1
|
Tusnim J, Kutuzov P, Grasman JM. In Vitro Models for Peripheral Nerve Regeneration. Adv Healthc Mater 2024; 13:e2401605. [PMID: 39324286 DOI: 10.1002/adhm.202401605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/14/2024] [Indexed: 09/27/2024]
Abstract
Peripheral nerve injury (PNI) resulting in lesions is highly prevalent clinically, but current therapeutic approaches fail to provide satisfactory outcomes in many patients. While peripheral nerves have intrinsic regenerative capacity, the regenerative capabilities of peripheral nerves are often insufficient to restore full functionality. This highlights an unmet need for developing more effective strategies to repair damaged peripheral nerves and improve regenerative success. Consequently, researchers are actively exploring a variety of therapeutic strategies, encompassing the local delivery of trophic factors or bioactive molecules, the design of advanced biomaterials that interact with regenerating axons, and augmentation with nerve guidance conduits or complex prostheses. However, clinical translation of these technologies remains limited, emphasizing the need for continued research on peripheral nerve regeneration modalities that can enhance functional restoration. Experimental models that accurately recapitulate key aspects of peripheral nerve injury and repair biology can accelerate therapeutic development by enabling systematic testing of new techniques. Advancing regenerative therapies for PNI requires bridging the gap between basic science discoveries and clinical application. This review discusses different in vitro models of peripheral nerve injury and repair, including their advantages, limitations, and potential applications.
Collapse
Affiliation(s)
- Jarin Tusnim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Peter Kutuzov
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Jonathan M Grasman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
2
|
Sendetski M, Wedel S, Furutani K, Hahnefeld L, Angioni C, Heering J, Zimmer B, Pierre S, Banica AM, Scholich K, Tunaru S, Geisslinger G, Ji RR, Sisignano M. Oleic acid released by sensory neurons inhibits TRPV1-mediated thermal hypersensitivity via GPR40. iScience 2024; 27:110552. [PMID: 39171292 PMCID: PMC11338150 DOI: 10.1016/j.isci.2024.110552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/17/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
Noxious stimuli activate nociceptive sensory neurons, causing action potential firing and the release of diverse signaling molecules. Several peptides have already been identified to be released by sensory neurons and shown to modulate inflammatory responses and inflammatory pain. However, it is still unclear whether lipid mediators can be released upon sensory neuron activation to modulate intercellular communication. Here, we analyzed the lipid secretome of capsaicin-stimulated nociceptive neurons with LC-HRMS, revealing that oleic acid is strongly released from sensory neurons by capsaicin. We further demonstrated that oleic acid inhibits capsaicin-induced calcium transients in sensory neurons and reverses bradykinin-induced TRPV1 sensitization by a calcineurin (CaN) and GPR40 (FFAR1) dependent pathway. Additionally, oleic acid alleviated zymosan-mediated thermal hypersensitivity via the GPR40, suggesting that the capsaicin-mediated oleic acid release from sensory neurons acts as a protective and feedback mechanism, preventing sensory neurons from nociceptive overstimulation via the GPR40/CaN/TRPV1-axis.
Collapse
Affiliation(s)
- Maksim Sendetski
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
| | - Saskia Wedel
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
| | - Kenta Furutani
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
| | - Lisa Hahnefeld
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
| | - Carlo Angioni
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
| | - Béla Zimmer
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
| | - Sandra Pierre
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
| | - Alexandra-Maria Banica
- Cell Signalling Research Group, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania
| | - Klaus Scholich
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
| | - Sorin Tunaru
- Cell Signalling Research Group, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania
| | - Gerd Geisslinger
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
| | - Ru-Rong Ji
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Marco Sisignano
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
| |
Collapse
|
3
|
Barber S, Gomez-Godinez V, Young J, Wei A, Chen S, Snissarenko A, Chan SS, Wu C, Shi L. Impacts of H 2O 2, SARM1 inhibition, and high NAm concentrations on Huntington's disease laser-induced degeneration. JOURNAL OF BIOPHOTONICS 2024; 17:e202300370. [PMID: 38185916 DOI: 10.1002/jbio.202300370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 01/09/2024]
Abstract
Axonal degeneration is a key component of neurodegenerative diseases such as Huntington's disease (HD), Alzheimer's disease, and amyotrophic lateral sclerosis. Nicotinamide, an NAD+ precursor, has long since been implicated in axonal protection and reduction of degeneration. However, studies on nicotinamide (NAm) supplementation in humans indicate that NAm has no protective effect. Sterile alpha and toll/interleukin receptor motif-containing protein 1 (SARM1) regulates several cell responses to axonal damage and has been implicated in promoting neuronal degeneration. SARM1 inhibition seems to result in protection from neuronal degeneration while hydrogen peroxide has been implicated in oxidative stress and axonal degeneration. The effects of laser-induced axonal damage in wild-type and HD dorsal root ganglion cells treated with NAm, hydrogen peroxide (H2O2), and SARM1 inhibitor DSRM-3716 were investigated and the cell body width, axon width, axonal strength, and axon shrinkage post laser-induced injury were measured.
Collapse
Affiliation(s)
- Sophia Barber
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, USA
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Veronica Gomez-Godinez
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, USA
| | - Joy Young
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, USA
| | - Abigail Wei
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, USA
| | - Sarah Chen
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, USA
| | - Anna Snissarenko
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Sze Sze Chan
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Chengbiao Wu
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, USA
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Linda Shi
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
4
|
Pinzi L, Conze C, Bisi N, Torre GD, Soliman A, Monteiro-Abreu N, Trushina NI, Krusenbaum A, Dolouei MK, Hellwig A, Christodoulou MS, Passarella D, Bakota L, Rastelli G, Brandt R. Quantitative live cell imaging of a tauopathy model enables the identification of a polypharmacological drug candidate that restores physiological microtubule interaction. Nat Commun 2024; 15:1679. [PMID: 38396035 PMCID: PMC10891143 DOI: 10.1038/s41467-024-45851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Tauopathies such as Alzheimer's disease are characterized by aggregation and increased phosphorylation of the microtubule-associated protein tau. Tau's pathological changes are closely linked to neurodegeneration, making tau a prime candidate for intervention. We developed an approach to monitor pathological changes of aggregation-prone human tau in living neurons. We identified 2-phenyloxazole (PHOX) derivatives as putative polypharmacological small molecules that interact with tau and modulate tau kinases. We found that PHOX15 inhibits tau aggregation, restores tau's physiological microtubule interaction, and reduces tau phosphorylation at disease-relevant sites. Molecular dynamics simulations highlight cryptic channel-like pockets crossing tau protofilaments and suggest that PHOX15 binding reduces the protofilament's ability to adopt a PHF-like conformation by modifying a key glycine triad. Our data demonstrate that live-cell imaging of a tauopathy model enables screening of compounds that modulate tau-microtubule interaction and allows identification of a promising polypharmacological drug candidate that simultaneously inhibits tau aggregation and reduces tau phosphorylation.
Collapse
Affiliation(s)
- Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Christian Conze
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Nicolo Bisi
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Gabriele Dalla Torre
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Ahmed Soliman
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Nanci Monteiro-Abreu
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Nataliya I Trushina
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Andrea Krusenbaum
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Maryam Khodaei Dolouei
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Andrea Hellwig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Michael S Christodoulou
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Chemistry, University of Milan, Milan, Italy
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | | | - Lidia Bakota
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Roland Brandt
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany.
- Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany.
- Institute of Cognitive Science, Osnabrück University, Osnabrück, Germany.
| |
Collapse
|
5
|
van der Moolen M, Lovera A, Ersoy F, Mommo S, Loskill P, Cesare P. Cancer-mediated axonal guidance of sensory neurons in a microelectrode-based innervation MPS. Biofabrication 2024; 16:025013. [PMID: 38262053 DOI: 10.1088/1758-5090/ad218a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
Despite recent advances in the field of microphysiological systems (MPSs), availability of models capable of mimicking the interactions between the nervous system and innervated tissues is still limited. This represents a significant challenge in identifying the underlying processes of various pathological conditions, including neuropathic, cardiovascular and metabolic disorders. In this novel study, we introduce a compartmentalized three-dimensional (3D) coculture system that enables physiologically relevant tissue innervation while recording neuronal excitability. By integrating custom microelectrode arrays into tailored glass chips microfabricated via selective laser-etching, we developed an entirely novel class of innervation MPSs (INV-MPS). This INV-MPS allows for manipulation, visualization, and electrophysiological analysis of individual axons innervating complex 3D tissues. Here, we focused on sensory innervation of 3D tumor tissue as a model case study since cancer-induced pain represents a major unmet medical need. The system was compared with existing nociception models and successfully replicated axonal chemoattraction mediated by nerve growth factor (NGF). Remarkably, in the absence of NGF, 3D cancer spheroids cocultured in the adjacent compartment induced sensory neurons to consistently cross the separating barrier and establish fine innervation. Moreover, we observed that crossing sensory fibers could be chemically excited by distal application of known pain-inducing agonists only when cocultured with cancer cells. To our knowledge, this is the first system showcasing morphological and electrophysiological analysis of 3D-innervated tumor tissuein vitro, paving the way for a plethora of studies into innervation-related diseases and improving our understanding of underlying pathophysiology.
Collapse
Affiliation(s)
- Matthijs van der Moolen
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Österbergstr. 3, 72074 Tübingen, Germany
| | - Andrea Lovera
- FEMTOprint SA, Via Industria 3, 6933 Muzzano, Switzerland
| | - Fulya Ersoy
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Österbergstr. 3, 72074 Tübingen, Germany
| | - Sacha Mommo
- FEMTOprint SA, Via Industria 3, 6933 Muzzano, Switzerland
| | - Peter Loskill
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Österbergstr. 3, 72074 Tübingen, Germany
| | - Paolo Cesare
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Österbergstr. 3, 72074 Tübingen, Germany
- Current address: Eurac Research, Institute for Biomedicine, via Volta 13A, 39100 Bolzano, Italy
| |
Collapse
|
6
|
Ahmed O, Ekumi KM, Nardi FV, Maisumu G, Moussawi K, Lazartigues ED, Liang B, Yakoub AM. Stable, neuron-specific gene expression in the mouse brain. J Biol Eng 2024; 18:8. [PMID: 38229168 PMCID: PMC10790494 DOI: 10.1186/s13036-023-00400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024] Open
Abstract
Gene delivery to, and expression in, the mouse brain is important for understanding gene functions in brain development and disease, or testing gene therapies. Here, we describe an approach to express a transgene in the mouse brain in a cell-type-specific manner. We use stereotaxic injection of a transgene-expressing adeno-associated virus into the mouse brain via the intracerebroventricular route. We demonstrate stable and sustained expression of the transgene in neurons of adult mouse brain, using a reporter gene driven by a neuron-specific promoter. This approach represents a rapid, simple, and cost-effective method for global gene expression in the mouse brain, in a cell-type-specific manner, without major surgical interventions. The described method represents a helpful resource for genetically engineering mice to express a therapeutic gene, for gene therapy studies, or to deliver genetic material for genome editing and developing knockout animal models.
Collapse
Affiliation(s)
- Osama Ahmed
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, USA
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND, USA
| | - Kingsley M Ekumi
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND, USA
| | - Francesco V Nardi
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, USA
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND, USA
| | - Gulimiheranmu Maisumu
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, USA
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND, USA
| | - Khaled Moussawi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric D Lazartigues
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Healthcare System, New Orleans, LA, USA
| | - Bo Liang
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND, USA
| | - Abraam M Yakoub
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
7
|
Bornstein B, Watkins B, Passini FS, Blecher R, Assaraf E, Sui XM, Brumfeld V, Tsoory M, Kröger S, Zelzer E. The mechanosensitive ion channel ASIC2 mediates both proprioceptive sensing and spinal alignment. Exp Physiol 2024; 109:135-147. [PMID: 36951012 PMCID: PMC10988735 DOI: 10.1113/ep090776] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/20/2023] [Indexed: 03/24/2023]
Abstract
By translating mechanical forces into molecular signals, proprioceptive neurons provide the CNS with information on muscle length and tension, which is necessary to control posture and movement. However, the identities of the molecular players that mediate proprioceptive sensing are largely unknown. Here, we confirm the expression of the mechanosensitive ion channel ASIC2 in proprioceptive sensory neurons. By combining in vivo proprioception-related functional tests with ex vivo electrophysiological analyses of muscle spindles, we showed that mice lacking Asic2 display impairments in muscle spindle responses to stretch and motor coordination tasks. Finally, analysis of skeletons of Asic2 loss-of-function mice revealed a specific effect on spinal alignment. Overall, we identify ASIC2 as a key component in proprioceptive sensing and a regulator of spine alignment.
Collapse
Affiliation(s)
- Bavat Bornstein
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Bridgette Watkins
- Department of Physiological Genomics, Biomedical CenterLudwig‐Maximilians‐UniversityPlanegg‐MartinsriedGermany
| | - Fabian S. Passini
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Ronen Blecher
- Orthopedic DepartmentAssuta Ashdod University Hospital, Ashdod, Israel, affiliated to Ben Gurion University of the NegevBeer ShebaIsrael
| | - Eran Assaraf
- Department of Orthopedic SurgeryShamir Medical Center, Assaf HaRofeh Campus, Zeffifin, Israel, affiliated to Sackler Faculty of Medicine, Tel Aviv UniversityTel AvivIsrael
| | - Xiao Meng Sui
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| | - Vlad Brumfeld
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| | - Michael Tsoory
- Department of Veterinary ResourcesWeizmann Institute of ScienceRehovotIsrael
| | - Stephan Kröger
- Department of Physiological Genomics, Biomedical CenterLudwig‐Maximilians‐UniversityPlanegg‐MartinsriedGermany
| | - Elazar Zelzer
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
8
|
Westphal JA, Bryan AE, Krutko M, Esfandiari L, Schutte SC, Harris GM. Innervation of an Ultrasound-Mediated PVDF-TrFE Scaffold for Skin-Tissue Engineering. Biomimetics (Basel) 2023; 9:2. [PMID: 38275450 PMCID: PMC11154284 DOI: 10.3390/biomimetics9010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
In this work, electrospun polyvinylidene-trifluoroethylene (PVDF-TrFE) was utilized for its biocompatibility, mechanics, and piezoelectric properties to promote Schwann cell (SC) elongation and sensory neuron (SN) extension. PVDF-TrFE electrospun scaffolds were characterized over a variety of electrospinning parameters (1, 2, and 3 h aligned and unaligned electrospun fibers) to determine ideal thickness, porosity, and tensile strength for use as an engineered skin tissue. PVDF-TrFE was electrically activated through mechanical deformation using low-intensity pulsed ultrasound (LIPUS) waves as a non-invasive means to trigger piezoelectric properties of the scaffold and deliver electric potential to cells. Using this therapeutic modality, neurite integration in tissue-engineered skin substitutes (TESSs) was quantified including neurite alignment, elongation, and vertical perforation into PVDF-TrFE scaffolds. Results show LIPUS stimulation promoted cell alignment on aligned scaffolds. Further, stimulation significantly increased SC elongation and SN extension separately and in coculture on aligned scaffolds but significantly decreased elongation and extension on unaligned scaffolds. This was also seen in cell perforation depth analysis into scaffolds which indicated LIPUS enhanced perforation of SCs, SNs, and cocultures on scaffolds. Taken together, this work demonstrates the immense potential for non-invasive electric stimulation of an in vitro tissue-engineered-skin model.
Collapse
Affiliation(s)
- Jennifer A. Westphal
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (J.A.W.); (M.K.); (L.E.); (S.C.S.)
| | - Andrew E. Bryan
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Maksym Krutko
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (J.A.W.); (M.K.); (L.E.); (S.C.S.)
| | - Leyla Esfandiari
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (J.A.W.); (M.K.); (L.E.); (S.C.S.)
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA
- Department of Electrical and Computer Science, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Stacey C. Schutte
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (J.A.W.); (M.K.); (L.E.); (S.C.S.)
| | - Greg M. Harris
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (J.A.W.); (M.K.); (L.E.); (S.C.S.)
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA;
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45221, USA
| |
Collapse
|
9
|
Yu H, Qin XK, Yin KW, Li ZM, Ni ED, Yang JM, Liu XH, Zhou AJ, Li SJ, Gao TM, Li Y, Li JM. EphB6 deficiency in intestinal neurons promotes tumor growth in colorectal cancer by neurotransmitter GABA signaling. Carcinogenesis 2023; 44:682-694. [PMID: 37294054 DOI: 10.1093/carcin/bgad041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 06/10/2023] Open
Abstract
EphB6 belongs to the receptor tyrosine kinase, whose low expression is associated with shorter survival of colorectal cancer (CRC) patients. But the role and mechanism of EphB6 in the progression of CRC need further study. In addition, EphB6 was mainly expressed in intestinal neurons. But how EphB6 is involved in functions of intestinal neurons has not been known. In our study, we constructed a mouse xenograft model of CRC by injecting CMT93 cells into the rectum of EphB6-deficient mice. We found that the deletion of EphB6 in mice promoted tumor growth of CMT93 cells in a xenograft model of CRC, which was independent of changes in the gut microbiota. Interestingly, inhibition of intestinal neurons by injecting botulinum toxin A into rectum of EphB6-deficient mice could eliminate the promotive effect of EphB6 deficiency on tumor growth in the xenograft model of CRC. Mechanically, the deletion of EphB6 in mice promoted the tumor growth in CRC by increasing GABA in the tumor microenvironment. Furthermore, EphB6 deficiency in mice increased the expression of synaptosomal-associated protein 25 in the intestinal myenteric plexus, which mediated the release of GABA. Our study concluded that EphB6 knockout in mice promotes tumor growth of CMT93 cells in a xenograft model of CRC by modulating GABA release. Our study found a new regulating mechanism of EphB6 on the tumor progression in CRC that is dependent on intestinal neurons.
Collapse
Affiliation(s)
- Hao Yu
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, People's Republic of China
| | - Xiao-Kang Qin
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, People's Republic of China
| | - Kai-Wen Yin
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, People's Republic of China
| | - Zi-Ming Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - En-De Ni
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, People's Republic of China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Xun-Hua Liu
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, People's Republic of China
| | - Ai-Jun Zhou
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, People's Republic of China
| | - Shu-Ji Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Ying Li
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, People's Republic of China
| | - Jian-Ming Li
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, People's Republic of China
- Department of Pathology, Soochow University Medical School, Suzhou 215123, People's Republic of China
| |
Collapse
|
10
|
Klug K, Spitzel M, Hans C, Klein A, Schottmann NM, Erbacher C, Üçeyler N. Endothelial Cell Dysfunction and Hypoxia as Potential Mediators of Pain in Fabry Disease: A Human-Murine Translational Approach. Int J Mol Sci 2023; 24:15422. [PMID: 37895103 PMCID: PMC10607880 DOI: 10.3390/ijms242015422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Fabry disease (FD) is caused by α-galactosidase A (AGAL) enzyme deficiency, leading to globotriaosylceramide accumulation (Gb3) in several cell types. Pain is one of the pathophysiologically incompletely understood symptoms in FD patients. Previous data suggest an involvement of hypoxia and mitochondriopathy in FD pain development at dorsal root ganglion (DRG) level. Using immunofluorescence and quantitative real-time polymerase chain reaction (qRT PCR), we investigated patient-derived endothelial cells (EC) and DRG tissue of the GLA knockout (KO) mouse model of FD. We address the question of whether hypoxia and mitochondriopathy contribute to FD pain pathophysiology. In EC of FD patients (P1 with pain and, P2 without pain), we found dysregulated protein expression of hypoxia-inducible factors (HIF) 1a and HIF2 compared to the control EC (p < 0.01). The protein expression of the HIF downstream target vascular endothelial growth factor A (VEGFA, p < 0.01) was reduced and tube formation was hampered in the P1 EC compared to the healthy EC (p < 0.05). Tube formation ability was rescued by applying transforming growth factor beta (TGFβ) inhibitor SB-431542. Additionally, we found dysregulated mitochondrial fusion/fission characteristics in the P1 and P2 EC (p < 0.01) and depolarized mitochondrial membrane potential in P2 compared to control EC (p < 0.05). Complementary to human data, we found upregulated hypoxia-associated genes in the DRG of old GLA KO mice compared to WT DRG (p < 0.01). At protein level, nuclear HIF1a was higher in the DRG neurons of old GLA KO mice compared to WT mice (p < 0.01). Further, the HIF1a downstream target CA9 was upregulated in the DRG of old GLA KO mice compared to WT DRG (p < 0.01). Similar to human EC, we found a reduction in the vascular characteristics in GLA KO DRG compared to WT (p < 0.05). We demonstrate increased hypoxia, impaired vascular properties, and mitochondrial dysfunction in human FD EC and complementarily at the GLA KO mouse DRG level. Our data support the hypothesis that hypoxia and mitochondriopathy in FD EC and GLA KO DRG may contribute to FD pain development.
Collapse
Affiliation(s)
- Katharina Klug
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
| | - Marlene Spitzel
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
| | - Clara Hans
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
| | - Alexandra Klein
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
| | - Nicole Michelle Schottmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
| | - Christoph Erbacher
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
| | - Nurcan Üçeyler
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
- Würzburg Fabry Center for Interdisciplinary Therapy (FAZIT), University Hospital of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
11
|
Nachnani R, Sepulveda DE, Booth JL, Zhou S, Graziane NM, Raup-Konsavage WM, Vrana KE. Chronic Cannabigerol as an Effective Therapeutic for Cisplatin-Induced Neuropathic Pain. Pharmaceuticals (Basel) 2023; 16:1442. [PMID: 37895913 PMCID: PMC10610438 DOI: 10.3390/ph16101442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Cannabigerol (CBG), derived from the cannabis plant, acts as an acute analgesic in a model of cisplatin-induced peripheral neuropathy (CIPN) in mice. There are no curative, long-lasting treatments for CIPN available to humans. We investigated the ability of chronic CBG to alleviate mechanical hypersensitivity due to CIPN in mice by measuring responses to 7 and 14 days of daily CBG. We found that CBG treatment (i.p.) for 7 and 14 consecutive days significantly reduced mechanical hypersensitivity in male and female mice with CIPN and reduced pain sensitivity up to 60-70% of baseline levels (p < 0.001 for all), 24 h after the last injection. Additionally, we found that daily treatment with CBG did not evoke tolerance and did not incur significant weight change or adverse events. The efficacy of CBG was independent of the estrous cycle phase. Therefore, chronic CBG administration can provide at least 24 h of antinociceptive effect in mice. These findings support the study of CBG as a long-lasting neuropathic pain therapy, which acts without tolerance in both males and females.
Collapse
Affiliation(s)
- Rahul Nachnani
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA; (D.E.S.); (N.M.G.); (K.E.V.)
| | - Diana E. Sepulveda
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA; (D.E.S.); (N.M.G.); (K.E.V.)
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Jennifer L. Booth
- Department of Comparative Medicine, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Shouhao Zhou
- Division of Biostatistics and Bioinformatics, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Nicholas M. Graziane
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA; (D.E.S.); (N.M.G.); (K.E.V.)
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Wesley M. Raup-Konsavage
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA; (D.E.S.); (N.M.G.); (K.E.V.)
| | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA; (D.E.S.); (N.M.G.); (K.E.V.)
| |
Collapse
|
12
|
Middleton RC, Liao K, Liu W, de Couto G, Garcia N, Antes T, Wang Y, Wu D, Li X, Tourtellotte WG, Marbán E. Newt A1 cell-derived extracellular vesicles promote mammalian nerve growth. Sci Rep 2023; 13:11829. [PMID: 37481602 PMCID: PMC10363125 DOI: 10.1038/s41598-023-38671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023] Open
Abstract
Newts have the extraordinary ability to fully regenerate lost or damaged cardiac, neural and retinal tissues, and even amputated limbs. In contrast, mammals lack these broad regenerative capabilities. While the molecular basis of newts' regenerative ability is the subject of active study, the underlying paracrine signaling factors involved remain largely uncharacterized. Extracellular vesicles (EVs) play an important role in cell-to-cell communication via EV cargo-mediated regulation of gene expression patterns within the recipient cells. Here, we report that newt myogenic precursor (A1) cells secrete EVs (A1EVs) that contain messenger RNAs associated with early embryonic development, neuronal differentiation, and cell survival. Exposure of rat primary superior cervical ganglion (SCG) neurons to A1EVs increased neurite outgrowth, facilitated by increases in mitochondrial respiration. Canonical pathway analysis pinpointed activation of NGF/ERK5 signaling in SCG neurons exposed to A1EV, which was validated experimentally. Thus, newt EVs drive neurite growth and complexity in mammalian primary neurons.
Collapse
Affiliation(s)
- Ryan C Middleton
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Ke Liao
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Weixin Liu
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Geoff de Couto
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Nahuel Garcia
- Gecorp, Av Juan Manuel de Rosas 899, San Miguel del Monte, Buenos Aires, Argentina
| | - Travis Antes
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Yizhou Wang
- Applied Genomics, Computation and Translational Core, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Di Wu
- Applied Genomics, Computation and Translational Core, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Xinling Li
- Applied Genomics, Computation and Translational Core, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Warren G Tourtellotte
- Department of Pathology, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA.
| |
Collapse
|
13
|
Rahman MM, Lee JY, Kim YH, Park CK. Epidural and Intrathecal Drug Delivery in Rats and Mice for Experimental Research: Fundamental Concepts, Techniques, Precaution, and Application. Biomedicines 2023; 11:biomedicines11051413. [PMID: 37239084 DOI: 10.3390/biomedicines11051413] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Epidural and intrathecal routes are the most effective drug administration methods for pain management in clinical and experimental medicine to achieve quick results, reduce required drug dosages, and overcome the adverse effects associated with the oral and parenteral routes. Beyond pain management with analgesics, the intrathecal route is more widely used for stem cell therapy, gene therapy, insulin delivery, protein therapy, and drug therapy with agonist, antagonist, or antibiotic drugs in experimental medicine. However, clear information regarding intrathecal and epidural drug delivery in rats and mice is lacking, despite differences from human medicine in terms of anatomical space and proximity to the route of entry. In this study, we discussed and compared the anatomical locations of the epidural and intrathecal spaces, cerebrospinal fluid volume, dorsal root ganglion, techniques and challenges of epidural and intrathecal injections, dosage and volume of drugs, needle and catheter sizes, and the purpose and applications of these two routes in different disease models in rats and mice. We also described intrathecal injection in relation to the dorsal root ganglion. The accumulated information about the epidural and intrathecal delivery routes could contribute to better safety, quality, and reliability in experimental research.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Ji Yeon Lee
- Department of Anesthesiology and Pain Medicine, Gachon University, Gil Medical Center, Incheon 21565, Republic of Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| |
Collapse
|
14
|
Sleigh JN, Villarroel-Campos D, Surana S, Wickenden T, Tong Y, Simkin RL, Vargas JNS, Rhymes ER, Tosolini AP, West SJ, Zhang Q, Yang XL, Schiavo G. Boosting peripheral BDNF rescues impaired in vivo axonal transport in CMT2D mice. JCI Insight 2023; 8:e157191. [PMID: 36928301 PMCID: PMC10243821 DOI: 10.1172/jci.insight.157191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
Gain-of-function mutations in the housekeeping gene GARS1, which lead to the expression of toxic versions of glycyl-tRNA synthetase (GlyRS), cause the selective motor and sensory pathology characterizing Charcot-Marie-Tooth disease (CMT). Aberrant interactions between GlyRS mutants and different proteins, including neurotrophin receptor tropomyosin receptor kinase receptor B (TrkB), underlie CMT type 2D (CMT2D); however, our pathomechanistic understanding of this untreatable peripheral neuropathy remains incomplete. Through intravital imaging of the sciatic nerve, we show that CMT2D mice displayed early and persistent disturbances in axonal transport of neurotrophin-containing signaling endosomes in vivo. We discovered that brain-derived neurotrophic factor (BDNF)/TrkB impairments correlated with transport disruption and overall CMT2D neuropathology and that inhibition of this pathway at the nerve-muscle interface perturbed endosome transport in wild-type axons. Accordingly, supplementation of muscles with BDNF, but not other neurotrophins, completely restored physiological axonal transport in neuropathic mice. Together, these findings suggest that selectively targeting muscles with BDNF-boosting therapies could represent a viable therapeutic strategy for CMT2D.
Collapse
Affiliation(s)
- James N. Sleigh
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
- UK Dementia Research Institute, University College London (UCL), London, United Kingdom
| | - David Villarroel-Campos
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | - Sunaina Surana
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
- UK Dementia Research Institute, University College London (UCL), London, United Kingdom
| | - Tahmina Wickenden
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | - Yao Tong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Rebecca L. Simkin
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | - Jose Norberto S. Vargas
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | - Elena R. Rhymes
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | - Andrew P. Tosolini
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | | | - Qian Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
- UK Dementia Research Institute, University College London (UCL), London, United Kingdom
| |
Collapse
|
15
|
Laraba L, Hillson L, de Guibert JG, Hewitt A, Jaques MR, Tang TT, Post L, Ercolano E, Rai G, Yang SM, Jagger DJ, Woznica W, Edwards P, Shivane AG, Hanemann CO, Parkinson DB. Inhibition of YAP/TAZ-driven TEAD activity prevents growth of NF2-null schwannoma and meningioma. Brain 2023; 146:1697-1713. [PMID: 36148553 PMCID: PMC10115179 DOI: 10.1093/brain/awac342] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/19/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Schwannoma tumours typically arise on the eighth cranial nerve and are mostly caused by loss of the tumour suppressor Merlin (NF2). There are no approved chemotherapies for these tumours and the surgical removal of the tumour carries a high risk of damage to the eighth or other close cranial nerve tissue. New treatments for schwannoma and other NF2-null tumours such as meningioma are urgently required. Using a combination of human primary tumour cells and mouse models of schwannoma, we have examined the role of the Hippo signalling pathway in driving tumour cell growth. Using both genetic ablation of the Hippo effectors YAP and TAZ as well as novel TEAD palmitoylation inhibitors, we show that Hippo signalling may be successfully targeted in vitro and in vivo to both block and, remarkably, regress schwannoma tumour growth. In particular, successful use of TEAD palmitoylation inhibitors in a preclinical mouse model of schwannoma points to their potential future clinical use. We also identify the cancer stem cell marker aldehyde dehydrogenase 1A1 (ALDH1A1) as a Hippo signalling target, driven by the TAZ protein in human and mouse NF2-null schwannoma cells, as well as in NF2-null meningioma cells, and examine the potential future role of this new target in halting schwannoma and meningioma tumour growth.
Collapse
Affiliation(s)
- Liyam Laraba
- Faculty of Heath: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, Devon PL6 8BU, UK
| | - Lily Hillson
- Faculty of Heath: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, Devon PL6 8BU, UK
| | - Julio Grimm de Guibert
- Faculty of Heath: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, Devon PL6 8BU, UK
| | - Amy Hewitt
- Faculty of Heath: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, Devon PL6 8BU, UK
| | - Maisie R Jaques
- Department of Life Sciences, University of Bath, Bath, Somerset BA2 7AY, UK
| | - Tracy T Tang
- Vivace Therapeutics Inc., San Mateo, CA 94403, USA
| | - Leonard Post
- Vivace Therapeutics Inc., San Mateo, CA 94403, USA
| | - Emanuela Ercolano
- Faculty of Heath: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, Devon PL6 8BU, UK
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Shyh-Ming Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Daniel J Jagger
- UCL Ear Institute, University College London, London WC1X 8EE, UK
| | - Waldemar Woznica
- Faculty of Heath: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, Devon PL6 8BU, UK
| | - Philip Edwards
- Department of Cellular and Anatomical Pathology, University Hospitals Plymouth NHS Trust, Derriford, Plymouth, Devon PL6 8DH, UK
| | - Aditya G Shivane
- Department of Cellular and Anatomical Pathology, University Hospitals Plymouth NHS Trust, Derriford, Plymouth, Devon PL6 8DH, UK
| | - C Oliver Hanemann
- Faculty of Heath: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, Devon PL6 8BU, UK
| | - David B Parkinson
- Faculty of Heath: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, Devon PL6 8BU, UK
| |
Collapse
|
16
|
Kumar V, Kingsley D, Perikamana SM, Mogha P, Goodwin CR, Varghese S. Self-assembled innervated vasculature-on-a-chip to study nociception. Biofabrication 2023; 15:10.1088/1758-5090/acc904. [PMID: 36996841 PMCID: PMC10152403 DOI: 10.1088/1758-5090/acc904] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/30/2023] [Indexed: 04/01/2023]
Abstract
Nociceptor sensory neurons play a key role in eliciting pain. An active crosstalk between nociceptor neurons and the vascular system at the molecular and cellular level is required to sense and respond to noxious stimuli. Besides nociception, interaction between nociceptor neurons and vasculature also contributes to neurogenesis and angiogenesis.In vitromodels of innervated vasculature can greatly help delineate these roles while facilitating disease modeling and drug screening. Herein, we report the development of a microfluidic-assisted tissue model of nociception in the presence of microvasculature. The self-assembled innervated microvasculature was engineered using endothelial cells and primary dorsal root ganglion (DRG) neurons. The sensory neurons and the endothelial cells displayed distinct morphologies in presence of each other. The neurons exhibited an elevated response to capsaicin in the presence of vasculature. Concomitantly, increased transient receptor potential cation channel subfamily V member 1 (TRPV1) receptor expression was observed in the DRG neurons in presence of vascularization. Finally, we demonstrated the applicability of this platform for modeling nociception associated with tissue acidosis. While not demonstrated here, this platform could also serve as a tool to study pain resulting from vascular disorders while also paving the way towards the development of innervated microphysiological models.
Collapse
Affiliation(s)
- Vardhman Kumar
- Department of Biomedical Engineering, Duke University, Durham NC
| | - David Kingsley
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham NC
| | | | - Pankaj Mogha
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham NC
| | - C Rory Goodwin
- Department of Neurosurgery, Spine Division, Duke University Medical Center, Durham, NC
| | - Shyni Varghese
- Department of Biomedical Engineering, Duke University, Durham NC
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham NC
- Department of Mechanical Engineering and Material Science, Duke University, Durham NC
| |
Collapse
|
17
|
Bagher AM, Binmahfouz LS, Shaik RA, Eid BG. Cannabinoid receptor 1 positive allosteric modulator (GAT229) attenuates cisplatin-induced neuropathic pain in mice. Saudi Pharm J 2023; 31:255-264. [PMID: 36942271 PMCID: PMC10023546 DOI: 10.1016/j.jsps.2022.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of chemotherapies' most often documented side effects. Patients with CIPN experience spontaneous burning, numbness, tingling, and neuropathic pain in their feet and hands. Currently, there is no effective pharmacological treatment to prevent or treat CIPN. Activating the cannabinoid receptor type 1 (CB1) by orthosteric agonists has shown promising results in alleviating the pain and neuroinflammation associated with CIPN. However, the use of CB1 orthosteric agonists is linked to undesirable side effects. Unlike the CB1 orthosteric agonists, CB1 positive allosteric modulators (PAMs) don't produce any psychoactive effects, tolerance, or dependence. Previous studies have shown that CB1 PAMs exhibit antinociceptive effects in inflammatory and neuropathic rodent models. This study aimed to investigate the potential benefits of the newly synthesized GAT229, a pure CB1 PAM, in alleviating neuropathic pain and slowing the progression of CIPN. GAT229 was evaluated in a cisplatin-induced (CIS) mouse model of peripheral neuropathic pain (3 mg/kg/d, 28 d, i.p.). GAT229 attenuated and slowed the progression of thermal hyperalgesia and mechanical allodynia induced by CIS, as evaluated by the hotplate test and von Frey filament test. GAT229 reduced the expression of proinflammatory cytokines in the dorsal root ganglia (DRG) neurons. Furthermore, GAT229 attenuated nerve injuries by normalizing the brain-derived neurotrophic factor and the nerve growth factor mRNA expression levels in the DRG neurons. The CB1 receptor antagonist/inverse agonist AM251 blocked GAT229-mediated beneficial effects. According to our data, we suggest that CB1 PAMs might be beneficial in alleviating neuropathic pain and slowing the progression of CIPN.
Collapse
Affiliation(s)
- Amina M. Bagher
- Corresponding author at: Department of Pharmacology and Toxicology, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | | | | | |
Collapse
|
18
|
Giorgi S, Lamberti A, Butrón L, Gross-Amat O, Alarcón-Alarcón D, Rodríguez-Cañas E, Fernández-Carvajal A, Ferrer-Montiel A. Compartmentalized primary cultures of dorsal root ganglion neurons to model peripheral pathophysiological conditions. Mol Pain 2023; 19:17448069231197102. [PMID: 37578145 PMCID: PMC10521292 DOI: 10.1177/17448069231197102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023] Open
Abstract
Neurosensory disorders such as pain and pruritus remain a major health problem greatly impacting the quality of life, and often increasing the risk of mortality. Current pre-clinical models to investigate dysfunction of sensory neurons have shown a limited clinical translation, in part, by failing to mimic the compartmentalized nociceptor anatomy that exhibits a central compartment containing the soma and a peripheral one harboring the axon endings with distinct molecular and cellular environmental composition. Thus, there is a need to validate compartmentalized preclinical neurosensory models for investigating the pathophysiology of peripheral sensory disorders and to test drug candidates. Here, we have addressed this issue and developed a microfluidic-based preclinical nociceptor model and validated it for investigating inflammatory and neuropathic peripheral disorders. We show that this model reproduces the peripheral sensitization and resolution produced by an inflammatory soup and by the chemotherapeutic drug paclitaxel. Furthermore, compartmentalized nociceptor primary cultures were amenable to co-culture with keratinocytes in the axonal compartment. Interaction of axonal endings with keratinocytes modulated neuronal responses, consistent with a crosstalk between both cell types. These findings pave the way towards translational pre-clinical sensory models for skin pathophysiological research and drug development.
Collapse
Affiliation(s)
- Simona Giorgi
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
| | - Angela Lamberti
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
| | - Laura Butrón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
| | - Olivia Gross-Amat
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
| | - David Alarcón-Alarcón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
| | - Enrique Rodríguez-Cañas
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
| | - Asia Fernández-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
| | - Antonio Ferrer-Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
| |
Collapse
|
19
|
Yuan X, Han S, Zhao F, Manyande A, Gao F, Wang J, Zhang W, Tian X. Rapid injection of lumbar dorsal root ganglia under direct vision: Relevant anatomy, protocol, and behaviors. Front Neurol 2023; 14:1138933. [PMID: 37114234 PMCID: PMC10126363 DOI: 10.3389/fneur.2023.1138933] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Dorsal root ganglia (DRG) are anatomically well-defined structures that contain all primary sensory neurons and are distension nodules of the dorsal root in the spinal cord near the medial surface of each foramen. Therefore, DRG is considered to be a desirable target for injection to manage chronic pain. But it presents a limitation in probing deep into it without in vivo injection technology. Methods Here, we described a technique for administering intraganglionic injections of lumbar DRG under direct vision. We use partial osteotomy rather than laminectomy, which removes more bone, to preserve spinal structures while gaining adequate DRG access. To monitor the intraoperative progress of the DRG injection, a non-toxic dye was utilized. The effectiveness of the injection on the diffusion of AAV (adeno-associated virus) within the ganglion was assessed by histopathology at postoperative day 21. Results Behavioral tests showed that neither motor nor sensory abilities were affected by saline or AAV injections. Meanwhile, the decreased pain threshold of SNI (spared nerve injury) was considerably restored by pharmacological inhibition of DRG neurons. Discussion Our research achieved a new minimally invasive and intuitive intra-ganglionic injection in mice. In addition, the present protocol may serve as a valuable resource for planning preclinical studies of DRG injection.
Collapse
Affiliation(s)
- Xiaoman Yuan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siyi Han
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengtian Zhao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, United Kingdom
| | - Feng Gao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Wen Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Wen Zhang,
| | - Xuebi Tian
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Xuebi Tian,
| |
Collapse
|
20
|
Le TT, Payne SL, Buckwald MN, Hayes LA, Parker SR, Burge CB, Oudin MJ. Sensory nerves enhance triple-negative breast cancer invasion and metastasis via the axon guidance molecule PlexinB3. NPJ Breast Cancer 2022; 8:116. [PMID: 36333352 PMCID: PMC9636220 DOI: 10.1038/s41523-022-00485-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
In breast cancer, nerve presence has been correlated with more invasive disease and worse prognosis, yet the mechanisms by which different types of peripheral nerves drive tumor progression remain poorly understood. In this study, we identified sensory nerves as more abundant in human triple-negative breast cancer (TNBC) tumors. Co-injection of sensory neurons isolated from the dorsal root ganglia (DRG) of adult female mice with human TNBC cells in immunocompromised mice increased the number of lung metastases. Direct in vitro co-culture of human TNBC cells with the dorsal root ganglia (DRG) of adult female mice revealed that TNBC cells adhere to sensory neuron fibers leading to an increase in migration speed. Species-specific RNA sequencing revealed that co-culture of TNBC cells with sensory nerves upregulates the expression of genes associated with cell migration and adhesion in cancer cells. We demonstrated that lack of the semaphorin receptor PlexinB3 in cancer cells attenuate their adhesion to and migration on sensory nerves. Together, our results identify a mechanism by which nerves contribute to breast cancer migration and metastasis by inducing a shift in TNBC cell gene expression and support the rationale for disrupting neuron-cancer cell interactions to target metastasis.
Collapse
Affiliation(s)
- Thanh T Le
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA
| | - Samantha L Payne
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA
| | - Maia N Buckwald
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA
| | - Lily A Hayes
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA
| | - Savannah R Parker
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA
| | | | - Madeleine J Oudin
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA.
| |
Collapse
|
21
|
Intisar A, Shin HY, Kim W, Kang HG, Kim MY, Kim YS, Cho Y, Mo YJ, Lim H, Lee S, Lu QR, Lee Y, Kim MS. Implantable Electroceutical Approach Improves Myelination by Restoring Membrane Integrity in a Mouse Model of Peripheral Demyelinating Neuropathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201358. [PMID: 35975427 PMCID: PMC9661852 DOI: 10.1002/advs.202201358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Although many efforts are undertaken to treat peripheral demyelinating neuropathies based on biochemical interventions, unfortunately, there is no approved treatment yet. Furthermore, previous studies have not shown improvement of the myelin membrane at the biomolecular level. Here, an electroceutical treatment is introduced as a biophysical intervention to treat Charcot-Marie-Tooth (CMT) disease-the most prevalent peripheral demyelinating neuropathy worldwide-using a mouse model. The specific electrical stimulation (ES) condition (50 mV mm-1 , 20 Hz, 1 h) for optimal myelination is found via an in vitro ES screening system, and its promyelinating effect is validated with ex vivo dorsal root ganglion model. Biomolecular investigation via time-of-flight secondary ion mass spectrometry shows that ES ameliorates distribution abnormalities of peripheral myelin protein 22 and cholesterol in the myelin membrane, revealing the restoration of myelin membrane integrity. ES intervention in vivo via flexible implantable electrodes shows not only gradual rehabilitation of mouse behavioral phenotypes (balance and endurance), but also restored myelin thickness, compactness, and membrane integrity. This study demonstrates, for the first time, that an electroceutical approach with the optimal ES condition has the potential to treat CMT disease and restore impaired myelin membrane integrity, shifting the paradigm toward practical interventions for peripheral demyelinating neuropathies.
Collapse
Affiliation(s)
- Aseer Intisar
- Department of New BiologyDGISTDaegu42988Republic of Korea
| | - Hyun Young Shin
- CTCELLS Corp.Daegu42988Republic of Korea
- SBCure Corp.Daegu43017Republic of Korea
| | | | - Hyun Gyu Kang
- Department of New BiologyDGISTDaegu42988Republic of Korea
| | - Min Young Kim
- Department of New BiologyDGISTDaegu42988Republic of Korea
| | - Yu Seon Kim
- Well Aging Research CenterDGISTDaegu42988Republic of Korea
| | - Youngjun Cho
- Department of Robotics and Mechatronics EngineeringDGISTDaegu42988Republic of Korea
| | - Yun Jeoung Mo
- Well Aging Research CenterDGISTDaegu42988Republic of Korea
| | - Heejin Lim
- Department of New BiologyDGISTDaegu42988Republic of Korea
| | - Sanghoon Lee
- Department of Robotics and Mechatronics EngineeringDGISTDaegu42988Republic of Korea
| | - Q. Richard Lu
- Department of PediatricsCincinnati Children's Hospital Medical CenterCincinnatiOH45229USA
| | - Yun‐Il Lee
- Well Aging Research CenterDGISTDaegu42988Republic of Korea
| | - Minseok S. Kim
- Department of New BiologyDGISTDaegu42988Republic of Korea
- CTCELLS Corp.Daegu42988Republic of Korea
- Translational Responsive Medicine Center (TRMC)DGISTDaegu42988Republic of Korea
- New Biology Research Center (NBRC)DGISTDaegu42988Republic of Korea
| |
Collapse
|
22
|
Dvorakova M, Wilson S, Corey W, Billingsley J, Zimmowitch A, Tracey J, Straiker A, Mackie K. A Critical Evaluation of Terpenoid Signaling at Cannabinoid CB1 Receptors in a Neuronal Model. Molecules 2022; 27:molecules27175655. [PMID: 36080421 PMCID: PMC9457791 DOI: 10.3390/molecules27175655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
In addition to phytocannabinoids, cannabis contains terpenoids that are claimed to have a myriad of effects on the body. We tested a panel of five common cannabis terpenoids, myrcene, linalool, limonene, α-pinene and nerolidol, in two neuronal models, autaptic hippocampal neurons and dorsal root ganglion (DRG) neurons. Autaptic neurons express a form of cannabinoid CB1 receptor-dependent retrograde plasticity while DRGs express a variety of transient receptor potential (TRP) channels. Most terpenoids had little or no effect on neuronal cannabinoid signaling. The exception was nerolidol, which inhibited endocannabinoid signaling. Notably, this is not via inhibition of CB1 receptors but by inhibiting some aspect of 2-arachidonoylglycerol (2-AG) production/delivery; the mechanism does not involve reducing the activity of the 2-AG-synthesizing diacylglycerol lipases (DAGLs). Nerolidol was also the only terpenoid that activated a sustained calcium response in a small (7%) subpopulation of DRGs. In summary, we found that only one of five terpenoids tested had notable effects on cannabinoid signaling in two neuronal models. Our results suggest that a few terpenoids may indeed interact with some components of the cannabinoid signaling system and may therefore offer interesting insights upon further study.
Collapse
|
23
|
Pina LTS, Rabelo TK, Trindade GGG, Almeida IKS, Oliveira MA, Dos Santos PL, Souza DS, de Menezes-Filho JER, de Vasconcelos CML, Santos SL, Scotti L, Scotti MT, Araújo AAS, Quintans JSS, Quintans LJ, Guimarães AG. γ-Terpinene complexed with β-cyclodextrin attenuates spinal neuroactivity in animals with cancer pain by Ca2+ channel block. J Pharm Pharmacol 2022; 74:1629-1639. [PMID: 35976257 DOI: 10.1093/jpp/rgac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Considering that γ-terpinene (γ-TPN) is a monoterpene found in Cannabis oil, with high lipophilicity and limited pharmacokinetics, our objective was to evaluate whether its complexation in β-cyclodextrin (γ-TPN/β-CD) could improve its physicochemical properties and action on cancer pain, as well as verify the mechanisms of action involved. METHODS The γ-TPN/β-CD was prepared and submitted to physicochemical characterization. Animals with sarcoma 180 were treated (vehicle, γ-TPN 50 mg/kg, γ-TPN/β-CD 5 mg/kg or morphine) and assessed for hyperalgesia, TNF-α and IL-1β levels, iNOS and c-Fos activity. The effects of γ-TPN on calcium channels were studied by patch-clamp and molecular docking. RESULTS β-CD improved the physicochemical properties and prolonged the anti-hyperalgesic effect of γ-TPN. This compound also reduced the levels of IL-1β, TNF-α and iNOS in the tumour, and c-Fos protein in the spinal cord. In addition, it reduced Ca2+ current, presenting favourable chemical interactions with different voltage-dependent calcium channels. CONCLUSION These results indicate that the complexation of γ-TPN into β-CD increases its stability and time effect, reducing spinal neuroactivity and inflammation by blocking calcium channels.
Collapse
Affiliation(s)
- Lícia T S Pina
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Thallita K Rabelo
- Sunnybrook Research Institute. Harquail Centre for Neuromodulation, Canada
| | - Gabriela G G Trindade
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Iggo K S Almeida
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Marlange A Oliveira
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Priscila L Dos Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Diego Santos Souza
- Department of Biophysics and Immunology, Federal University of Minas Gerais, Brazil.,Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Sandra L Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Luciana Scotti
- Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | | | - Adriano A S Araújo
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Jullyana S S Quintans
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Lucindo J Quintans
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Adriana G Guimarães
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
24
|
Hoshino Y, Okuno T, Saigusa D, Kano K, Yamamoto S, Shindou H, Aoki J, Uchida K, Yokomizo T, Ito N. Lysophosphatidic acid receptor 1/3 antagonist inhibits the activation of satellite glial cells and reduces acute nociceptive responses. FASEB J 2022; 36:e22236. [PMID: 35218596 DOI: 10.1096/fj.202101678r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
Lysophosphatidic acid (LPA) exerts various biological activities through six characterized G protein-coupled receptors (LPA1-6 ). While LPA-LPA1 signaling contributes toward the demyelination and retraction of C-fiber and induces neuropathic pain, the effects of LPA-LPA1 signaling on acute nociceptive pain is uncertain. This study investigated the role of LPA-LPA1 signaling in acute nociceptive pain using the formalin test. The pharmacological inhibition of the LPA-LPA1 axis significantly attenuated formalin-induced nociceptive behavior. The LPA1 mRNA was expressed in satellite glial cells (SGCs) in dorsal root ganglion (DRG) and was particularly abundant in SGCs surrounding large DRG neurons, which express neurofilament 200. Treatment with LPA1/3 receptor (LPA1/3 ) antagonist inhibited the upregulation of glial markers and inflammatory cytokines in DRG following formalin injection. The LPA1/3 antagonist also attenuated phosphorylation of extracellular signal-regulated kinase, especially in SGCs and cyclic AMP response element-binding protein in the dorsal horn following formalin injection. LPA amounts after formalin injection to the footpad were quantified by liquid chromatography/tandem mass spectrometry, and LPA levels were found to be increased in the innervated DRGs. Our results indicate that LPA produced in the innervated DRGs promotes the activation of SGCs through LPA1 , increases the sensitivity of primary neurons, and modulates pain behavior. These results facilitate our understanding of the pathology of acute nociceptive pain and demonstrate the possibility of the LPA1 on SGCs as a novel target for acute pain control.
Collapse
Affiliation(s)
- Yoko Hoshino
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Anesthesiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan.,Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shota Yamamoto
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan.,Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kanji Uchida
- Department of Anesthesiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuko Ito
- Department of Anesthesiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
Woods I, O'Connor C, Frugoli L, Kerr S, Gutierrez Gonzalez J, Stasiewicz M, McGuire T, Cavanagh B, Hibbitts A, Dervan A, O'Brien FJ. Biomimetic Scaffolds for Spinal Cord Applications Exhibit Stiffness-Dependent Immunomodulatory and Neurotrophic Characteristics. Adv Healthc Mater 2022; 11:e2101663. [PMID: 34784649 DOI: 10.1002/adhm.202101663] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Indexed: 01/14/2023]
Abstract
After spinal cord injury (SCI), tissue engineering scaffolds offer a potential bridge for regeneration across the lesion and support repair through proregenerative signaling. Ideal biomaterial scaffolds that mimic the physicochemical properties of native tissue have the potential to provide innate trophic signaling while also minimizing damaging inflammation. To address this challenge, taking cues from the spinal cord's structure, the proregenerative signaling capabilities of native cord components are compared in vitro. A synergistic mix of collagen-IV and fibronectin (Coll-IV/Fn) is found to optimally enhance axonal extension from neuronal cell lines (SHSY-5Y and NSC-34) and induce morphological features typical of quiescent astrocytes. This optimal composition is incorporated into hyaluronic acid scaffolds with aligned pore architectures but varying stiffnesses (0.8-3 kPa). Scaffolds with biomimetic mechanical properties (<1 kPa), functionalized with Coll-IV/Fn, not only modulate primary astrocyte behavior but also stimulate the production of anti-inflammatory cytokine IL-10 in a stiffness-dependent manner. Seeded SHSY-5Y neurons generate distributed neuronal networks, while softer biomimetic scaffolds promote axonal outgrowth in an ex vivo model of axonal regrowth. These results indicate that the interaction of stiffness and biomaterial composition plays an essential role in vitro in generating repair-critical cellular responses and demonstrates the potential of biomimetic scaffold design.
Collapse
Affiliation(s)
- Ian Woods
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Cian O'Connor
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Lisa Frugoli
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Seán Kerr
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Javier Gutierrez Gonzalez
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre RCSI 123 St Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Martyna Stasiewicz
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Tara McGuire
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Brenton Cavanagh
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
- Cellular and Molecular Imaging Core Royal College of Surgeons in Ireland 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Alan Hibbitts
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Adrian Dervan
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre RCSI 123 St Stephen's Green, Dublin 2, D02YN77 Ireland
- Trinity Centre for Biomedical Engineering Trinity College Dublin Dublin 2, D02R590 Ireland
| |
Collapse
|
26
|
Rahban M, Danyali S, Zaringhalam J, Manaheji H. Pharmacological blockade of neurokinin1 receptor restricts morphine-induced tolerance and hyperalgesia in the rat. Scand J Pain 2022; 22:193-203. [PMID: 34525274 DOI: 10.1515/sjpain-2021-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/09/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The most notable adverse side effects of chronic morphine administration include tolerance and hyperalgesia. This study investigated the involvement of dorsal root ganglion (DRG) protein kinase Cɛ (PKCɛ) expression during chronic morphine administration and also considered the relationship between DRG PKCɛ expression and the substance P- neurokinin1 receptor (SP- NK1R) activity. METHODS Thirty-six animals were divided into six groups (n=6) in this study. In the morphine and sham groups, rats received 10 µg intrathecal (i.t.) morphine or saline for eight consecutive days, respectively. Behavioral tests were performed on days 1 and 8 before and after the first injections and then 48 h after the last injection (day 10). In the treatment groups, rats received NK1R antagonist (L-732,138, 25 µg) daily, either alone or 10 min before a morphine injection, Sham groups received DMSO alone or 10 min before a morphine injection. Animals were sacrificed on days 8 and 10, and DRG PKCɛ and SP expression were analyzed by western blot and immunohistochemistry techniques, respectively. RESULTS Behavioral tests indicated that tolerance developed following eight days of chronic morphine injection. Hyperalgesia was induced 48 h after the last morphine injection. Expression of SP and PKCɛ in DRG significantly increased in rats that developed morphine tolerance on day 8 and hyperalgesia on day 10, respectively. NK1R antagonist (L-732,138) not only blocked the development of hyperalgesia and the increase of PKCɛ expression but also alleviated morphine tolerance. CONCLUSIONS Our results provide evidence that DRG PKCɛ and SP-NK1R most likely participated in the generation of morphine tolerance and hyperalgesia. Pharmacological inhibition of SP-NK1R activity in the spinal cord suggests a role for NK1R and in restricting some side effects of chronic morphine. All experiments were performed by the National Institute of Health (NIH) Guidelines for the Care and Use of Laboratory Animals (NIH Publication No. 80-23, revised1996) and were approved by the Animal Ethics Committee of Shahid Beheshti University of Medical Sciences, Tehran, Iran (IR.SBMU.MSP.REC.1396.130).
Collapse
Affiliation(s)
- Mohammad Rahban
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Danyali
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Zaringhalam
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homa Manaheji
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Stokes JV, Nicaise AJ, Frodella CM, Varela-Stokes AS, Thompson T, Kaplan BLF. Isolation of Transcriptomic-Quality Total RNA from Mouse Spinal Cords. Curr Protoc 2022; 2:e338. [PMID: 35030295 PMCID: PMC8852305 DOI: 10.1002/cpz1.338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Assessing cells, proteins, and total RNA in the spinal cord is vital for advancing our understanding of neuroinflammation and neurodegenerative diseases. For instance, immune cells infiltrate the spinal cord in the experimental autoimmune encephalomyelitis (EAE) model, commonly used to study multiple sclerosis. Thus, it is valuable to assess total RNA to determine the neuronal and inflammatory profiles in the spinal cord. Further, RNA profiles are useful for deciphering the effects of drugs or chemicals on neuroinflammation and neurodegenerative diseases such as EAE. The purpose of this protocol and the online video illustrating it is to describe and demonstrate the expulsion of the spinal cord from the mouse spinal column and homogenization of the spinal cord using liquid nitrogen for optimal RNA isolation. Although we present this method with spinal cords from EAE mice, the technique is broadly applicable, including RNA isolation from the spinal cords of healthy mice. Proper performance of these steps is critical to achieving a sufficient yield of transcriptomic-quality spinal cord RNA when combined with final isolation using commercially available kits. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Isolation of the spinal cord from the spinal column Support Protocol: Preparation of blunt-end needle for spinal cord isolation Basic Protocol 2: Spinal cord homogenization using liquid nitrogen Basic Protocol 3: Assessment of RNA purity, quantification, and integrity.
Collapse
Affiliation(s)
- John V. Stokes
- Department of Comparative Biomedical Sciences, Mississippi State University, Mississippi State, MS,College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| | - Ashleigh J. Nicaise
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS,Department of Comparative Biomedical Sciences, Mississippi State University, Mississippi State, MS,College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| | - Christa M. Frodella
- Department of Comparative Biomedical Sciences, Mississippi State University, Mississippi State, MS,College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| | - Andrea S. Varela-Stokes
- Department of Comparative Biomedical Sciences, Mississippi State University, Mississippi State, MS,College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| | - Tom Thompson
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| | - Barbara L. F. Kaplan
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS,Department of Comparative Biomedical Sciences, Mississippi State University, Mississippi State, MS,College of Veterinary Medicine, Mississippi State University, Mississippi State, MS,Corresponding author:
| |
Collapse
|
28
|
Dai H, Lou S, Zhang Y, Thanawala M, Huang K, Ji L, Carden S, Liao T, Abbassi M, Shu CJ, Lantermann A, Sadaghiani M, Blom D, Wagner J, Huang P. Transcriptional neural-like signaling contributes to an immune-suppressive tumor microenvironment. FASEB Bioadv 2022; 4:76-89. [PMID: 35024574 PMCID: PMC8728105 DOI: 10.1096/fba.2021-00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Tumor innervation has recently been documented and characterized in various settings and tumor types. However, the role that nerves innervating tumors play in the pathogenesis of cancer has not been clarified. In this study, we searched for neural signaling from bulk RNA sequencing from The Cancer Genome Atlas (TCGA) dataset and looked for patterns of interactions between different cell types within the tumor environment. Using a presynapse signature (PSS) as a probe, we showed that multiple stromal cell types crosstalk and/or contribute to neural signals. Based on the correlation and linear regression, we hypothesized that neural signals contribute to an immune-suppressive tumor microenvironment (TME). To test this hypothesis, we performed in vitro dorsal root ganglion (DRG)/macrophage coculture experiments. Compared to the M2 macrophage monoculture, the DRG/M2 macrophage coculture prevented anti-inflammatory M2 to pro-inflammatory M1 polarization by LPS stimulation. Finally, a survey of different TCGA tumor types indicated that higher RNA neural signature is predictive of poor patient outcomes in multiple tumor types.
Collapse
Affiliation(s)
- Hongyue Dai
- Cygnal TherapeuticsCambridgeMassachusettsUSA
| | - Shan Lou
- Cygnal TherapeuticsCambridgeMassachusettsUSA
| | - Yanbo Zhang
- Cygnal TherapeuticsCambridgeMassachusettsUSA
| | | | | | - Lexiang Ji
- Cygnal TherapeuticsCambridgeMassachusettsUSA
| | | | | | | | | | | | | | - Daniel Blom
- Cygnal TherapeuticsCambridgeMassachusettsUSA
| | - John Wagner
- Cygnal TherapeuticsCambridgeMassachusettsUSA
| | - Pearl Huang
- Cygnal TherapeuticsCambridgeMassachusettsUSA
| |
Collapse
|
29
|
Pan D, Schellhardt L, Acevedo-Cintron JA, Hunter D, Snyder-Warwick AK, Mackinnon SE, Wood MD. IL-4 expressing cells are recruited to nerve after injury and promote regeneration. Exp Neurol 2022; 347:113909. [PMID: 34717939 PMCID: PMC8887027 DOI: 10.1016/j.expneurol.2021.113909] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/18/2021] [Accepted: 10/24/2021] [Indexed: 01/03/2023]
Abstract
Interleukin-4 (IL-4) has garnered interest as a cytokine that mediates regeneration across multiple tissues including peripheral nerve. Within nerve, we previously showed endogenous IL-4 was critical to regeneration across nerve gaps. Here, we determined a generalizable role of IL-4 in nerve injury and regeneration. In wild-type (WT) mice receiving a sciatic nerve crush, IL-4 expressing cells preferentially accumulated within the injured nerve compared to affected sites proximal, such as dorsal root ganglia (DRGs), or distal muscle. Immunohistochemistry and flow cytometry confirmed that eosinophils (CD45+, CD11b+, CD64-, Siglec-F+) were sources of IL-4 expression. Examination of targets for IL-4 within nerve revealed macrophages, as well as subsets of neurons expressed IL-4R, while Schwann cells expressed limited IL-4R. Dorsal root ganglia cultures were exposed to IL-4 and demonstrated an increased proportion of neurons that extended axons compared to cultures without IL-4 (control), as well as longer myelinated axons compared to cultures without IL-4. The role of endogenous IL-4 during nerve injury and regeneration in vivo was assessed following a sciatic nerve crush using IL-4 knockout (KO) mice. Loss of IL-4 affected macrophage accumulation within injured nerve compared to WT mice, as well as shifted macrophage phenotype towards a CD206- phenotype with altered gene expression. Furthermore, this loss of IL-4 delayed initial axon regeneration from the injury crush site and subsequently delayed functional recovery and re-innervation of neuromuscular junctions compared to wild-type mice. Given the role of endogenous IL-4 in nerve regeneration, exogenous IL-4 was administered daily to WT mice following a nerve crush to examine regeneration. Daily IL-4 administration increased early axonal extension and CD206+ macrophage accumulation but did not alter functional recovery compared to untreated mice. Our data demonstrate IL-4 promotes nerve regeneration and recovery after injury.
Collapse
Affiliation(s)
- Deng Pan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lauren Schellhardt
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jesús A Acevedo-Cintron
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel Hunter
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alison K Snyder-Warwick
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan E Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew D Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
30
|
A Novel Cellular Therapy to Treat Pancreatic Pain in Experimental Chronic Pancreatitis Using Human Alpha-1 Antitrypsin Overexpressing Mesenchymal Stromal Cells. Biomedicines 2021; 9:biomedicines9111695. [PMID: 34829924 PMCID: PMC8615652 DOI: 10.3390/biomedicines9111695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 01/13/2023] Open
Abstract
Chronic pancreatitis (CP) is characterized by pancreatic inflammation, fibrosis, and abdominal pain that is challenging to treat. Mesenchymal stromal cells (MSCs) overexpressing human alpha-1 antitrypsin (hAAT-MSCs) showed improved mobility and protective functions over native MSCs in nonobese diabetic mice. We investigated whether hAAT-MSCs could mitigate CP and its associated pain using trinitrobenzene sulfonic acid (TNBS)-induced CP mouse models. CP mice were given native human MSCs or hAAT-MSCs (0.5 × 106 cells/mouse, i.v., n = 6–8/group). The index of visceral pain was measured by graduated von Frey filaments. Pancreatic morphology and pancreatic mast cell count were analyzed by morphological stains. Nociceptor transient receptor potential vanilloid 1 (TRPV1) expression in dorsal root ganglia (DRG) was determined by immunohistochemistry. hAAT-MSC-treated CP mice best preserved pancreatic morphology and histology. MSC or hAAT-MSC infusion reduced abdominal pain sensitivities. hAAT-MSC therapy also suppressed TRPV1 expression in DRG and reduced pancreatic mast cell density induced by TNBS. Overall, hAAT-MSCs reduced pain and mitigated pancreatic inflammation in CP equal to MSCs with a trend toward a higher pancreatic weight and better pain relief in the hAAT-MSC group compared to the MSC group. Both MSCs and hAAT-MSCs might be used as a novel therapeutic tool for CP-related pain.
Collapse
|
31
|
Jia L, Liao M, Mou A, Zheng Q, Yang W, Yu Z, Cui Y, Xia X, Qin Y, Chen M, Xiao B. Rheb-regulated mitochondrial pyruvate metabolism of Schwann cells linked to axon stability. Dev Cell 2021; 56:2980-2994.e6. [PMID: 34619097 DOI: 10.1016/j.devcel.2021.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/12/2021] [Accepted: 09/10/2021] [Indexed: 02/05/2023]
Abstract
The metabolic coupling of Schwann cells (SCs) and peripheral axons is poorly understood. Few molecules in SCs are known to regulate axon stability. Using SC-specific Rheb knockout mice, we demonstrate that Rheb-regulated mitochondrial pyruvate metabolism is critical for SC-mediated non-cell-autonomous regulation of peripheral axon stability. Rheb knockout suppresses pyruvate dehydrogenase (PDH) activity (independently of mTORC1) and shifts pyruvate metabolism toward lactate production in SCs. The increased lactate causes age-dependent peripheral axon degeneration, affecting peripheral nerve function. Lactate, as an energy substrate and a potential signaling molecule, enhanced neuronal mitochondrial metabolism and energy production of peripheral nerves. Albeit beneficial to injured peripheral axons in the short term, we show that persistently increased lactate metabolism of neurons enhances ROS production, eventually damaging mitochondria, neuroenergetics, and axon stability. This study highlights the complex roles of lactate metabolism to peripheral axons and the importance of lactate homeostasis in preserving peripheral nerves.
Collapse
Affiliation(s)
- Lanlan Jia
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Maoxing Liao
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Aidi Mou
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Quanzhen Zheng
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, People's Republic of China; Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Wanchun Yang
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zongyan Yu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, People's Republic of China; Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Yiyuan Cui
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiaoqiang Xia
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China; Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Yue Qin
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Mina Chen
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Bo Xiao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, People's Republic of China; Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China.
| |
Collapse
|
32
|
Chakraborty A, Upadhya R, Usman TA, Shetty AK, Rutkowski JM. Chronic VEGFR-3 signaling preserves dendritic arborization and sensitization under stress. Brain Behav Immun 2021; 98:219-233. [PMID: 34389489 PMCID: PMC8511130 DOI: 10.1016/j.bbi.2021.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 11/15/2022] Open
Abstract
Dendritic arborization is critical for the establishment and maintenance of precise neural circuits. Vascular endothelial growth factor D (VEGF-D), well-characterized as a "lymphangiogenic" growth factor, reportedly maintains dendritic arborization and synaptic strength in the hippocampus of adult mice through VEGF receptor (VEGFR-3) signaling. Here, we investigated the effect of chronic VEGFR-3-specific activation on adipose arbor morphometry using the Adipo-VD mouse, a model of inducible, adipose-specific VEGF-D overexpression. We examined whether adipose tissue innervation was preserved or functionally different in Adipo-VD mice during stress in vivo and if VEGFR-3 signaling afforded neuroprotection to challenged neurons in vitro. Chronic VEGFR-3 signaling in Adipo-VD subcutaneous adipose tissue resulted in a reduction in the dendrite length, dendritic terminal branches (filament length), and dendritic terminal branch volume (filament volume), but increased dendrite branching. We also identified reduced stimulus-evoked excitatory sympathetic nerve activity in Adipo-VD mice. Following 6-hydroxydopamine (6-OHDA) denervation, Adipo-VD dendritic arbors were preserved, including improved dendritic branch volume, length, and dendritic branches than in wildtype tissues. In vitro, we found that chronic elevation of VEGFR-3 signaling in developing mVC neurons changes the dendritic arbor complexity and improves stress-induced structure remodeling. Developing neurons are conferred neuroprotection against stress, potentially by upregulation of proteolytic conversion of pro-BDNF to mature BDNF. Mature neurons, however, display improved dendritic arbor complexity, and unaltered dendritic structural remodeling and improved resistance to stress with VEGFR-3 signaling. Overall, chronically increasing VEGFR-3 signaling in neurons has a synergistic impact on neurosensitization and neuroprotection during stress.
Collapse
Affiliation(s)
- Adri Chakraborty
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Timaj A. Usman
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Joseph M. Rutkowski
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA,Correspondence: Joseph M Rutkowski, Texas A&M University College of Medicine, 8447 Riverside Parkway, Bryan, TX 77807 USA, Ph: 979-436-0576,
| |
Collapse
|
33
|
NeuriteNet: A convolutional neural network for assessing morphological parameters of neurite growth. J Neurosci Methods 2021; 363:109349. [PMID: 34480956 DOI: 10.1016/j.jneumeth.2021.109349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND During development or regeneration, neurons extend processes (i.e., neurites) via mechanisms that can be readily analyzed in culture. However, defining the impact of a drug or genetic manipulation on such mechanisms can be challenging due to the complex arborization and heterogeneous patterns of neurite growth in vitro. New Method: NeuriteNet is a Convolutional Neural Network (CNN) sorting model that uses a novel adaptation of the XRAI saliency map overlay, which is a region-based attribution method. NeuriteNet compares neuronal populations based on differences in neurite growth patterns, sorts them into respective groups, and overlays a saliency map indicating which areas differentiated the image for the sorting procedure. RESULTS In this study, we demonstrate that NeuriteNet effectively sorts images corresponding to dissociated neurons into control and treatment groups according to known morphological differences. Furthermore, the saliency map overlay highlights the distinguishing features of the neuron when sorting the images into treatment groups. NeuriteNet also identifies novel morphological differences in neurons cultured from control and genetically modified mouse strains. Comparison with Existing Methods: Unlike other neurite analysis platforms, NeuriteNet does not require manual manipulations, such as segmentation of neurites prior to analysis, and is more accurate than experienced researchers for categorizing neurons according to their pattern of neurite growth. CONCLUSIONS NeuriteNet can be used to effectively screen for morphological differences in a heterogeneous group of neurons and to provide feedback on the key features distinguishing those groups via the saliency map overlay.
Collapse
|
34
|
Prior Acoustic Trauma Alters Type II Afferent Activity in the Mouse Cochlea. eNeuro 2021; 8:ENEURO.0383-21.2021. [PMID: 34607806 PMCID: PMC8589282 DOI: 10.1523/eneuro.0383-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 01/11/2023] Open
Abstract
Auditory stimuli travel from the cochlea to the brainstem through type I and type II cochlear afferents. While type I afferents convey information about the frequency, intensity, and timing of sounds, the role of type II afferents remains unresolved. Limited recordings of type II afferents from cochlear apex of prehearing rats reveal they are activated by widespread outer hair cell stimulation, ATP, and by the rupture of nearby outer hair cells. Altogether, these lines of evidence suggest that type II afferents sense loud, potentially damaging levels of sound. To explore this hypothesis further, calcium imaging was used to determine the impact of acoustic trauma on the activity of type II cochlear afferents of young adult mice of both sexes. Two known marker genes (Th, Drd2) and one new marker gene (Tac1), expressed in type II afferents and some other cochlear cell types, drove GCaMP6f expression to reveal calcium transients in response to focal damage in the organ of Corti in all turns of the cochlea. Mature type II afferents responded to acute photoablation damage less often but at greater length compared with prehearing neurons. In addition, days after acoustic trauma, acute photoablation triggered a novel response pattern in type II afferents and surrounding epithelial cells, delayed bursts of activity occurring minutes after the initial response subsided. Overall, calcium imaging can report type II afferent responses to damage even in mature and noise-exposed animals and reveals previously unknown tissue hyperactivity subsequent to acoustic trauma.
Collapse
|
35
|
Straiker A, Wilson S, Corey W, Dvorakova M, Bosquez T, Tracey J, Wilkowski C, Ho K, Wager-Miller J, Mackie K. An Evaluation of Understudied Phytocannabinoids and Their Effects in Two Neuronal Models. Molecules 2021; 26:5352. [PMID: 34500785 PMCID: PMC8434068 DOI: 10.3390/molecules26175352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022] Open
Abstract
Cannabis contains more than 100 phytocannabinoids. Most of these remain poorly characterized, particularly in neurons. We tested a panel of five phytocannabinoids-cannabichromene (CBC), cannabidiolic acid (CBDA), cannabidivarin (CBDV), cannabidivarinic acid (CBDVA), and Δ9-tetrahydrocannabivarin (THCV) in two neuronal models, autaptic hippocampal neurons and dorsal root ganglion (DRG) neurons. Autaptic neurons expressed a form of CB1-dependent retrograde plasticity while DRGs expressed a variety of transient receptor potential (TRP) channels. CBC, CBDA, and CBDVA had little or no effect on neuronal cannabinoid signaling. CBDV and THCV differentially inhibited cannabinoid signaling. THCV inhibited CB1 receptors presynaptically while CBDV acted post-synaptically, perhaps by inhibiting 2-AG production. None of the compounds elicited a consistent DRG response. In summary, we find that two of five 'minor' phytocannabinoids tested antagonized CB1-based signaling in a neuronal model, but with very different mechanisms. Our findings highlight the diversity of potential actions of phytocannabinoids and the importance of fully evaluating these compounds in neuronal models.
Collapse
Affiliation(s)
- Alex Straiker
- Gill Center for Molecular Bioscience, Program in Neuroscience, Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN 47405, USA; (S.W.); (W.C.); (M.D.); (T.B.); (J.T.); (C.W.); (K.H.); (J.W.-M.); (K.M.)
| | - Sierra Wilson
- Gill Center for Molecular Bioscience, Program in Neuroscience, Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN 47405, USA; (S.W.); (W.C.); (M.D.); (T.B.); (J.T.); (C.W.); (K.H.); (J.W.-M.); (K.M.)
| | - Wesley Corey
- Gill Center for Molecular Bioscience, Program in Neuroscience, Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN 47405, USA; (S.W.); (W.C.); (M.D.); (T.B.); (J.T.); (C.W.); (K.H.); (J.W.-M.); (K.M.)
| | - Michaela Dvorakova
- Gill Center for Molecular Bioscience, Program in Neuroscience, Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN 47405, USA; (S.W.); (W.C.); (M.D.); (T.B.); (J.T.); (C.W.); (K.H.); (J.W.-M.); (K.M.)
- Department of Molecular Pharmacology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Taryn Bosquez
- Gill Center for Molecular Bioscience, Program in Neuroscience, Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN 47405, USA; (S.W.); (W.C.); (M.D.); (T.B.); (J.T.); (C.W.); (K.H.); (J.W.-M.); (K.M.)
| | - Joye Tracey
- Gill Center for Molecular Bioscience, Program in Neuroscience, Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN 47405, USA; (S.W.); (W.C.); (M.D.); (T.B.); (J.T.); (C.W.); (K.H.); (J.W.-M.); (K.M.)
| | - Caroline Wilkowski
- Gill Center for Molecular Bioscience, Program in Neuroscience, Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN 47405, USA; (S.W.); (W.C.); (M.D.); (T.B.); (J.T.); (C.W.); (K.H.); (J.W.-M.); (K.M.)
| | - Kathleen Ho
- Gill Center for Molecular Bioscience, Program in Neuroscience, Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN 47405, USA; (S.W.); (W.C.); (M.D.); (T.B.); (J.T.); (C.W.); (K.H.); (J.W.-M.); (K.M.)
| | - Jim Wager-Miller
- Gill Center for Molecular Bioscience, Program in Neuroscience, Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN 47405, USA; (S.W.); (W.C.); (M.D.); (T.B.); (J.T.); (C.W.); (K.H.); (J.W.-M.); (K.M.)
| | - Ken Mackie
- Gill Center for Molecular Bioscience, Program in Neuroscience, Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN 47405, USA; (S.W.); (W.C.); (M.D.); (T.B.); (J.T.); (C.W.); (K.H.); (J.W.-M.); (K.M.)
| |
Collapse
|
36
|
Carter EP, Roozitalab R, Gibson SV, Grose RP. Tumour microenvironment 3D-modelling: simplicity to complexity and back again. Trends Cancer 2021; 7:1033-1046. [PMID: 34312120 DOI: 10.1016/j.trecan.2021.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Tumours are surrounded by a host of noncancerous cells that fulfil both supportive and suppressive roles within the tumour microenvironment (TME). The drive to understand the biology behind each of these components has led to a rapid expansion in the number and use of 3D in vitro models, as researchers find ways to incorporate multiple cell types into physiomimetic configurations. The use and increasing complexity of these models does however demand many considerations. In this review we discuss approaches adopted to recapitulate complex tumour biology in tractable 3D models. We consider how these cell types can be sourced and combined and examine methods for the deconvolution of complex multicellular models into manageable and informative outputs.
Collapse
Affiliation(s)
- Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Reza Roozitalab
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Shayin V Gibson
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
37
|
Booth DG, Kozar N, Bradley S, Meijer D. Characterizing the molecular etiology of arthrogryposis multiplex congenita in patients with LGI4 mutations. Glia 2021; 69:2605-2617. [PMID: 34288120 DOI: 10.1002/glia.24061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/05/2022]
Abstract
Disruption of axon-glia interactions in the peripheral nervous system has emerged as a major cause of arthrogryposis multiplex congenita (AMC), a condition characterized by multiple congenital postural abnormalities involving the major joints. Several genes crucially important to the biology of Schwann cells have now been implicated with AMC. One such gene is LGI4 which encodes a secreted glycoprotein. LGI4 is expressed and secreted by Schwann cells and binds its receptor ADAM22 on the axonal membrane to drive myelination. Homozygous mutations in LGI4 or ADAM22 results in severe congenital hypomyelination and joint contractures in mice. Recently bi-allelic LGI4 loss of function mutations has been described in three unrelated families with severe AMC. Two individuals in a fourth, non-consanguineous family were found to be compound heterozygous for two LGI4 missense mutations. It is not known how these missense mutations affect the biology of LGI4. Here we investigated whether these missense mutations affected the secretion of the protein, its ADAM22 binding capacity, or its myelination-promoting function. We demonstrate that the mutations largely affect the progression of the mutant protein through the endomembrane system resulting in severely reduced expression. Importantly, binding to ADAM22 and myelination-promoting activity appear largely unaffected, suggesting that treatment with chemical chaperones to improve secretion of the mutant proteins might prove beneficial.
Collapse
Affiliation(s)
- Daniel G Booth
- Centre for Discovery Brain Sciences and MS Society Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Nina Kozar
- Centre for Discovery Brain Sciences and MS Society Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen Bradley
- Centre for Discovery Brain Sciences and MS Society Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Dies Meijer
- Centre for Discovery Brain Sciences and MS Society Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
38
|
Malavasi EL, Ghosh A, Booth DG, Zagnoni M, Sherman DL, Brophy PJ. Dynamic early clusters of nodal proteins contribute to node of Ranvier assembly during myelination of peripheral neurons. eLife 2021; 10:68089. [PMID: 34240706 PMCID: PMC8289411 DOI: 10.7554/elife.68089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/07/2021] [Indexed: 12/31/2022] Open
Abstract
Voltage-gated sodium channels cluster in macromolecular complexes at nodes of Ranvier to promote rapid nerve impulse conduction in vertebrate nerves. Node assembly in peripheral nerves is thought to be initiated at heminodes at the extremities of myelinating Schwann cells, and fusion of heminodes results in the establishment of nodes. Here we show that assembly of 'early clusters' of nodal proteins in the murine axonal membrane precedes heminode formation. The neurofascin (Nfasc) proteins are essential for node assembly, and the formation of early clusters also requires neuronal Nfasc. Early clusters are mobile and their proteins are dynamically recruited by lateral diffusion. They can undergo fusion not only with each other but also with heminodes, thus contributing to the development of nodes in peripheral axons. The formation of early clusters constitutes the earliest stage in peripheral node assembly and expands the repertoire of strategies that have evolved to establish these essential structures.
Collapse
Affiliation(s)
- Elise Lv Malavasi
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Aniket Ghosh
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel G Booth
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Michele Zagnoni
- Centre for Microsystems & Photonics, Dept. Electronic and Electrical Engineering, University of Strathclyde, Strathclyde, United Kingdom
| | - Diane L Sherman
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter J Brophy
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
39
|
Coskun C, Ocal I, Gunay I. A Low-Frequency Pulsed Magnetic Field Reduces Neuropathic Pain by Regulating NaV 1.8 and NaV 1.9 Sodium Channels at the Transcriptional Level in Diabetic Rats. Bioelectromagnetics 2021; 42:357-370. [PMID: 33998011 DOI: 10.1002/bem.22343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/14/2020] [Accepted: 04/09/2021] [Indexed: 12/19/2022]
Abstract
Low-frequency pulsed magnetic field (LF-PMF) application is a non-invasive, easy, and inexpensive treatment method in pain management. However, the molecular mechanism underlying the effect of LF-PMF on pain is not fully understood. Considering the obvious dysregulations of gene expression observed in certain types of voltage-gated sodium channels (VGSCs) in pain conditions, the present study tested the hypothesis that LF-PMF shows its pain-relieving effect by regulating genes that code VGSCs proteins. Five experimental rat groups (Control, Streptozotocin-induced experimental painful diabetic neuropathy (PDN), PDN Sham, PDN 10 Hz PMF, and PDN 30 Hz PMF) were established. After the pain formation in PDN groups, the magnetic field groups were exposed to 10/30 Hz, 1.5 mT PMF for 4 weeks, an hour daily. Progression of pain was evaluated using behavioral pain tests during the entire experimental processes. After the end of PMF treatment, SCN9A (NaV1.7 ), SCN10A (NaV1.8 ), SCN11A (NaV1.9 ), and SCN3A (NaV1.3 ) gene expression level changes were determined by analyzing real-time polymerase chain reaction results. We found that 10 Hz PMF application was more effective than 30 Hz on pain management. In addition, NaV1.7 and NaV1.3 transcriptions were upregulated while NaV1.8 and NaV1.9 were downregulated in painful conditions. Notably, the downregulated expression of the genes encoding NaV1.8 and NaV1.9 were re-regulated and increased to control level by 10 Hz PMF application. Consequently, it may be deduced that 10 Hz PMF application reduces pain by modulating certain VGSCs at the transcriptional level. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Cagil Coskun
- Department of Biophysics, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Isil Ocal
- Department of Biophysics, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Ismail Gunay
- Department of Biophysics, Faculty of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
40
|
Rimola V, Osthues T, Königs V, Geißlinger G, Sisignano M. Oxaliplatin Causes Transient Changes in TRPM8 Channel Activity. Int J Mol Sci 2021; 22:4962. [PMID: 34066977 PMCID: PMC8125753 DOI: 10.3390/ijms22094962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023] Open
Abstract
Oxaliplatin is a third-generation platinum-based anticancer drug that is widely used as first-line treatment for colorectal carcinoma. Patients treated with oxaliplatin develop an acute peripheral pain several hours after treatment, mostly characterized by cold allodynia as well as a long-term chronic neuropathy. These two phenomena seem to be causally connected. However, the underlying mechanisms that trigger the acute peripheral pain are still poorly understood. Here we show that the activity of the transient receptor potential melastatin 8 (TRPM8) channel but not the activity of any other member of the TRP channel family is transiently increased 1 h after oxaliplatin treatment and decreased 24 h after oxaliplatin treatment. Mechanistically, this is connected with activation of the phospholipase C (PLC) pathway and depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) after oxaliplatin treatment. Inhibition of the PLC pathway can reverse the decreased TRPM8 activity as well as the decreased PIP2-concentrations after oxaliplatin treatment. In summary, these results point out transient changes in TRPM8 activity early after oxaliplatin treatment and a later occurring TRPM8 channel desensitization in primary sensory neurons. These mechanisms may explain the transient cold allodynia after oxaliplatin treatment and highlight an important role of TRPM8 in oxaliplatin-induced acute and neuropathic pain.
Collapse
Affiliation(s)
- Vittoria Rimola
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590 Frankfurt am Main, Germany; (V.R.); (G.G.)
| | - Tabea Osthues
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (T.O.); (V.K.)
| | - Vanessa Königs
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (T.O.); (V.K.)
| | - Gerd Geißlinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590 Frankfurt am Main, Germany; (V.R.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (T.O.); (V.K.)
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590 Frankfurt am Main, Germany; (V.R.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (T.O.); (V.K.)
| |
Collapse
|
41
|
Franken G, Douven P, Debets J, Joosten EAJ. Conventional Dorsal Root Ganglion Stimulation in an Experimental Model of Painful Diabetic Peripheral Neuropathy: A Quantitative Immunocytochemical Analysis of Intracellular γ-Aminobutyric Acid in Dorsal Root Ganglion Neurons. Neuromodulation 2021; 24:639-645. [PMID: 33942947 PMCID: PMC8360133 DOI: 10.1111/ner.13398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 11/26/2022]
Abstract
Background and Objective The sensory cell somata in the DRG contain all equipment necessary for extensive GABAergic signaling and are able to release GABA upon depolarization. With this study, we hypothesize that pain relief induced by conventional dorsal root ganglion stimulation (Con‐DRGS) in animals with experimental painful diabetic peripheral neuropathy is related to the release of GABA from DRG neurons. With use of quantitative immunocytochemistry, we hypothesize DRGS to result in a decreased intensity of intracellular GABA‐immunostaining in DRG somata. Materials and Methods Female Sprague‐Dawley rats (n = 31) were injected with streptozotocin (STZ) in order to induce Diabetes Mellitus. Animals that developed neuropathic pain after four weeks (Von Frey) were implanted with a unilateral DRGS device at L4 (n = 14). Animals were then stimulated for 30 min with Con‐DRGS (20 Hz, pulse width = 0.2 msec, amplitude = 67% of motor threshold, n = 8) or Sham‐DRGS (n = 6), while pain behavior (von Frey) was measured. DRGs were then collected and immunostained for GABA, and a relation to size of sensory cell soma diameter (small: 12–26 μm, assumed to be C‐fiber related sensory neurons; medium: 26–40 μm, assumed to be Aδ related sensory neurons; and large: 40–54 μm, assumed to be Aβ related sensory neurons) was made. Results DRGS treated animals showed significant reductions in STZ‐induced mechanical hypersensitivity. No significant differences in GABA immunostaining intensity per sensory neuron cell soma type (small‐, medium‐, or large‐sized) were noted in DRGs of stimulated (Con‐DRGS) animals versus Sham animals. No differences in GABA immunostaining intensity per sensory cell soma type in ipsi‐ as compared to contralateral DRGs were observed. Conclusion Con‐DRGS does not affect the average intracellular GABA immunofluorescence staining intensity in DRG sensory neurons of those animals which showed significant pain reduction. Similarly, no soma size related changes in intracellular GABA immunofluorescence were observed following Con‐DRGS.
Collapse
Affiliation(s)
- Glenn Franken
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Perla Douven
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Urology, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.,Department of Surgery, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Jacques Debets
- School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Muroidean Facility, School of Cardiovascular Diseases (CARIM), Maastricht, The Netherlands
| | - Elbert A J Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
42
|
Flores B, Delpire E. Temporal manipulation of KCC3 expression in juvenile or adult mice suggests irreversible developmental deficit in hereditary motor sensory neuropathy with agenesis of the corpus callosum. Am J Physiol Cell Physiol 2021; 320:C722-C730. [PMID: 33596149 PMCID: PMC8163575 DOI: 10.1152/ajpcell.00594.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 11/22/2022]
Abstract
Hereditary motor sensory neuropathy (HMSN/ACC) with agenesis of the corpus callosum (ACC) has been documented in the French-derived populations of Charlevoix and Saguenay/Lac St. Jean in Quebec, Canada, as well as a few sporadic families throughout the world. HMSN/ACC occurs because of loss-of-function mutations in the potassium-chloride cotransporter 3 (KCC3). In HMSN/ACC, motor deficits occur early in infancy with rapid and continual deterioration of motor and sensory fibers into juvenile and adulthood. Genetic work in mice has demonstrated that the disease is caused by loss of KCC3 function in neurons and particularly parvalbumin (PV)-expressing neurons. Currently, there are no treatments or cures for HMSN/ACC other than pain management. As genetic counseling in Quebec has increased as a preventative strategy, most individuals with HSMN/ACC are now adults. The onset of the disease is unknown. In particular, it is unknown if the disease starts early during development and whether it can be reversed by restoring KCC3 function. In this study, we used two separate mouse models that when combined to the PV-CreERT2 tamoxifen-inducible system allowed us to 1) disrupt KCC3 expression in adulthood or juvenile periods; and 2) reintroduce KCC3 expression in mice that first develop with a nonfunctional cotransporter. We show that disrupting or reintroducing KCC3 in the adult mouse has no effect on locomotor behavior, indicating that expression of KCC3 is critical during embryonic development and/or the perinatal period and that once the disease has started, reexpressing a functional cotransporter fails to change the course of HMSN/ACC.
Collapse
Affiliation(s)
- Bianca Flores
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
43
|
Koc B, Kizildag S, Hosgorler F, Gumus H, Kandis S, Ates M, Uysal N. Magnesium Citrate Increases Pain Threshold and Reduces TLR4 Concentration in the Brain. Biol Trace Elem Res 2021; 199:1954-1966. [PMID: 32989649 DOI: 10.1007/s12011-020-02384-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
Magnesium is being investigated in various clinical conditions and has shown to be effective in some chronic pain models. However, it is not clear if oral magnesium use affects pain perception in acute pain. TLR4's (toll-like receptor) role in pain perception has emerged through its role in immune pathways and ion channels. The aim of this study is to investigate the effect of a single oral dose of magnesium citrate on pain conduction and whether with magnesium, the expression of TLR4 changes in the acute phase. Following a single dose of 66-mg/kg magnesium citrate administration to male Balb-c mice, pain perception (via hot-plate test), motor conduction (via electrophysiological recording, forelimb grip strength, rotarod and open-field tests), and emotional state (via elevated plus maze and forced swim test) were evaluated. In behavioral experiments, the control group was compared with applied magnesium for three different time groups (4, 8, 24 h). TLR4 expression was measured in four groups: control, magnesium (Mg), hot plate (HP), and Mg + HP. Hot plate latency was prolonged in the magnesium group (p < 0.0001) and electrophysiological recordings (p < 0.001) and forelimb grip strength measurement (p < 0.001) determined motor latency. Compared with the untreated hot plate group, TLR4 levels was lower in the brain (p = 0.023) and higher in the sciatic nerve (p = 0.001) in the magnesium-treated hot plate group. Consequently, the study indicated a single dose of magnesium citrate appeared to cause weakening in the transmission and perception of nociceptive pain. TLR4 may act as a regulator in magnesium's effects on pain perception.
Collapse
Affiliation(s)
- Basar Koc
- Department of Physiology, School of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Servet Kizildag
- College of Vocational School of Health Services, School of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Ferda Hosgorler
- Department of Physiology, School of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Hikmet Gumus
- Department of Sports Medicine, School of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Sevim Kandis
- Department of Physiology, School of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Mehmet Ates
- College of Vocational School of Health Services, School of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Nazan Uysal
- Department of Physiology, School of Medicine, Dokuz Eylül University, Izmir, Turkey.
| |
Collapse
|
44
|
Hwang HS, Park IY, Hong JI, Kim JR, Kim HA. Comparison of joint degeneration and pain in male and female mice in DMM model of osteoarthritis. Osteoarthritis Cartilage 2021; 29:728-738. [PMID: 33609695 DOI: 10.1016/j.joca.2021.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 01/13/2021] [Accepted: 02/08/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE While the prevalence of radiographic and symptomatic osteoarthritis (OA) is higher in women, male mice are more frequently used in animal experiments to explore its pathogenesis or drug efficacy. In this study, we examined whether sexual dimorphism affects pain and joint degeneration in destabilization of the medial meniscus (DMM) mouse model. METHODS DMM or sham surgery was performed on the knee of male and female C57BL/6 mice. Joint damage was assessed by safranin O staining and scored using the Osteoarthritis Research Society International (OARSI) scoring system. Von Frey hair, incapacitance, and rotarod tests were conducted to measure joint pain. The analgesic effect of capsazepine (CPZ), a TRPV1 antagonist, was compared between male and female mice. RESULTS Histology and OARSI scoring analysis showed that cartilage degeneration developed, and progressed in both male and female DMM groups, however, damage was less severe in females at the late stage of OA. Pain behavior, as measured by mechanical allodynia, was displayed for longer in male DMM mice compared to females. Incapacitance data showed that CPZ significantly reduced DMM-induced pain in male mice but not in female mice. Immunofluorescence microscopy analysis demonstrated that DMM surgery increased the expression of TRPV1 in both female and male dorsal root ganglion (DRG). Injection of CPZ significantly suppressed TRPV1 expression in the DRG of male mice only. CONCLUSION Joint damage develops comparably in both female and male mice after DMM although it progresses less in females. There was a subtle sex difference in pain behaviors and analgesic efficacy of a TRPV1 antagonist, which was accompanied by a differential regulation of TPRV1.
Collapse
Affiliation(s)
- H S Hwang
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Kyunggi, 14068, South Korea; Institute for Skeletal Aging, Hallym University, Chunchon, 24251, South Korea
| | - I Y Park
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Kyunggi, 14068, South Korea; Institute for Skeletal Aging, Hallym University, Chunchon, 24251, South Korea
| | - J I Hong
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Kyunggi, 14068, South Korea; Institute for Skeletal Aging, Hallym University, Chunchon, 24251, South Korea
| | - J R Kim
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Kyunggi, 14068, South Korea; Institute for Skeletal Aging, Hallym University, Chunchon, 24251, South Korea
| | - H A Kim
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Kyunggi, 14068, South Korea; Institute for Skeletal Aging, Hallym University, Chunchon, 24251, South Korea.
| |
Collapse
|
45
|
Liu J, Wu X, Lu J, Huang G, Dang L, Zhang H, Zhong C, Zhang Z, Li D, Li F, Liang C, Yu Y, Zhang BT, Chen L, Lu A, Zhang G. Exosomal transfer of osteoclast-derived miRNAs to chondrocytes contributes to osteoarthritis progression. NATURE AGING 2021; 1:368-384. [PMID: 37117596 DOI: 10.1038/s43587-021-00050-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
Osteoarthritis (OA) is a prevalent aging-related joint disease lacking disease-modifying therapies. Here, we identified an upregulation of circulating exosomal osteoclast (OC)-derived microRNAs (OC-miRNAs) during the progression of surgery-induced OA in mice. We found that reducing OC-miRNAs by Cre-mediated excision of the key miRNA-processing enzyme Dicer or blocking the secretion of OC-originated exosomes by short interfering RNA-mediated silencing of Rab27a substantially delayed the progression of surgery-induced OA in mice. Mechanistically, the exosomal transfer of OC-miRNAs to chondrocytes reduced the resistance of cartilage to matrix degeneration, osteochondral angiogenesis and sensory innervation during OA progression by suppressing tissue inhibitor of metalloproteinase-2 (TIMP-2) and TIMP-3. Furthermore, systemic administration of a new OC-targeted exosome inhibitor (OCExoInhib) blunted the progression of surgery-induced OA in mice. We suggest that targeting the exosomal transfer of OC-miRNAs to chondrocytes represents a potential therapeutic avenue to tackle OA progression.
Collapse
|
46
|
Zhang Y, Li C, Qin Y, Cepparulo P, Millman M, Chopp M, Kemper A, Szalad A, Lu X, Wang L, Zhang ZG. Small extracellular vesicles ameliorate peripheral neuropathy and enhance chemotherapy of oxaliplatin on ovarian cancer. J Extracell Vesicles 2021; 10:e12073. [PMID: 33728031 PMCID: PMC7931803 DOI: 10.1002/jev2.12073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/07/2021] [Accepted: 02/13/2021] [Indexed: 12/17/2022] Open
Abstract
There are no effective treatments for chemotherapy induced peripheral neuropathy (CIPN). Small extracellular vesicles (sEVs) facilitate intercellular communication and mediate nerve function and tumour progression. We found that the treatment of mice bearing ovarian tumour with sEVs derived from cerebral endothelial cells (CEC-sEVs) in combination with a chemo-drug, oxaliplatin, robustly reduced oxaliplatin-induced CIPN by decreasing oxaliplatin-damaged myelination and nerve fibres of the sciatic nerve and significantly amplified chemotherapy of oxaliplatin by reducing tumour size. The combination therapy substantially increased a set of sEV cargo-enriched miRNAs, but significantly reduced oxaliplatin-increased proteins in the sciatic nerve and tumour tissues. Bioinformatics analysis revealed the altered miRNAs and proteins formed two distinct networks that regulate neuropathy and tumour growth, respectively. Intravenously administered CEC-sEVs were internalized by axons of the sciatic nerve and cancer cells. Reduction of CEC-sEV cargo miRNAs abolished the effects of CEC-sEVs on oxaliplatin-inhibited axonal growth and on amplification of the anti-cancer effect in ovarian cancer cells, suggesting that alterations in the networks of miRNAs and proteins in recipient cells contribute to the therapeutic effect of CEC-sEVs on CIPN. Together, the present study demonstrates that CEC-sEVs suppressed CIPN and enhanced chemotherapy of oxaliplatin in the mouse bearing ovarian tumour.
Collapse
Affiliation(s)
- Yi Zhang
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Chao Li
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Yi Qin
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | | | | | - Michael Chopp
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
- Department of PhysicsOakland UniversityRochesterMichiganUSA
| | - Amy Kemper
- Department of PathologyHenry Ford Health SystemDetroitMichiganUSA
| | - Alexandra Szalad
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Xuerong Lu
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Lei Wang
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Zheng Gang Zhang
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| |
Collapse
|
47
|
Kirbas Cilingir E, Seven ES, Zhou Y, Walters BM, Mintz KJ, Pandey RR, Wikramanayake AH, Chusuei CC, Vanni S, Graham RM, Leblanc RM. Metformin derived carbon dots: Highly biocompatible fluorescent nanomaterials as mitochondrial targeting and blood-brain barrier penetrating biomarkers. J Colloid Interface Sci 2021; 592:485-497. [PMID: 33714764 DOI: 10.1016/j.jcis.2021.02.058] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/28/2022]
Abstract
Carbon dots (CDs) have been intensively studied since their discovery in 2004 because of their unique properties such as low toxicity, excellent biocompatibility, high photoluminescence (PL) and good water dispersibility. In this study metformin derived carbon dots (Met-CDs) were synthesized using a microwave assisted method. Met-CDs were meticulously characterized using ultra-violet spectroscopy (UV-vis), photoluminescence (PL), Fourier Transform Infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), atomic force (AFM) and transmission electron (TEM) microscopies. According to results of cytotoxicity studies, Met-CDs possess low-toxicity and excellent biocompatibility towards both non-tumor and tumor cell lines indicating that Met-CDs are outstanding candidates for living cell bioimaging studies. Furthermore, bioimaging studies have displayed that Met-CDs can penetrate the cell membrane and disperse throughout the cell structure including the nucleus and mitochondria. More specifically, Met-CDs tend to start localizing selectively inside the mitochondria of cancer cells, but not of non-tumor cells after 1 h of incubation. Finally, a zebrafish study confirmed that Met-CDs cross the blood-brain barrier (BBB) without the need of any other ligands. In summary, this study presents synthesis of Met-CDs which feature abilities such as mitochondrial and nucleus localizations along with BBB penetration.
Collapse
Affiliation(s)
- Emel Kirbas Cilingir
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, United States
| | - Elif S Seven
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, United States
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, United States
| | - Brian M Walters
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
| | - Keenan J Mintz
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, United States
| | - Raja R Pandey
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, United States
| | | | - Charles C Chusuei
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, United States
| | - Steven Vanni
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Regina M Graham
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, United States.
| |
Collapse
|
48
|
Perner C, Sokol CL. Protocol for dissection and culture of murine dorsal root ganglia neurons to study neuropeptide release. STAR Protoc 2021; 2:100333. [PMID: 33615276 PMCID: PMC7876630 DOI: 10.1016/j.xpro.2021.100333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In this protocol, we provide step-by-step instructions for dissection and culture of primary murine dorsal root ganglia (DRG), which provide an opportunity to study the functional properties of peripheral sensory neurons in vitro. Further, we describe the analysis of neuropeptide release by ELISA as a possible downstream application. In addition, isolated DRGs can be used directly for immunofluorescence, flow cytometry, RNA sequencing or proteomic approaches, electrophysiology, and calcium imaging. For complete details on the use and execution of this protocol, please refer to Perner et al. (2020).
Collapse
Affiliation(s)
- Caroline Perner
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Caroline L Sokol
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
49
|
Chambraud B, Daguinot C, Guillemeau K, Genet M, Dounane O, Meduri G, Poüs C, Baulieu EE, Giustiniani J. Decrease of neuronal FKBP4/FKBP52 modulates perinuclear lysosomal positioning and MAPT/Tau behavior during MAPT/Tau-induced proteotoxic stress. Autophagy 2021; 17:3491-3510. [PMID: 33459145 DOI: 10.1080/15548627.2021.1875611] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Defects of autophagy-lysosomal protein degradation are thought to contribute to the pathogenesis of several neurodegenerative diseases, and the accumulation of aggregation prone proteins such as MAPT/Tau in Alzheimer disease (AD). We previously showed the localization of the immunophilin FKBP4/FKBP52 in the lysosomal system of healthy human neurons suggesting its possible role in lysosome function. We also showed that decreased FKBP4 levels in AD brain neurons correlate with abnormal MAPT accumulation and aggregation. In this study, we demonstrate that FKBP4 decrease in a human neuronal cell line (SH-SY5Y) and in dorsal root ganglion (DRG) neurons from human MAPTP301S transgenic mice affected the function of the autophagy-lysosomal system under MAPT induced proteotoxic stress conditions. We show that acute MAPT accumulation in SH-SY5Y cells induced perinuclear clustering of lysosomes, triggered FKBP4 localization around the clusters and its colocalization with MAPT and MAP1LC3/LC3-positive autophagic vesicles; a similar FKBP4 localization was detected in some AD brain neurons. We demonstrate that FKBP4 decrease altered lysosomal clustering along with MAPT and MAP1LC3 secretion increase. Although ectopic FKBP4 expression could not induce autophagy under our experimental conditions, it prevented MAPT secretion after MAPT accumulation in SH-SY5Y cells implying a regulatory role of FKBP4 on MAPT secretion. Finally, we observe that FKBP4 deficiency decreased MAP1LC3-II expression and provoked MAPT accumulation during long-term stress in mouse DRG neurons. We hypothesize that the abnormal FKBP4 decrease observed in AD brain neurons might hinder autophagy efficiency and contribute to the progression of the tauopathy by modulating MAPT secretion and accumulation during MAPT pathogenesis.Abbreviations: AD: Alzheimer disease; AKT/protein kinase B: AKT serine/threonine kinase; ALP: Autophagy-lysosomal pathway; ATG: autophagy-related; BafA1: bafilomycin A1; CQ: chloroquine; CTSD: cathepsin D; DIV: days in vitro; DRG: dorsal root ganglion neurons; Dox: doxycycline; DNAJC5: DnaJ heat shock protein family (Hsp40) member C5; EL: empty lentiviral vectors; ENO2/NSE: enolase 2, gamma neuronal; FKBP4/FKBP52: FKBP prolyl isomerase 4; FTLD-Tau: frontotemporal lobar degeneration with Tau pathology; GFP: green fluorescent protein; LAMP1: lysosomal associated membrane protein 1; LDH: lactate dehydrogenase; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPT/Tau: microtubule associated protein tau; MTT: tetrazolium salt; NFTs: neurofibrillary tangles; RPE-1: retinal pigment epithelial cells; shRNA: small-hairpin ribonucleic acid; SQSTM1/p62: sequestosome 1; SD: standard deviation; SEM: standard error of the mean; SH-SY5Y: human neuroblastoma cells; Sh1 or Sh2: Lentiviral shRNA vectors inducing FKBP4 decrease; SH-52GFP: MAPT/Tau-inducible SH-SY5Y cell line constitutively expressing FKBP4-GFP; TUBB3/βIII tubulin: tubulin beta 3 class III; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
| | | | | | - Melanie Genet
- INSERM U1195, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Omar Dounane
- INSERM U1195, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Geri Meduri
- INSERM U1195, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Christian Poüs
- INSERM UMR-S-1193, Université Paris-Saclay, Châtenay-Malabry, France.,Biochimie-Hormonologie , AP-HP Université Paris-Saclay, Site Antoine Béclère, Clamart, France
| | | | | |
Collapse
|
50
|
Flores B, Delpire E. Osmotic Response of Dorsal Root Ganglion Neurons Expressing Wild-Type and Mutant KCC3 Transporters. Cell Physiol Biochem 2021; 54:577-590. [PMID: 32506846 DOI: 10.33594/000000241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2020] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND/AIMS Loss-of-Function (LOF) of the potassium chloride cotransporter 3 (KCC3) results in hereditary sensorimotor neuropathy with Agenesis of the Corpus Callosum (HSMN/ACC). Our KCC3 knockout mouse recapitulated axonal swelling and tissue vacuolization observed in autopsies of individuals with HSMN/ACC. We previously documented the first human case of a KCC3 gain-of-function (GOF) in which the patient also exhibited severe peripheral neuropathy. Furthermore, the GOF mouse model exhibited shrunken axons implicating the cotransporter in cell volume homeostasis. It is unclear how both KCC3 LOF and GOF lead to peripheral neuropathy. Thus, we sought to study differences in cell volume regulation of dorsal root ganglion neurons isolated from different mouse lines. METHODS Using wide-field microscopy, we measured calcein fluorescence intensity through pinhole measurements at the center of cells and compared cell swelling and cell volume regulation/recovery of wild-type, LOF, and GOF dorsal root ganglia neurons, as well as wild-type neurons treated with a KCC-specific inhibitor. RESULTS In contrast to control neurons that swell and volume regulate under a hypotonic challenge, neurons lacking KCC3 swell but fail to volume regulate. Similar data were observed in wild-type neurons treated with the KCC inhibitor. We also show that sensory neurons expressing a constitutively active KCC3 exhibited a blunted swelling phase compared to wild-type neurons, questioning the purely osmotic nature of the swelling phase. CONCLUSION These findings demonstrate the integral role of KCC3 in cell volume homeostasis and support the idea that cell volume homeostasis is critical to the health of peripheral nerves.
Collapse
Affiliation(s)
- Bianca Flores
- Department of Anesthesiology and Neuroscience Graduate Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric Delpire
- Department of Anesthesiology and Neuroscience Graduate Program, Vanderbilt University School of Medicine, Nashville, TN, USA,
| |
Collapse
|