID: 32847031 PMCID: PMC7563522 DOI: 10.3390/cells9091951] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Following influenza infection, rs2248374-G ERAP2 expressing cells may transcribe an alternative spliced isoform: ERAP2/Iso3. This variant, unlike ERAP2-wt, is unable to trim peptides to be loaded on MHC class I molecules, but it can still dimerize with both ERAP2-wt and ERAP1-wt, thus contributing to profiling an alternative cellular immune-peptidome. In order to verify if the expression of ERAP2/Iso3 may be induced by other pathogens, PBMCs and MDMs isolated from 20 healthy subjects were stimulated with flu, LPS, CMV, HIV-AT-2, SARS-CoV-2 antigens to analyze its mRNA and protein expression. In parallel, Calu3 cell lines and PBMCs were in vitro infected with growing doses of SARS-CoV-2 (0.5, 5, 1000 MOI) and HIV-1BAL (0.1, 1, and 10 ng p24 HIV-1Bal/1 × 106 PBMCs) viruses, respectively. Results showed that: (1) ERAP2/Iso3 mRNA expression can be prompted by many pathogens and it is coupled with the modulation of several determinants (cytokines, interferon-stimulated genes, activation/inhibition markers, antigen-presentation elements) orchestrating the anti-microbial immune response (Quantigene); (2) ERAP2/Iso3 mRNA is translated into a protein (western blot); (3) ERAP2/Iso3 mRNA expression is sensitive to SARS-CoV-2 and HIV-1 concentration. Considering the key role played by ERAPs in antigen processing and presentation, it is conceivable that these enzymes may be potential targets and modulators of the pathogenicity of infectious diseases and further analyses are needed to define the role played by the different isoforms.
Collapse
Affiliation(s)
- Irma Saulle
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
| | - Sara Goglia
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
| | - Chiara Vicentini
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
| | - Enrico Tombetti
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
| | - Micaela Garziano
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Don C. Gnocchi Foundation ONLUS, IRCCS, 20148 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
| |
Collapse
|
28
|
Guiot J, Henket M, Andre B, Herzog M, Hardat N, Njock MS, Moermans C, Malaise M, Louis R. A new nucleosomic-based model to identify and diagnose SSc-ILD. Clin Epigenetics 2020; 12:124. [PMID: 32807242 PMCID: PMC7430109 DOI: 10.1186/s13148-020-00915-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/30/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) is a rare connective tissue disease associated with rapid evolving interstitial lung disease (SSc-ILD), driving its mortality. Specific biomarkers associated with the evolution of the lung disease are highly needed. We aimed to identify specific biomarkers of SSc-ILD to predict the evolution of the disease. Nucleosomes are stable DNA/protein complexes that are shed into the blood stream making them ideal candidates for biomarkers. METHODS We studied circulating cell-free nucleosomes (cf-nucleosomes) in SSc patients, 31 with ILD (SSc-ILD) and 67 without ILD. We analyzed plasma levels for cf-nucleosomes and investigated whether global circulating nucleosome levels in association with or without other biomarkers of interest for systemic sclerosis or lung fibrosis (e.g., serum growth factors: IGFBP-1 and the MMP enzyme: MMP-9), could be suitable potential biomarkers for the correct identification of SSc-ILD disease. RESULTS We found that H3.1 nucleosome levels were significantly higher in patients with SSc-ILD compared SSc patients without ILD (p < 0.05) and levels of MMP-9 were significantly increased in patients with SSc-ILD compared to SSc patients without ILD (p < 0.05). Conversely, IGFBP-1 was significantly reduced in patients with SSc-ILD compared to SSc without ILD (p < 0.001). The combination of cf-nucleosomes H3.1 coupled to MMP-9 and IGFBP-1 increased the sensitivity for the differential detection of SSc-ILD. High levels of accuracy were reached with this combined model: its performances are strong with 68.4% of positive predictive value and 77.2% of negative predictive value for 90% of specificity. With our model, we identified a significant negative correlation with FVC % pred (r = -0.22) and TLC % pred (r = -0.31). The value of our model at T1 (baseline) has a predictive power over the Rodnan score at T2 (after 6-18 months), showed by a significant linear regression with R2 = 19% (p = 0.013). We identified in the sole group of SSc-ILD patients a significant linear regression with a R2 = 54.4% with the variation of DLCO between T1 and T2 (p < 0.05). CONCLUSION In our study, we identified a new blood-based model with nucleosomic biomarker in order to diagnose SSc-ILD in a SSc cohort. This model is correlated with TLC and FVC at baseline and predictive of the skin evolution and the DLCO. Further longitudinal exploration studies should be performed in order to evaluate the potential of such diagnostic and predictive model.
Collapse
Affiliation(s)
- Julien Guiot
- Pneumology Department, CHU Liège, Domaine Universitaire du Sart-Tilman, B35, B4000, Liège, Belgium.
| | - Monique Henket
- Pneumology Department, CHU Liège, Domaine Universitaire du Sart-Tilman, B35, B4000, Liège, Belgium
| | - Béatrice Andre
- Rheumatology Department, CHU Liège, Domaine Universitaire du Sart-Tilman, B35, B4000, Liège, Belgium
| | - Marielle Herzog
- Belgian Volition SPRL, Parc Scientifique Créalys, 22 rue Phocas lejeune, B5032, Isnes, Belgium
| | - Nathalie Hardat
- Belgian Volition SPRL, Parc Scientifique Créalys, 22 rue Phocas lejeune, B5032, Isnes, Belgium
| | - Makon-Sebastien Njock
- Pneumology Department, CHU Liège, Domaine Universitaire du Sart-Tilman, B35, B4000, Liège, Belgium
- Rheumatology Department, CHU Liège, Domaine Universitaire du Sart-Tilman, B35, B4000, Liège, Belgium
| | - Catherine Moermans
- Pneumology Department, CHU Liège, Domaine Universitaire du Sart-Tilman, B35, B4000, Liège, Belgium
| | - Michel Malaise
- Rheumatology Department, CHU Liège, Domaine Universitaire du Sart-Tilman, B35, B4000, Liège, Belgium
| | - Renaud Louis
- Pneumology Department, CHU Liège, Domaine Universitaire du Sart-Tilman, B35, B4000, Liège, Belgium
| |
Collapse
|
29
|
Root-Bernstein R. Synergistic Activation of Toll-Like and NOD Receptors by Complementary Antigens as Facilitators of Autoimmune Disease: Review, Model and Novel Predictions. Int J Mol Sci 2020; 21:ijms21134645. [PMID: 32629865 PMCID: PMC7369971 DOI: 10.3390/ijms21134645] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/29/2022] Open
Abstract
Persistent activation of toll-like receptors (TLR) and nucleotide-binding oligomerization domain-containing proteins (NOD) in the innate immune system is one necessary driver of autoimmune disease (AD), but its mechanism remains obscure. This study compares and contrasts TLR and NOD activation profiles for four AD (autoimmune myocarditis, myasthenia gravis, multiple sclerosis and rheumatoid arthritis) and their animal models. The failure of current AD theories to explain the disparate TLR/NOD profiles in AD is reviewed and a novel model is presented that explains innate immune support of persistent chronic inflammation in terms of unique combinations of complementary AD-specific antigens stimulating synergistic TLRs and/or NODs. The potential explanatory power of the model is explored through testable, novel predictions concerning TLR- and NOD-related AD animal models and therapies.
Collapse
|
30
|
Frasca L, Lande R. Toll-like receptors in mediating pathogenesis in systemic sclerosis. Clin Exp Immunol 2020; 201:14-24. [PMID: 32048277 DOI: 10.1111/cei.13426] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are evolutionarily conserved receptors essential for the host defence against pathogens. Both immune and non-immune cells can express TLRs, although at different levels. Systemic sclerosis (SSc) is a chronic disease in which autoimmunity, dysregulated profibrotic mediator release and activation of fibroblasts lead to dysregulated collagen deposition and fibrosis. There is now increasing knowledge that the innate immune system and, in particular, TLRs take a part in SSc pathogenesis. The list of endogenous ligands that can stimulate TLRs in SSc is growing: these ligands represent specific danger-associated molecular patterns (DAMPs), involved either in the initiation or the perpetuation of inflammation, and in the release of factors that sustain the fibrotic process or directly stimulate the cells that produce collagen and the endothelial cells. This review reports evidences concerning TLR signalling involvement in SSc. We report the new DAMPs, as well as the TLR-linked pathways involved in disease, with emphasis on type I interferon signature in SSc, the role of plasmacytoid dendritic cells (pDCs) and platelets. The dissection of the contribution of all these pathways to disease, and their correlation with the disease status, as well as their values as prognostic tools, can help to plan timely intervention and design new drugs for more appropriate therapeutic strategies.
Collapse
Affiliation(s)
- L Frasca
- National Centre for Drug Research and Evaluation, Pharmacological Research and Experimental Therapy Unit, Istituto Superiore di Sanità, Rome, Italy
| | - R Lande
- National Centre for Drug Research and Evaluation, Pharmacological Research and Experimental Therapy Unit, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
31
|
Lescoat A, Ballerie A, Lelong M, Augagneur Y, Morzadec C, Jouneau S, Jégo P, Fardel O, Vernhet L, Lecureur V. Crystalline Silica Impairs Efferocytosis Abilities of Human and Mouse Macrophages: Implication for Silica-Associated Systemic Sclerosis. Front Immunol 2020; 11:219. [PMID: 32133004 PMCID: PMC7039938 DOI: 10.3389/fimmu.2020.00219] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Inhalation of crystalline silica (SiO2) is a risk factor of systemic autoimmune diseases such as systemic sclerosis (SSc) and fibrotic pulmonary disorders such as silicosis. A defect of apoptotic cell clearance (i.e., efferocytosis, a key process in the resolution of inflammation) is reported in macrophages from patients with fibrotic or autoimmune diseases. However, the precise links between SiO2 exposure and efferocytosis impairment remain to be determined. Answering to this question may help to better link innate immunity and fibrosis. In this study, we first aim to determine whether SiO2 might alter efferocytosis capacities of human and mouse macrophages. We secondly explore possible mechanisms explaining efferocytosis impairment, with a specific focus on macrophage polarization and on the RhoA/ROCK pathway, a key regulator of cytoskeleton remodeling and phagocytosis. Human monocyte-derived macrophages (MDM) and C57BL/6J mice exposed to SiO2 and to CFSE-positive apoptotic Jurkat cells were analyzed by flow cytometry to determine their efferocytosis index (EI). The effects of ROCK inhibitors (Y27632 and Fasudil) on EI of SiO2-exposed MDM and MDM from SSc patients were evaluated in vitro. Our results demonstrated that SiO2 significantly decreased EI of human MDM in vitro and mouse alveolar macrophages in vivo. In human MDM, this SiO2-associated impairment of efferocytosis, required the expression of the membrane receptor SR-B1 and was associated with a decreased expression of M2 polarization markers (CD206, CD204, and CD163). F-actin staining, RhoA activation and impairment of efferocytosis, all induced by SiO2, were reversed by ROCK inhibitors. Moreover, the EI of MDM from SSc patients was similar to the EI of in vitro- SiO2-exposed MDM and Y27632 significantly increased SSc MDM efferocytosis capacities, suggesting a likewise activation of the RhoA/ROCK pathway in SSc. Altogether, our results demonstrate that SiO2 exposure may contribute to the impairment of efferocytosis capacities of mouse and human macrophages but also of MDM in SiO2-associated autoimmune diseases and fibrotic disorders such as SSc; in this context, the silica/RhoA/ROCK pathway may constitute a relevant therapeutic target.
Collapse
Affiliation(s)
- Alain Lescoat
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085, Rennes, France
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
| | - Alice Ballerie
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085, Rennes, France
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
| | - Marie Lelong
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085, Rennes, France
| | - Yu Augagneur
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085, Rennes, France
| | - Claudie Morzadec
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085, Rennes, France
| | - Stéphane Jouneau
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085, Rennes, France
- Department of Respiratory Diseases, Rennes University Hospital, Rennes, France
| | - Patrick Jégo
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085, Rennes, France
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085, Rennes, France
- Pôle Biologie, Rennes University Hospital, Rennes, France
| | - Laurent Vernhet
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085, Rennes, France
| | - Valérie Lecureur
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085, Rennes, France
| |
Collapse
|
32
|
Distler JHW, Györfi AH, Ramanujam M, Whitfield ML, Königshoff M, Lafyatis R. Shared and distinct mechanisms of fibrosis. Nat Rev Rheumatol 2019; 15:705-730. [PMID: 31712723 DOI: 10.1038/s41584-019-0322-7] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
|
33
|
Corallo C, Cheleschi S, Cutolo M, Soldano S, Fioravanti A, Volpi N, Franci D, Nuti R, Giordano N. Antibodies against specific extractable nuclear antigens (ENAs) as diagnostic and prognostic tools and inducers of a profibrotic phenotype in cultured human skin fibroblasts: are they functional? Arthritis Res Ther 2019; 21:152. [PMID: 31234888 PMCID: PMC6592008 DOI: 10.1186/s13075-019-1931-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The importance of systemic sclerosis (SSc) autoantibodies for diagnosis has become recognized by their incorporation into the 2013 ACR/EULAR classification criteria. Clear prognostic and phenotypic associations with cutaneous subtype and internal organ involvement have been also described. However, little is known about the potential of autoantibodies to exert a direct pathogenic role in SSc. The aim of the study is to assess the pathogenic capacity of anti-DNA-topoisomerase I (anti-Topo-I) and anti-centromeric protein B (anti-Cenp-B) autoantibodies to induce pro-fibrotic markers in dermal fibroblasts. METHODS Dermal fibroblasts were isolated from unaffected and affected skin samples of (n = 10) limited cutaneous SSc (LcSSc) patients, from affected skin samples of diffuse cutaneous (DcSSc) patients (n = 10) and from healthy subjects (n = 20). Fibroblasts were stimulated with anti-Topo-I, anti-Cenp-B IgGs, and control IgGs in ratios 1:100 and 1:200 for 24 h. Cells were also incubated with 10% SSc anti-Topo-I+ and anti-Cenp-B+ whole serum and with 10% control serum for 24 h. Viability was assessed by MTT test, while apoptosis was assessed by flow cytometry. Activation of pro-fibrotic genes ACTA2, COL1A1, and TAGLN was evaluated by quantitative real-time PCR (qPCR), while the respective protein levels alpha-smooth-muscle actin (α-SMA), type-I-collagen (Col-I), and transgelin (SM22) were assessed by immunocytochemistry (ICC). RESULTS MTT showed that anti-Cenp-B/anti-Topo-I IgGs and anti-Cenp-B+/anti-Topo-I+ sera reduced viability (in a dilution-dependent manner for IgGs) for all the fibroblast populations. Apoptosis is induced in unaffected LcSSc and control fibroblasts, while affected LcSSc/DcSSc fibroblasts showed apoptosis resistance. Basal mRNA (ACTA2, COL1A1, and TAGLN) and protein (α-SMA, Col-1, and SM22) levels were higher in affected LcSSc/DcSSc fibroblasts compared to LcSSc unaffected and to control ones. Stimulation with anti-Cenp-B/anti-Topo-I IgGs and with anti-Cenp-B+/anti-Topo-I+ sera showed a better induction in unaffected LcSSc and control fibroblasts. However, a statistically significant increase of all pro-fibrotic markers is reported also in affected LcSSc/DcSSc fibroblasts upon stimulation with both IgGs and sera. CONCLUSIONS This study suggests a pathogenic role of SSc-specific autoantibodies to directly induce pro-fibrotic activation in human dermal fibroblasts. Therefore, besides the diagnostic and prognostic use of those autoantibodies, these data might further justify the importance of immunosuppressive drugs in the early stages of the autoimmune disease, including SSc.
Collapse
Affiliation(s)
- Claudio Corallo
- Scleroderma Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Sara Cheleschi
- Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Maurizio Cutolo
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Stefano Soldano
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Antonella Fioravanti
- Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Nila Volpi
- Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Daniela Franci
- Scleroderma Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Ranuccio Nuti
- Scleroderma Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Nicola Giordano
- Scleroderma Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
34
|
Ballerie A, Lescoat A, Augagneur Y, Lelong M, Morzadec C, Cazalets C, Jouneau S, Fardel O, Vernhet L, Jégo P, Lecureur V. Efferocytosis capacities of blood monocyte-derived macrophages in systemic sclerosis. Immunol Cell Biol 2018; 97:340-347. [PMID: 30426551 DOI: 10.1111/imcb.12217] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
Abstract
A defect in the apoptotic cell clearance (efferocytosis) by phagocytic cells may participate in autoimmunity and chronic inflammation. The mechanisms leading to the emergence of autoimmunity in systemic sclerosis (SSc) are still to be determined. In this study, the efferocytosis capacities of blood monocyte-derived macrophages (MDM) from patients with SSc were evaluated. Blood monocytes obtained from patients with SSc and healthy donors (HD) were differentiated in vitro into macrophages. The capacities of MDM to engulf CFSE+ apoptotic Jurkat human T lymphocytes were compared between SSc MDM and HD using flow cytometry. The expression of classical engulfing receptors in SSc MDM and HD MDM was also evaluated and their involvement in the modulation of efferocytosis was confirmed using a siRNA approach. The mean phagocytic index (PI) reflecting efferocytosis capacities of SSc MDM (PI = 19.3 ± 3.0; n = 21) was significantly decreased in comparison with the PI of HD MDM (PI = 35.9 ± 3.0; n = 31; P < 0.001). In comparison with HD, SSc MDM exhibited a downregulated expression of scavenger receptor (SR)-B1, SR-A1 and integrin β5 (ITGβ5). In HD MDM, the extinction of these receptors was followed by a reduction of efferocytosis only for the repression of ITGβ5, suggesting a possible selective role of this integrin in the impaired efferocytosis observed in SSc. As efferocytosis may be at the crossroads of inflammation, autoimmunity and fibrosis, in showing impaired efferocytosis capacities of blood MDM in SSc, our study offers new pathogenesis considerations for the involvement of macrophages in the autoimmune processes driving this disorder.
Collapse
Affiliation(s)
- Alice Ballerie
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000, Rennes, France.,Department of Internal Medicine, Rennes University Hospital, 35000, Rennes, France
| | - Alain Lescoat
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000, Rennes, France.,Department of Internal Medicine, Rennes University Hospital, 35000, Rennes, France
| | - Yu Augagneur
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000, Rennes, France
| | - Marie Lelong
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000, Rennes, France
| | - Claudie Morzadec
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000, Rennes, France
| | - Claire Cazalets
- Department of Internal Medicine, Rennes University Hospital, 35000, Rennes, France
| | - Stéphane Jouneau
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000, Rennes, France.,Department of Respiratory Diseases, Rennes University Hospital, 35000, Rennes, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000, Rennes, France.,Pôle Biologie, Rennes University Hospital, 35033, Rennes, France
| | - Laurent Vernhet
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000, Rennes, France
| | - Patrick Jégo
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000, Rennes, France.,Department of Internal Medicine, Rennes University Hospital, 35000, Rennes, France
| | - Valérie Lecureur
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000, Rennes, France
| |
Collapse
|