1
|
Crespo MT, Trebucq LL, Senna CA, Hokama G, Paladino N, Agostino PV, Chiesa JJ. Circadian disruption of feeding-fasting rhythm and its consequences for metabolic, immune, cancer, and cognitive processes. Biomed J 2025:100827. [PMID: 39756653 DOI: 10.1016/j.bj.2025.100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025] Open
Abstract
The circadian system is composed by a central hypothalamic clock at the suprachiasmatic nuclei (SCN) that communicates with peripheral circadian oscillators for daily coordination of behavior and physiology. The SCN entrain to the environmental 24-h light-dark (LD) cycle and drive daily rhythms of internal synchronizers such as core body temperature, hypothalamic-hypophysary hormones, sympathetic/parasympathetic activity, as well as behavioral and feeding-fasting rhythms, which supply signals setting core molecular clocks at central and peripheral tissues. Steady phase relationships between the SCN and peripheral oscillators keep homeostatic processes such as microbiota/microbiome composition/activity, metabolic supply/demand, energy balance, immunoinflammatory process, sleep amount and quality, psychophysiological stress, etc. Indeed, the risk of health alterations increase when these phase relationships are chronically changed prompting circadian disruption (CD), as occurring after sudden LD cycle changes (so-called jet-lag), or due to changes of activity/feeding-rest/fasting rhythm with respect to LD cycles (as humans subjected to nightwork, or restricting food access at rest in mice). Typical pathologies observed in animal models of CD and epidemiological studies include metabolic syndrome, type-2 diabetes, obesity, chronic inflammation, cancer, sleep disruption, decrease in physical and cognitive performance, and mood, among others. The present review discusses different aspects of such physiological dysregulations observed in animal models of CD having altered feeding-fasting rhythms, with potential translation to human health.
Collapse
Affiliation(s)
- Manuel Tomás Crespo
- ٰLaboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET. Buenos Aires, Argentina
| | - Laura Lucía Trebucq
- ٰLaboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET. Buenos Aires, Argentina
| | - Camila Agustina Senna
- ٰLaboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET. Buenos Aires, Argentina
| | - Guido Hokama
- ٰLaboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET. Buenos Aires, Argentina
| | - Natalia Paladino
- ٰLaboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET. Buenos Aires, Argentina
| | - Patricia Verónica Agostino
- ٰLaboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET. Buenos Aires, Argentina
| | - Juan José Chiesa
- ٰLaboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET. Buenos Aires, Argentina.
| |
Collapse
|
2
|
Talwar C, Davuluri GVN, Kamal AHM, Coarfa C, Han SJ, Veeraragavan S, Parsawar K, Putluri N, Hoffman K, Jimenez P, Biest S, Kommagani R. Identification of distinct stool metabolites in women with endometriosis for non-invasive diagnosis and potential for microbiota-based therapies. MED 2024:100517. [PMID: 39395412 DOI: 10.1016/j.medj.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/15/2024] [Accepted: 09/13/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Endometriosis, a poorly studied gynecological condition, is characterized by the presence of ectopic endometrial lesions resulting in pelvic pain, inflammation, and infertility. These associated symptoms contribute to a significant burden, often exacerbated by delayed diagnosis. Current diagnostic methods involve invasive procedures, and existing treatments provide no cure. METHODS Microbiome-metabolome signatures in stool samples from individuals with and without endometriosis were determined using unbiased metabolomics and 16S bacteria sequencing. Functional studies for selected microbiota-derived metabolites were conducted in vitro using patient-derived cells and in vivo by employing murine and human xenograft pre-clinical disease models. FINDINGS We discovered a unique bacteria-derived metabolite signature intricately linked to endometriosis. The altered fecal metabolite profile exhibits a strong correlation with that observed in inflammatory bowel disease (IBD), revealing intriguing connections between these two conditions. Notably, we validated 4-hydroxyindole, a gut-bacteria-derived metabolite that is lower in stool samples of endometriosis. Extensive in vivo studies found that 4-hydroxyindole suppressed the initiation and progression of endometriosis-associated inflammation and hyperalgesia in heterologous mouse and in pre-clinical models of the disease. CONCLUSIONS Our findings are the first to provide a distinct stool metabolite signature in women with endometriosis, which could serve as stool-based non-invasive diagnostics. Further, the gut-microbiota-derived 4-hydroxyindole poses as a therapeutic candidate for ameliorating endometriosis. FUNDING This work was funded by the NIH/NICHD grants (R01HD102680, R01HD104813) and a Research Scholar Grant from the American Cancer Society to R.K.
Collapse
Affiliation(s)
- Chandni Talwar
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Cristian Coarfa
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA; Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Surabi Veeraragavan
- Department of Molecular Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Krishna Parsawar
- Analytical and Biological Mass Spectrometry Core Facility, University of Arizona, Tucson, AZ 85721, USA
| | - Nagireddy Putluri
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kristi Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patricia Jimenez
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Scott Biest
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO 63110, USA; Division of Minimally Invasive Gynecologic Surgery, Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Ramakrishna Kommagani
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Soe Thu M, Sawaswong V, Chanchaem P, Klomkliew P, Campbell BJ, Hirankarn N, Fothergill JL, Payungporn S. Optimization of a DNA extraction protocol for improving bacterial and fungal classification based on Nanopore sequencing. Access Microbiol 2024; 6:000754.v3. [PMID: 39376590 PMCID: PMC11457918 DOI: 10.1099/acmi.0.000754.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/03/2024] [Indexed: 10/09/2024] Open
Abstract
Ribosomal RNA gene amplicon sequencing is commonly used to evaluate microbiome profiles in health and disease and document the impact of interventional treatments. Nanopore sequencing is attractive since it can provide greater classification at the species level. However, optimized protocols to target marker genes for bacterial and fungal profiling are needed. To achieve an increased taxonomic resolution, we developed extraction and full-length amplicon PCR-based approaches using Nanopore sequencing. Three lysis conditions were applied to a mock microbial community, including known bacterial and fungal species: ZymoBIOMICS lysis buffer (ML) alone, incorporating bead-beating (MLB) or bead-beating plus MetaPolyzyme enzymatic treatment (MLBE). In profiling of bacteria in comparison to reference data, MLB had more statistically different bacterial phyla and genera than the other two conditions. In fungal profiling, MLB had a significant increase of Ascomycota and a decline of Basidiomycota, subsequently failing to detect Malassezia and Cryptococcus. Also, a principal coordinates analysis plot by the Bray-Curtis metric showed a significant difference among groups for bacterial (P=0.033) and fungal (P=0.012) profiles, highlighting the importance of understanding the biases present in pretreatment. Overall, microbial profiling and diversity analysis revealed that ML and MLBE are more similar than MLB for both bacteria and fungi; therefore, using this specific pipeline, bead-beating is not recommended for whole gene amplicon sequencing. However, ML alone was suggested as an optimal approach considering DNA yield, taxonomic classification, reagent cost and hands-on time. This could be an initial proof-of-concept study for simultaneous human bacterial and fungal microbiome studies.
Collapse
Affiliation(s)
- May Soe Thu
- Joint Chulalongkorn University–University of Liverpool Doctoral Program in Biomedical Sciences and Biotechnology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, L69 3GE, UK
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vorthon Sawaswong
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prangwalai Chanchaem
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pavit Klomkliew
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Barry J. Campbell
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, L69 3GE, UK
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Joanne L. Fothergill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, L69 3GE, UK
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Khan R, Sharma A, Ravikumar R, Sivaprasad S, Raman R. Correlation of gut microbial diversity to sight-threatening diabetic retinopathy. BMC Microbiol 2024; 24:342. [PMID: 39271995 PMCID: PMC11395485 DOI: 10.1186/s12866-024-03496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
PURPOSE To determine the association of gut microbiome diversity and sight-threatening diabetic retinopathy (STDR) amongst patients with pre-existing diabetes. METHODS A cross-sectional study was performed, wherein 54 participants selected in total were placed into cases cohort if diagnosed with STDR and those without STDR but had a diagnosis of diabetes mellitus of at least 10-year duration were taken as controls. Statistical analysis comparing the gut microbial alpha diversity between cases and control groups as well as patients differentiated based on previously hypothesized Bacteroidetes/Firmicutes(B/F) ratio with an optimal cut-off 1.05 to identify patients with STDR were performed. RESULTS Comparing gut microbial alpha diversity did not show any difference between cases and control groups. However, statistically significant difference was noted amongst patients with B/F ratio ≥1.05 when compared to B/F ratio < 1.05; ACE index [Cut-off < 1.05:773.83 ± 362.73; Cut-off > 1.05:728.03 ± 227.37; p-0.016]; Chao1index [Cut-off < 1.05:773.63 ± 361.88; Cut-off > 1.05:728.13 ± 227.58; p-0.016]; Simpson index [Cut-off < 1.05:0.998 ± 0.001; Cut-off > 1.05:0.997 ± 0.001; p-0.006]; Shannon index [Cut-off < 1.05:6.37 ± 0.49; Cut-off > 1.05:6.10 ± 0.43; p-0.003]. Sub-group analysis showed that cases with B/F ratio ≥ 1.05, divided into proliferative diabetic retinopathy (PDR) and clinically significant macular edema (CSME), showed decreased diversity compared to controls (B/F ratio < 1.05). For PDR, all four diversity indices significantly decreased (p < 0.05). However, for CSME, only Shannon and Simpson indices showed significant decrease in diversity (p < 0.05). CONCLUSIONS Based on clinical diagnosis, decreasing gut microbial diversity was observed among patients with STDR, although not statistically significant. When utilizing B/F ratio, the decreasing gut microbial diversity in STDR patients seems to be associated due to species richness and evenness in PDR when compared to decreasing species richness in CSME.
Collapse
Affiliation(s)
- Rehana Khan
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Sankara Nethralaya, 18 College Road, Chennai, 600 006, Tamil Nadu, India
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Abhishek Sharma
- Michigan State University College of Human Medicine, East Lansing, MI, USA
| | | | - Sobha Sivaprasad
- NIHR Moorfields Biomedical Research Centre, London and University College, London, UK
| | - Rajiv Raman
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Sankara Nethralaya, 18 College Road, Chennai, 600 006, Tamil Nadu, India.
| |
Collapse
|
5
|
Smibert OC, Trubiano JA, Kwong JC, Markey KA, Slavin MA. Protocol for a clinically annotated biorepository of samples from Australian immune-compromised patients to investigate the host-microbiome interaction. BMJ Open 2024; 14:e085504. [PMID: 39266311 PMCID: PMC11440200 DOI: 10.1136/bmjopen-2024-085504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/07/2024] [Indexed: 09/14/2024] Open
Abstract
INTRODUCTION The human gut microbiota has the potential to modulate the outcomes of several human diseases. This effect is likely to be mediated through interaction with the host immune system. This protocol details the establishment of a biorepository of clinically annotated samples, which we will use to explore correlations between the gut microbiota and the immune system of immune-compromised patients. We aim to identify microbiome-related risk factors for adverse outcomes. METHODS AND ANALYSES This is a protocol for the development of a biorepository of clinically annotated samples collected prospectively across three centres in Melbourne, Australia. Participants will be recruited across the following clinical streams: (1) acute leukaemia and allogeneic stem cell transplant; (2) end-stage liver disease and liver transplant; (3) patients receiving any cancer immunotherapies (eg, chimeric antigen receptor therapy); (4) deceased organ donors and (5) healthy adult controls. Participants will be asked to provide paired peripheral blood and microbiota samples (stool and saliva) at either (1) single time point for healthy controls and deceased organ donors or (2) longitudinally over multiple prespecified or event-driven time points for the remaining cohorts. Sampling of fluid from bronchoalveolar lavage and colonoscopy or biopsy of tissues undertaken during routine care will also be performed. ETHICS AND DISSEMINATION Ethical approval has been obtained from the relevant local ethics committee (The Royal Melbourne Hospital Human Research Ethics Committee). The results of this study will be disseminated by various scientific platforms including social media, international presentations and publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER ACTRN12623001105639. Date registered 20 October 2023.
Collapse
Affiliation(s)
- Olivia C Smibert
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Infectious Diseases & Immunology, Austin Health, Melbourne, Victoria, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Infectious Diseases, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jason A Trubiano
- Department of Infectious Diseases & Immunology, Austin Health, Melbourne, Victoria, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Infectious Diseases, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| | - Jason C Kwong
- Department of Infectious Diseases & Immunology, Austin Health, Melbourne, Victoria, Australia
- Department of Microbiology & Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kate A Markey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center (FHCC), Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Monica A Slavin
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Infectious Diseases, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Jameie M, Ahli B, Ghadir S, Azami M, Amanollahi M, Ebadi R, Rafati A, Naser Moghadasi A. The hidden link: How oral and respiratory microbiomes affect multiple sclerosis. Mult Scler Relat Disord 2024; 88:105742. [PMID: 38964239 DOI: 10.1016/j.msard.2024.105742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Extensive research has explored the role of gut microbiota in multiple sclerosis (MS). However, the impact of microbial communities in the oral cavity and respiratory tract on MS is an emerging area of investigation. PURPOSE We aimed to review the current literature related to the nasal, oral, and lung microbiota in people with MS (PwMS). METHODS We conducted a narrative review of clinical and preclinical original studies on PubMed that explored the relationship between the bacterial or viral composition of the nasal, lung, and oral microbiota and MS. Additionally, to find relevant studies not retrieved initially, we also searched for references in related review papers, as well as the references cited within the included studies. RESULTS AND CONCLUSIONS Thirteen studies were meticulously reviewed in three sections; oral microbiota (n = 8), nasal microbiota (n = 3), and lung microbiota (n = 2), highlighting considerable alterations in the oral and respiratory microbiome of PwMS compared to healthy controls (HCs). Genera like Aggregatibacter and Streptococcus were less abundant in the oral microbiota of PwMS compared to HCs, while Staphylococcus, Leptotrichia, Fusobacterium, and Bacteroides showed increased abundance in PwMS. Additionally, the presence of specific bacteria, including Streptococcus sanguinis, within the oral microbiota was suggested to influence Epstein-Barr virus reactivation, a well-established risk factor for MS. Studies related to the nasal microbiome indicated elevated levels of specific Staphylococcus aureus toxins, as well as nasal glial cell infection with human herpes virus (HHV)-6 in PwMS. Emerging research on lung microbiome in animal models demonstrated that manipulating the lung microbiome towards lipopolysaccharide-producing bacteria might suppress MS symptoms. These findings open avenues for potential therapeutic strategies. However, further research is crucial to fully understand the complex interactions between the microbiome and MS. This will help identify the most effective timing, bacterial strains, and modulation techniques.
Collapse
Affiliation(s)
- Melika Jameie
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran; Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Ahli
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Ghadir
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mobin Azami
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mobina Amanollahi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ebadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rafati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Lao J, Yan S, Yong Y, Li Y, Wen Z, Zhang X, Ju X, Li Y. Lacticaseibacillus casei IB1 Alleviates DSS-Induced Inflammatory Bowel Disease by Regulating the Microbiota and Restoring the Intestinal Epithelial Barrier. Microorganisms 2024; 12:1379. [PMID: 39065147 PMCID: PMC11278699 DOI: 10.3390/microorganisms12071379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) is becoming an increasingly serious health problem in humans and animals. Probiotics can inhibit the development of IBD. Due to the specificity of the strains, the function and mechanism of action of different strains are still unclear. Here, a DSS-induced colitis mouse model was utilized to investigate the ability and mechanism by which Lacticaseibacillus casei IB1 alleviates colitis. Treatment with L. casei IB1 improved DSS-induced colitis in mice, as indicated by increased body weight, colon length, and goblet cell numbers and decreased disease activity index (DAI), proinflammatory factor (TNF-α, IL-1β, and IL-6) levels, and histopathological scores after intake of IB1. IB1 supplementation also improved the expression of tight junction proteins and inhibited the activation of the MAPK and NF-κB signaling pathways to alleviate intestinal inflammation. In addition, IB1 rebalanced the intestinal microbial composition of colitis mice by increasing the abundance of Faecalibaculum and Alistipes and decreasing the abundance of Bacteroides and Escherichia_Shigella. In summary, L. casei IB1 showed great potential for relieving colitis by regulating the microbiota and restoring the epithelial barrier. It can be used as a potential probiotic for the prevention and treatment of UC in the future.
Collapse
Affiliation(s)
- Jianlong Lao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Shuping Yan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Yanhong Yong
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Yin Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Zhaohai Wen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Xiaoyong Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Xianghong Ju
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Youquan Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| |
Collapse
|
8
|
Qadri H, Shah AH, Almilaibary A, Mir MA. Microbiota, natural products, and human health: exploring interactions for therapeutic insights. Front Cell Infect Microbiol 2024; 14:1371312. [PMID: 39035357 PMCID: PMC11257994 DOI: 10.3389/fcimb.2024.1371312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/03/2024] [Indexed: 07/23/2024] Open
Abstract
The symbiotic relationship between the human digestive system and its intricate microbiota is a captivating field of study that continues to unfold. Comprising predominantly anaerobic bacteria, this complex microbial ecosystem, teeming with trillions of organisms, plays a crucial role in various physiological processes. Beyond its primary function in breaking down indigestible dietary components, this microbial community significantly influences immune system modulation, central nervous system function, and disease prevention. Despite the strides made in microbiome research, the precise mechanisms underlying how bacterial effector functions impact mammalian and microbiome physiology remain elusive. Unlike the traditional DNA-RNA-protein paradigm, bacteria often communicate through small molecules, underscoring the imperative to identify compounds produced by human-associated bacteria. The gut microbiome emerges as a linchpin in the transformation of natural products, generating metabolites with distinct physiological functions. Unraveling these microbial transformations holds the key to understanding the pharmacological activities and metabolic mechanisms of natural products. Notably, the potential to leverage gut microorganisms for large-scale synthesis of bioactive compounds remains an underexplored frontier with promising implications. This review serves as a synthesis of current knowledge, shedding light on the dynamic interplay between natural products, bacteria, and human health. In doing so, it contributes to our evolving comprehension of microbiome dynamics, opening avenues for innovative applications in medicine and therapeutics. As we delve deeper into this intricate web of interactions, the prospect of harnessing the power of the gut microbiome for transformative medical interventions becomes increasingly tantalizing.
Collapse
Affiliation(s)
- Hafsa Qadri
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Abdul Haseeb Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Abdullah Almilaibary
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Al Bahah, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
9
|
Babu A, Devi Rajeswari V, Ganesh V, Das S, Dhanasekaran S, Usha Rani G, Ramanathan G. Gut Microbiome and Polycystic Ovary Syndrome: Interplay of Associated Microbial-Metabolite Pathways and Therapeutic Strategies. Reprod Sci 2024; 31:1508-1520. [PMID: 38228976 DOI: 10.1007/s43032-023-01450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a multifaceted disease with an intricate etiology affecting reproductive-aged women. Despite attempts to unravel the pathophysiology, the molecular mechanism of PCOS remains unknown. There are no effective or suitable therapeutic strategies available to ameliorate PCOS; however, the symptoms can be managed. In recent years, a strong association has been found between the gut microbiome and PCOS, leading to the formulation of novel ideas on the genesis and pathological processes of PCOS. Further, gut microbiome dysbiosis involving microbial metabolites may trigger PCOS symptoms via many mechanistic pathways including those associated with carbohydrates, short-chain fatty acids, lipopolysaccharides, bile acids, and gut-brain axis. We present the mechanistic pathways of PCOS-related microbial metabolites and therapeutic opportunities available to treat PCOS, such as prebiotics, probiotics, and fecal microbiota therapy. In addition, the current review highlights the emerging treatment strategies available to alleviate the symptoms of PCOS.
Collapse
Affiliation(s)
- Achsha Babu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - V Ganesh
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Soumik Das
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sivaraman Dhanasekaran
- Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Road, Gandhinagar, Gujarat, 382426, India
| | - G Usha Rani
- Department of Obstetrics And Gynecology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
10
|
Zhang K, Paul K, Jacobs JP, Cockburn MG, Bronstein JM, Del Rosario I, Ritz B. Ambient long-term exposure to organophosphorus pesticides and the human gut microbiome: an observational study. Environ Health 2024; 23:41. [PMID: 38627687 PMCID: PMC11020204 DOI: 10.1186/s12940-024-01078-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Organophosphorus pesticides (OP) have been associated with various human health conditions. Animal experiments and in-vitro models suggested that OP may also affect the gut microbiota. We examined associations between ambient chronic exposure to OP and gut microbial changes in humans. METHODS We recruited 190 participants from a community-based epidemiologic study of Parkinson's disease living in a region known for heavy agricultural pesticide use in California. Of these, 61% of participants had Parkinson's disease and their mean age was 72 years. Microbiome and predicted metagenome data were generated by 16S rRNA gene sequencing of fecal samples. Ambient long-term OP exposures were assessed using pesticide application records combined with residential addresses in a geographic information system. We examined gut microbiome differences due to OP exposures, specifically differences in microbial diversity based on the Shannon index and Bray-Curtis dissimilarities, and differential taxa abundance and predicted Metacyc pathway expression relying on regression models and adjusting for potential confounders. RESULTS OP exposure was not associated with alpha or beta diversity of the gut microbiome. However, the predicted metagenome was sparser and less evenly expressed among those highly exposed to OP (p = 0.04). Additionally, we found that the abundance of two bacterial families, 22 genera, and the predicted expression of 34 Metacyc pathways were associated with long-term OP exposure. These pathways included perturbed processes related to cellular respiration, increased biosynthesis and degradation of compounds related to bacterial wall structure, increased biosynthesis of RNA/DNA precursors, and decreased synthesis of Vitamin B1 and B6. CONCLUSION In support of previous animal studies and in-vitro findings, our results suggest that ambient chronic OP pesticide exposure alters gut microbiome composition and its predicted metabolism in humans.
Collapse
Affiliation(s)
- Keren Zhang
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Kimberly Paul
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jonathan P Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Myles G Cockburn
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jeff M Bronstein
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Irish Del Rosario
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Beate Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA.
- Department of Environmental Health Sciences, UCLA Fielding School of Public Health, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Yuan M, Wang Y, Tian X, Zheng W, Zuo H, Zhang X, Song H. Ferrostatin-1 improves prognosis and regulates gut microbiota of steatotic liver transplantation recipients in rats. Future Microbiol 2024; 19:413-429. [PMID: 38305222 DOI: 10.2217/fmb-2023-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/15/2023] [Indexed: 02/03/2024] Open
Abstract
Aims: To investigate the effects of Ferrostatin-1 (Fer-1) on improving the prognosis of liver transplant recipients with steatotic liver grafts and regulating gut microbiota in rats. Methods: We obtained steatotic liver grafts and established a liver transplantation model. Recipients were divided into sham, liver transplantation and Fer-1 treatment groups, which were assessed 1 and 7 days after surgery (n = 6). Results & conclusion: Fer-1 promotes recovery of the histological structure and function of steatotic liver grafts and the intestinal tract, and improves inflammatory responses of recipients following liver transplantation. Fer-1 reduces gut microbiota pathogenicity, and lowers iron absorption and improves fat metabolism of recipients, thereby protecting steatotic liver grafts.
Collapse
Affiliation(s)
- Mengshu Yuan
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, PR China
| | - Yuxin Wang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, PR China
| | - Xiaorong Tian
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, PR China
| | - Weiping Zheng
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin, 300192, PR China
- NHC Key Laboratory of Critical Care Medicine, Tianjin, 300192, PR China
| | - Huaiwen Zuo
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, PR China
| | - Xinru Zhang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, PR China
| | - Hongli Song
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin, 300192, PR China
- Tianjin Key Laboratory of Organ Transplantation, Tianjin, PR China
| |
Collapse
|
12
|
Wei W, Li J, Tang B, Deng Y, Li Y, Chen Q. Metabolomics and metagenomics reveal the impact of γδ T inhibition on gut microbiota and metabolism in periodontitis-promoting OSCC. mSystems 2024; 9:e0077723. [PMID: 38259106 PMCID: PMC10878065 DOI: 10.1128/msystems.00777-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
During the process of periodontitis-promoting oral squamous cell carcinoma (OSCC), the periodontitis microbiota can facilitate OSCC development by activating γδ T cells. Inhibiting γδ T cells through immunotherapy has been shown to significantly alleviate various types of cancer. However, the underlying mechanism by which inhibiting γδ T cells influenced cancer treatment has not been fully elucidated. In this study, a mouse model of OSCC with periodontitis was established, and γδ T cells were inhibited by antibodies. Gut samples from the mice were collected and analyzed by metabolomics, metagenomics, and 16S rRNA. Integrative analysis of the gut metabolome and microbiome revealed that targeting γδ T resulted in changes in the levels of metabolites associated with cancer in the gut. Although there was no difference in the α diversity of microbiota, β diversity was significantly different, with a more heterogeneous community structure in the mice receiving targeted γδ T immunotherapy. Statistical analysis of the gut microbiota at the species level revealed a significant enrichment of Lactobacillus murinus, which was significantly correlated with γδ T abundance. The functional analysis revealed that inhibiting γδ T could impact the functional gene. A comprehensive analysis revealed that L. murinus is especially associated with changes in adenine, which also had connection with the concentration of IL-17 and the abundance of γδ T.IMPORTANCEThis study revealed the effect of γδ T cells on gut microbial dysbiosis and identify potential links between gut microbiota and metabolism, providing new insights into the role of γδ T during the process of periodontitis-induced OSCC, and identifying relevant biomarkers for future research and clinical monitoring protocol development.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Boyu Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Clemente-Suárez VJ, Redondo-Flórez L, Rubio-Zarapuz A, Martín-Rodríguez A, Tornero-Aguilera JF. Microbiota Implications in Endocrine-Related Diseases: From Development to Novel Therapeutic Approaches. Biomedicines 2024; 12:221. [PMID: 38255326 PMCID: PMC10813640 DOI: 10.3390/biomedicines12010221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
This comprehensive review article delves into the critical role of the human microbiota in the development and management of endocrine-related diseases. We explore the complex interactions between the microbiota and the endocrine system, emphasizing the implications of microbiota dysbiosis for the onset and progression of various endocrine disorders. The review aims to synthesize current knowledge, highlighting recent advancements and the potential of novel therapeutic approaches targeting microbiota-endocrine interactions. Key topics include the impact of microbiota on hormone regulation, its role in endocrine pathologies, and the promising avenues of microbiota modulation through diet, probiotics, prebiotics, and fecal microbiota transplantation. We underscore the importance of this research in advancing personalized medicine, offering insights for more tailored and effective treatments for endocrine-related diseases.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/ Tajo s/n, 28670 Villaviciosa de Odón, Spain;
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| |
Collapse
|
14
|
Kim M, Kim WJ, Park SJ. Analyzing Gut Microbial Community in Varroa destructor-Infested Western Honeybee ( Apis mellifera). J Microbiol Biotechnol 2023; 33:1495-1505. [PMID: 37482801 DOI: 10.4014/jmb.2306.06040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
The western honeybee Apis mellifera L., a vital crop pollinator and producer of honey and royal jelly, faces numerous threats including diseases, chemicals, and mite infestations, causing widespread concern. While extensive research has explored the link between gut microbiota and their hosts. However, the impact of Varroa destructor infestation remains understudied. In this study, we employed massive parallel amplicon sequencing assays to examine the diversity and structure of gut microbial communities in adult bee groups, comparing healthy (NG) and Varroa-infested (VG) samples. Additionally, we analyzed Varroa-infested hives to assess the whole body of larvae. Our results indicated a notable prevalence of the genus Bombella in larvae and the genera Gillamella, unidentified Lactobacillaceae, and Snodgrassella in adult bees. However, no statistically significant difference was observed between NG and VG. Furthermore, our PICRUSt analysis demonstrated distinct KEGG classification patterns between larval and adult bee groups, with larvae displaying a higher abundance of genes involved in cofactor and vitamin production. Notably, despite the complex nature of the honeybee bacterial community, methanogens were found to be present in low abundance in the honeybee microbiota.
Collapse
Affiliation(s)
- Minji Kim
- Department of Biology, Jeju National University, Jeju 63243, Republic of Korea
| | - Woo Jae Kim
- Center for Life Science (HCLS), Harbin Institute of Technology, No.92 West Dazhi Street, Nangang District, Harbin City, Hei Longjiang Province, P.R. China
| | - Soo-Je Park
- Department of Biology, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
15
|
Hong S, Choi JH, Oh S, Yi MH, Kim SL, Kim M, Lee CW, Yang HJ, Chai JY, Yong TS, Jung BK, Kim JY. Gut microbiota differences induced by Toxoplasma gondii seropositivity in stray cats in South Korea. Parasitol Res 2023; 122:2413-2421. [PMID: 37596434 DOI: 10.1007/s00436-023-07943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
T. gondii is a highly prevalent parasite worldwide, with cats serving as its final host. However, few studies have investigated the impact of T. gondii infection on cat gut microbiota. Therefore, this study examined the influence of T. gondii infection on the gut microbiota of stray cats and identified potential pathogens in their feces. This study examined T. gondii infection through blood of stray cats and the influence of microbiota in their feces using 16S rRNA gene amplicon sequencing. The results revealed significant differences in gut microbiota composition and diversity between the T. gondii seropositive and seronegative groups. Seropositive samples displayed a lower number of operational taxonomic units and reduced Shannon index than the seronegative samples. The seropositive and seronegative groups exhibited enrichment of taxa, including Escherichia and Enterobacteriaceae and Collinsella, Bifidobacterium, and Roseburia, respectively. Furthermore, potential pathogen species, including Campylobacter, Escherichia, and Streptococcus, were identified in the fecal samples. These findings suggest that T. gondii infection significantly impacts gut microbiota composition and diversity in stray cats. Additionally, an increased potential pathogen load, represented by Escherichia spp., was observed. These results underscore the importance of monitoring the prevalence of zoonotic pathogens in stray cats, as they can serve as reservoirs for zoonotic diseases.
Collapse
Affiliation(s)
- Sooji Hong
- MediCheck Research Institute, Korea Association of Health Promotion, Seoul, 07649, Korea
- Department of Parasitology and Ewha Medical Research Center, Ewha Womans University School of Medicine, Seoul, 07084, Korea
| | - Jun Ho Choi
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Singeun Oh
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Myung-Hee Yi
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Soo Lim Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Myungjun Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Korea
| | | | - Hyun-Jong Yang
- Department of Parasitology and Ewha Medical Research Center, Ewha Womans University School of Medicine, Seoul, 07084, Korea
| | - Jong-Yil Chai
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Tai-Soon Yong
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Bong-Kwang Jung
- MediCheck Research Institute, Korea Association of Health Promotion, Seoul, 07649, Korea.
| | - Ju Yeong Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
16
|
Salonen T, Jokinen E, Satokari R, Lahtinen P. Randomized, double-blinded, placebo-controlled pilot study: efficacy of faecal microbiota transplantation on chronic fatigue syndrome. J Transl Med 2023; 21:513. [PMID: 37516837 PMCID: PMC10386223 DOI: 10.1186/s12967-023-04227-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Chronic fatigue syndrome (CFS) is a disabling illness of unknown aetiology. Disruption of gut microbiota may play a role in several neurological disorders. In this study, the effect of faecal microbiota transplantation (FMT) on fatigue severity and health-related quality of life (HRQOL) in patients with CFS was evaluated. METHODS Randomized, placebo-controlled pilot trial. Patients and researchers were blinded to treatment assignment. 11 patients with CFS (10 female and 1 male, mean age 42.2 years and mean duration of CFS 6.3 years) were randomly assigned to receive either FMT from a universal donor (n = 5) or autologous FMT (n = 6) via colonoscopy. Patients' HRQOL was assessed by using visual analog scale (VAS) and self-reporting questionnaires Modified Fatigue Impact Scale (MFIS), 15D and EQ-5D-3L. Patients' HRQOL was evaluated at baseline, and 1 and 6 months after the FMT. RESULTS The baseline VAS scores in the FMT and placebo groups were 62.4 and 76.0 (p = 0.29). 1-month scores were 60.0 and 73.7 and 6-months scores 72.8 and 69.5, respectively. Total MFIS scores in the FMT and placebo groups were 59.6 and 61.0 at the baseline (p = 0.80), 53.5 and 62.0 at 1 month and 58.6 and 56.2 at 6 months. Compared to the baseline scores, differences at 1 and 6 months were statistically insignificant both in VAS and in MFIS. The 15D and EQ-5D-3L profiles did not change after the FMT or placebo. FMT-related adverse events were not reported. CONCLUSION FMT was safe but did not relieve symptoms or improve the HRQOL of patients with CFS. Small number of study subjects limits the generalizability of these results. Trial Registration ClinicalTrials.gov Identifier NCT04158427, https://register. CLINICALTRIALS gov , date of registration 08/08/2019.
Collapse
Affiliation(s)
- Tapani Salonen
- Department of Medicine, Tampere University Hospital, BOX 2000, FIN, 33521, Tampere, Finland.
| | - Elina Jokinen
- Department of Gastroenterology, Tampere University Hospital, Tampere, Finland
| | - Reetta Satokari
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Perttu Lahtinen
- Department of Gastroenterology, Päijät-Häme Central Hospital, Lahti, Finland
| |
Collapse
|
17
|
Mishra G, Singh P, Molla M, Yimer YS, Dinda SC, Chandra P, Singh BK, Dagnew SB, Assefa AN, Ewunetie A. Harnessing the potential of probiotics in the treatment of alcoholic liver disorders. Front Pharmacol 2023; 14:1212742. [PMID: 37361234 PMCID: PMC10287977 DOI: 10.3389/fphar.2023.1212742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
In the current scenario, prolonged consumption of alcohol across the globe is upsurging an appreciable number of patients with the risk of alcohol-associated liver diseases. According to the recent report, the gut-liver axis is crucial in the progression of alcohol-induced liver diseases, including steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Despite several factors associated with alcoholic liver diseases, the complexity of the gut microflora and its great interaction with the liver have become a fascinating area for researchers due to the high exposure of the liver to free radicals, bacterial endotoxins, lipopolysaccharides, inflammatory markers, etc. Undoubtedly, alcohol-induced gut microbiota imbalance stimulates dysbiosis, disrupts the intestinal barrier function, and trigger immune as well as inflammatory responses which further aggravate hepatic injury. Since currently available drugs to mitigate liver disorders have significant side effects, hence, probiotics have been widely researched to alleviate alcohol-associated liver diseases and to improve liver health. A broad range of probiotic bacteria like Lactobacillus, Bifidobacteria, Escherichia coli, Sacchromyces, and Lactococcus are used to reduce or halt the progression of alcohol-associated liver diseases. Several underlying mechanisms, including alteration of the gut microbiome, modulation of intestinal barrier function and immune response, reduction in the level of endotoxins, and bacterial translocation, have been implicated through which probiotics can effectively suppress the occurrence of alcohol-induced liver disorders. This review addresses the therapeutic applications of probiotics in the treatment of alcohol-associated liver diseases. Novel insights into the mechanisms by which probiotics prevent alcohol-associated liver diseases have also been elaborated.
Collapse
Affiliation(s)
- Garima Mishra
- Pharmaceutical Chemistry Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Pradeep Singh
- Pharmaceutical Chemistry Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Mulugeta Molla
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Yohannes Shumet Yimer
- Social Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | | | - Phool Chandra
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | | | - Samuel Berihun Dagnew
- Clinical Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Abraham Nigussie Assefa
- Social Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Amien Ewunetie
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
18
|
Bicknell B, Liebert A, Borody T, Herkes G, McLachlan C, Kiat H. Neurodegenerative and Neurodevelopmental Diseases and the Gut-Brain Axis: The Potential of Therapeutic Targeting of the Microbiome. Int J Mol Sci 2023; 24:9577. [PMID: 37298527 PMCID: PMC10253993 DOI: 10.3390/ijms24119577] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The human gut microbiome contains the largest number of bacteria in the body and has the potential to greatly influence metabolism, not only locally but also systemically. There is an established link between a healthy, balanced, and diverse microbiome and overall health. When the gut microbiome becomes unbalanced (dysbiosis) through dietary changes, medication use, lifestyle choices, environmental factors, and ageing, this has a profound effect on our health and is linked to many diseases, including lifestyle diseases, metabolic diseases, inflammatory diseases, and neurological diseases. While this link in humans is largely an association of dysbiosis with disease, in animal models, a causative link can be demonstrated. The link between the gut and the brain is particularly important in maintaining brain health, with a strong association between dysbiosis in the gut and neurodegenerative and neurodevelopmental diseases. This link suggests not only that the gut microbiota composition can be used to make an early diagnosis of neurodegenerative and neurodevelopmental diseases but also that modifying the gut microbiome to influence the microbiome-gut-brain axis might present a therapeutic target for diseases that have proved intractable, with the aim of altering the trajectory of neurodegenerative and neurodevelopmental diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, autism spectrum disorder, and attention-deficit hyperactivity disorder, among others. There is also a microbiome-gut-brain link to other potentially reversible neurological diseases, such as migraine, post-operative cognitive dysfunction, and long COVID, which might be considered models of therapy for neurodegenerative disease. The role of traditional methods in altering the microbiome, as well as newer, more novel treatments such as faecal microbiome transplants and photobiomodulation, are discussed.
Collapse
Affiliation(s)
- Brian Bicknell
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
| | - Ann Liebert
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Thomas Borody
- Centre for Digestive Diseases, Five Dock, NSW 2046, Australia;
| | - Geoffrey Herkes
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Craig McLachlan
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
| | - Hosen Kiat
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW 2109, Australia
- ANU College of Health and Medicine, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
19
|
Chai Y, Huang Z, Shen X, Lin T, Zhang Y, Feng X, Mao Q, Liang Y. Microbiota Regulates Pancreatic Cancer Carcinogenesis through Altered Immune Response. Microorganisms 2023; 11:1240. [PMID: 37317214 PMCID: PMC10221276 DOI: 10.3390/microorganisms11051240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
The microbiota is present in many parts of the human body and plays essential roles. The most typical case is the occurrence and development of cancer. Pancreatic cancer (PC), one of the most aggressive and lethal types of cancer, has recently attracted the attention of researchers. Recent research has revealed that the microbiota regulates PC carcinogenesis via an altered immune response. Specifically, the microbiota, in several sites, including the oral cavity, gastrointestinal tract, and pancreatic tissue, along with the numerous small molecules and metabolites it produces, influences cancer progression and treatment by activating oncogenic signaling, enhancing oncogenic metabolic pathways, altering cancer cell proliferation, and triggering chronic inflammation that suppresses tumor immunity. Diagnostics and treatments based on or in combination with the microbiota offer novel insights to improve efficiency compared with existing therapies.
Collapse
Affiliation(s)
- Yihan Chai
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Zhengze Huang
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Xuqiu Shen
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Tianyu Lin
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Yiyin Zhang
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Xu Feng
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Qijiang Mao
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou 310016, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou 310028, China
| | - Yuelong Liang
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou 310028, China
| |
Collapse
|
20
|
Xu X, Lubomski M, Holmes AJ, Sue CM, Davis RL, Muller S, Yang JYH. NEMoE: a nutrition aware regularized mixture of experts model to identify heterogeneous diet-microbiome-host health interactions. MICROBIOME 2023; 11:51. [PMID: 36918961 PMCID: PMC10015776 DOI: 10.1186/s40168-023-01475-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Unrevealing the interplay between diet, the microbiome, and the health state could enable the design of personalized intervention strategies and improve the health and well-being of individuals. A common approach to this is to divide the study population into smaller cohorts based on dietary preferences in the hope of identifying specific microbial signatures. However, classification of patients based solely on diet is unlikely to reflect the microbiome-host health relationship or the taxonomic microbiome makeup. RESULTS We present a novel approach, the Nutrition-Ecotype Mixture of Experts (NEMoE) model, for establishing associations between gut microbiota and health state that accounts for diet-specific cohort variability using a regularized mixture of experts model framework with an integrated parameter sharing strategy to ensure data-driven diet-cohort identification consistency across taxonomic levels. The success of our approach was demonstrated through a series of simulation studies, in which NEMoE showed robustness with regard to parameter selection and varying degrees of data heterogeneity. Further application to real-world microbiome data from a Parkinson's disease cohort revealed that NEMoE is capable of not only improving predictive performance for Parkinson's Disease but also for identifying diet-specific microbial signatures of disease. CONCLUSION In summary, NEMoE can be used to uncover diet-specific relationships between nutritional-ecotype and patient health and to contextualize precision nutrition for different diseases. Video Abstract.
Collapse
Affiliation(s)
- Xiangnan Xu
- Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, NSW, Australia
- School of Mathematics and Statistics, The University of Sydney, Camperdown, Sydney, NSW, Australia
| | - Michal Lubomski
- Department of Neurology, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, Australia
- Department of Neurogenetics, Kolling Institute, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, St Leonards, NSW, Australia
- The University of Notre Dame Australia, School of Medicine, Sydney, NSW, Australia
| | - Andrew J Holmes
- Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, NSW, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, Sydney, NSW, Australia
| | - Carolyn M Sue
- Department of Neurology, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, Australia
- Department of Neurogenetics, Kolling Institute, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Ryan L Davis
- Department of Neurogenetics, Kolling Institute, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Samuel Muller
- School of Mathematics and Statistics, The University of Sydney, Camperdown, Sydney, NSW, Australia
- Department of Mathematics and Statistics, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jean Y H Yang
- Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, NSW, Australia.
- School of Mathematics and Statistics, The University of Sydney, Camperdown, Sydney, NSW, Australia.
- Laboratory of Data Discovery for Health Limited (D24H), Science Park, Hong Kong, SAR, China.
| |
Collapse
|
21
|
Ladda B, Jantararussamee C, Pradidarcheep W, Kasorn A, Matsathit U, Taweechotipatr M. Anti-Inflammatory and Gut Microbiota Modulating Effects of Probiotic Lactobacillus paracasei MSMC39-1 on Dextran Sulfate Sodium-Induced Colitis in Rats. Nutrients 2023; 15:nu15061388. [PMID: 36986118 PMCID: PMC10051883 DOI: 10.3390/nu15061388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Probiotics have been shown to possess several properties, depending on the strain. Some probiotics have important roles in preventing infection and balancing the immune system due to the interaction between the intestinal mucosa and cells in the immune system. This study aimed to examine the properties of three probiotic strains using the tumor necrosis factor-alpha (TNF-α) inhibition test in colorectal adenocarcinoma cells (Caco-2 cells). It was revealed that the viable cells and heat-killed cells of the probiotic L. paracasei strain MSMC39-1 dramatically suppressed TNF-α secretion in Caco-2 cells. The strongest strains were then chosen to treat rats with colitis induced by dextran sulfate sodium (DSS). Viable cells of the probiotic L. paracasei strain MSMC39-1 reduced aspartate transaminase and alanine transaminase in the serum and significantly inhibited TNF-α secretion in the colon and liver tissues. Treatment with the probiotic L. paracasei strain MSMC39-1 alleviated the colon and liver histopathology in DSS-induced colitis rats. Furthermore, supplementation with probiotic L. paracasei strain MSMC39-1 increased the genus Lactobacillus and boosted the other beneficial bacteria in the gut. Thus, the probiotic L. paracasei strain MSMC39-1 exhibited an anti-inflammation effect in the colon and modulated the gut microbiota.
Collapse
Affiliation(s)
- Boonyarut Ladda
- Center of Excellence in Probiotics, Srinakharinwirot University, Bangkok 10110, Thailand
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | | | - Wisuit Pradidarcheep
- Center of Excellence in Probiotics, Srinakharinwirot University, Bangkok 10110, Thailand
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Anongnard Kasorn
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
| | - Udomlak Matsathit
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Malai Taweechotipatr
- Center of Excellence in Probiotics, Srinakharinwirot University, Bangkok 10110, Thailand
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
- Correspondence: ; Tel.: +66-2649-5393
| |
Collapse
|
22
|
Temel HY, Kaymak Ö, Kaplan S, Bahcivanci B, Gkoutos GV, Acharjee A. Role of microbiota and microbiota-derived short-chain fatty acids in PDAC. Cancer Med 2023; 12:5661-5675. [PMID: 36205023 PMCID: PMC10028056 DOI: 10.1002/cam4.5323] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive lethal diseases among other cancer types. Gut microbiome and its metabolic regulation play a crucial role in PDAC. Metabolic regulation in the gut is a complex process that involves microbiome and microbiome-derived short-chain fatty acids (SCFAs). SCFAs regulate inflammation, as well as lipid and glucose metabolism, through different pathways. This review aims to summarize recent developments in PDAC in the context of gut and oral microbiota and their associations with short-chain fatty acid (SCFA). In addition to this, we discuss possible therapeutic applications using microbiota in PDAC.
Collapse
Affiliation(s)
- Hülya Yılmaz Temel
- Department of Bioengineering, Faculty of EngineeringEge UniversityIzmirTurkey
| | - Öznur Kaymak
- Department of Bioengineering, Faculty of EngineeringEge UniversityIzmirTurkey
| | - Seren Kaplan
- Department of Bioengineering, Faculty of EngineeringEge UniversityIzmirTurkey
| | - Basak Bahcivanci
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUK
| | - Georgios V. Gkoutos
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUK
- National Institute for Health Research Surgical Reconstruction, Queen Elizabeth Hospital BirminghamBirminghamUK
- MRC Health Data Research UK (HDR UK)BirminghamUK
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUK
- National Institute for Health Research Surgical Reconstruction, Queen Elizabeth Hospital BirminghamBirminghamUK
- MRC Health Data Research UK (HDR UK)BirminghamUK
| |
Collapse
|
23
|
Philips CA, Ahamed R, Abduljaleel JK, Rajesh S, Augustine P. Identification and Analysis of Gut Microbiota and Functional Metabolism in Decompensated Cirrhosis with Infection. J Clin Transl Hepatol 2023; 11:15-25. [PMID: 36406325 PMCID: PMC9647106 DOI: 10.14218/jcth.2021.00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/05/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Intestinal dysbiosis play a role in the adverse outcomes of sepsis and septic shock. However, variations in bacterial diversity and microbiota-related functional metabolic alterations within the gut microbiome in decompensated cirrhosis (DC) patients with infection remain unknown. METHODS We conducted 16-srRNA sequencing on stool samples (n=51: sepsis, 27/no sepsis, 24) collected from consecutive DC patients upon admission. Bacterial diversity, significant taxa, and respective metabolic profiling were performed based on subgroup comparisons. Conet/Cytoscape was utilized to identify significant non-random patterns of bacterial copresence and mutual exclusion for clinical events. RESULTS Genera associated with pathogenicity in conditions of immune exhaustion (Corynebacterium, Lautropia) were predominant in patients with sepsis. Metabolic pathways associated with oxidative stress and endotoxemia [lipopolysaccharide (LPS) synthesis and sulfur relay] were significantly upregulated in sepsis. Specific taxa were associated with sites of infection in DC patients. Protective oxidant pathways that increase glutathione were upregulated in those without sepsis. Gammaproteobacteria family of sulfur-metabolizing bacteria, exaggeration of orally predominant pathogens (Prevotella), and pathways of severe LPS-related hyperinflammatory stress were notable in those with interleukin-6 levels >1,000 pg/dL. Pathogenic genera related to an immune deficient state was significant in DC with ≥2 infection episodes. Megamonas was associated with survival during the same admission. CONCLUSIONS Specific gut microbiota and their metabolites were associated with sepsis and related events in patients with DC. Identifying beneficial strains that reduce immune exhaustion and supplementation of favorable metabolites could improve therapeutics for DC and sepsis, for which larger prospective, well controlled population-based studies remain an unmet need.
Collapse
Affiliation(s)
- Cyriac Abby Philips
- Clinical and Translational Hepatology, Monarch Liver Laboratory, The Liver Institute, Center of Excellence in GI Sciences, Rajagiri Hospital, Aluva, Kerala, India
- Correspondence to: Cyriac Abby Philips, Clinical and Translational Hepatology, The Liver Institute, Center of Excellence in GI Sciences, Ground Floor, Phase-II, Rajagiri Hospital, Chunangamvely, Aluva, Kerala 683112, India. ORCID: https://orcid.org/0000-0002-9587-336X. Tel: +484-290-5000 (Ext. 4049), Fax: +484-290-5000, E-mail:
| | - Rizwan Ahamed
- Gastroenterology and Advanced GI Endoscopy, Center for Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, Kerala, India
| | - Jinsha K.P. Abduljaleel
- Gastroenterology and Advanced GI Endoscopy, Center for Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, Kerala, India
| | - Sasidharan Rajesh
- Diagnostic and Interventional Gastroenterology and Hepatology, Center for Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, Kerala, India
| | - Philip Augustine
- Gastroenterology and Advanced GI Endoscopy, Center for Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, Kerala, India
| |
Collapse
|
24
|
Charles A, Thomas RM. The Influence of the microbiome on the innate immune microenvironment of solid tumors. Neoplasia 2023; 37:100878. [PMID: 36696837 PMCID: PMC9879786 DOI: 10.1016/j.neo.2023.100878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
Cancer remains a leading cause of death despite many advances in medical and surgical therapy. In recent decades, the investigation for novel therapeutic strategies with greater efficacy and reduced side effects has led to a deeper understanding of the relationship between the microbiome and the immune system in the context of cancer. The ability of the immune system to detect and kill cancer is now recognized to be greatly influenced by the microbial ecosystem of the host. While most of these studies, as well as currently used immunotherapeutics, focus on the adaptive immune system, this minimizes the impact of the innate immune system in cancer surveillance and its regulation by the host microbiome. In this review, known influences of the microbiome on the innate immune cells in the tumor microenvironment will be discussed in the context of individual innate immune cells. Current and needed areas of investigation will highlight the field and its potential impact in the clinical treatment of solid malignancies.
Collapse
Affiliation(s)
- Angel Charles
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ryan M. Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA,Corresponding author at: University of Florida, Department of Surgery, PO Box 100109, Gainesville, FL 32610, USA
| |
Collapse
|
25
|
Naseri K, Dabiri H, Olfatifar M, Shahrbaf MA, Yadegar A, Soheilian-Khorzoghi M, Sadeghi A, Saadati S, Rostami-Nejad M, Verma AK, Zali MR. Evaluation of gut microbiota of iranian patients with celiac disease, non-celiac wheat sensitivity, and irritable bowel syndrome: are there any similarities? BMC Gastroenterol 2023; 23:15. [PMID: 36647022 PMCID: PMC9841652 DOI: 10.1186/s12876-023-02649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND AIMS Individuals with celiac disease (CD), non-celiac wheat sensitivity (NCWS), and irritable bowel syndrome (IBS), show overlapping clinical symptoms and experience gut dysbiosis. A limited number of studies so far compared the gut microbiota among these intestinal conditions. This study aimed to investigate the similarities in the gut microbiota among patients with CD, NCWS, and IBS in comparison to healthy controls (HC). MATERIALS AND METHODS In this prospective study, in total 72 adult subjects, including CD (n = 15), NCWS (n = 12), IBS (n = 30), and HC (n = 15) were recruited. Fecal samples were collected from each individual. A quantitative real-time PCR (qPCR) test using 16S ribosomal RNA was conducted on stool samples to assess the relative abundance of Firmicutes, Bacteroidetes, Bifidobacterium spp., and Lactobacillus spp. RESULTS In all groups, Firmicutes and Lactobacillus spp. had the highest and lowest relative abundance respectively. The phylum Firmicutes had a higher relative abundance in CD patients than other groups. On the other hand, the phylum Bacteroidetes had the highest relative abundance among healthy subjects but the lowest in patients with NCWS. The relative abundance of Bifidobacterium spp. was lower in subjects with CD (P = 0.035) and IBS (P = 0.001) compared to the HCs. Also, the alteration of Firmicutes to Bacteroidetes ratio (F/B ratio) was statistically significant in NCWS and CD patients compared to the HCs (P = 0.05). CONCLUSION The principal coordinate analysis (PCoA), as a powerful multivariate analysis, suggested that the investigated gut microbial profile of patients with IBS and NCWS share more similarities to the HCs. In contrast, patients with CD had the most dissimilarity compared to the other groups in the context of the studied gut microbiota.
Collapse
Affiliation(s)
- Kaveh Naseri
- grid.1017.70000 0001 2163 3550School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC Australia
| | - Hossein Dabiri
- grid.411600.2Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Olfatifar
- grid.444830.f0000 0004 0384 871XGastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Amin Shahrbaf
- grid.411600.2Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- grid.411600.2Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Soheilian-Khorzoghi
- grid.411600.2Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- grid.411600.2Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeede Saadati
- grid.411600.2Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- grid.411600.2Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anil K. Verma
- grid.7010.60000 0001 1017 3210Celiac Disease Research Laboratory, Department of Pediatrics, Università Politecnica Delle Marche, 60123 Ancona, Italy
| | - Mohammad Reza Zali
- grid.411600.2Celiac Disease Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Jia S, Li J, Yu B, Li M, Cui B. Improvement of myocardial injury and gut microbiota disturbance in type 2 diabetic mice by inulin with various degrees of polymerization. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Zuccotti G, D'Auria E. Biotics in pediatrics: where we stand. Minerva Pediatr (Torino) 2022; 74:629-631. [PMID: 36655926 DOI: 10.23736/s2724-5276.22.07039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Enza D'Auria
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy -
| |
Collapse
|
28
|
Li S, Yang M, Ji L, Fan H. A multi-omics machine learning framework in predicting the recurrence and metastasis of patients with pancreatic adenocarcinoma. Front Microbiol 2022; 13:1032623. [PMID: 36406449 PMCID: PMC9669652 DOI: 10.3389/fmicb.2022.1032623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/17/2022] [Indexed: 10/15/2023] Open
Abstract
Local recurrence and distant metastasis are the main causes of death in patients with pancreatic adenocarcinoma (PDAC). Microbial content in PDAC metastasis is still not well-characterized. Here, the tissue microbiome was comprehensively compared between metastatic and non-metastatic PDAC patients. We found that the pancreatic tissue microbiome of metastatic patients was significantly different from that of non-metastatic patients. Further, 10 potential bacterial biomarkers (Kurthia, Gulbenkiania, Acetobacterium and Planctomyces etc.) were identified by differential analysis. Meanwhile, significant differences in expression patterns across multiple omics (lncRNA, miRNA, and mRNA) of PDAC patients were found. The highest accuracy was achieved when these 10 bacterial biomarkers were used as features to predict recurrence or metastasis in PDAC patients, with an AUC of 0.815. Finally, the recurrence and metastasis in PDAC patients were associated with reduced survival and this association was potentially driven by the 10 biomarkers we identified. Our studies highlight the association between the tissue microbiome and recurrence or metastasis of pancreatic adenocarcioma patients, as well as the survival of patients.
Collapse
Affiliation(s)
- Shenming Li
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Nephrology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Min Yang
- School of Electrical and Information Engineering, Anhui University of Technology, Ma’anshan, Anhui, China
- Genesis Beijing Co., Ltd., Beijing, China
| | - Lei Ji
- Genesis Beijing Co., Ltd., Beijing, China
| | - Hua Fan
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Paudel D, Uehara O, Giri S, Yoshida K, Morikawa T, Kitagawa T, Matsuoka H, Miura H, Toyofuku A, Kuramitsu Y, Ohta T, Kobayashi M, Abiko Y. Effect of psychological stress on the oral-gut microbiota and the potential oral-gut-brain axis. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:365-375. [DOI: 10.1016/j.jdsr.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
|
30
|
Ferravante C, Arslan‐Gatz BS, Dell'Annunziata F, Palumbo D, Lamberti J, Alexandrova E, Di Rosa D, Strianese O, Giordano A, Palo L, Giurato G, Salzano FA, Galdiero M, Weisz A, Franci G, Rizzo F, Folliero V. Dynamics of nasopharyngeal tract phageome and association with disease severity and age of patients during three waves of COVID-19. J Med Virol 2022; 94:5567-5573. [PMID: 35831579 PMCID: PMC9349744 DOI: 10.1002/jmv.27998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 12/15/2022]
Abstract
In December 2019, several patients were hospitalized and diagnosed with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which subsequently led to a global pandemic. To date, there are no studies evaluating the relationship between the respiratory phageome and the SARS-CoV-2 infection. The current study investigated the phageome profiles in the nasopharyngeal swabs collected from 55 patients during the three different waves of coronavirus disease 2019 (COVID-19) in the Campania Region (Southern Italy). Data obtained from the taxonomic profiling show that phage families belonging to the order Caudovirales have a high abundance in the patient samples. Moreover, the severity of the COVID-19 infection seems to be correlated with the phage abundance.
Collapse
Affiliation(s)
- Carlo Ferravante
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana', Laboratory of Molecular Medicine and GenomicsUniversity of SalernoBaronissiItaly
| | - Berin S. Arslan‐Gatz
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | | | - Domenico Palumbo
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana', Laboratory of Molecular Medicine and GenomicsUniversity of SalernoBaronissiItaly
| | - Jessica Lamberti
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana', Laboratory of Molecular Medicine and GenomicsUniversity of SalernoBaronissiItaly
| | - Elena Alexandrova
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana', Laboratory of Molecular Medicine and GenomicsUniversity of SalernoBaronissiItaly
| | - Domenico Di Rosa
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana', Laboratory of Molecular Medicine and GenomicsUniversity of SalernoBaronissiItaly
| | - Oriana Strianese
- Genome Research Center for Health ‐ CRGSCampus of Medicine ‐ University of SalernoBaronissiItaly
| | - Alessandro Giordano
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana', Laboratory of Molecular Medicine and GenomicsUniversity of SalernoBaronissiItaly
| | - Luigi Palo
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana', Laboratory of Molecular Medicine and GenomicsUniversity of SalernoBaronissiItaly
| | - Giorgio Giurato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana', Laboratory of Molecular Medicine and GenomicsUniversity of SalernoBaronissiItaly,Genome Research Center for Health ‐ CRGSCampus of Medicine ‐ University of SalernoBaronissiItaly
| | - Francesco A. Salzano
- Department of Medicine, Surgery and DentistryUniversity of SalernoBaronissiItaly
| | - Massimiliano Galdiero
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Alessandro Weisz
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana', Laboratory of Molecular Medicine and GenomicsUniversity of SalernoBaronissiItaly,Genome Research Center for Health ‐ CRGSCampus of Medicine ‐ University of SalernoBaronissiItaly,Medical Genomics Program, AOU ‘S. Giovanni di Dio e Ruggi d'Aragona’University of SalernoSalernoItaly
| | - Gianluigi Franci
- Department of Medicine, Surgery and DentistryUniversity of SalernoBaronissiItaly
| | - Francesca Rizzo
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana', Laboratory of Molecular Medicine and GenomicsUniversity of SalernoBaronissiItaly,Genome Research Center for Health ‐ CRGSCampus of Medicine ‐ University of SalernoBaronissiItaly
| | - Veronica Folliero
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| |
Collapse
|
31
|
Intraintestinal Analysis of the Functional Activity of Microbiomes and Its Application to the Common Marmoset Intestine. mSystems 2022; 7:e0052022. [PMID: 36005400 PMCID: PMC9601136 DOI: 10.1128/msystems.00520-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The intestinal microbiome is closely related to host health, and metatranscriptomic analysis can be used to assess the functional activity of microbiomes by quantifying microbial gene expression levels, helping elucidate the interactions between the microbiome and the environment. However, the functional changes in the microbiome along the host intestinal tract remain unknown, and previous analytical methods have limitations, such as potentially overlooking unknown genes due to dependence on existing databases. The objective of this study is to develop a computational pipeline combined with next-generation sequencing for spatial covariation analysis of the functional activity of microbiomes at multiple intestinal sites (biogeographic locations) within the same individual. This method reconstructs a reference metagenomic sequence across multiple intestinal sites and integrates the metagenome and metatranscriptome, allowing the gene expression levels of the microbiome, including unknown bacterial genes, to be compared among multiple sites. When this method was applied to metatranscriptomic analysis in the intestinal tract of common marmosets, a New World monkey, the reconstructed metagenome covered most of the expressed genes and revealed that the differences in microbial gene expression among the cecum, transverse colon, and feces were more dynamic and sensitive to environmental shifts than the abundances of the genes. In addition, metatranscriptomic profiling at three intestinal sites of the same individual enabled covariation analysis incorporating spatial relevance, accurately predicting the function of a total of 10,856 unknown genes. Our findings demonstrate that our proposed analytical method captures functional changes in microbiomes at the gene resolution level. IMPORTANCE We developed an analysis method that integrates metagenomes and metatranscriptomes from multiple intestinal sites to elucidate how microbial function varies along the intestinal tract. This method enables spatial covariation analysis of the functional activity of microbiomes and accurate identification of gene expression changes among intestinal sites, including changes in the expression of unknown bacterial genes. Moreover, we applied this method to the investigation of the common marmoset intestine, which is anatomically and pharmacologically similar to that of humans. Our findings indicate the expression pattern of the microbiome varies in response to changes in the internal environment along the intestinal tract, and this microbial change may affect the intestinal environment.
Collapse
|
32
|
Brief overview of dietary intake, some types of gut microbiota, metabolic markers and research opportunities in sample of Egyptian women. Sci Rep 2022; 12:17291. [PMID: 36241870 PMCID: PMC9981617 DOI: 10.1038/s41598-022-21056-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/22/2022] [Indexed: 01/10/2023] Open
Abstract
Metabolic syndrome (MetS) is a phenotype caused by the interaction of host intrinsic factors such as genetics and gut microbiome, and extrinsic factors such as diet and lifestyle. To demonstrate the interplay of intestinal microbiota with obesity, MetS markers, and some dietary ingredients among samples of Egyptian women. This study was a cross-sectional one that included 115 Egyptian women; 82 were obese (59 without MetS and 23 with MetS) and 33 were normal weight. All participants were subjected to anthropometric assessment, 24 h dietary recall, laboratory evaluation of liver enzymes (AST and ALT), leptin, short chain fatty acids (SCFA), C-reactive protein, fasting blood glucose, insulin, and lipid profile, in addition to fecal microbiota analysis for Lactobacillus, Bifidobacteria, Firmicutes, and Bacteroid. Data showed that the obese women with MetS had the highest significant values of the anthropometric and the biochemical parameters. Obese MetS women consumed a diet high in calories, protein, fat, and carbohydrate, and low in fiber and micronutrients. The Bacteroidetes and Firmicutes were the abundant bacteria among the different gut microbiota, with low Firmicutes/Bacteroidetes ratio, and insignificant differences between the obese with and without MetS and normal weight women were reported. Firmicutes/Bacteroidetes ratio significantly correlated positively with total cholesterol and LDL-C and negatively with SCFA among obese women with MetS. Findings of this study revealed that dietary factors, dysbiosis, and the metabolic product short chain fatty acids have been implicated in causing metabolic defects.
Collapse
|
33
|
Chadchan SB, Singh V, Kommagani R. Female reproductive dysfunctions and the gut microbiota. J Mol Endocrinol 2022; 69:R81-R94. [PMID: 35900833 PMCID: PMC10031513 DOI: 10.1530/jme-21-0238] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/08/2022]
Abstract
The gut microbiome is considered an endocrine organ that can influence distant organs and associated biological pathways. Recent advances suggest that gut microbial homeostasis is essential for reproductive health and that perturbations in the gut microbiota can lead to reproductive pathologies. This review provides an updated overview of the relationship between the gut microbiome and female reproductive diseases. Specifically, we highlight the most recent findings on the gut microbiome in gynecological pathologies including polycystic ovarian syndrome, endometriosis, and endometrial cancer. Most studies revealed associations between altered gut microbial compositions and these reproductive diseases, though few have suggested cause-effect relationships. Future studies should focus on determining the molecular mechanisms underlying associations between gut microbiota and reproductive diseases. Understanding this bidirectional relationship could lead to the development of novel and effective strategies to prevent, diagnose, and treat female reproductive organ-related diseases.
Collapse
Affiliation(s)
- Sangappa B. Chadchan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vertika Singh
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ramakrishna Kommagani
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
34
|
Biazzo M, Allegra M, Deidda G. Clostridioides difficile and neurological disorders: New perspectives. Front Neurosci 2022; 16:946601. [PMID: 36203814 PMCID: PMC9530032 DOI: 10.3389/fnins.2022.946601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Despite brain physiological functions or pathological dysfunctions relying on the activity of neuronal/non-neuronal populations, over the last decades a plethora of evidence unraveled the essential contribution of the microbial populations living and residing within the gut, called gut microbiota. The gut microbiota plays a role in brain (dys)functions, and it will become a promising valuable therapeutic target for several brain pathologies. In the present mini-review, after a brief overview of the role of gut microbiota in normal brain physiology and pathology, we focus on the role of the bacterium Clostridioides difficile, a pathogen responsible for recurrent and refractory infections, in people with neurological diseases, summarizing recent correlative and causative evidence in the scientific literature and highlighting the potential of microbiota-based strategies targeting this pathogen to ameliorate not only gastrointestinal but also the neurological symptoms.
Collapse
Affiliation(s)
- Manuele Biazzo
- The BioArte Limited, Life Sciences Park, San Gwann, Malta
- SienabioACTIVE, University of Siena, Siena, Italy
| | - Manuela Allegra
- Neuroscience Institute, National Research Council (IN-CNR), Padua, Italy
| | - Gabriele Deidda
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- *Correspondence: Gabriele Deidda
| |
Collapse
|
35
|
Chatterjee G, Negi S, Basu S, Faintuch J, O'Donovan A, Shukla P. Microbiome systems biology advancements for natural well-being. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155915. [PMID: 35568180 DOI: 10.1016/j.scitotenv.2022.155915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Throughout the years all data from epidemiological, physiological and omics have suggested that the microbial communities play a considerable role in modulating human health. The population of microorganisms residing in the human intestine collectively known as microbiota presents a genetic repertoire that is higher in magnitude than the human genome. They play an essential role in host immunity and neuronal signaling. Rapid enhancement of sequence based screening and development of humanized gnotobiotic model has sparked a great deal of interest among scientists to probe the dynamic interactions of the commensal bacteria. This review focuses on systemic analysis of the gut microbiome to decipher the complexity of the host-microbe intercommunication and gives a special emphasis on the evolution of targeted precision medicine through microbiome engineering. In addition, we have also provided a comprehensive description of how interconnection between metabolism and biochemical reactions in a specific organism can be obtained from a metabolic network or a flux balance analysis and combining multiple datasets helps in the identification of a particular metabolite. The review highlights how genetic modification of the critical components and programming the resident microflora can be employed for targeted precision medicine. Inspite of the ongoing debate on the utility of gut microbiome we have explored on the probable new therapeutic avenues like FMT (Fecal microbiota transplant) can be utilized. This review also recapitulates integrating human-relevant 3D cellular models coupled with computational models and the metadata obtained from interventional and epidemiological studies may decipher the complex interactome of diet-microbiota-disease pathophysiology. In addition, it will also open new avenues for the development of therapeutics derived from microbiome or implementation of personalized nutrition. In addition, the identification of biomarkers can also help towards the development of new diagnostic tools and eventually will lead to strategic management of the disease. Inspite of the ongoing debate on the utility of the gut microbiome we have explored how probable new therapeutic avenues like FMT (Fecal microbiota transplant) can be utilized. This review also summarises integrating human-relevant 3D cellular models coupled with computational models and the metadata obtained from interventional and epidemiological studies may decipher the complex interactome of diet- microbiota-disease pathophysiology. In addition, it will also open new avenues for the development of therapeutics derived from the microbiome or implementation of personalized nutrition. In addition, the identification of biomarkers can also help towards the development of new diagnostic tools and eventually will lead to strategic management of disease.
Collapse
Affiliation(s)
| | - Sangeeta Negi
- NMC Biolab, New Mexico Consortium, Los Alamos, NM, USA; Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Supratim Basu
- NMC Biolab, New Mexico Consortium, Los Alamos, NM, USA
| | - Joel Faintuch
- Department of Gastroenterology, Sao Paulo University Medical School, São Paulo, SP 01246-903, Brazil
| | | | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
36
|
Sensing Host Health: Insights from Sensory Protein Signature of the Metagenome. Appl Environ Microbiol 2022; 88:e0059622. [PMID: 35862686 PMCID: PMC9361814 DOI: 10.1128/aem.00596-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The human microbiota, which comprises an ensemble of taxonomically and functionally diverse but often mutually cooperating microorganisms, benefits its host by shaping the host immunity, energy harvesting, and digestion of complex carbohydrates as well as production of essential nutrients. Dysbiosis in the human microbiota, especially the gut microbiota, has been reported to be linked to several diseases and metabolic disorders. Recent studies have further indicated that tracking these dysbiotic variations could potentially be exploited as biomarkers of disease states. However, the human microbiota is not geography agnostic, and hence a taxonomy-based (microbiome) biomarker for disease diagnostics has certain limitations. In comparison, (microbiome) function-based biomarkers are expected to have a wider applicability. Given that (i) the host physiology undergoes certain changes in the course of a disease and (ii) host-associated microbial communities need to adapt to this changing microenvironment of their host, we hypothesized that signatures emanating from the abundance of bacterial proteins associated with the signal transduction system (herein referred to as sensory proteins [SPs]) might be able to distinguish between healthy and diseased states. To test this hypothesis, publicly available metagenomic data sets corresponding to three diverse health conditions, namely, colorectal cancer, type 2 diabetes mellitus, and schizophrenia, were analyzed. Results demonstrated that SP signatures (derived from host-associated metagenomic samples) indeed differentiated among healthy individual and patients suffering from diseases of various severities. Our finding was suggestive of the prospect of using SP signatures as early biomarkers for diagnosing the onset and progression of multiple diseases and metabolic disorders. IMPORTANCE The composition of the human microbiota, a collection of host-associated microbes, has been shown to differ among healthy and diseased individuals. Recent studies have investigated whether tracking these variations could be exploited for disease diagnostics. It has been noted that compared to microbial taxonomies, the ensemble of functional proteins encoded by microbial genes are less likely to be affected by changes in ethnicity and dietary preferences. These functions are expected to help the microbe adapt to changing environmental conditions. Thus, healthy individuals might harbor a different set of genes than diseased individuals. To test this hypothesis, we analyzed metagenomes from healthy and diseased individuals for signatures of a particular group of proteins called sensory proteins (SP), which enable the bacteria to sense and react to changes in their microenvironment. Results demonstrated that SP signatures indeed differentiate among healthy individuals and those suffering from diseases of various severities.
Collapse
|
37
|
Drovetski SV, Schmidt BK, Lai JE, Gross MS, Hladik ML, Matterson KO, Karouna-Renier NK. Exposure to crop production alters cecal prokaryotic microbiota, inflates virulome and resistome in wild prairie grouse. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119418. [PMID: 35526643 DOI: 10.1016/j.envpol.2022.119418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Chemically intensive crop production depletes wildlife food resources, hinders animal development, health, survival, and reproduction, and it suppresses wildlife immune systems, facilitating emergence of infectious diseases with excessive mortality rates. Gut microbiota is crucial for wildlife's response to environmental stressors. Its composition and functionality are sensitive to diet changes and environmental pollution associated with modern crop production. In this study we use shotgun metagenomics (median 8,326,092 sequences/sample) to demonstrate that exposure to modern crop production detrimentally affects cecal microbiota of sharp-tailed grouse (Tympanuchus phasianellus: 9 exposed, 18 unexposed and greater prairie chickens (T. cupido; 11, 11). Exposure to crop production had greater effect on microbiota richness (t = 6.675, P < 0.001) and composition (PERMANOVA r2 = 0.212, P = 0.001) than did the host species (t = 4.762, P < 0.001; r2 = 0.070, P = 0.001) or their interaction (t = 3.449; r2 = 0.072, both P = 0.001), whereas sex and age had no effect. Although microbiota richness was greater in exposed (T. cupido chao1 = 152.8 ± 20.5; T. phasianellus 115.3 ± 17.1) than in unexposed (102.9 ± 15.1 and 101.1 ± 17.2, respectively) birds, some beneficial bacteria dropped out of exposed birds' microbiota or declined and were replaced by potential pathogens. Exposed birds also had higher richness and load of virulome (mean ± standard deviation; T. cupido 24.8 ± 10.0 and 10.1 ± 5.5, respectively; T. phasianellus 13.4 ± 6.8/4.9 ± 2.8) and resistome (T. cupido 46.8 ± 11.7/28.9 ± 10.2, T. phasianellus 38.3 ± 16.7/18.9 ± 14.2) than unexposed birds (T. cupido virulome: 14.2 ± 13.5, 4.5 ± 4.2; T. cupido resistome: 31.6 ± 20.2 and 13.1 ± 12.0; T. phasianellus virulome: 5.2 ± 4.7 and 1.4 ± 1.5; T. phasianellus resistome: 13.7 ± 16.1 and 4.0 ± 6.4).
Collapse
Affiliation(s)
- Serguei V Drovetski
- U.S. Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge, Beltsville, MD, 20705, USA.
| | - Brian K Schmidt
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA.
| | - Jonas E Lai
- U.S. Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge, Beltsville, MD, 20705, USA.
| | - Michael S Gross
- U.S. Geological Survey, California Water Science Center, Sacramento, CA, 95819, USA.
| | - Michelle L Hladik
- U.S. Geological Survey, California Water Science Center, Sacramento, CA, 95819, USA.
| | - Kenan O Matterson
- U.S. Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge, Beltsville, MD, 20705, USA.
| | - Natalie K Karouna-Renier
- U.S. Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge, Beltsville, MD, 20705, USA.
| |
Collapse
|
38
|
Thangaleela S, Sivamaruthi BS, Kesika P, Bharathi M, Chaiyasut C. Role of the Gut-Brain Axis, Gut Microbial Composition, Diet, and Probiotic Intervention in Parkinson's Disease. Microorganisms 2022; 10:1544. [PMID: 36013962 PMCID: PMC9412530 DOI: 10.3390/microorganisms10081544] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second-most prevalent neurodegenerative or neuropsychiatric disease, affecting 1% of seniors worldwide. The gut microbiota (GM) is one of the key access controls for most diseases and disorders. Disturbance in the GM creates an imbalance in the function and circulation of metabolites, resulting in unhealthy conditions. Any dysbiosis could affect the function of the gut, consequently disturbing the equilibrium in the intestine, and provoking pro-inflammatory conditions in the gut lumen, which send signals to the central nervous system (CNS) through the vagus enteric nervous system, possibly disturbing the blood-brain barrier. The neuroinflammatory conditions in the brain cause accumulation of α-syn, and progressively develop PD. An important aspect of understanding and treating the disease is access to broad knowledge about the influence of dietary supplements on GM. Probiotics are live microorganisms which, when administered in adequate amounts, confer a health benefit on the host. Probiotic supplementation improves the function of the CNS, and improves the motor and non-motor symptoms of PD. Probiotic supplementation could be an adjuvant therapeutic method to manage PD. This review summarizes the role of GM in health, the GM-brain axis, the pathogenesis of PD, the role of GM and diet in PD, and the influence of probiotic supplementation on PD. The study encourages further detailed clinical trials in PD patients with probiotics, which aids in determining the involvement of GM, intestinal mediators, and neurological mediators in the treatment or management of PD.
Collapse
Affiliation(s)
- Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (P.K.); (M.B.)
| | | | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (P.K.); (M.B.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Muruganantham Bharathi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (P.K.); (M.B.)
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (P.K.); (M.B.)
| |
Collapse
|
39
|
Biazzo M, Deidda G. Fecal Microbiota Transplantation as New Therapeutic Avenue for Human Diseases. J Clin Med 2022; 11:jcm11144119. [PMID: 35887883 PMCID: PMC9320118 DOI: 10.3390/jcm11144119] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
The human body is home to a variety of micro-organisms. Most of these microbial communities reside in the gut and are referred to as gut microbiota. Over the last decades, compelling evidence showed that a number of human pathologies are associated with microbiota dysbiosis, thereby suggesting that the reinstatement of physiological microflora balance and composition might ameliorate the clinical symptoms. Among possible microbiota-targeted interventions, pre/pro-biotics supplementations were shown to provide effective results, but the main limitation remains in the limited microbial species available as probiotics. Differently, fecal microbiota transplantation involves the transplantation of a solution of fecal matter from a donor into the intestinal tract of a recipient in order to directly change the recipient's gut microbial composition aiming to confer a health benefit. Firstly used in the 4th century in traditional Chinese medicine, nowadays, it has been exploited so far to treat recurrent Clostridioides difficile infections, but accumulating data coming from a number of clinical trials clearly indicate that fecal microbiota transplantation may also carry the therapeutic potential for a number of other conditions ranging from gastrointestinal to liver diseases, from cancer to inflammatory, infectious, autoimmune diseases and brain disorders, obesity, and metabolic syndrome. In this review, we will summarize the commonly used preparation and delivery methods, comprehensively review the evidence obtained in clinical trials in different human conditions and discuss the variability in the results and the pivotal importance of donor selection. The final aim is to stimulate discussion and open new therapeutic perspectives among experts in the use of fecal microbiota transplantation not only in Clostridioides difficile infection but as one of the first strategies to be used to ameliorate a number of human conditions.
Collapse
Affiliation(s)
- Manuele Biazzo
- The BioArte Limited, Life Sciences Park, Triq San Giljan, SGN 3000 San Gwann, Malta;
- SienabioACTIVE, University of Siena, Via Aldo Moro 1, 53100 Siena, Italy
| | - Gabriele Deidda
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padova, Italy
- Correspondence: ; Tel.: +39-049-827-6125
| |
Collapse
|
40
|
Amara S, Yang LV, Tiriveedhi V, Muzaffar M. Complex Role of Microbiome in Pancreatic Tumorigenesis: Potential Therapeutic Implications. Cells 2022; 11:1900. [PMID: 35741028 PMCID: PMC9221309 DOI: 10.3390/cells11121900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is the fourth leading cause of cancer-related mortality with limited diagnostic and therapeutic options. Although immunotherapy has shown promise in the treatment of several cancers, its role in pancreatic cancer is rather limited. Several studies have focused on determining the role of the tumor microenvironment with cancer-cell-intrinsic events and tumor-infiltrating immune cellular properties. However, in the past decade, there has been emerging research aimed at delineating the role of the host microbiome, including the metabolites from microbes and host responses, on pancreatic tumorigenesis. Importantly, there is emerging evidence suggesting the beneficial role of a gut microbiome transplant to improve immunotherapeutic outcomes in cancer patients. In this review, we summarize the recent understanding of the role of the microbiome in pancreatic cancer progression, along with its clinical diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Suneetha Amara
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (L.V.Y.); (M.M.)
| | - Li V. Yang
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (L.V.Y.); (M.M.)
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA;
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37212, USA
| | - Mahvish Muzaffar
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (L.V.Y.); (M.M.)
| |
Collapse
|
41
|
Different Exercise Intensity Associates with Varied Disease Biomarkers of Guts-Microbiome Genera Change in Rats: Preliminary Study. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The microbiome, a community of microorganisms in the body, is currently used as a biomarker in many disease prognoses. Prevotella, Turicibacte, Bacteroides, Firmicutes/Bacteroidetes are frequently used as a biomarker for rheumatoid arthritis, colorectal cancer, and obesity in ordered. The amount of gut microbiota can be changed depending on various factors such as diet, lifestyle, and exercise. However, there is unclear on how the exercise is really effective to be a disease prevention. The present study aims to investigate the different exercise intensities on gut microbiome abundance changes that could be used as a disease biomarker. Eighteen Sprague-Dawley rats were arranged (n=6 per group) into 3 exercise intensity levels on treadmills including non-exercise group, high -exercise group (20 – 25 m/min for 60 min), and light-exercise group (10 – 15 m/min for 60 min). Rats were weighted every 2 days and stools were collected and preserved in DNA/RNA shield each week. The bacterial 16S rDNA of microbiome in feces samples was sequenced and analyzed. After week eighth of the interventions, from operational taxonomic unit (OTUs) abundance, we found that the relative abundance in bacterial genera in Prevotella and Firmicutes/Bacteroidetes were significantly correlated with the experiment timepoints in different exercise intensities (Pearson’s correlation, P<0.05) compare to other genera. The exercise intensities and exercise durations can affect the relative abundance in the bacteria genus which the abundance genus Prevotella and Firmicutes/Bacteroidetes could be used as a new standard biomarker in exercise as a disease prevention and exercise prescriptions. From the funding limitations, we could conclude the research results based on our data and statistic. Future research should utilize a longer investigation period.
Collapse
|
42
|
Interaction of Gut Microbiota with Endocrine Homeostasis and Thyroid Cancer. Cancers (Basel) 2022; 14:cancers14112656. [PMID: 35681636 PMCID: PMC9179244 DOI: 10.3390/cancers14112656] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023] Open
Abstract
The gut microbiota plays a crucial role in healthy individuals as well as in patients with thyroid diseases, including thyroid cancer. Although the prognosis of differentiated thyroid cancer is predictable, that of some poorly differentiated, medullary, and anaplastic thyroid cancers remains unpromising. As the interaction between the gut microbiota and thyroid cancer has been gradually revealed in recent years, the thyroid gland, a crucial endocrine organ, is shown to have a complex connection with the body's metabolism and is involved in inflammation, autoimmunity, or cancer progression. Dysbiosis of the gut microbiota and its metabolites can influence changes in hormone levels and susceptibility to thyroid cancer through multiple pathways. In this review, we focus on the interactions of the gut microbiota with thyroid function diseases and thyroid cancer. In addition, we also discuss some potential new strategies for the prevention and treatment of thyroid disease and thyroid cancer. Our aim is to provide some possible clinical applications of gut microbiota markers for early diagnosis, treatment, and postoperative management of thyroid cancer. These findings were used to establish a better multi-disciplinary treatment and prevention management strategy and to individualize the treatment of patients in relation to their gut microbiota composition and pathological characteristics.
Collapse
|
43
|
Jingushi K, Kawashima A, Saito T, Kanazawa T, Motooka D, Kimura T, Mita M, Yamamoto A, Uemura T, Yamamichi G, Okada K, Tomiyama E, Koh Y, Matsushita M, Kato T, Hatano K, Uemura M, Tsujikawa K, Wada H, Nonomura N. Circulating extracellular vesicles carrying Firmicutes reflective of the local immune status may predict clinical response to pembrolizumab in urothelial carcinoma patients. Cancer Immunol Immunother 2022; 71:2999-3011. [DOI: 10.1007/s00262-022-03213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
|
44
|
Gacesa R, Kurilshikov A, Vich Vila A, Sinha T, Klaassen MAY, Bolte LA, Andreu-Sánchez S, Chen L, Collij V, Hu S, Dekens JAM, Lenters VC, Björk JR, Swarte JC, Swertz MA, Jansen BH, Gelderloos-Arends J, Jankipersadsing S, Hofker M, Vermeulen RCH, Sanna S, Harmsen HJM, Wijmenga C, Fu J, Zhernakova A, Weersma RK. Environmental factors shaping the gut microbiome in a Dutch population. Nature 2022; 604:732-739. [PMID: 35418674 DOI: 10.1038/s41586-022-04567-7] [Citation(s) in RCA: 310] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/18/2022] [Indexed: 12/22/2022]
Abstract
The gut microbiome is associated with diverse diseases1-3, but a universal signature of a healthy or unhealthy microbiome has not been identified, and there is a need to understand how genetics, exposome, lifestyle and diet shape the microbiome in health and disease. Here we profiled bacterial composition, function, antibiotic resistance and virulence factors in the gut microbiomes of 8,208 Dutch individuals from a three-generational cohort comprising 2,756 families. We correlated these to 241 host and environmental factors, including physical and mental health, use of medication, diet, socioeconomic factors and childhood and current exposome. We identify that the microbiome is shaped primarily by the environment and cohabitation. Only around 6.6% of taxa are heritable, whereas the variance of around 48.6% of taxa is significantly explained by cohabitation. By identifying 2,856 associations between the microbiome and health, we find that seemingly unrelated diseases share a common microbiome signature that is independent of comorbidities. Furthermore, we identify 7,519 associations between microbiome features and diet, socioeconomics and early life and current exposome, with numerous early-life and current factors being significantly associated with microbiome function and composition. Overall, this study provides a comprehensive overview of gut microbiome and the underlying impact of heritability and exposures that will facilitate future development of microbiome-targeted therapies.
Collapse
Affiliation(s)
- R Gacesa
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - A Kurilshikov
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - A Vich Vila
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - T Sinha
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - M A Y Klaassen
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - L A Bolte
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - S Andreu-Sánchez
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.,Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - L Chen
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.,Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - V Collij
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - S Hu
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - J A M Dekens
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.,Center of Development and Innovation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - V C Lenters
- University Medical Centre Utrecht, Julius Center for Health Sciences and Primary Care, Utrecht, The Netherlands
| | - J R Björk
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - J C Swarte
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - M A Swertz
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.,University of Groningen and University Medical Center Groningen, Genomics Coordination Center, Groningen, The Netherlands
| | - B H Jansen
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - J Gelderloos-Arends
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - S Jankipersadsing
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - M Hofker
- Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - R C H Vermeulen
- University Medical Centre Utrecht, Julius Center for Health Sciences and Primary Care, Utrecht, The Netherlands.,Utrecht University, Institute for Risk Assessment Sciences (IRAS), Department of Population Health Sciences, Utrecht, The Netherlands
| | - S Sanna
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.,Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Cagliari, Italy
| | - H J M Harmsen
- Department of Medical Microbiology and Infection prevention, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - C Wijmenga
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - J Fu
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands. .,Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands.
| | - A Zhernakova
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.
| | - R K Weersma
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands.
| |
Collapse
|
45
|
Li Y, Cao W, Gao NL, Zhao XM, Chen WH. Consistent Alterations of Human Fecal Microbes After Transplantation into Germ-free Mice. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:382-393. [PMID: 34118462 PMCID: PMC9684084 DOI: 10.1016/j.gpb.2020.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 04/21/2020] [Accepted: 09/08/2020] [Indexed: 01/05/2023]
Abstract
Fecal microbiota transplantation (FMT) of human fecal samples into germ-free (GF) mice is useful for establishing causal relationships between the gut microbiota and human phenotypes. However, due to the intrinsic differences between human and mouse intestines and the different diets of the two organisms, it may not be possible to replicate human phenotypes in mice through FMT; similarly, treatments that are effective in mouse models may not be effective in humans. In this study, we aimed to identify human gut microbes that undergo significant and consistent changes (i.e., in relative abundances) after transplantation into GF mice in multiple experimental settings. We collected 16S rDNA-seq data from four published studies and analyzed the gut microbiota profiles from 1713 human-mouse pairs. Strikingly, on average, we found that only 47% of the human gut microbes could be re-established in mice at the species level, among which more than 1/3 underwent significant changes (referred to as "variable taxa"). Most of the human gut microbes that underwent significant changes were consistent across multiple human-mouse pairs and experimental settings. Consequently, about 1/3 of human samples changed their enterotypes, i.e., significant changes in their leading species after FMT. Mice fed with a controlled diet showed a lower enterotype change rate (23.5%) than those fed with a noncontrolled diet (49.0%), suggesting a possible solution for rescue. Most of the variable taxa have been reported to be implicated in human diseases, with some recognized as the causative species. Our results highlight the challenges of using a mouse model to replicate human gut microbiota-associated phenotypes, provide useful information for researchers using mice in gut microbiota studies, and call for additional validations after FMT. An online database named FMT-DB is publicly available at http://fmt2mice.humangut.info/#/.
Collapse
Affiliation(s)
- Yanze Li
- MOE Key Laboratory of Molecular Biophysics, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenming Cao
- MOE Key Laboratory of Molecular Biophysics, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Na L Gao
- MOE Key Laboratory of Molecular Biophysics, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai 200433, China,Corresponding authors.
| | - Wei-Hua Chen
- MOE Key Laboratory of Molecular Biophysics, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China,College of Life Science, Henan Normal University, Xinxiang 453007, China,Corresponding authors.
| |
Collapse
|
46
|
König RS, Albrich WC, Kahlert CR, Bahr LS, Löber U, Vernazza P, Scheibenbogen C, Forslund SK. The Gut Microbiome in Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS). Front Immunol 2022; 12:628741. [PMID: 35046929 PMCID: PMC8761622 DOI: 10.3389/fimmu.2021.628741] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Myalgic encephalomyelitis (ME) or Chronic Fatigue Syndrome (CFS) is a neglected, debilitating multi-systemic disease without diagnostic marker or therapy. Despite evidence for neurological, immunological, infectious, muscular and endocrine pathophysiological abnormalities, the etiology and a clear pathophysiology remains unclear. The gut microbiome gained much attention in the last decade with manifold implications in health and disease. Here we review the current state of knowledge on the interplay between ME/CFS and the microbiome, to identify potential diagnostic or interventional approaches, and propose areas where further research is needed. We iteratively selected and elaborated on key theories about a correlation between microbiome state and ME/CFS pathology, developing further hypotheses. Based on the literature we hypothesize that antibiotic use throughout life favours an intestinal microbiota composition which might be a risk factor for ME/CFS. Main proposed pathomechanisms include gut dysbiosis, altered gut-brain axis activity, increased gut permeability with concomitant bacterial translocation and reduced levels of short-chain-fatty acids, D-lactic acidosis, an abnormal tryptophan metabolism and low activity of the kynurenine pathway. We review options for microbiome manipulation in ME/CFS patients including probiotic and dietary interventions as well as fecal microbiota transplantations. Beyond increasing gut permeability and bacterial translocation, specific dysbiosis may modify fermentation products, affecting peripheral mitochondria. Considering the gut-brain axis we strongly suspect that the microbiome may contribute to neurocognitive impairments of ME/CFS patients. Further larger studies are needed, above all to clarify whether D-lactic acidosis and early-life antibiotic use may be part of ME/CFS etiology and what role changes in the tryptophan metabolism might play. An association between the gut microbiome and the disease ME/CFS is plausible. As causality remains unclear, we recommend longitudinal studies. Activity levels, bedridden hours and disease progression should be compared to antibiotic exposure, drug intakes and alterations in the composition of the microbiota. The therapeutic potential of fecal microbiota transfer and of targeted dietary interventions should be systematically evaluated.
Collapse
Affiliation(s)
- Rahel S König
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Werner C Albrich
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Christian R Kahlert
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Lina Samira Bahr
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, A Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Löber
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, A Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany.,Host-Microbiome Factors in Cardiovascular Disease, Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Pietro Vernazza
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sofia K Forslund
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, A Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany.,Host-Microbiome Factors in Cardiovascular Disease, Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| |
Collapse
|
47
|
Tamargo A, Molinero N, Reinosa JJ, Alcolea-Rodriguez V, Portela R, Bañares MA, Fernández JF, Moreno-Arribas MV. PET microplastics affect human gut microbiota communities during simulated gastrointestinal digestion, first evidence of plausible polymer biodegradation during human digestion. Sci Rep 2022; 12:528. [PMID: 35017590 PMCID: PMC8752627 DOI: 10.1038/s41598-021-04489-w] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Microplastics (MPs) are a widely recognized global problem due to their prevalence in natural environments and the food chain. However, the impact of microplastics on human microbiota and their possible biotransformation in the gastrointestinal tract have not been well reported. To evaluate the potential risks of microplastics at the digestive level, completely passing a single dose of polyethylene terephthalate (PET) through the gastrointestinal tract was simulated by combining a harmonized static model and the dynamic gastrointestinal simgi model, which recreates the different regions of the digestive tract in physiological conditions. PET MPs started several biotransformations in the gastrointestinal tract and, at the colon, appeared to be structurally different from the original particles. We report that the feeding with microplastics alters human microbial colonic community composition and hypothesize that some members of the colonic microbiota could adhere to MPs surface promoting the formation of biofilms. The work presented here indicates that microplastics are indeed capable of digestive-level health effects. Considering this evidence and the increasing exposure to microplastics in consumer foods and beverages, the impact of plastics on the functionality of the gut microbiome and their potential biodegradation through digestion and intestinal bacteria merits critical investigation.
Collapse
Affiliation(s)
- Alba Tamargo
- Institute of Food Science Research, CIAL, CSIC-UAM, c/Nicolás Cabrera, 9, 28049, Madrid, Spain
| | - Natalia Molinero
- Institute of Food Science Research, CIAL, CSIC-UAM, c/Nicolás Cabrera, 9, 28049, Madrid, Spain
| | - Julián J Reinosa
- Instituto de Cerámica y Vidrio, CSIC, c/Kelsen, 5, 28049, Madrid, Spain
- Encapsulae S.L, c/Lituania 10, 12006, Castellón de la Plana, Spain
| | | | - Raquel Portela
- Institute of Catalysis and Petrochemistry, CSIC, C/Marie Curie, 2, 28049, Madrid, Spain
| | - Miguel A Bañares
- Institute of Catalysis and Petrochemistry, CSIC, C/Marie Curie, 2, 28049, Madrid, Spain
| | - Jose F Fernández
- Instituto de Cerámica y Vidrio, CSIC, c/Kelsen, 5, 28049, Madrid, Spain
| | | |
Collapse
|
48
|
Prochazkova P, Roubalova R, Dvorak J, Kreisinger J, Hill M, Tlaskalova-Hogenova H, Tomasova P, Pelantova H, Cermakova M, Kuzma M, Bulant J, Bilej M, Smitka K, Lambertova A, Holanova P, Papezova H. The intestinal microbiota and metabolites in patients with anorexia nervosa. Gut Microbes 2022; 13:1-25. [PMID: 33779487 PMCID: PMC8018350 DOI: 10.1080/19490976.2021.1902771] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Brain-gut microbiota interactions are intensively studied in connection with various neurological and psychiatric diseases. While anorexia nervosa (AN) pathophysiology is not entirely clear, it is presumably linked to microbiome dysbiosis. We aimed to elucidate the gut microbiota contribution in AN disease pathophysiology. We analyzed the composition and diversity of the gut microbiome of patients with AN (bacteriome and mycobiome) from stool samples before and after renourishment, and compared them to healthy controls. Further, levels of assorted neurotransmitters and short-chain fatty acids (SCFA) were analyzed in stool samples by MS and NMR, respectively. Biochemical, anthropometric, and psychometric profiles were assessed. The bacterial alpha-diversity parameter analyses revealed only increased Chao 1 index in patients with AN before the realimentation, reflecting their interindividual variation. Subsequently, core microbiota depletion signs were observed in patients with AN. Overrepresented OTUs (operation taxonomic units) in patients with AN taxonomically belonged to Alistipes, Clostridiales, Christensenellaceae, and Ruminococcaceae. Underrepresented OTUs in patients with AN were Faecalibacterium, Agathobacter, Bacteroides, Blautia, and Lachnospira. Patients exhibited greater interindividual variation in the gut bacteriome, as well as in metagenome content compared to controls, suggesting altered bacteriome functions. Patients had decreased levels of serotonin, GABA, dopamine, butyrate, and acetate in their stool samples compared to controls. Mycobiome analysis did not reveal significant differences in alpha diversity and fungal profile composition between patients with AN and healthy controls, nor any correlation of the fungal composition with the bacterial profile. Our results show the changed profile of the gut microbiome and its metabolites in patients with severe AN. Although therapeutic partial renourishment led to increased body mass index and improved psychometric parameters, SCFA, and neurotransmitter profiles, as well as microbial community compositions, did not change substantially during the hospitalization period, which can be potentially caused by only partial weight recovery.
Collapse
Affiliation(s)
- Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic,CONTACT Petra Prochazkova Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 4, Prague14220, Czech Republic
| | - Radka Roubalova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Dvorak
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Kreisinger
- Faculty of Science, Department of Zoology, Charles University, Prague, Czech Republic
| | - Martin Hill
- Department of Steroids and Proteohormones, Institute of Endocrinology, Prague, Czech Republic
| | - Helena Tlaskalova-Hogenova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Tomasova
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic,4th Medical Department, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague, Czech Republic
| | - Helena Pelantova
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Cermakova
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Kuzma
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Josef Bulant
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic,Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martin Bilej
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kvido Smitka
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czech Republic,First Faculty of Medicine, Institute of Pathological Physiology, Charles University, Prague, Czech Republic
| | - Alena Lambertova
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Holanova
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hana Papezova
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
49
|
Wu M, Yang Y, Fan Y, Guo S, Li T, Gu M, Zhang T, Gao H, Liu R, Yin C. Characteristics of the Intestinal Flora of TPOAb-Positive Women With Subclinical Hypothyroidism in the Second Trimester of Pregnancy: A Single-Center Prospective Cohort Study. Front Cell Infect Microbiol 2022; 12:794170. [PMID: 35663464 PMCID: PMC9160305 DOI: 10.3389/fcimb.2022.794170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Pregnant women are at high risk of developing subclinical hypothyroidism (SCH), and anti-thyroid peroxidase antibody (TPOAb) positivity can further inhibit thyroxine synthesis. Emerging evidence indicates that intestinal flora can modulate metabolic and immune homeostasis. The characteristics of intestinal flora of TPOAb-positive women with SCH in their second trimester of pregnancy have not been reported. This single-center prospective observational cohort study investigated gut microbial composition and metabolic function using sequencing of the 16S rRNA gene in fecal samples from 75 TPOAb-positive women with SCH and 90 TPOAb-negative women with SCH during their second trimester of pregnancy. Women were treated with no levothyroxine (LT4), low-dose LT4 (≤50ug/d), or high-dose LT4 (>50ug/d). Taxonomic analysis showed Firmicutes and Bacteroidetes were the dominant phyla, followed by Actinobacteria and Proteobacteria. Faecalibacterium, Bacteroides, Prevotella 9, Bifidobacterium, Subdoligranulum, Lachnospira, and Megamonas were the predominant genera. The intestinal flora of TPOAb-positive women with SCH who received no LT4 was characterized by bacterial amplicon sequence variants (ASVs)/operational taxonomic units (OTUs) enriched in the genus Subdoligranulum. The intestinal flora of TPOAb-positive women with SCH who received low-dose or high-dose LT4 were characterized by bacterial ASVs/OTUs depleted of the species Ruminococcus sp._or Bacteroides massiliensis, respectively. A total of 19 metabolic functions of intestinal flora, mainly involving lipid and amino acid metabolism, discriminated TPOAb-positive and TPOAb-negative women with SCH. Our study suggests that there are differences in the composition and metabolic function of intestinal flora of TPOAb-positive and TPOAb-negative women with SCH treated with different doses of LT4 in the second trimester of pregnancy. The findings provide insight into intestinal flora as novel targets for the treatment of TPOAb-positive women with SCH during pregnancy.
Collapse
Affiliation(s)
- Min Wu
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yuxi Yang
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yali Fan
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Shan Guo
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Tianhe Li
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Muqing Gu
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Tingting Zhang
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Huimin Gao
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Ruixia Liu
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- *Correspondence: Chenghong Yin, ; Ruixia Liu,
| | - Chenghong Yin
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- *Correspondence: Chenghong Yin, ; Ruixia Liu,
| |
Collapse
|
50
|
Santarossa S, Sitarik AR, Johnson CC, Li J, Lynch SV, Ownby DR, Ramirez A, Yong GLM, Cassidy-Bushrow AE. Associations of physical activity with gut microbiota in pre-adolescent children. Phys Act Nutr 2021; 25:24-37. [PMID: 35152621 PMCID: PMC8843867 DOI: 10.20463/pan.2021.0023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/03/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To determine whether physical activity (PA), primarily the recommended 60 minutes of moderate-to-vigorous PA, is associated with gut bacterial microbiota in 10-year-old children. METHODS The Block Physical Activity Screener, which provides minutes/day PA variables, was used to determine whether the child met the PA recommendations. 16S rRNA sequencing was performed on stool samples from the children to profile the composition of their gut bacterial microbiota. Differences in alpha diversity metrics (richness, Pielou's evenness, and Faith's phylogenetic diversity) by PA were determined using linear regression, whereas beta diversity (unweighted and weighted UniFrac) relationships were assessed using PERMANOVA. Taxon relative abundance differentials were determined using DESeq2. RESULTS The analytic sample included 321 children with both PA and 16S rRNA sequencing data (mean age [SD] =10.2 [0.8] years; 54.2% male; 62.9% African American), where 189 (58.9%) met the PA recommendations. After adjusting for covariates, meeting the PA recommendations as well as minutes/day PA variables were not significantly associated with gut richness, evenness, or diversity (p ≥ 0.19). However, meeting the PA recommendations (weighted UniFrac R2 = 0.014, p = 0.001) was significantly associated with distinct gut bacterial composition. These compositional differences were partly characterized by increased abundance of Megamonas and Anaerovorax as well as specific Christensenellaceae_R-7_group taxa in children with higher PA. CONCLUSION Children who met the recommendations of PA had altered gut microbiota compositions. Whether this translates to a reduced risk of obesity or associated metabolic diseases is still unclear.
Collapse
Affiliation(s)
- Sara Santarossa
- Department of Public Health Sciences, Henry Ford Health System, Michigan, USA
| | | | | | - Jia Li
- Department of Public Health Sciences, Henry Ford Health System, Michigan, USA
| | - Susan V. Lynch
- Department of Medicine, University of California, California, USA
| | - Dennis R. Ownby
- Department of Pediatrics, Georgia Regents University, Georgia, USA
| | - Alex Ramirez
- Department of Public Health Sciences, Henry Ford Health System, Michigan, USA
- Wayne State University School of Medicine Detroit, Michigan, USA
| | | | | |
Collapse
|