1
|
Abrishamcar S, Zhuang BC, Thomas M, Gladish N, MacIsaac JL, Jones MJ, Simons E, Moraes TJ, Mandhane PJ, Brook JR, Subbarao P, Turvey SE, Chen E, Miller GE, Kobor MS, Hüls A. Association between maternal perinatal stress and depression and infant DNA methylation in the first year of life. Transl Psychiatry 2024; 14:445. [PMID: 39438450 PMCID: PMC11496819 DOI: 10.1038/s41398-024-03148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Maternal stress and depression during pregnancy and the first year of the infant's life affect a large percentage of mothers. Maternal stress and depression have been associated with adverse fetal and childhood outcomes as well as differential child DNA methylation (DNAm). However, the biological mechanisms connecting maternal stress and depression to poor health outcomes in children are still largely unknown. Here we aim to determine whether prenatal stress and depression are associated with differences in cord blood mononuclear cell DNAm (CBMC-DNAm) in newborns (n = 119) and whether postnatal stress and depression are associated with differences in peripheral blood mononuclear cell DNAm (PBMC-DNAm) in children of 12 months of age (n = 113) from the Canadian Healthy Infant Longitudinal Development (CHILD) cohort. Stress was measured using the 10-item Perceived Stress Scale (PSS) and depression was measured using the 20-item Center for Epidemiologic Studies Depression Questionnaire (CESD). Both stress and depression were measured longitudinally at 18 weeks and 36 weeks of pregnancy and six months and 12 months postpartum. We conducted epigenome-wide association studies (EWAS) using robust linear regression followed by a sensitivity analysis in which we bias-adjusted for inflation and unmeasured confounding using the bacon and cate methods. To quantify the cumulative effect of maternal stress and depression, we created composite prenatal and postnatal adversity scores. We identified a significant association between prenatal stress and differential CBMC-DNAm at 8 CpG sites and between prenatal depression and differential CBMC-DNAm at 2 CpG sites. Additionally, we identified a significant association between postnatal stress and differential PBMC-DNAm at 8 CpG sites and between postnatal depression and differential PBMC-DNAm at 11 CpG sites. Using our composite scores, we further identified 2 CpG sites significantly associated with prenatal adversity and 7 CpG sites significantly associated with postnatal adversity. Several of the associated genes, including PLAGL1, HYMAI, BRD2, and ERC2 have been implicated in adverse fetal outcomes and neuropsychiatric disorders. These data further support the finding that differential DNAm may play a role in the relationship between maternal mental health and child health.
Collapse
Affiliation(s)
- Sarina Abrishamcar
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Beryl C Zhuang
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Edwin S.H. Leong Centre for Healthy Aging, Vancouver, BC, Canada
| | - Mara Thomas
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Nicole Gladish
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Edwin S.H. Leong Centre for Healthy Aging, Vancouver, BC, Canada
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Julia L MacIsaac
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Edwin S.H. Leong Centre for Healthy Aging, Vancouver, BC, Canada
| | - Meaghan J Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Elinor Simons
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Theo J Moraes
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children & Research Institute, Toronto, ON, Canada
| | - Piush J Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Jeffrey R Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Padmaja Subbarao
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children & Research Institute, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Edith Chen
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Policy Research, Northwestern University, Evanston, IL, USA
| | - Gregory E Miller
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Policy Research, Northwestern University, Evanston, IL, USA
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.
- Edwin S.H. Leong Centre for Healthy Aging, Vancouver, BC, Canada.
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Nazzari S, Grumi S, Mambretti F, Villa M, Giorda R, Bordoni M, Pansarasa O, Borgatti R, Provenzi L. Sex-dimorphic pathways in the associations between maternal trait anxiety, infant BDNF methylation, and negative emotionality. Dev Psychopathol 2024; 36:908-918. [PMID: 36855816 DOI: 10.1017/s0954579423000172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Maternal antenatal anxiety is an emerging risk factor for child emotional development. Both sex and epigenetic mechanisms, such as DNA methylation, may contribute to the embedding of maternal distress into emotional outcomes. Here, we investigated sex-dependent patterns in the association between antenatal maternal trait anxiety, methylation of the brain-derived neurotrophic factor gene (BDNF DNAm), and infant negative emotionality (NE). Mother-infant dyads (N = 276) were recruited at delivery. Maternal trait anxiety, as a marker of antenatal chronic stress exposure, was assessed soon after delivery using the Stait-Trait Anxiety Inventory (STAI-Y). Infants' BDNF DNAm at birth was assessed in 11 CpG sites in buccal cells whereas infants' NE was assessed at 3 (N = 225) and 6 months (N = 189) using the Infant Behavior Questionnaire-Revised (IBQ-R). Hierarchical linear analyses showed that higher maternal antenatal anxiety was associated with greater 6-month-olds' NE. Furthermore, maternal antenatal anxiety predicted greater infants' BDNF DNAm in five CpG sites in males but not in females. Higher methylation at these sites was associated with greater 3-to-6-month NE increase, independently of infants' sex. Maternal antenatal anxiety emerged as a risk factor for infant's NE. BDNF DNAm might mediate this effect in males. These results may inform the development of strategies to promote mothers and infants' emotional well-being.
Collapse
Affiliation(s)
- Sarah Nazzari
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Serena Grumi
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Fabiana Mambretti
- Molecular Biology Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Marco Villa
- Molecular Biology Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Roberto Giorda
- Molecular Biology Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Matteo Bordoni
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Orietta Pansarasa
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Renato Borgatti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Livio Provenzi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
3
|
Opsahl JO, Fragoso-Bargas N, Lee Y, Carlsen EØ, Lekanova N, Qvigstad E, Sletner L, Jenum AK, Lee-Ødegård S, Prasad RB, Birkeland KI, Moen GH, Sommer C. Epigenome-wide association study of DNA methylation in maternal blood leukocytes with BMI in pregnancy and gestational weight gain. Int J Obes (Lond) 2024; 48:584-593. [PMID: 38219005 PMCID: PMC10978488 DOI: 10.1038/s41366-024-01458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
OBJECTIVES We aimed to discover CpG sites with differential DNA methylation in peripheral blood leukocytes associated with body mass index (BMI) in pregnancy and gestational weight gain (GWG) in women of European and South Asian ancestry. Furthermore, we aimed to investigate how the identified sites were associated with methylation quantitative trait loci, gene ontology, and cardiometabolic parameters. METHODS In the Epigenetics in pregnancy (EPIPREG) sample we quantified maternal DNA methylation in peripheral blood leukocytes in gestational week 28 with Illumina's MethylationEPIC BeadChip. In women with European (n = 303) and South Asian (n = 164) ancestry, we performed an epigenome-wide association study of BMI in gestational week 28 and GWG between gestational weeks 15 and 28 using a meta-analysis approach. Replication was performed in the Norwegian Mother, Father, and Child Cohort Study, the Study of Assisted Reproductive Technologies (MoBa-START) (n = 877, mainly European/Norwegian). RESULTS We identified one CpG site significantly associated with GWG (p 5.8 × 10-8) and five CpG sites associated with BMI at gestational week 28 (p from 4.0 × 10-8 to 2.1 × 10-10). Of these, we were able to replicate three in MoBa-START; cg02786370, cg19758958 and cg10472537. Two sites are located in genes previously associated with blood pressure and BMI. DNA methylation at the three replicated CpG sites were associated with levels of blood pressure, lipids and glucose in EPIPREG (p from 1.2 × 10-8 to 0.04). CONCLUSIONS We identified five CpG sites associated with BMI at gestational week 28, and one with GWG. Three of the sites were replicated in an independent cohort. Several genetic variants were associated with DNA methylation at cg02786379 and cg16733643 suggesting a genetic component influencing differential methylation. The identified CpG sites were associated with cardiometabolic traits. CLINICALTRIALS GOV REGISTRATION NO Not applicable.
Collapse
Affiliation(s)
- J O Opsahl
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - N Fragoso-Bargas
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Y Lee
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - E Ø Carlsen
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - N Lekanova
- Department of Biosciences, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - E Qvigstad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - L Sletner
- Department of Pediatric and Adolescents Medicine, Akershus University Hospital, Lørenskog, Norway
| | - A K Jenum
- General Practice Research Unit, Department of General Practice, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - S Lee-Ødegård
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - R B Prasad
- Lund University Diabetes Centre, Malmö, Sweden
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - K I Birkeland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - G-H Moen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
- Institute of Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - C Sommer
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
4
|
Abrishamcar S, Zhuang B, Thomas M, Gladish N, MacIsaac J, Jones M, Simons E, Moraes T, Mandhane P, Brook J, Subbarao P, Turvey S, Chen E, Miller G, Kobor M, Huels A. Association between Maternal Perinatal Stress and Depression on Infant DNA Methylation in the First Year of Life. RESEARCH SQUARE 2024:rs.3.rs-3962429. [PMID: 38562779 PMCID: PMC10984027 DOI: 10.21203/rs.3.rs-3962429/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Maternal stress and depression during pregnancy and the first year of the infant's life affect a large percentage of mothers. Maternal stress and depression have been associated with adverse fetal and childhood outcomes as well as differential child DNA methylation (DNAm). However, the biological mechanisms connecting maternal stress and depression to poor health outcomes in children are still largely unknown. Here we aim to determine whether prenatal stress and depression are associated with changes in cord blood mononuclear cell DNAm (CBMC-DNAm) in newborns (n = 119) and whether postnatal stress and depression are associated with changes in peripheral blood mononuclear cell DNAm (PBMC-DNAm) in children of 12 months of age (n = 113) from the Canadian Healthy Infant Longitudinal Development (CHILD) cohort. Stress was measured using the 10-item Perceived Stress Scale (PSS) and depression was measured using the Center for Epidemiologic Studies Depression Questionnaire (CESD). Both stress and depression were measured at 18 weeks and 36 weeks of pregnancy and six months and 12 months postpartum. We conducted epigenome-wide association studies (EWAS) using robust linear regression followed by a sensitivity analysis in which we bias-adjusted for inflation and unmeasured confounding using the bacon and cate methods. To investigate the cumulative effect of maternal stress and depression, we created composite prenatal and postnatal adversity scores. We identified a significant association between prenatal stress and differential CBMC-DNAm at 8 CpG sites and between prenatal depression and differential CBMC-DNAm at 2 CpG sites. Additionally, we identified a significant association between postnatal stress and differential PBMC-DNAm at 8 CpG sites and between postnatal depression and differential PBMC-DNAm at 11 CpG sites. Using our composite scores, we further identified 2 CpG sites significantly associated with prenatal adversity and 7 CpG sites significantly associated with postnatal adversity. Several of the associated genes, including PLAGL1, HYMAI, BRD2, and ERC2 have been implicated in adverse fetal outcomes and neuropsychiatric disorders. This suggested that differential DNAm may play a role in the relationship between maternal mental health and child health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Anke Huels
- Rollins School of Public Health, Emory University
| |
Collapse
|
5
|
Bakulski KM, Blostein F, London SJ. Linking Prenatal Environmental Exposures to Lifetime Health with Epigenome-Wide Association Studies: State-of-the-Science Review and Future Recommendations. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:126001. [PMID: 38048101 PMCID: PMC10695268 DOI: 10.1289/ehp12956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND The prenatal environment influences lifetime health; epigenetic mechanisms likely predominate. In 2016, the first international consortium paper on cigarette smoking during pregnancy and offspring DNA methylation identified extensive, reproducible exposure signals. This finding raised expectations for epigenome-wide association studies (EWAS) of other exposures. OBJECTIVE We review the current state-of-the-science for DNA methylation associations across prenatal exposures in humans and provide future recommendations. METHODS We reviewed 134 prenatal environmental EWAS of DNA methylation in newborns, focusing on 51 epidemiological studies with meta-analysis or replication testing. Exposures spanned cigarette smoking, alcohol consumption, air pollution, dietary factors, psychosocial stress, metals, other chemicals, and other exogenous factors. Of the reproducible DNA methylation signatures, we examined implementation as exposure biomarkers. RESULTS Only 19 (14%) of these prenatal EWAS were conducted in cohorts of 1,000 or more individuals, reflecting the still early stage of the field. To date, the largest perinatal EWAS sample size was 6,685 participants. For comparison, the most recent genome-wide association study for birth weight included more than 300,000 individuals. Replication, at some level, was successful with exposures to cigarette smoking, folate, dietary glycemic index, particulate matter with aerodynamic diameter < 10 μ m and < 2.5 μ m , nitrogen dioxide, mercury, cadmium, arsenic, electronic waste, PFAS, and DDT. Reproducible effects of a more limited set of prenatal exposures (smoking, folate) enabled robust methylation biomarker creation. DISCUSSION Current evidence demonstrates the scientific premise for reproducible DNA methylation exposure signatures. Better powered EWAS could identify signatures across many exposures and enable comprehensive biomarker development. Whether methylation biomarkers of exposures themselves cause health effects remains unclear. We expect that larger EWAS with enhanced coverage of epigenome and exposome, along with improved single-cell technologies and evolving methods for integrative multi-omics analyses and causal inference, will expand mechanistic understanding of causal links between environmental exposures, the epigenome, and health outcomes throughout the life course. https://doi.org/10.1289/EHP12956.
Collapse
Affiliation(s)
| | - Freida Blostein
- University of Michigan, Ann Arbor, Michigan, USA
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Stephanie J. London
- National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
6
|
Ng JWY, Felix JF, Olson DM. A novel approach to risk exposure and epigenetics-the use of multidimensional context to gain insights into the early origins of cardiometabolic and neurocognitive health. BMC Med 2023; 21:466. [PMID: 38012757 PMCID: PMC10683259 DOI: 10.1186/s12916-023-03168-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Each mother-child dyad represents a unique combination of genetic and environmental factors. This constellation of variables impacts the expression of countless genes. Numerous studies have uncovered changes in DNA methylation (DNAm), a form of epigenetic regulation, in offspring related to maternal risk factors. How these changes work together to link maternal-child risks to childhood cardiometabolic and neurocognitive traits remains unknown. This question is a key research priority as such traits predispose to future non-communicable diseases (NCDs). We propose viewing risk and the genome through a multidimensional lens to identify common DNAm patterns shared among diverse risk profiles. METHODS We identified multifactorial Maternal Risk Profiles (MRPs) generated from population-based data (n = 15,454, Avon Longitudinal Study of Parents and Children (ALSPAC)). Using cord blood HumanMethylation450 BeadChip data, we identified genome-wide patterns of DNAm that co-vary with these MRPs. We tested the prospective relation of these DNAm patterns (n = 914) to future outcomes using decision tree analysis. We then tested the reproducibility of these patterns in (1) DNAm data at age 7 and 17 years within the same cohort (n = 973 and 974, respectively) and (2) cord DNAm in an independent cohort, the Generation R Study (n = 686). RESULTS We identified twenty MRP-related DNAm patterns at birth in ALSPAC. Four were prospectively related to cardiometabolic and/or neurocognitive childhood outcomes. These patterns were replicated in DNAm data from blood collected at later ages. Three of these patterns were externally validated in cord DNAm data in Generation R. Compared to previous literature, DNAm patterns exhibited novel spatial distribution across the genome that intersects with chromatin functional and tissue-specific signatures. CONCLUSIONS To our knowledge, we are the first to leverage multifactorial population-wide data to detect patterns of variability in DNAm. This context-based approach decreases biases stemming from overreliance on specific samples or variables. We discovered molecular patterns demonstrating prospective and replicable relations to complex traits. Moreover, results suggest that patterns harbour a genome-wide organisation specific to chromatin regulation and target tissues. These preliminary findings warrant further investigation to better reflect the reality of human context in molecular studies of NCDs.
Collapse
Affiliation(s)
- Jane W Y Ng
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
| | - Janine F Felix
- The Generation F Study Group, Erasmus MC University Medical Center Rotterdam, Postbus, 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - David M Olson
- Departments of Obstetrics and Gynecology, Physiology, and Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 220 HMRC, Edmonton, AB, T6G2S2, Canada.
| |
Collapse
|
7
|
Fernández-Boyano I, Inkster AM, Yuan V, Robinson WP. eoPred: predicting the placental phenotype of early-onset preeclampsia using public DNA methylation data. Front Genet 2023; 14:1248088. [PMID: 37736302 PMCID: PMC10509376 DOI: 10.3389/fgene.2023.1248088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/08/2023] [Indexed: 09/23/2023] Open
Abstract
Background: A growing body of literature has reported molecular and histological changes in the human placenta in association with preeclampsia (PE). Placental DNA methylation (DNAme) and transcriptomic patterns have revealed molecular subgroups of PE that are associated with placental histopathology and clinical phenotypes of the disease. However, the clinical and molecular heterogeneity of PE both across and within subtypes complicates the study of this disease. PE is most strongly associated with placental pathology and adverse fetal and maternal outcomes when it develops early in pregnancy. We focused on placentae from pregnancies affected by preeclampsia that were delivered before 34 weeks of gestation to develop eoPred, a predictor of the DNAme signature associated with the placental phenotype of early-onset preeclampsia (EOPE). Results: Public data from 83 placental samples (HM450K), consisting of 42 EOPE and 41 normotensive preterm birth (nPTB) cases, was used to develop eoPred-a supervised model that relies on a highly discriminative 45 CpG DNAme signature of EOPE in the placenta. The performance of eoPred was assessed using cross-validation (AUC = 0.95) and tested in an independent validation cohort (n = 49, AUC = 0.725). A subset of fetal growth restriction (FGR) and late-PE cases showed a similar DNAme profile at the 45 predictive CpGs, consistent with the overlap in placental pathology between these conditions. The relationship between the EOPE probability generated by eoPred and various phenotypic variables was also assessed, revealing that it is associated with gestational age, and it is not driven by cell composition differences. Conclusion: eoPred relies on a 45-CpG DNAme signature to predict a homogeneous placental phenotype of EOPE in a discrete or continuous manner. Using this classifier should 1) aid in the study of placental insufficiency and improve the consistency of future placental DNAme studies of PE, 2) facilitate identifying the placental phenotype of EOPE in public data sets and 3) importantly, standardize the placental diagnosis of EOPE to allow better cross-cohort comparisons. Lastly, classification of cases with eoPred will be useful for investigating the relationship between placental pathology and genetic or environmental variables.
Collapse
Affiliation(s)
- I. Fernández-Boyano
- BC Children’s Hospital Research Institute (BCCHR), Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - A. M. Inkster
- BC Children’s Hospital Research Institute (BCCHR), Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - V. Yuan
- BC Children’s Hospital Research Institute (BCCHR), Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - W. P. Robinson
- BC Children’s Hospital Research Institute (BCCHR), Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Holdsworth EA, Schell LM, Appleton AA. Maternal-infant interaction quality is associated with child NR3C1 CpG site methylation at 7 years of age. Am J Hum Biol 2023; 35:e23876. [PMID: 36779373 PMCID: PMC10909417 DOI: 10.1002/ajhb.23876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 02/14/2023] Open
Abstract
OBJECTIVE Infancy is both a critical window for hypothalamic-pituitary-adrenal (HPA) axis development, and a sensitive period for social-emotional influences. We hypothesized that the social-emotional quality of maternal-infant interactions are associated with methylation of HPA-axis gene NR3C1 later in childhood. METHODS Using a subsample of 114 mother-infant pairs from the Avon Longitudinal Study of Parents and Children (ALSPAC), linear regression models were created to predict variance in methylation of seven selected CpG sites from NR3C1 in whole blood at age 7 years, including the main predictor variable of the first principal component score of observed maternal-infant interaction quality (derived from the Thorpe Interaction Measure at 12 months of age) and covariates of cell-type proportion, maternal financial difficulties and marital status at 8 months postnatal, child birthweight, and sex. RESULTS CpG site cg27122725 methylation was negatively associated with warmer, more positive maternal interaction with her infant (β = 0.19, p = .02, q = 0.13). In sensitivity analyses, the second highest quartile of maternal behavior (neutral, hesitant behavior) was positively associated with cg12466613 methylation. The other five CpG sites were not significantly associated with maternal-infant interaction quality. CONCLUSIONS Narrow individual variation of maternal interaction with her infant is associated with childhood methylation of two CpG sites on NR3C1 that may be particularly sensitive to environmental influences. Infancy may be a sensitive period for even small influences from the social-emotional environment on the epigenetic determinants of HPA-axis function.
Collapse
Affiliation(s)
- Elizabeth A. Holdsworth
- Department of AnthropologyWashington State UniversityPullmanWashingtonUSA
- Department of AnthropologyUniversity at Albany State University of New YorkAlbanyNew YorkUSA
| | - Lawrence M. Schell
- Department of AnthropologyUniversity at Albany State University of New YorkAlbanyNew YorkUSA
- Department of Epidemiology & BiostatisticsUniversity at Albany State University of New YorkRensselaerNew YorkUSA
| | - Allison A. Appleton
- Department of Epidemiology & BiostatisticsUniversity at Albany State University of New YorkRensselaerNew YorkUSA
| |
Collapse
|
9
|
Gaare JJ, Dölle C, Brakedal B, Brügger K, Haugarvoll K, Nido GS, Tzoulis C. Nicotinamide riboside supplementation is not associated with altered methylation homeostasis in Parkinson's disease. iScience 2023; 26:106278. [PMID: 36936793 PMCID: PMC10014306 DOI: 10.1016/j.isci.2023.106278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/19/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Replenishing nicotinamide adenine dinucleotide (NAD) via supplementation of nicotinamide riboside (NR) has been shown to confer neuroprotective effects in models of aging and neurodegenerative diseases, including Parkinson's disease (PD). Although generally considered safe, concerns have been raised that NR supplementation could impact methylation dependent reactions, including DNA methylation, because of increased production and methylation dependent breakdown of nicotinamide (NAM). We investigated the effect of NR supplementation on DNA methylation in a double blinded, placebo-controlled trial of 29 human subjects with PD, in blood cells and muscle tissue. Our results show that NR had no impact on DNA methylation homeostasis, including individuals with common pathogenic mutations in the MTHFR gene known to affect one-carbon metabolism. Pathway and methylation variance analyses indicate that there might be minor regulatory responses to NR. We conclude that short-term therapy with high-dose NR for up to 30 days has no deleterious impact on methylation homeostasis.
Collapse
Affiliation(s)
- Johannes J. Gaare
- Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson’s Disease, University of Bergen, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Christian Dölle
- Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson’s Disease, University of Bergen, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Brage Brakedal
- Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson’s Disease, University of Bergen, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kim Brügger
- Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson’s Disease, University of Bergen, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kristoffer Haugarvoll
- Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson’s Disease, University of Bergen, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Gonzalo S. Nido
- Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson’s Disease, University of Bergen, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Charalampos Tzoulis
- Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson’s Disease, University of Bergen, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
10
|
Merrill SM, Gladish N, Fu MP, Moore SR, Konwar C, Giesbrecht GF, MacIssac JL, Kobor MS, Letourneau NL. Associations of peripheral blood DNA methylation and estimated monocyte proportion differences during infancy with toddler attachment style. Attach Hum Dev 2023; 25:132-161. [PMID: 34196256 DOI: 10.1080/14616734.2021.1938872] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Attachment is a motivational system promoting felt security to a caregiver resulting in a persistent internal working model of interpersonal behavior. Attachment styles are developed in early social environments and predict future health and development outcomes with potential biological signatures, such as epigenetic modifications like DNA methylation (DNAm). Thus, we hypothesized infant DNAm would associate with toddler attachment styles. An epigenome-wide association study (EWAS) of blood DNAm from 3-month-old infants was regressed onto children's attachment style from the Strange Situation Procedure at 22-months at multiple DNAm Cytosine-phosphate-Guanine (CpG) sites. The 26 identified CpGs associated with proinflammatory immune phenotypes and cognitive development. In post-hoc analyses, only maternal cognitive-growth fostering, encouraging intellectual exploration, contributed. For disorganized children, DNAm-derived cell-type proportions estimated higher monocytes -cells in immune responses hypothesized to increase with early adversity. Collectively, these findings suggested the potential biological embedding of both adverse and advantageous social environments as early as 3-months-old.
Collapse
Affiliation(s)
- Sarah M Merrill
- BC Children's Hospital Research Institute Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Nicole Gladish
- BC Children's Hospital Research Institute Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Maggie P Fu
- BC Children's Hospital Research Institute Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Sarah R Moore
- BC Children's Hospital Research Institute Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Chaini Konwar
- BC Children's Hospital Research Institute Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Gerald F Giesbrecht
- Department of Pediatrics, University of Calgary, Calgary, Canada.,Owerko Centre at the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Julia L MacIssac
- BC Children's Hospital Research Institute Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Michael S Kobor
- BC Children's Hospital Research Institute Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, Canada.,Program in Child and Brain Development, CIFAR, Toronto, Canada
| | - Nicole L Letourneau
- Department of Pediatrics, University of Calgary, Calgary, Canada.,Owerko Centre at the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Department of Psychiatry, University of Calgary, Calgary, Canada.,Faculty of Nursing, University of Calgary, Calgary, Canada
| |
Collapse
|
11
|
Inkster AM, Wong MT, Matthews AM, Brown CJ, Robinson WP. Who's afraid of the X? Incorporating the X and Y chromosomes into the analysis of DNA methylation array data. Epigenetics Chromatin 2023; 16:1. [PMID: 36609459 PMCID: PMC9825011 DOI: 10.1186/s13072-022-00477-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Many human disease phenotypes manifest differently by sex, making the development of methods for incorporating X and Y-chromosome data into analyses vital. Unfortunately, X and Y chromosome data are frequently excluded from large-scale analyses of the human genome and epigenome due to analytical complexity associated with sex chromosome dosage differences between XX and XY individuals, and the impact of X-chromosome inactivation (XCI) on the epigenome. As such, little attention has been given to considering the methods by which sex chromosome data may be included in analyses of DNA methylation (DNAme) array data. RESULTS With Illumina Infinium HumanMethylation450 DNAme array data from 634 placental samples, we investigated the effects of probe filtering, normalization, and batch correction on DNAme data from the X and Y chromosomes. Processing steps were evaluated in both mixed-sex and sex-stratified subsets of the analysis cohort to identify whether including both sexes impacted processing results. We found that identification of probes that have a high detection p-value, or that are non-variable, should be performed in sex-stratified data subsets to avoid over- and under-estimation of the quantity of probes eligible for removal, respectively. All normalization techniques investigated returned X and Y DNAme data that were highly correlated with the raw data from the same samples. We found no difference in batch correction results after application to mixed-sex or sex-stratified cohorts. Additionally, we identify two analytical methods suitable for XY chromosome data, the choice between which should be guided by the research question of interest, and we performed a proof-of-concept analysis studying differential DNAme on the X and Y chromosome in the context of placental acute chorioamnionitis. Finally, we provide an annotation of probe types that may be desirable to filter in X and Y chromosome analyses, including probes in repetitive elements, the X-transposed region, and cancer-testis gene promoters. CONCLUSION While there may be no single "best" approach for analyzing DNAme array data from the X and Y chromosome, analysts must consider key factors during processing and analysis of sex chromosome data to accommodate the underlying biology of these chromosomes, and the technical limitations of DNA methylation arrays.
Collapse
Affiliation(s)
- Amy M Inkster
- BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V6H 3N1, Canada.
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1, Canada.
| | - Martin T Wong
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1, Canada
| | - Allison M Matthews
- BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V6H 3N1, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, V6T 1Z7, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1, Canada
| | - Wendy P Robinson
- BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V6H 3N1, Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1, Canada
| |
Collapse
|
12
|
Inkster AM, Konwar C, Peñaherrera MS, Brain U, Khan A, Price EM, Schuetz JM, Portales-Casamar É, Burt A, Marsit CJ, Vaillancourt C, Oberlander TF, Robinson WP. Profiling placental DNA methylation associated with maternal SSRI treatment during pregnancy. Sci Rep 2022; 12:22576. [PMID: 36585414 PMCID: PMC9803674 DOI: 10.1038/s41598-022-26071-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) for treatment of prenatal maternal depression have been associated with neonatal neurobehavioral disturbances, though the molecular mechanisms remain poorly understood. In utero exposure to SSRIs may affect DNA methylation (DNAme) in the human placenta, an epigenetic mark that is established during development and is associated with gene expression. Chorionic villus samples from 64 human placentas were profiled with the Illumina MethylationEPIC BeadChip; clinical assessments of maternal mood and SSRI treatment records were collected at multiple time points during pregnancy. Case distribution was 20 SSRI-exposed cases and 44 SSRI non-exposed cases. Maternal depression was defined using a mean maternal Hamilton Depression score > 8 to indicate symptomatic depressed mood ("maternally-depressed"), and we further classified cases into SSRI-exposed, maternally-depressed (n = 14); SSRI-exposed, not maternally-depressed (n = 6); SSRI non-exposed, maternally-depressed (n = 20); and SSRI non-exposed, not maternally-depressed (n = 24). For replication, Illumina 450K DNAme profiles were obtained from 34 additional cases from an independent cohort (n = 17 SSRI-exposed, n = 17 SSRI non-exposed). No CpGs were differentially methylated at FDR < 0.05 comparing SSRI-exposed to non-exposed placentas, in a model adjusted for mean maternal Hamilton Depression score, or in a model restricted to maternally-depressed cases with and without SSRI exposure. However, at a relaxed threshold of FDR < 0.25, five CpGs were differentially methylated (|Δβ| > 0.03) by SSRI exposure status. Four were covered by the replication cohort measured by the 450K array, but none replicated. No CpGs were differentially methylated (FDR < 0.25) comparing maternally depressed to not depressed cases. In sex-stratified analyses for SSRI-exposed versus non-exposed cases (females n = 31; males n = 33), three additional CpGs in females, but none in males, were differentially methylated at the relaxed FDR < 0.25 cut-off. We did not observe large-scale alterations of DNAme in placentas exposed to maternal SSRI treatment, as compared to placentas with no SSRI exposure. We also found no evidence for altered DNAme in maternal depression-exposed versus depression non-exposed placentas. This novel work in a prospectively-recruited cohort with clinician-ascertained SSRI exposure and mood assessments would benefit from future replication.
Collapse
Affiliation(s)
- Amy M. Inkster
- grid.414137.40000 0001 0684 7788BC Children’s Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Chaini Konwar
- grid.414137.40000 0001 0684 7788BC Children’s Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada ,grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3 Canada
| | - Maria S. Peñaherrera
- grid.414137.40000 0001 0684 7788BC Children’s Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Ursula Brain
- grid.414137.40000 0001 0684 7788BC Children’s Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
| | - Almas Khan
- grid.414137.40000 0001 0684 7788BC Children’s Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada ,grid.17091.3e0000 0001 2288 9830Department of Pediatrics, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - E. Magda Price
- grid.414137.40000 0001 0684 7788BC Children’s Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3 Canada ,grid.28046.380000 0001 2182 2255Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 5B2 Canada
| | - Johanna M. Schuetz
- grid.414137.40000 0001 0684 7788BC Children’s Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Élodie Portales-Casamar
- grid.414137.40000 0001 0684 7788BC Children’s Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada ,grid.17091.3e0000 0001 2288 9830Department of Pediatrics, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Amber Burt
- grid.189967.80000 0001 0941 6502Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322 USA
| | - Carmen J. Marsit
- grid.189967.80000 0001 0941 6502Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322 USA
| | - Cathy Vaillancourt
- grid.418084.10000 0000 9582 2314INRS-Centre Armand Frappier and Réseau intersectoriel de recherche en santé de l’Université du Québec, Laval, QC H7V 1B7 Canada
| | - Tim F. Oberlander
- grid.414137.40000 0001 0684 7788BC Children’s Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada ,grid.17091.3e0000 0001 2288 9830School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Wendy P. Robinson
- grid.414137.40000 0001 0684 7788BC Children’s Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| |
Collapse
|
13
|
Upadhya S, Gingerich D, Lutz MW, Chiba-Falek O. Differential Gene Expression and DNA Methylation in the Risk of Depression in LOAD Patients. Biomolecules 2022; 12:1679. [PMID: 36421693 PMCID: PMC9687527 DOI: 10.3390/biom12111679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/28/2024] Open
Abstract
Depression is common among late-onset Alzheimer's Disease (LOAD) patients. Only a few studies investigated the genetic variability underlying the comorbidity of depression in LOAD. Moreover, the epigenetic and transcriptomic factors that may contribute to comorbid depression in LOAD have yet to be studied. Using transcriptomic and DNA-methylomic datasets from the ROSMAP cohorts, we investigated differential gene expression and DNA-methylation in LOAD patients with and without comorbid depression. Differential expression analysis did not reveal significant association between differences in gene expression and the risk of depression in LOAD. Upon sex-stratification, we identified 25 differential expressed genes (DEG) in males, of which CHI3L2 showed the strongest upregulation, and only 3 DEGs in females. Additionally, testing differences in DNA-methylation found significant hypomethylation of CpG (cg20442550) on chromosome 17 (log2FC = -0.500, p = 0.004). Sex-stratified differential DNA-methylation analysis did not identify any significant CpG probes. Integrating the transcriptomic and DNA-methylomic datasets did not discover relationships underlying the comorbidity of depression and LOAD. Overall, our study is the first multi-omics genome-wide exploration of the role of gene expression and epigenome alterations in the risk of comorbid depression in LOAD patients. Furthermore, we discovered sex-specific differences in gene expression underlying the risk of depression symptoms in LOAD.
Collapse
Affiliation(s)
| | | | | | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
14
|
Hillary RF, McCartney DL, McRae AF, Campbell A, Walker RM, Hayward C, Horvath S, Porteous DJ, Evans KL, Marioni RE. Identification of influential probe types in epigenetic predictions of human traits: implications for microarray design. Clin Epigenetics 2022; 14:100. [PMID: 35948928 PMCID: PMC9367152 DOI: 10.1186/s13148-022-01320-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CpG methylation levels can help to explain inter-individual differences in phenotypic traits. Few studies have explored whether identifying probe subsets based on their biological and statistical properties can maximise predictions whilst minimising array content. Variance component analyses and penalised regression (epigenetic predictors) were used to test the influence of (i) the number of probes considered, (ii) mean probe variability and (iii) methylation QTL status on the variance captured in eighteen traits by blood DNA methylation. Training and test samples comprised ≤ 4450 and ≤ 2578 unrelated individuals from Generation Scotland, respectively. RESULTS As the number of probes under consideration decreased, so too did the estimates from variance components and prediction analyses. Methylation QTL status and mean probe variability did not influence variance components. However, relative effect sizes were 15% larger for epigenetic predictors based on probes with known or reported methylation QTLs compared to probes without reported methylation QTLs. Relative effect sizes were 45% larger for predictors based on probes with mean Beta-values between 10 and 90% compared to those based on hypo- or hypermethylated probes (Beta-value ≤ 10% or ≥ 90%). CONCLUSIONS Arrays with fewer probes could reduce costs, leading to increased sample sizes for analyses. Our results show that reducing array content can restrict prediction metrics and careful attention must be given to the biological and distribution properties of CpG probes in array content selection.
Collapse
Affiliation(s)
- Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK.
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Allan F McRae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-7088, USA.,Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, 90095-1772, USA
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| |
Collapse
|
15
|
Hesam-Shariati S, Overs BJ, Roberts G, Toma C, Watkeys OJ, Green MJ, Pierce KD, Edenberg HJ, Wilcox HC, Stapp EK, McInnis MG, Hulvershorn LA, Nurnberger JI, Schofield PR, Mitchell PB, Fullerton JM. Epigenetic signatures relating to disease-associated genotypic burden in familial risk of bipolar disorder. Transl Psychiatry 2022; 12:310. [PMID: 35922419 PMCID: PMC9349272 DOI: 10.1038/s41398-022-02079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/08/2022] Open
Abstract
Environmental factors contribute to risk of bipolar disorder (BD), but how environmental factors impact the development of psychopathology within the context of elevated genetic risk is unknown. We herein sought to identify epigenetic signatures operating in the context of polygenic risk for BD in young people at high familial risk (HR) of BD. Peripheral blood-derived DNA was assayed using Illumina PsychArray, and Methylation-450K or -EPIC BeadChips. Polygenic risk scores (PRS) were calculated using summary statistics from recent genome-wide association studies for BD, major depressive disorder (MDD) and cross-disorder (meta-analysis of eight psychiatric disorders). Unrelated HR participants of European ancestry (n = 103) were stratified based on their BD-PRS score within the HR-population distribution, and the top two quintiles (High-BD-PRS; n = 41) compared against the bottom two quintiles (Low-BD-PRS; n = 41). The High-BD-PRS stratum also had higher mean cross-disorder-PRS and MDD-PRS (ANCOVA p = 0.035 and p = 0.024, respectively). We evaluated DNA methylation differences between High-BD-PRS and Low-BD-PRS strata using linear models. One differentially methylated probe (DMP) (cg00933603; p = 3.54 × 10-7) in VARS2, a mitochondrial aminoacyl-tRNA synthetase, remained significantly hypomethylated after multiple-testing correction. Overall, BD-PRS appeared to broadly impact epigenetic processes, with 1,183 genes mapped to nominal DMPs (p < 0.05); these displayed convergence with genes previously associated with BD, schizophrenia, chronotype, and risk taking. We tested poly-methylomic epigenetic profiles derived from nominal DMPs in two independent samples (n = 54 and n = 82, respectively), and conducted an exploratory evaluation of the effects of family environment, indexing cohesion and flexibility. This study highlights an important interplay between heritable risk and epigenetic factors, which warrant further exploration.
Collapse
Affiliation(s)
- Sonia Hesam-Shariati
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | | | - Gloria Roberts
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Claudio Toma
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid/CSIC, Madrid, Spain
| | - Oliver J Watkeys
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Melissa J Green
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | | | - Howard J Edenberg
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA
| | - Holly C Wilcox
- Child Psychiatry & Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Emma K Stapp
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- National Institute of Mental Health, Bethesda, MD, USA
| | - Melvin G McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Leslie A Hulvershorn
- Department of Psychiatry, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John I Nurnberger
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
- Department of Psychiatry, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Philip B Mitchell
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia.
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
16
|
England-Mason G, Merrill SM, Gladish N, Moore SR, Giesbrecht GF, Letourneau N, MacIsaac JL, MacDonald AM, Kinniburgh DW, Ponsonby AL, Saffery R, Martin JW, Kobor MS, Dewey D. Prenatal exposure to phthalates and peripheral blood and buccal epithelial DNA methylation in infants: An epigenome-wide association study. ENVIRONMENT INTERNATIONAL 2022; 163:107183. [PMID: 35325772 DOI: 10.1016/j.envint.2022.107183] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Prenatal exposure to phthalates has been associated with adverse health and neurodevelopmental outcomes. DNA methylation (DNAm) alterations may be a mechanism underlying these effects, but prior investigations of prenatal exposure to phthalates and neonatal DNAm profiles are limited to placental tissue and umbilical cord blood. OBJECTIVE Conduct an epigenome-wide association study (EWAS) of the associations between prenatal exposure to phthalates and DNAm in two accessible infant tissues, venous buffy coat blood and buccal epithelial cells (BECs). METHODS Participants included 152 maternal-infant pairs from the Alberta Pregnancy Outcomes and Nutrition (APrON) study. Maternal second trimester urine samples were analyzed for nine phthalate metabolites. Blood (n = 74) or BECs (n = 78) were collected from 3-month-old infants and profiled for DNAm using the Infinium HumanMethylation450 (450K) BeadChip. Robust linear regressions were used to investigate the associations between high (HMWPs) and low molecular weight phthalates (LMWPs) and change in methylation levels at variable Cytosine-phosphate-Guanine (CpG) sites in infant tissues, as well as the sensitivity of associations to potential confounders. RESULTS One candidate CpG in gene RNF39 reported by a previous study examining prenatal exposure to phthalates and cord blood DNAm was replicated. The EWAS identified 12 high-confidence CpGs in blood and another 12 in BECs associated with HMWPs and/or LMWPs. Prenatal exposure to bisphenol A (BPA) associated with two of the CpGs associated with HMWPs in BECs. DISCUSSION Prenatal exposure to phthalates was associated with DNAm variation at CpGs annotated to genes associated with endocrine hormone activity (i.e., SLCO4A1, TPO), immune pathways and DNA damage (i.e., RASGEF1B, KAZN, HLA-A, MYO18A, DIP2C, C1or109), and neurodevelopment (i.e., AMPH, NOTCH3, DNAJC5). Future studies that characterize the stability of these associations in larger samples, multiple cohorts, across tissues, and investigate the potential associations between these biomarkers and relevant health and neurodevelopmental outcomes are needed.
Collapse
Affiliation(s)
- Gillian England-Mason
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sarah M Merrill
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Nicole Gladish
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Sarah R Moore
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Gerald F Giesbrecht
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Psychology, Faculty of Arts, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Letourneau
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Faculty of Nursing, University of Calgary, Calgary, Alberta, Canada; Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Södermanland, Sweden
| | - Michael S Kobor
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; Program in Child and Brain Development, CIFAR, Toronto, Ontario, Canada
| | - Deborah Dewey
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada.
| |
Collapse
|
17
|
Reliability of a novel approach for reference-based cell type estimation in human placental DNA methylation studies. Cell Mol Life Sci 2022; 79:115. [PMID: 35113241 PMCID: PMC8813756 DOI: 10.1007/s00018-021-04091-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/24/2021] [Accepted: 12/13/2021] [Indexed: 02/02/2023]
Abstract
The placenta is a central organ during early development, influencing trajectories of health and disease. DNA methylation (DNAm) studies of human placenta improve our understanding of how its function relates to disease risk. However, DNAm studies can be biased by cell type heterogeneity, so it is essential to control for this in order to reduce confounding and increase precision. Computational cell type deconvolution approaches have proven to be very useful for this purpose. For human placenta, however, an assessment of the performance of these estimation methods is still lacking. Here, we examine the performance of a newly available reference-based cell type estimation approach and compare it to an often-used reference-free cell type estimation approach, namely RefFreeEWAS, in placental genome-wide DNAm samples taken at birth and from chorionic villus biopsies early in pregnancy using three independent studies comprising over 1000 samples. We found both reference-free and reference-based estimated cell type proportions to have predictive value for DNAm, however, reference-based cell type estimation outperformed reference-free estimation for the majority of data sets. Reference-based cell type estimations mirror previous histological knowledge on changes in cell type proportions through gestation. Further, CpGs whose variation in DNAm was largely explained by reference-based estimated cell type proportions were in the proximity of genes that are highly tissue-specific for placenta. This was not the case for reference-free estimated cell type proportions. We provide a list of these CpGs as a resource to help researchers to interpret results of existing studies and improve future DNAm studies of human placenta.
Collapse
|
18
|
Sammallahti S, Cortes Hidalgo AP, Tuominen S, Malmberg A, Mulder RH, Brunst KJ, Alemany S, McBride NS, Yousefi P, Heiss JA, McRae N, Page CM, Jin J, Pesce G, Caramaschi D, Rifas-Shiman SL, Koen N, Adams CD, Magnus MC, Baïz N, Ratanatharathorn A, Czamara D, Håberg SE, Colicino E, Baccarelli AA, Cardenas A, DeMeo DL, Lawlor DA, Relton CL, Felix JF, van IJzendoorn MH, Bakermans-Kranenburg MJ, Kajantie E, Räikkönen K, Sunyer J, Sharp GC, Houtepen LC, Nohr EA, Sørensen TIA, Téllez-Rojo MM, Wright RO, Annesi-Maesano I, Wright J, Hivert MF, Wright RJ, Zar HJ, Stein DJ, London SJ, Cecil CAM, Tiemeier H, Lahti J. Maternal anxiety during pregnancy and newborn epigenome-wide DNA methylation. Mol Psychiatry 2021; 26:1832-1845. [PMID: 33414500 PMCID: PMC8595870 DOI: 10.1038/s41380-020-00976-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/31/2020] [Accepted: 11/30/2020] [Indexed: 01/29/2023]
Abstract
Maternal anxiety during pregnancy is associated with adverse foetal, neonatal, and child outcomes, but biological mechanisms remain unclear. Altered foetal DNA methylation (DNAm) has been proposed as a potential underlying mechanism. In the current study, we performed a meta-analysis to examine the associations between maternal anxiety, measured prospectively during pregnancy, and genome-wide DNAm from umbilical cord blood. Sixteen non-overlapping cohorts from 12 independent longitudinal studies of the Pregnancy And Childhood Epigenetics Consortium participated, resulting in a combined dataset of 7243 mother-child dyads. We examined prenatal anxiety in relation to genome-wide DNAm and differentially methylated regions. We observed no association between the general symptoms of anxiety during pregnancy or pregnancy-related anxiety, and DNAm at any of the CpG sites, after multiple-testing correction. Furthermore, we identify no differentially methylated regions associated with maternal anxiety. At the cohort-level, of the 21 associations observed in individual cohorts, none replicated consistently in the other cohorts. In conclusion, contrary to some previous studies proposing cord blood DNAm as a promising potential mechanism explaining the link between maternal anxiety during pregnancy and adverse outcomes in offspring, we found no consistent evidence for any robust associations between maternal anxiety and DNAm in cord blood. Larger studies and analysis of DNAm in other tissues may be needed to establish subtle or subgroup-specific associations between maternal anxiety and the foetal epigenome.
Collapse
Affiliation(s)
- Sara Sammallahti
- Erasmus MC, University Medical Center Rotterdam, Department of Adolescent and Child Psychiatry and Psychology, Rotterdam, The Netherlands
- Erasmus MC, University Medical Center Rotterdam, Generation R Study Group, Rotterdam, The Netherlands
- Harvard T.H. Chan School of Public Health, Department of Social and Behavioral Science, Boston, MA, USA
- University of Helsinki, Department of Psychology and Logopedics, Helsinki, Finland
| | - Andrea P Cortes Hidalgo
- Erasmus MC, University Medical Center Rotterdam, Department of Adolescent and Child Psychiatry and Psychology, Rotterdam, The Netherlands
- Erasmus MC, University Medical Center Rotterdam, Generation R Study Group, Rotterdam, The Netherlands
| | - Samuli Tuominen
- University of Helsinki, Department of Psychology and Logopedics, Helsinki, Finland
| | - Anni Malmberg
- University of Helsinki, Department of Psychology and Logopedics, Helsinki, Finland
| | - Rosa H Mulder
- Erasmus MC, University Medical Center Rotterdam, Department of Adolescent and Child Psychiatry and Psychology, Rotterdam, The Netherlands
- Erasmus MC, University Medical Center Rotterdam, Generation R Study Group, Rotterdam, The Netherlands
- Leiden University, Institute of Education and Child Studies, Leiden, The Netherlands
| | - Kelly J Brunst
- University of Cincinnati, College of Medicine, Department of Environmental Health, Cincinnati, OH, USA
| | - Silvia Alemany
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Nancy S McBride
- University of Bristol, MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Paul Yousefi
- University of Bristol, MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Jonathan A Heiss
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA
| | - Nia McRae
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | | | - Giancarlo Pesce
- INSERM UMR-S 1136, EPAR, Saint-Antoine Medical School, Paris, France
- Sorbonne Université, Epidemiology of Allergic and Respiratory Diseases Department (EPAR), Pierre Louis Institute of Epidemiology and Public Health (IPLESP), Paris, France
| | - Doretta Caramaschi
- University of Bristol, MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Sheryl L Rifas-Shiman
- Harvard Medical School, Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Nastassja Koen
- University of Cape Town, Department of Psychiatry and Mental Health, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
- University of Cape Town, Neuroscience Institute, Cape Town, South Africa
| | - Charleen D Adams
- Beckman Research Institute of City of Hope, Department of Population Sciences, Duarte, CA, USA
| | - Maria C Magnus
- University of Bristol, MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, Bristol, UK
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Nour Baïz
- INSERM UMR-S 1136, EPAR, Saint-Antoine Medical School, Paris, France
- Sorbonne Université, Epidemiology of Allergic and Respiratory Diseases Department (EPAR), Pierre Louis Institute of Epidemiology and Public Health (IPLESP), Paris, France
| | - Andrew Ratanatharathorn
- Columbia University, Department of Epidemiology, New York City, NY, USA
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
| | - Darina Czamara
- Max-Planck-Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Elena Colicino
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA
| | - Andrea A Baccarelli
- Columbia University Mailman School of Public Health, Precision Environmental Health Lab, New York, NY, USA
| | - Andres Cardenas
- University of California, Division of Environmental Health Sciences, School of Public Health, Berkeley, CA, USA
| | - Dawn L DeMeo
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Deborah A Lawlor
- University of Bristol, MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Caroline L Relton
- University of Bristol, MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Janine F Felix
- Erasmus MC, University Medical Center Rotterdam, Generation R Study Group, Rotterdam, The Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of Pediatrics, Rotterdam, The Netherlands
| | - Marinus H van IJzendoorn
- Erasmus University Rotterdam, Department of Psychology, Education, and Child Studies, Rotterdam, The Netherlands
- University of Cambridge, School of Clinical Medicine, Cambridge, UK
| | - Marian J Bakermans-Kranenburg
- Leiden University, Leiden Institute for Brain and Cognition, Leiden, The Netherlands
- Vrije Universiteit Amsterdam, Clinical Child & Family Studies, Amsterdam, The Netherlands
| | - Eero Kajantie
- Finnish Institute for Health and Welfare, Helsinki, Finland
- Oulu University Hospital and University of Oulu, PEDEGO Research Unit, MRC Oulu, Oulu, Finland
- Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Norwegian University of Science and Technology, Department of Clinical and Molecular Medicine, Trondheim, Norway
| | - Katri Räikkönen
- University of Helsinki, Department of Psychology and Logopedics, Helsinki, Finland
| | - Jordi Sunyer
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Gemma C Sharp
- University of Bristol, MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Lotte C Houtepen
- University of Bristol, MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Ellen A Nohr
- University of Southern Denmark, Institute of Clinical Research and Department of Gynaecology and Obstetrics, Odense, Denmark
| | - Thorkild I A Sørensen
- University of Bristol, MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, Bristol, UK
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Public Health, Copenhagen, Denmark
- University of Copenhagen, Faculty of Medical and Health Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
| | - Martha M Téllez-Rojo
- National Institute of Public Health, Center for Nutrition and Health Research, Cuernavaca, Mor, Mexico
| | | | - Isabella Annesi-Maesano
- INSERM UMR-S 1136, EPAR, Saint-Antoine Medical School, Paris, France
- Sorbonne Université, Epidemiology of Allergic and Respiratory Diseases Department (EPAR), Pierre Louis Institute of Epidemiology and Public Health (IPLESP), Paris, France
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals, NHS Foundation Trust, Bradford, UK
| | - Marie-France Hivert
- Harvard Medical School, Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Massachusetts General Hospital, Diabetes Unit, Boston, MA, USA
| | - Rosalind J Wright
- Icahn School of Medicine at Mount Sinai, Environmental Medicine & Public Health, Institute for Exposomic Research, New York, NY, USA
| | - Heather J Zar
- University of Cape Town, Department of Paediatrics and Child Health, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Child and Adolescent Health, Cape Town, Cape Town, South Africa
| | - Dan J Stein
- University of Cape Town, Department of Psychiatry and Mental Health, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
- University of Cape Town, Neuroscience Institute, Cape Town, South Africa
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Charlotte A M Cecil
- Erasmus MC, University Medical Center Rotterdam, Department of Adolescent and Child Psychiatry and Psychology, Rotterdam, The Netherlands
- Erasmus MC, University Medical Center Rotterdam, Generation R Study Group, Rotterdam, The Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of Epidemiology, Rotterdam, The Netherlands
- Leiden University Medical Center, Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden, The Netherlands
| | - Henning Tiemeier
- Erasmus MC, University Medical Center Rotterdam, Department of Adolescent and Child Psychiatry and Psychology, Rotterdam, The Netherlands.
- Erasmus MC, University Medical Center Rotterdam, Generation R Study Group, Rotterdam, The Netherlands.
- Harvard T.H. Chan School of Public Health, Department of Social and Behavioral Science, Boston, MA, USA.
| | - Jari Lahti
- University of Helsinki, Department of Psychology and Logopedics, Helsinki, Finland
| |
Collapse
|
19
|
Inkster AM, Yuan V, Konwar C, Matthews AM, Brown CJ, Robinson WP. A cross-cohort analysis of autosomal DNA methylation sex differences in the term placenta. Biol Sex Differ 2021; 12:38. [PMID: 34044884 PMCID: PMC8162041 DOI: 10.1186/s13293-021-00381-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human placental DNA methylation (DNAme) data is a valuable resource for studying sex differences during gestation, as DNAme profiles after delivery reflect the cumulative effects of gene expression patterns and exposures across gestation. Here, we present an analysis of sex differences in autosomal DNAme in the uncomplicated term placenta (n = 343) using the Illumina 450K array. RESULTS At a false discovery rate < 0.05 and a mean sex difference in DNAme beta value of > 0.10, we identified 162 autosomal CpG sites that were differentially methylated by sex and replicated in an independent cohort of samples (n = 293). Several of these differentially methylated CpG sites were part of larger correlated regions of sex differential DNAme. Although global DNAme levels did not differ by sex, the majority of significantly differentially methylated CpGs were more highly methylated in male placentae, the opposite of what is seen in differential methylation analyses of somatic tissues. Patterns of autosomal DNAme at these 162 CpGs were significantly associated with maternal age (in males) and newborn birthweight standard deviation (in females). CONCLUSIONS Our results provide a comprehensive analysis of sex differences in autosomal DNAme in the term human placenta. We report a list of high-confidence autosomal sex-associated differentially methylated CpGs and identify several key features of these loci that suggest their relevance to sex differences observed in normative and complicated pregnancies.
Collapse
Affiliation(s)
- Amy M. Inkster
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1 Canada
| | - Victor Yuan
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1 Canada
| | - Chaini Konwar
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Centre for Molecular Medicine and Therapeutics, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
| | - Allison M. Matthews
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1 Canada
- Centre for Molecular Medicine and Therapeutics, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, V6T 1Z7 Canada
| | - Carolyn J. Brown
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1 Canada
| | - Wendy P. Robinson
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1 Canada
| |
Collapse
|
20
|
Wiegand A, Kreifelts B, Munk MHJ, Geiselhart N, Ramadori KE, MacIsaac JL, Fallgatter AJ, Kobor MS, Nieratschker V. DNA methylation differences associated with social anxiety disorder and early life adversity. Transl Psychiatry 2021; 11:104. [PMID: 33542190 PMCID: PMC7862482 DOI: 10.1038/s41398-021-01225-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/31/2022] Open
Abstract
Social anxiety disorder (SAD) is a psychiatric disorder characterized by extensive fear in social situations. Multiple genetic and environmental factors are known to contribute to its pathogenesis. One of the main environmental risk factors is early life adversity (ELA). Evidence is emerging that epigenetic mechanisms such as DNA methylation might play an important role in the biological mechanisms underlying SAD and ELA. To investigate the relationship between ELA, DNA methylation, and SAD, we performed an epigenome-wide association study for SAD and ELA examining DNA from whole blood of a cohort of 143 individuals using DNA methylation arrays. We identified two differentially methylated regions (DMRs) associated with SAD located within the genes SLC43A2 and TNXB. As this was the first epigenome-wide association study for SAD, it is worth noting that both genes have previously been associated with panic disorder. Further, we identified two DMRs associated with ELA within the SLC17A3 promoter region and the SIAH3 gene and several DMRs that were associated with the interaction of SAD and ELA. Of these, the regions within C2CD2L and MRPL28 showed the largest difference in DNA methylation. Lastly, we found that two DMRs were associated with both the severity of social anxiety and ELA, however, neither of them was found to mediate the contribution of ELA to SAD later in life. Future studies are needed to replicate our findings in independent cohorts and to investigate the biological pathways underlying these effects.
Collapse
Affiliation(s)
- Ariane Wiegand
- grid.10392.390000 0001 2190 1447Department of Psychiatry and Psychotherapy, Eberhard Karls University of Tübingen, Tübingen, Germany ,grid.10392.390000 0001 2190 1447Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Benjamin Kreifelts
- grid.10392.390000 0001 2190 1447Department of Psychiatry and Psychotherapy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Matthias H. J. Munk
- grid.10392.390000 0001 2190 1447Department of Psychiatry and Psychotherapy, Eberhard Karls University of Tübingen, Tübingen, Germany ,grid.6546.10000 0001 0940 1669Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Nadja Geiselhart
- grid.10392.390000 0001 2190 1447Department of Psychiatry and Psychotherapy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Katia E. Ramadori
- grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, BC Children’s Hospital Research Institute, Vancouver, V5Z 4H4 BC Canada
| | - Julia L. MacIsaac
- grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, BC Children’s Hospital Research Institute, Vancouver, V5Z 4H4 BC Canada
| | - Andreas J. Fallgatter
- grid.10392.390000 0001 2190 1447Department of Psychiatry and Psychotherapy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Michael S. Kobor
- grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, BC Children’s Hospital Research Institute, Vancouver, V5Z 4H4 BC Canada
| | - Vanessa Nieratschker
- Department of Psychiatry and Psychotherapy, Eberhard Karls University of Tübingen, Tübingen, Germany. .,Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.
| |
Collapse
|
21
|
Vehmeijer FOL, Küpers LK, Sharp GC, Salas LA, Lent S, Jima DD, Tindula G, Reese S, Qi C, Gruzieva O, Page C, Rezwan FI, Melton PE, Nohr E, Escaramís G, Rzehak P, Heiskala A, Gong T, Tuominen ST, Gao L, Ross JP, Starling AP, Holloway JW, Yousefi P, Aasvang GM, Beilin LJ, Bergström A, Binder E, Chatzi L, Corpeleijn E, Czamara D, Eskenazi B, Ewart S, Ferre N, Grote V, Gruszfeld D, Håberg SE, Hoyo C, Huen K, Karlsson R, Kull I, Langhendries JP, Lepeule J, Magnus MC, Maguire RL, Molloy PL, Monnereau C, Mori TA, Oken E, Räikkönen K, Rifas-Shiman S, Ruiz-Arenas C, Sebert S, Ullemar V, Verduci E, Vonk JM, Xu CJ, Yang IV, Zhang H, Zhang W, Karmaus W, Dabelea D, Muhlhausler BS, Breton CV, Lahti J, Almqvist C, Jarvelin MR, Koletzko B, Vrijheid M, Sørensen TIA, Huang RC, Arshad SH, Nystad W, Melén E, Koppelman GH, London SJ, Holland N, Bustamante M, Murphy SK, Hivert MF, Baccarelli A, Relton CL, Snieder H, Jaddoe VWV, Felix JF. DNA methylation and body mass index from birth to adolescence: meta-analyses of epigenome-wide association studies. Genome Med 2020; 12:105. [PMID: 33239103 PMCID: PMC7687793 DOI: 10.1186/s13073-020-00810-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND DNA methylation has been shown to be associated with adiposity in adulthood. However, whether similar DNA methylation patterns are associated with childhood and adolescent body mass index (BMI) is largely unknown. More insight into this relationship at younger ages may have implications for future prevention of obesity and its related traits. METHODS We examined whether DNA methylation in cord blood and whole blood in childhood and adolescence was associated with BMI in the age range from 2 to 18 years using both cross-sectional and longitudinal models. We performed meta-analyses of epigenome-wide association studies including up to 4133 children from 23 studies. We examined the overlap of findings reported in previous studies in children and adults with those in our analyses and calculated enrichment. RESULTS DNA methylation at three CpGs (cg05937453, cg25212453, and cg10040131), each in a different age range, was associated with BMI at Bonferroni significance, P < 1.06 × 10-7, with a 0.96 standard deviation score (SDS) (standard error (SE) 0.17), 0.32 SDS (SE 0.06), and 0.32 BMI SDS (SE 0.06) higher BMI per 10% increase in methylation, respectively. DNA methylation at nine additional CpGs in the cross-sectional childhood model was associated with BMI at false discovery rate significance. The strength of the associations of DNA methylation at the 187 CpGs previously identified to be associated with adult BMI, increased with advancing age across childhood and adolescence in our analyses. In addition, correlation coefficients between effect estimates for those CpGs in adults and in children and adolescents also increased. Among the top findings for each age range, we observed increasing enrichment for the CpGs that were previously identified in adults (birth Penrichment = 1; childhood Penrichment = 2.00 × 10-4; adolescence Penrichment = 2.10 × 10-7). CONCLUSIONS There were only minimal associations of DNA methylation with childhood and adolescent BMI. With the advancing age of the participants across childhood and adolescence, we observed increasing overlap with altered DNA methylation loci reported in association with adult BMI. These findings may be compatible with the hypothesis that DNA methylation differences are mostly a consequence rather than a cause of obesity.
Collapse
Affiliation(s)
- Florianne O L Vehmeijer
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Room Na-2918, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Leanne K Küpers
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
| | - Gemma C Sharp
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Lucas A Salas
- Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Samantha Lent
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Dereje D Jima
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Gwen Tindula
- Children's Environmental Health Laboratory, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Sarah Reese
- Department of Health and Human Services, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Cancan Qi
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, The Netherlands
- University Medical Center Groningen GRIAC Research Institute, University of Groningen, Groningen, the Netherlands
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Christian Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Faisal I Rezwan
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire, UK
- Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Philip E Melton
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Austalia, Australia
| | - Ellen Nohr
- Centre for Women's, Family and Child Health, University of South-Eastern Norway, Kongsberg, Norway
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Geòrgia Escaramís
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Research group on Statistics, Econometrics and Health (GRECS), University of Girona, Girona, Spain
| | - Peter Rzehak
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Anni Heiskala
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Tong Gong
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Samuli T Tuominen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lu Gao
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jason P Ross
- CSIRO Health and Biosecurity, North Ryde, New South Wales, Australia
| | - Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Paul Yousefi
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Gunn Marit Aasvang
- Department of Air Pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Elisabeth Binder
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eva Corpeleijn
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health, School of Public Health, University of California, Berkeley, CA, USA
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Natalia Ferre
- Pediatrics, Nutrition and Development Research Unit, Universitat Rovira i Virgili, IISPV, Reus, Spain
| | - Veit Grote
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Dariusz Gruszfeld
- Neonatal Department, Children's Memorial Health Institute, Warsaw, Poland
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Cathrine Hoyo
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Karen Huen
- Children's Environmental Health Laboratory, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Inger Kull
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | | | - Johanna Lepeule
- Université Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB, Grenoble, France
| | - Maria C Magnus
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Rachel L Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Obstetrics and Gynecology, Duke University Medical Center, Raleigh, NC, USA
| | - Peter L Molloy
- CSIRO Health and Biosecurity, North Ryde, New South Wales, Australia
| | - Claire Monnereau
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Room Na-2918, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Trevor A Mori
- Medical School, University of Western Australia, Perth, Australia
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sheryl Rifas-Shiman
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Carlos Ruiz-Arenas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Sylvain Sebert
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Vilhelmina Ullemar
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Elvira Verduci
- Department of Pediatrics, San Paolo Hospital, University of Milan, Milan, Italy
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
- University Medical Center Groningen GRIAC Research Institute, University of Groningen, Groningen, the Netherlands
| | - Cheng-Jian Xu
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, The Netherlands
- University Medical Center Groningen GRIAC Research Institute, University of Groningen, Groningen, the Netherlands
- Department of Gastroenterology, Hepatology and Endocrinology, CiiM, Centre for Individualised Infection Medicine, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Ivana V Yang
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, USA
| | - Weiming Zhang
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Carrie V Breton
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jari Lahti
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Turku Institute for Advanced Studies, University of Turku, Turku, Finland
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Marjo-Riitta Jarvelin
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Thorkild I A Sørensen
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Public Health, Section of Epidemiology, and The Novo Nordisk Foundation Center for Basic Metabolic Research, Section on Metabolic Genetics, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
| | - Wenche Nystad
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Oslo, Norway
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, The Netherlands
- University Medical Center Groningen GRIAC Research Institute, University of Groningen, Groningen, the Netherlands
| | - Stephanie J London
- Department of Health and Human Services, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Nina Holland
- Children's Environmental Health Laboratory, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Raleigh, NC, USA
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Universite de Sherbrooke, Sherbrooke, QC, Canada
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Harold Snieder
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Room Na-2918, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Room Na-2918, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, the Netherlands.
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
22
|
Henriksson P, Lentini A, Altmäe S, Brodin D, Müller P, Forsum E, Nestor CE, Löf M. DNA methylation in infants with low and high body fatness. BMC Genomics 2020; 21:769. [PMID: 33167873 PMCID: PMC7654595 DOI: 10.1186/s12864-020-07169-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Birth weight is determined by the interplay between infant genetics and the intrauterine environment and is associated with several health outcomes in later life. Many studies have reported an association between birth weight and DNA methylation in infants and suggest that altered epigenetics may underlie birthweight-associated health outcomes. However, birth weight is a relatively nonspecific measure of fetal growth and consists of fat mass and fat-free mass which may have different effects on health outcomes which motivates studies of infant body composition and DNA methylation. Here, we combined genome-wide DNA methylation profiling of buccal cells from 47 full-term one-week old infants with accurate measurements of infant fat mass and fat-free mass using air-displacement plethysmography. RESULTS No significant association was found between DNA methylation in infant buccal cells and infant body composition. Moreover, no association between infant DNA methylation and parental body composition or indicators of maternal glucose metabolism were found. CONCLUSIONS Despite accurate measures of body composition, we did not identify any associations between infant body fatness and DNA methylation. These results are consistent with recent studies that generally have identified only weak associations between DNA methylation and birthweight. Although our results should be confirmed by additional larger studies, our findings may suggest that differences in DNA methylation between individuals with low and high body fatness may be established later in childhood.
Collapse
Affiliation(s)
- Pontus Henriksson
- Department of Health, Medicine and Caring Sciences, Linköping University, 58183, Linköping, Sweden.
| | - Antonio Lentini
- Crown Princess Victoria Children's Hospital, and Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - David Brodin
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Patrick Müller
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Elisabet Forsum
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Colm E Nestor
- Crown Princess Victoria Children's Hospital, and Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Marie Löf
- Department of Health, Medicine and Caring Sciences, Linköping University, 58183, Linköping, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
23
|
McEwen LM, O'Donnell KJ, McGill MG, Edgar RD, Jones MJ, MacIsaac JL, Lin DTS, Ramadori K, Morin A, Gladish N, Garg E, Unternaehrer E, Pokhvisneva I, Karnani N, Kee MZL, Klengel T, Adler NE, Barr RG, Letourneau N, Giesbrecht GF, Reynolds JN, Czamara D, Armstrong JM, Essex MJ, de Weerth C, Beijers R, Tollenaar MS, Bradley B, Jovanovic T, Ressler KJ, Steiner M, Entringer S, Wadhwa PD, Buss C, Bush NR, Binder EB, Boyce WT, Meaney MJ, Horvath S, Kobor MS. The PedBE clock accurately estimates DNA methylation age in pediatric buccal cells. Proc Natl Acad Sci U S A 2020; 117:23329-23335. [PMID: 31611402 PMCID: PMC7519312 DOI: 10.1073/pnas.1820843116] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The development of biological markers of aging has primarily focused on adult samples. Epigenetic clocks are a promising tool for measuring biological age that show impressive accuracy across most tissues and age ranges. In adults, deviations from the DNA methylation (DNAm) age prediction are correlated with several age-related phenotypes, such as mortality and frailty. In children, however, fewer such associations have been made, possibly because DNAm changes are more dynamic in pediatric populations as compared to adults. To address this gap, we aimed to develop a highly accurate, noninvasive, biological measure of age specific to pediatric samples using buccal epithelial cell DNAm. We gathered 1,721 genome-wide DNAm profiles from 11 different cohorts of typically developing individuals aged 0 to 20 y old. Elastic net penalized regression was used to select 94 CpG sites from a training dataset (n = 1,032), with performance assessed in a separate test dataset (n = 689). DNAm at these 94 CpG sites was highly predictive of age in the test cohort (median absolute error = 0.35 y). The Pediatric-Buccal-Epigenetic (PedBE) clock was characterized in additional cohorts, showcasing the accuracy in longitudinal data, the performance in nonbuccal tissues and adult age ranges, and the association with obstetric outcomes. The PedBE tool for measuring biological age in children might help in understanding the environmental and contextual factors that shape the DNA methylome during child development, and how it, in turn, might relate to child health and disease.
Collapse
Affiliation(s)
- Lisa M McEwen
- Department of Medical Genetics, University of British Columbia-BC Children's Hospital Research Institute, Vancouver, BC, Canada V5Z 4H4
| | - Kieran J O'Donnell
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada H4H 1R3
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR) Institute, Toronto, ON, Canada M5G 1M1
| | - Megan G McGill
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada H4H 1R3
| | - Rachel D Edgar
- Department of Medical Genetics, University of British Columbia-BC Children's Hospital Research Institute, Vancouver, BC, Canada V5Z 4H4
| | - Meaghan J Jones
- Department of Medical Genetics, University of British Columbia-BC Children's Hospital Research Institute, Vancouver, BC, Canada V5Z 4H4
| | - Julia L MacIsaac
- Department of Medical Genetics, University of British Columbia-BC Children's Hospital Research Institute, Vancouver, BC, Canada V5Z 4H4
| | - David Tse Shen Lin
- Department of Medical Genetics, University of British Columbia-BC Children's Hospital Research Institute, Vancouver, BC, Canada V5Z 4H4
| | - Katia Ramadori
- Department of Medical Genetics, University of British Columbia-BC Children's Hospital Research Institute, Vancouver, BC, Canada V5Z 4H4
| | - Alexander Morin
- Department of Medical Genetics, University of British Columbia-BC Children's Hospital Research Institute, Vancouver, BC, Canada V5Z 4H4
| | - Nicole Gladish
- Department of Medical Genetics, University of British Columbia-BC Children's Hospital Research Institute, Vancouver, BC, Canada V5Z 4H4
| | - Elika Garg
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada H4H 1R3
| | - Eva Unternaehrer
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada H4H 1R3
| | - Irina Pokhvisneva
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada H4H 1R3
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR); Singapore 117609
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596
| | - Michelle Z L Kee
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR); Singapore 117609
| | - Torsten Klengel
- Department of Psychiatry, Harvard Medical School-McLean Hospital, Belmont, MA 02478
| | - Nancy E Adler
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR) Institute, Toronto, ON, Canada M5G 1M1
- Department of Psychiatry, University of California, San Francisco, CA 94143
- Department of Pediatrics, University of California, San Francisco, CA 94143
| | - Ronald G Barr
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR) Institute, Toronto, ON, Canada M5G 1M1
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Nicole Letourneau
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
- Faculty of Nursing, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Gerald F Giesbrecht
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - James N Reynolds
- Department of Biomedical and Molecular Sciences, School of Medicine, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Jeffrey M Armstrong
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53706
| | - Marilyn J Essex
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53706
| | - Carolina de Weerth
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 HR, Nijmegen, The Netherlands
| | - Roseriet Beijers
- Behavioural Science Institute, Radboud University, 6525 HR, Nijmegen, The Netherlands
| | - Marieke S Tollenaar
- Leiden Institute for Brain and Cognition, Institute of Psychology, Leiden University, 2300 RB, Leiden, The Netherlands
| | - Bekh Bradley
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School-McLean Hospital, Belmont, MA 02478
| | - Meir Steiner
- Department of Psychiatry and Behavioural Neurosciences, St. Joseph's Healthcare Hamilton, McMaster University, Hamilton, ON, Canada L8S 4L8
| | - Sonja Entringer
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, 10117 Berlin, Germany
- Development, Health, and Disease Research Program, University of California, Irvine, CA 92617
| | - Pathik D Wadhwa
- Development, Health, and Disease Research Program, University of California, Irvine, CA 92617
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, 92617
- Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, 92617
- Department of Epidemiology, School of Medicine, University of California, Irvine, CA, 92617
| | - Claudia Buss
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, 10117 Berlin, Germany
| | - Nicole R Bush
- Department of Psychiatry, University of California, San Francisco, CA 94143
| | - Elisabeth B Binder
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR) Institute, Toronto, ON, Canada M5G 1M1
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322
| | - W Thomas Boyce
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR) Institute, Toronto, ON, Canada M5G 1M1
- Department of Psychiatry, University of California, San Francisco, CA 94143
- Department of Pediatrics, University of California, San Francisco, CA 94143
| | - Michael J Meaney
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada H4H 1R3
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR) Institute, Toronto, ON, Canada M5G 1M1
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR); Singapore 117609
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095;
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA 90095
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia-BC Children's Hospital Research Institute, Vancouver, BC, Canada V5Z 4H4;
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR) Institute, Toronto, ON, Canada M5G 1M1
| |
Collapse
|
24
|
Sugden K, Hannon EJ, Arseneault L, Belsky DW, Corcoran DL, Fisher HL, Houts RM, Kandaswamy R, Moffitt TE, Poulton R, Prinz JA, Rasmussen LJH, Williams BS, Wong CCY, Mill J, Caspi A. Patterns of Reliability: Assessing the Reproducibility and Integrity of DNA Methylation Measurement. PATTERNS 2020; 1:S2666-3899(20)30014-3. [PMID: 32885222 PMCID: PMC7467214 DOI: 10.1016/j.patter.2020.100014] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
DNA methylation plays an important role in both normal human development and risk of disease. The most utilized method of assessing DNA methylation uses BeadChips, generating an epigenome-wide “snapshot” of >450,000 observations (probe measurements) per assay. However, the reliability of each of these measurements is not equal, and little consideration is paid to consequences for research. We correlated repeat measurements of the same DNA samples using the Illumina HumanMethylation450K and the Infinium MethylationEPIC BeadChips in 350 blood DNA samples. Probes that were reliably measured were more heritable and showed consistent associations with environmental exposures, gene expression, and greater cross-tissue concordance. Unreliable probes were less replicable and generated an unknown volume of false negatives. This serves as a lesson for working with DNA methylation data, but the lessons are equally applicable to working with other data: as we advance toward generating increasingly greater volumes of data, failure to document reliability risks harming reproducibility. Measurements of DNA methylation made using BeadChip probes are differentially reliable Unreliable probes were less heritable, less replicable, and less functionally relevant This has serious implications for reporting and evaluating DNA methylation findings Reliability joins replicability and reproducibility to make three fundamental Rs of STEM
Although DNA methylation data are used widely by researchers in many fields, the reliability of these data are surprisingly variable. Our findings remind us that, in an age of increasingly big data, research is only as robust as its foundations. We hope that our findings will improve the integrity of DNA methylation studies. We also hope that our findings serve as a cautionary reminder for those generating and implementing big data of any type: reliability is a fundamental aspect of replicability. Conducting analysis with reliable data will improve chances of replicable findings, which might lead to more actionable targets for further research. To the extent that reliable data improve replicability, the knock-on effect will be more public confidence in research and less effort spent trying to replicate findings that are bound to fail.
Collapse
Affiliation(s)
- Karen Sugden
- Department of Psychology and Neuroscience, Duke University, Grey Building, 2020 West Main Street, Suite 201, Durham, NC 27705, USA.,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Eilis J Hannon
- Complex Disease Epigenetics Group, University of Exeter Medical School, Exeter, UK
| | - Louise Arseneault
- King's College London, Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, and Neuroscience, London, UK
| | - Daniel W Belsky
- Department of Epidemiology & Butler Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - David L Corcoran
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Helen L Fisher
- King's College London, Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, and Neuroscience, London, UK
| | - Renate M Houts
- Department of Psychology and Neuroscience, Duke University, Grey Building, 2020 West Main Street, Suite 201, Durham, NC 27705, USA
| | - Radhika Kandaswamy
- King's College London, Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, and Neuroscience, London, UK
| | - Terrie E Moffitt
- Department of Psychology and Neuroscience, Duke University, Grey Building, 2020 West Main Street, Suite 201, Durham, NC 27705, USA.,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.,King's College London, Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, and Neuroscience, London, UK.,Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Richie Poulton
- Dunedin Multidisciplinary Health and Development Research Unit, University of Otago, Dunedin, New Zealand
| | - Joseph A Prinz
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Line J H Rasmussen
- Department of Psychology and Neuroscience, Duke University, Grey Building, 2020 West Main Street, Suite 201, Durham, NC 27705, USA.,Clinical Research Centre, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Benjamin S Williams
- Department of Psychology and Neuroscience, Duke University, Grey Building, 2020 West Main Street, Suite 201, Durham, NC 27705, USA.,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Chloe C Y Wong
- King's College London, Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, and Neuroscience, London, UK
| | - Jonathan Mill
- Complex Disease Epigenetics Group, University of Exeter Medical School, Exeter, UK
| | - Avshalom Caspi
- Department of Psychology and Neuroscience, Duke University, Grey Building, 2020 West Main Street, Suite 201, Durham, NC 27705, USA.,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.,King's College London, Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, and Neuroscience, London, UK.,Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
25
|
Konwar C, Del Gobbo G, Yuan V, Robinson WP. Considerations when processing and interpreting genomics data of the placenta. Placenta 2019; 84:57-62. [PMID: 30642669 PMCID: PMC6612459 DOI: 10.1016/j.placenta.2019.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/28/2018] [Accepted: 01/04/2019] [Indexed: 12/27/2022]
Abstract
The application of genomic approaches to placental research has opened exciting new avenues to help us understand basic biological properties of the placenta, improve prenatal screening/diagnosis, and measure effects of in utero exposures on child health outcomes. In the last decade, such large-scale genomic data (including epigenomics and transcriptomics) have become more easily accessible to researchers from many disciplines due to the increasing ease of obtaining such data and the rapidly evolving computational tools available for analysis. While the potential of large-scale studies has been widely promoted, less attention has been given to some of the challenges associated with processing and interpreting such data. We hereby share some of our experiences in assessing data quality, reproducibility, and interpretation in the context of genome-wide studies of the placenta, with the aim to improve future studies. There is rarely a single "best" approach, as that can depend on the study question and sample cohort. However, being consistent, thoroughly assessing potential confounders in the data, and communicating key variables in the methods section of the manuscript are critically important to help researchers to collaborate and build on each other's work.
Collapse
Affiliation(s)
- Chaini Konwar
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, 4500, Oak Street, Vancouver, BC V6H3N1, Canada.
| | - Giulia Del Gobbo
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, 4500, Oak Street, Vancouver, BC V6H3N1, Canada.
| | - Victor Yuan
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, 4500, Oak Street, Vancouver, BC V6H3N1, Canada.
| | - Wendy P Robinson
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, 4500, Oak Street, Vancouver, BC V6H3N1, Canada.
| |
Collapse
|
26
|
Yuan V, Price EM, Del Gobbo G, Mostafavi S, Cox B, Binder AM, Michels KB, Marsit C, Robinson WP. Accurate ethnicity prediction from placental DNA methylation data. Epigenetics Chromatin 2019; 12:51. [PMID: 31399127 PMCID: PMC6688210 DOI: 10.1186/s13072-019-0296-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022] Open
Abstract
Background The influence of genetics on variation in DNA methylation (DNAme) is well documented. Yet confounding from population stratification is often unaccounted for in DNAme association studies. Existing approaches to address confounding by population stratification using DNAme data may not generalize to populations or tissues outside those in which they were developed. To aid future placental DNAme studies in assessing population stratification, we developed an ethnicity classifier, PlaNET (Placental DNAme Elastic Net Ethnicity Tool), using five cohorts with Infinium Human Methylation 450k BeadChip array (HM450k) data from placental samples that is also compatible with the newer EPIC platform. Results Data from 509 placental samples were used to develop PlaNET and show that it accurately predicts (accuracy = 0.938, kappa = 0.823) major classes of self-reported ethnicity/race (African: n = 58, Asian: n = 53, Caucasian: n = 389), and produces ethnicity probabilities that are highly correlated with genetic ancestry inferred from genome-wide SNP arrays (> 2.5 million SNP) and ancestry informative markers (n = 50 SNPs). PlaNET’s ethnicity classification relies on 1860 HM450K microarray sites, and over half of these were linked to nearby genetic polymorphisms (n = 955). Our placental-optimized method outperforms existing approaches in assessing population stratification in placental samples from individuals of Asian, African, and Caucasian ethnicities. Conclusion PlaNET provides an improved approach to address population stratification in placental DNAme association studies. The method can be applied to predict ethnicity as a discrete or continuous variable and will be especially useful when self-reported ethnicity information is missing and genotyping markers are unavailable. Electronic supplementary material The online version of this article (10.1186/s13072-019-0296-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Victor Yuan
- Department of Medical Genetics, University of British Columbia, C201-4500 Oak Street, Vancouver, BC, V6H 3N1, Canada.,BC Children's Hospital Research Institute, 938 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - E Magda Price
- Department of Medical Genetics, University of British Columbia, C201-4500 Oak Street, Vancouver, BC, V6H 3N1, Canada.,BC Children's Hospital Research Institute, 938 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Giulia Del Gobbo
- Department of Medical Genetics, University of British Columbia, C201-4500 Oak Street, Vancouver, BC, V6H 3N1, Canada.,BC Children's Hospital Research Institute, 938 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Sara Mostafavi
- Department of Medical Genetics, University of British Columbia, C201-4500 Oak Street, Vancouver, BC, V6H 3N1, Canada.,BC Children's Hospital Research Institute, 938 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada.,Department of Statistics, University of British Columbia, 3182 Earth Sciences Building, 2207 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Brian Cox
- Department of Physiology, University of Toronto, Medical Sciences Building, 3rd Floor, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Alexandra M Binder
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA
| | - Karin B Michels
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA
| | - Carmen Marsit
- Department of Environmental Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Wendy P Robinson
- Department of Medical Genetics, University of British Columbia, C201-4500 Oak Street, Vancouver, BC, V6H 3N1, Canada. .,BC Children's Hospital Research Institute, 938 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada.
| |
Collapse
|
27
|
Konwar C, Price EM, Wang LQ, Wilson SL, Terry J, Robinson WP. DNA methylation profiling of acute chorioamnionitis-associated placentas and fetal membranes: insights into epigenetic variation in spontaneous preterm births. Epigenetics Chromatin 2018; 11:63. [PMID: 30373633 PMCID: PMC6205793 DOI: 10.1186/s13072-018-0234-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Placental inflammation, often presenting as acute chorioamnionitis (aCA), is commonly associated with preterm birth. Preterm birth can have both immediate and long-term adverse effects on the health of the baby. Developing biomarkers of inflammation in the placenta can help to understand its effects and potentially lead to new approaches for rapid prenatal diagnosis of aCA. We aimed to characterize epigenetic variation associated with aCA in placenta (chorionic villi) and fetal membranes (chorion and amnion) to better understand how aCA may impact processes that lead to preterm birth. This study lays the groundwork for development of novel biomarkers for aCA. METHODS Samples from 44 preterm placentas (chorionic villi) as well as matched chorion and amnion for 16 of these cases were collected for this study. These samples were profiled using the Illumina Infinium HumanMethylation850 BeadChip to measure DNA methylation (DNAm) at 866,895 CpGs across the genome. An additional 78 placental samples were utilized to independently validate the array findings by pyrosequencing. RESULTS Using a false discovery rate of < 0.15 and average group difference in DNAm of > 0.05, 66 differentially methylated (DM) CpG sites were identified between aCA cases and non-aCA cases in chorionic villi. For the majority of these 66 DM CpGs, the DNAm profile of the aCA cases as compared to the non-aCA cases trended in the direction of the blood cell DNAm. Interestingly, neutrophil-specific DNAm signatures, but not those associated with other immune cell types, were capable of separating aCA cases from the non-aCA cases. CONCLUSIONS Our results suggest that aCA-associated placentas showed altered DNAm signatures that were not observed in the absence of aCA. This DNAm profile is consistent with the activation of the innate immune response in the placenta and/or reflect increase in neutrophils as a response to inflammation.
Collapse
Affiliation(s)
- Chaini Konwar
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1 Canada
| | - E. Magda Price
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1 Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 3N1 Canada
| | - Li Qing Wang
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
- University of British Columbia, Vancouver, BC V6H 3N1 Canada
| | - Samantha L. Wilson
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1 Canada
| | - Jefferson Terry
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
- Department of Pathology, BC Children’s Hospital, Vancouver, BC V6H 3N1 Canada
| | - Wendy P. Robinson
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1 Canada
| |
Collapse
|
28
|
Strakovsky RS, Schantz SL. Impacts of bisphenol A (BPA) and phthalate exposures on epigenetic outcomes in the human placenta. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy022. [PMID: 30210810 PMCID: PMC6128378 DOI: 10.1093/eep/dvy022] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 05/18/2023]
Abstract
The placenta guides fetal growth and development. Bisphenol A (BPA) and phthalates are widespread environmental contaminants and endocrine disruptors, and the placental epigenetic response to these chemicals is an area of growing research interest. Therefore, our objective was to summarize research linking BPA or phthalate exposure to placental outcomes in human pregnancies, with a particular focus on epigenetic endpoints. In PubMed, studies were selected for review (without limiting start date and ending on 1 May 2018) if they reported any direct effects of BPA or phthalates on the placenta in humans. Collectively, available studies suggest that BPA and phthalate exposures are associated with changes to placental micro-RNA expression, DNA methylation, and genomic imprinting. Furthermore, several studies suggest that fetal sex may be an important modifier of placental outcomes in response to these chemicals. Studies in humans demonstrate associations of BPA and phthalate exposure with adverse placental outcomes. Moving forward, more studies should consider sex differences (termed "placental sex") in the measured outcomes, and should utilize appropriate statistical approaches to assess modification by fetal sex. Furthermore, more consistent sample collection and molecular outcome assessment paradigms will be indispensable for making progress in the field. These advances, together with improved non-invasive tools for measuring placental function and outcomes across pregnancy, will be critical for understanding the mechanisms driving placental epigenetic disruption in response to BPA and phthalates, and how these disruptions translate into placental and fetal health.
Collapse
Affiliation(s)
- Rita S Strakovsky
- The Department of Food Science and Human Nutrition, Michigan State University, 236C Trout Building, 469 Wilson Road, East Lansing, MI, USA
- Correspondence address. The Department of Food Science and Human Nutrition, Michigan State University, 236C Trout Building, 469 Wilson Road, East Lansing, MI 48823, USA. Tel: 517-353-3352; Fax: 517-353-8963; E-mail:
| | - Susan L Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, USA
- Department of Comparative Biosciences, 2347 Beckman Institute, University of Illinois Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, USA
| |
Collapse
|
29
|
Forest M, O'Donnell KJ, Voisin G, Gaudreau H, MacIsaac JL, McEwen LM, Silveira PP, Steiner M, Kobor MS, Meaney MJ, Greenwood CMT. Agreement in DNA methylation levels from the Illumina 450K array across batches, tissues, and time. Epigenetics 2018; 13:19-32. [PMID: 29381404 PMCID: PMC5837078 DOI: 10.1080/15592294.2017.1411443] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epigenome-wide association studies (EWAS) have focused primarily on DNA methylation as a chemically stable and functional epigenetic modification. However, the stability and accuracy of the measurement of methylation in different tissues and extraction types is still being actively studied, and the longitudinal stability of DNA methylation in commonly studied peripheral tissues is of great interest. Here, we used data from two studies, three tissue types, and multiple time points to assess the stability of DNA methylation measured with the Illumina Infinium HumanMethylation450 BeadChip array. Redundancy analysis enabled visual assessment of agreement of replicate samples overall and showed good agreement after removing effects of tissue type, age, and sex. At the probe level, analysis of variance contrasts separating technical and biological replicates clearly showed better agreement between technical replicates versus longitudinal samples, and suggested increased stability for buccal cells versus blood or blood spots. Intraclass correlations (ICCs) demonstrated that inter-individual variability is of similar magnitude to within-sample variability at many probes; however, as inter-individual variability increased, so did ICC. Furthermore, we were able to demonstrate decreasing agreement in methylation levels with time, despite a maximal sampling interval of only 576 days. Finally, at 6 popular candidate genes, there was a large range of stability across probes. Our findings highlight important sources of technical and biological variation in DNA methylation across different tissues over time. These data will help to inform longitudinal sampling strategies of future EWAS.
Collapse
Affiliation(s)
- Marie Forest
- a Lady Davis Institute , Jewish General Hospital , Montreal , QC , Canada.,b Ludmer Centre for Neuroinformatics and Mental Health , McGill University , Montreal , QC , Canada
| | - Kieran J O'Donnell
- b Ludmer Centre for Neuroinformatics and Mental Health , McGill University , Montreal , QC , Canada.,c Douglas Hospital Research Centre , McGill University , Montreal , QC , Canada.,d Sackler Program for Epigenetics & Psychobiology , McGill University , Montreal , QC , Canada.,e Canadian Institute for Advanced Research , Child and Brain Development Program , Toronto , ON , Canada
| | - Greg Voisin
- a Lady Davis Institute , Jewish General Hospital , Montreal , QC , Canada
| | - Helene Gaudreau
- b Ludmer Centre for Neuroinformatics and Mental Health , McGill University , Montreal , QC , Canada.,c Douglas Hospital Research Centre , McGill University , Montreal , QC , Canada
| | - Julia L MacIsaac
- f Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics , and BC Children's Hospital Research Institute, University of British Columbia , Vancouver , BC , Canada
| | - Lisa M McEwen
- f Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics , and BC Children's Hospital Research Institute, University of British Columbia , Vancouver , BC , Canada
| | - Patricia P Silveira
- b Ludmer Centre for Neuroinformatics and Mental Health , McGill University , Montreal , QC , Canada.,c Douglas Hospital Research Centre , McGill University , Montreal , QC , Canada.,d Sackler Program for Epigenetics & Psychobiology , McGill University , Montreal , QC , Canada
| | | | - Michael S Kobor
- f Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics , and BC Children's Hospital Research Institute, University of British Columbia , Vancouver , BC , Canada
| | - Michael J Meaney
- b Ludmer Centre for Neuroinformatics and Mental Health , McGill University , Montreal , QC , Canada.,c Douglas Hospital Research Centre , McGill University , Montreal , QC , Canada.,d Sackler Program for Epigenetics & Psychobiology , McGill University , Montreal , QC , Canada.,e Canadian Institute for Advanced Research , Child and Brain Development Program , Toronto , ON , Canada.,h Singapore Institute of Clinical Sciences , Singapore
| | - Celia M T Greenwood
- a Lady Davis Institute , Jewish General Hospital , Montreal , QC , Canada.,b Ludmer Centre for Neuroinformatics and Mental Health , McGill University , Montreal , QC , Canada.,i Departments of Oncology and Human Genetics , McGill University , Montreal , QC , Canada.,j Department of Epidemiology, Biostatistics and Occupational Health , McGill University , Montreal , QC , Canada
| |
Collapse
|
30
|
Jones MJ, Moore SR, Kobor MS. Principles and Challenges of Applying Epigenetic Epidemiology to Psychology. Annu Rev Psychol 2018; 69:459-485. [DOI: 10.1146/annurev-psych-122414-033653] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Meaghan J. Jones
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, British Columbia V6H 3N1, Canada;, ,
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
| | - Sarah R. Moore
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, British Columbia V6H 3N1, Canada;, ,
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, British Columbia V6H 3N1, Canada;, ,
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
- Human Early Learning Partnership, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
31
|
Epigenetics and Early Life Adversity: Current Evidence and Considerations for Epigenetic Studies in the Context of Child Maltreatment. THE BIOLOGY OF EARLY LIFE STRESS 2018. [DOI: 10.1007/978-3-319-72589-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Wilson SL, Leavey K, Cox BJ, Robinson WP. Mining DNA methylation alterations towards a classification of placental pathologies. Hum Mol Genet 2018; 27:135-146. [PMID: 29092053 PMCID: PMC5886226 DOI: 10.1093/hmg/ddx391] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 09/18/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022] Open
Abstract
Placental health is a key component to a successful pregnancy. Placental insufficiency (PI), inadequate nutrient delivery to the fetus, is associated with preeclampsia (PE), a maternal hypertensive disorder, and intrauterine growth restriction (IUGR), pathologically poor fetal growth. PI is more common in early-onset PE (EOPE) than late-onset PE (LOPE). However, the relationship between these disorders remains unclear. While DNA methylation (DNAm) alterations have been identified in PE and IUGR, these entities can overlap and few studies have analysed them separately. This study aims to utilize DNAm profiling to better understand the underlying placental variation associated with PE and IUGR. Placental samples from a discovery (43 controls, 22 EOPE, 18 LOPE, 11 IUGR) and validation cohort (15 controls, 22 EOPE, 11 LOPE) were evaluated using the Illumina HumanMethylation450 array. To account for gestational age (GA) effects, EOPE samples were compared with pre-term births of varying etiologies (GA <37 weeks). LOPE and IUGR were compared with term controls (GA >37 weeks). While 1703 sites were differentially methylated (DM) (FDR < 0.05, Δβ > 0.1) in EOPE, few changes were associated with LOPE (N = 5), or IUGR (N = 0). Of the 1703 EOPE sites, 599 validated in the second cohort. Using these 599 sites, both cohorts clustered into three distinct groups. Interestingly, LOPE samples diagnosed between 34 and 36 weeks with co-occurring IUGR clustered with the EOPE. DNAm profiling may provide an independent tool to refine clinical/pathological diagnoses into subgroups with more uniform pathology. Despite large changes observed in EOPE, there were challenges in reproducing genome-wide DNAm hits that are discussed.
Collapse
Affiliation(s)
- Samantha L Wilson
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Katherine Leavey
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Brian J Cox
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON M5G 1E2, Canada
| | - Wendy P Robinson
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| |
Collapse
|
33
|
Abstract
AbstractAnimal models of early postnatal mother–infant interactions have highlighted the importance of tactile contact for biobehavioral outcomes via the modification of DNA methylation (DNAm). The role of normative variation in contact in early human development has yet to be explored. In an effort to translate the animal work on tactile contact to humans, we applied a naturalistic daily diary strategy to assess the link between maternal contact with infants and epigenetic signatures in children 4–5 years later, with respect to multiple levels of child-level factors, including genetic variation and infant distress. We first investigated DNAm at four candidate genes: the glucocorticoid receptor gene, nuclear receptor subfamily 3, group C, member 1 (NR3C1), μ-opioid receptor M1 (OPRM1) and oxytocin receptor (OXTR; related to the neurobiology of social bonds), and brain-derived neurotrophic factor (BDNF; involved in postnatal plasticity). Although no candidate gene DNAm sites significantly associated with early postnatal contact, when we next examined DNAm across the genome, differentially methylated regions were identified between high and low contact groups. Using a different application of epigenomic information, we also quantified epigenetic age, and report that for infants who received low contact from caregivers, greater infant distress was associated with younger epigenetic age. These results suggested that early postnatal contact has lasting associations with child biology.
Collapse
|