1
|
Gu J, Huang H, Tang P, Liao Q, Liang J, Tang Y, Long J, Chen J, Huang D, Liu S, Pan D, Zeng X, Qiu X. Association between maternal metal exposure during early pregnancy and intelligence in children aged 3-6 years: Results from a Chinese birth cohort. ENVIRONMENTAL RESEARCH 2024; 261:119685. [PMID: 39068966 DOI: 10.1016/j.envres.2024.119685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Maternal environmental metal exposure is common, but long-term prospective epidemiological evidence of its impact on children's intellectual development is still insufficient. METHODS Data on maternal plasma metal levels and child intelligence were obtained for 211 3-6-year-old children from Guangxi Zhuang Birth Cohort. ICP-MS was employed to detect 17 metals, including 7 essential metals (Mn, Fe, Co, Ni, Cu, Zn, Mo) and 10 non-essential metals (As, Rb, Sr, Cd, Sb, Cs, Ba, W, Pb, U), in maternal plasma samples obtained before 13 weeks of gestation during the initial maternity checkup. Child intelligence was assessed using the Wechsler Intelligence Scale for Children-Fourth Edition. The GLM, RCS and mixture models were used to assess the associations of maternal plasma metal levels with child intelligence quotient (IQ) scores. RESULTS The GLM analysis revealed that U had a significant adverse effect on child IQ scores in high-dose exposure groups (-9.236 [-18.644, -4.936], p = 0.006) after adjusting for covariates, while Sb showed a linear adverse effect on children's intelligence in the adjusted model (-4.028 [-7.432, -0.626], p = 0.021). BKMR modeling indicated that overall IQ scores decreased as concentrations of non-essential metals mixtures increased after adjusting for essential metal mixtures, consistent with findings from the WQS (β [95% CI], -8.463 [-14.449, -2.476], p = 0.007) and Qgcomp models (-7.003 [-12.928, -1.078], p = 0.022). Among the non-essential metals, U had the highest negative weight at 37.96%, followed by Pb (23.35%) and Sb (16.91%). Furthermore, potential interactions were observed between metals (Pb and U) and Sb in the study findings. CONCLUSION Reducing exposure to non-essential metal mixtures, especially U, Sb and Pb, during early pregnancy and ensuring adequate intake of specific essential metal elements could be a critical intervention in addressing childhood intellectual impairment.
Collapse
Affiliation(s)
- Junwang Gu
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Huishen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Peng Tang
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, China
| | - Qian Liao
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Ying Tang
- Department of Microbiology, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jinghua Long
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jiehua Chen
- Department of Microbiology, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Dongping Huang
- Department of Microbiology, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Dongxiang Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin 541001, Guangxi, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
2
|
Hari Gopal S, Alenghat T, Pammi M. Early life epigenetics and childhood outcomes: a scoping review. Pediatr Res 2024:10.1038/s41390-024-03585-7. [PMID: 39289593 DOI: 10.1038/s41390-024-03585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
Epigenetics is the study of changes in gene expression, without a change in the DNA sequence that are potentially heritable. Epigenetic mechanisms such as DNA methylation, histone modifications, and small non-coding RNA (sncRNA) changes have been studied in various childhood disorders. Causal links to maternal health and toxin exposures can introduce epigenetic modifications to the fetal DNA, which can be detected in the cord blood. Cord blood epigenetic modifications provide evidence of in-utero stressors and immediate postnatal changes, which can impact both short and long-term outcomes in children. The mechanisms of these epigenetic changes can be leveraged for prevention, early detection, and intervention, and to discover novel therapeutic modalities in childhood diseases. We report a scoping review of early life epigenetics, the influence of maternal health, maternal toxin, and drug exposures on the fetus, and its impact on perinatal, neonatal, and childhood outcomes. IMPACT STATEMENT: Epigenetic changes such as DNA methylation, histone modification, and non-coding RNA have been implicated in the pathophysiology of various disease processes. The fundamental changes to an offspring's epigenome can begin in utero, impacting the immediate postnatal period, childhood, adolescence, and adulthood. This scoping review summarizes current literature on the impact of early life epigenetics, especially DNA methylation on childhood health outcomes.
Collapse
Affiliation(s)
- Srirupa Hari Gopal
- Dept. of Pediatrics, Division of Neonatology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA.
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mohan Pammi
- Dept. of Pediatrics, Division of Neonatology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
3
|
Khodasevich D, Holland N, Harley KG, Eskenazi B, Barcellos LF, Cardenas A. Prenatal exposure to environmental phenols and phthalates and altered patterns of DNA methylation in childhood. ENVIRONMENT INTERNATIONAL 2024; 190:108862. [PMID: 38972116 DOI: 10.1016/j.envint.2024.108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION Epigenetic marks are key biomarkers linking the prenatal environment to health and development. However, DNA methylation associations and persistence of marks for prenatal exposure to multiple Endocrine Disrupting Chemicals (EDCs) in human populations have not been examined in great detail. METHODS We measured Bisphenol-A (BPA), triclosan, benzophenone-3 (BP3), methyl-paraben, propyl-paraben, and butyl-paraben, as well as 11 phthalate metabolites, in two pregnancy urine samples, at approximately 13 and 26 weeks of gestation in participants of the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) study (N = 309). DNA methylation of cord blood at birth and child peripheral blood at ages 9 and 14 years was measured with 450K and EPIC arrays. Robust linear regression was used to identify differentially methylated probes (DMPs), and comb-p was used to identify differentially methylated regions (DMRs) in association with pregnancy-averaged EDC concentrations. Quantile g-computation was used to assess associations of the whole phenol/phthalate mixture with DMPs and DMRs. RESULTS Prenatal BPA exposure was associated with 1 CpG among males and Parabens were associated with 10 CpGs among females at Bonferroni-level significance in cord blood. Other suggestive DMPs (unadjusted p-value < 1 × 10-6) and several DMRs associated with the individual phenols and whole mixture were also identified. A total of 10 CpG sites at least suggestively associated with BPA, Triclosan, BP3, Parabens, and the whole mixture in cord blood were found to persist into adolescence in peripheral blood. CONCLUSIONS We found sex-specific associations between prenatal phenol exposure and DNA methylation, particularly with BPA in males and Parabens in females. Additionally, we found several DMPs that maintained significant associations with prenatal EDC exposures at age 9 and age 14 years.
Collapse
Affiliation(s)
- Dennis Khodasevich
- Division of Environmental Health Sciences, Berkeley Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Nina Holland
- Center for Environmental Research and Community Health (CERCH), Berkeley Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Kim G Harley
- Center for Environmental Research and Community Health (CERCH), Berkeley Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), Berkeley Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Lisa F Barcellos
- Division of Epidemiology, Berkeley Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Zhang M, Hu T, Ma T, Huang W, Wang Y. Epigenetics and environmental health. Front Med 2024; 18:571-596. [PMID: 38806988 DOI: 10.1007/s11684-023-1038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/15/2023] [Indexed: 05/30/2024]
Abstract
Epigenetic modifications including DNA methylation, histone modifications, chromatin remodeling, and RNA modifications complicate gene regulation and heredity and profoundly impact various physiological and pathological processes. In recent years, accumulating evidence indicates that epigenetics is vulnerable to environmental changes and regulates the growth, development, and diseases of individuals by affecting chromatin activity and regulating gene expression. Environmental exposure or induced epigenetic changes can regulate the state of development and lead to developmental disorders, aging, cardiovascular disease, Alzheimer's disease, cancers, and so on. However, epigenetic modifications are reversible. The use of specific epigenetic inhibitors targeting epigenetic changes in response to environmental exposure is useful in disease therapy. Here, we provide an overview of the role of epigenetics in various diseases. Furthermore, we summarize the mechanism of epigenetic alterations induced by different environmental exposures, the influence of different environmental exposures, and the crosstalk between environmental variation epigenetics, and genes that are implicated in the body's health. However, the interaction of multiple factors and epigenetics in regulating the initiation and progression of various diseases complicates clinical treatments. We discuss some commonly used epigenetic drugs targeting epigenetic modifications and methods to prevent or relieve various diseases regulated by environmental exposure and epigenetics through diet.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ting Hu
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianyu Ma
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
5
|
Wei Y, Zhou YF, Xiao L, Qin J, Cheng H, Cai H, Chen X, Zou Y, Yang L, Zhang H, Zhang Z, Yang X. Associations of Heavy Metals with Cognitive Function: An Epigenome-Wide View of DNA Methylation and Mediation Analysis. Ann Neurol 2024; 96:87-98. [PMID: 38661228 DOI: 10.1002/ana.26942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVE Exposure to heavy metals has been reported to be associated with impaired cognitive function, but the underlying mechanisms remain unclear. This pilot study aimed to identify key heavy metal elements associated with cognitive function and further explore the potential mediating role of metal-related DNA methylation. METHODS Blood levels of arsenic, cadmium, lead, copper, manganese, and zinc and genome-wide DNA methylations were separately detected in peripheral blood in 155 older adults. Cognitive function was evaluated using the Mini-Mental State Examination (MMSE). Least absolute shrinkage and selection operator penalized regression and Bayesian kernel machine regression were used to identify metals associated with cognitive function. An epigenome-wide association study examined the DNA methylation profile of the identified metal, and mediation analysis investigated its mediating role. RESULTS The MMSE scores showed a significant decrease of 1.61 (95% confidence interval [CI]: -2.64, -0.59) with each 1 standard deviation increase in ln-transformed arsenic level; this association was significant in multiple-metal models and dominated the overall negative effect of 6 heavy metal mixture on cognitive function. Seventy-three differentially methylated positions were associated with blood arsenic (p < 1.0 × 10-5). The methylation levels at cg05226051 (annotated to TDRD3) and cg18886932 (annotated to GAL3ST3) mediated 24.8% and 25.5% of the association between blood arsenic and cognitive function, respectively (all p < 0.05). INTERPRETATION Blood arsenic levels displayed a negative association with the cognitive function of older adults. This finding shows that arsenic-related DNA methylation alterations are critical partial mediators that may serve as potential biomarkers for further mechanism-related studies. ANN NEUROL 2024;96:87-98.
Collapse
Affiliation(s)
- Yue Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yan-Feng Zhou
- Department of Social Medicine, School of Public Health, Guangxi Medical University, Nanning, China
| | - Lili Xiao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jian Qin
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Haiqing Cai
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xing Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Li Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Haiying Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Zhiyong Zhang
- Department of Environmental Health and Occupational Medicine, Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath Research, Guilin Medical University, Guilin, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Bozack AK, Rifas-Shiman SL, Baccarelli AA, Wright RO, Gold DR, Oken E, Hivert MF, Cardenas A. Associations of prenatal one-carbon metabolism nutrients and metals with epigenetic aging biomarkers at birth and in childhood in a US cohort. Aging (Albany NY) 2024; 16:3107-3136. [PMID: 38412256 PMCID: PMC10929819 DOI: 10.18632/aging.205602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Epigenetic gestational age acceleration (EGAA) at birth and epigenetic age acceleration (EAA) in childhood may be biomarkers of the intrauterine environment. We investigated the extent to which first-trimester folate, B12, 5 essential, and 7 non-essential metals in maternal circulation are associated with EGAA and EAA in early life. Bohlin EGAA and Horvath pan-tissue and skin and blood EAA were calculated using DNA methylation measured in cord blood (N=351) and mid-childhood blood (N=326; median age = 7.7 years) in the Project Viva pre-birth cohort. A one standard deviation increase in individual essential metals (copper, manganese, and zinc) was associated with 0.94-1.2 weeks lower Horvath EAA at birth, and patterns of exposures identified by exploratory factor analysis suggested that a common source of essential metals was associated with Horvath EAA. We also observed evidence nonlinear associations of zinc with Bohlin EGAA, magnesium and lead with Horvath EAA, and cesium with skin and blood EAA at birth. Overall, associations at birth did not persist in mid-childhood; however, arsenic was associated with greater EAA at birth and in childhood. Prenatal metals, including essential metals and arsenic, are associated with epigenetic aging in early life, which might be associated with future health.
Collapse
Affiliation(s)
- Anne K. Bozack
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sheryl L. Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, NY 10032, USA
| | - Robert O. Wright
- Department of Environmental Medicine and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Diane R. Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health and Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Zhang J, Cheng X, Wei Y, Zhang Z, Zhou Q, Guan Y, Yan Y, Wang R, Jia C, An J, He M. Epigenome-wide perspective of cadmium-associated DNA methylation and its mediation role in the associations of cadmium with lipid levels and dyslipidemia risk. Food Chem Toxicol 2024; 184:114409. [PMID: 38128686 DOI: 10.1016/j.fct.2023.114409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Studies demonstrated the associations of cadmium (Cd) with lipid levels and dyslipidemia risk, but the mechanisms involved need further exploration. OBJECTIVES We aimed to explore the role of DNA methylation (DNAM) in the relationship of Cd with lipid levels and dyslipidemia risk. METHODS Urinary cadmium levels (UCd) were measured by inductively coupled plasma mass spectrometry, serum high-density lipoprotein (HDL), total cholesterol, triglyceride, and low-density lipoprotein were measured with kits, and DNAM was measured using the Infinium MethylationEPIC BeadChip. Robust linear regressions were conducted for epigenome-wide association study. Multivariate linear and logistic regressions were performed to explore the associations of UCd with lipid levels and dyslipidemia risk, respectively. Mediation analyses were conducted to explore potential mediating role of DNAM in the associations of Cd with lipid levels and dyslipidemia risk. RESULTS UCd was negatively associated with HDL levels (p = 0.01) and positively associated with dyslipidemia (p < 0.01). There were 92/11 DMPs/DMRs (FDR<0.05) associated with UCd. Cd-associated DNAM and pathways were connected with cardiometabolic diseases and immunity. Cg07829377 (LINC01060) mediated 42.05%/22.88% of the UCd-HDL/UCd-dyslipidemia associations (p = 0.02 and 0.01, respectively). CONCLUSIONS Cadmium caused site-specific DNAM alterations and the associations of UCd with lipid levels and dyslipidemia risk may be partially mediated by DNAM.
Collapse
Affiliation(s)
- Jiazhen Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xu Cheng
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yue Wei
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Zefang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; Department of Tuberculosis Control, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Qihang Zhou
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Youbing Guan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yan Yan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ruixin Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chengyong Jia
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jun An
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
8
|
Chbihi K, Menouni A, Hardy E, Creta M, Grova N, Van Nieuwenhuyse A, Godderis L, El Jaafari S, Duca RC. Exposure of children to brominated flame retardants and heavy metals in Morocco: Urine and blood levels in association with global cytosine and adenine methylation. ENVIRONMENT INTERNATIONAL 2024; 183:108409. [PMID: 38185044 DOI: 10.1016/j.envint.2023.108409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/30/2023] [Accepted: 12/24/2023] [Indexed: 01/09/2024]
Abstract
Persistent pollutants, namely brominated flame retardants (BFRs) and heavy metals, are compounds that are added to a wide range of products and materials for preventing ignition, increasing the functionality of materials or improving their performance, e.g. electric conductivity. The exposure of children might consequently be inferred, through indoor dust and hand-to-mouth or toy-chewing behaviors. The current study is aimed at assessing the exposure of Moroccan children to BFRs and heavy metal elements, and evaluating their associations with global DNA methylation. First, parents responded to a questionnaire pertaining to children's lifestyle, then blood and urine samples were collected from (n = 93) children aged between 5 and 11 years for biomonitoring and DNA methylation analysis. BFRs were detected in 54.84% of samples with a median concentration of 0.01 nmol/mL (range: 0.004-0.051 nmol/mL) while metal elements were detected in more than 90% of samples. BFRs showed no variations with global DNA methylation, unlike metal elements, which revealed significant associations with global DNA methylation markers, namely 5-mC, 5-hmC and N⁶-mA levels. Moroccan children may be exposed to flame retardants and heavy metals through several routes. Further research is required to assess the exposure and the health impacts of environmental pollutants and ultimately protect the Moroccan population by the prevention of adverse health effects.
Collapse
Affiliation(s)
- Kaoutar Chbihi
- Cluster of Competences on Health & Environment, Moulay Ismail University, Meknes 50000, Morocco; Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium; Unit of Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange L-3555, Luxembourg.
| | - Aziza Menouni
- Cluster of Competences on Health & Environment, Moulay Ismail University, Meknes 50000, Morocco; Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium
| | - Emilie Hardy
- Unit of Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange L-3555, Luxembourg
| | - Matteo Creta
- Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium; Unit of Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange L-3555, Luxembourg
| | - Nathalie Grova
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, Esch-Sur-Alzette L-4354, Luxembourg; UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS) - University of Lorraine, B.P. 184, Nancy 54511, France
| | - An Van Nieuwenhuyse
- Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium; Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange L-3555, Luxembourg
| | - Lode Godderis
- Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium; IDEWE, External Service for Prevention and Protection at Work, Heverlee 3001, Belgium
| | - Samir El Jaafari
- Cluster of Competences on Health & Environment, Moulay Ismail University, Meknes 50000, Morocco
| | - Radu-Corneliu Duca
- Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium; Unit of Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange L-3555, Luxembourg.
| |
Collapse
|
9
|
Drzymalla E, Crider KS, Wang A, Marta G, Khoury MJ, Rasooly D. Epigenome-wide association studies of prenatal maternal mental health and infant epigenetic profiles: a systematic review. Transl Psychiatry 2023; 13:377. [PMID: 38062042 PMCID: PMC10703876 DOI: 10.1038/s41398-023-02620-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 12/18/2023] Open
Abstract
Prenatal stress and poor maternal mental health are associated with adverse offspring outcomes; however, the biological mechanisms are unknown. Epigenetic modification has linked maternal health with offspring development. Epigenome-wide association studies (EWAS) have examined offspring DNA methylation profiles for association with prenatal maternal mental health to elucidate mechanisms of these complex relationships. The objective of this study is to provide a comprehensive, systematic review of EWASs of infant epigenetic profiles and prenatal maternal anxiety, depression, or depression treatment. We conducted a systematic literature search following PRISMA guidelines for EWAS studies between prenatal maternal mental health and infant epigenetics through May 22, 2023. Of 645 identified articles, 20 fulfilled inclusion criteria. We assessed replication of CpG sites among studies, conducted gene enrichment analysis, and evaluated the articles for quality and risk of bias. We found one repeated CpG site among the maternal depression studies; however, nine pairs of overlapping differentially methylatd regions were reported in at least two maternal depression studies. Gene enrichment analysis found significant pathways for maternal depression but not for any other maternal mental health category. We found evidence that these EWAS present a medium to high risk of bias. Exposure to prenatal maternal depression and anxiety or treatment for such was not consistently associated with epigenetic changes in infants in this systematic review and meta-analysis. Small sample size, potential bias due to exposure misclassification and statistical challenges are critical to address in future efforts to explore epigenetic modification as a potential mechanism by which prenatal exposure to maternal mental health disorders leads to adverse infant outcomes.
Collapse
Affiliation(s)
- Emily Drzymalla
- Division of Blood Disorders and Public Health Genomics, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Krista S Crider
- Infant Outcomes Research and Prevention Branch, Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Arick Wang
- Infant Outcomes Research and Prevention Branch, Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Muin J Khoury
- Division of Blood Disorders and Public Health Genomics, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Danielle Rasooly
- Division of Blood Disorders and Public Health Genomics, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
10
|
Miousse IR, Hale RB, Alsbrook S, Boysen G, Broadnax T, Murry C, Williams C, Park CH, Richards R, Reedy J, Chalbot MC, Kavouras IG, Koturbash I. Climate Change and New Challenges for Rural Communities: Particulate Matter Matters. SUSTAINABILITY 2023; 15:16192. [PMID: 39119507 PMCID: PMC11307925 DOI: 10.3390/su152316192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Climate change presents multiple challenges to rural communities. Here, we investigated the toxicological potential of the six types of particulate matter most common to rural Arkansas: soil, road, and agricultural dusts, pollen, traffic exhaust, and particles from biomass burning in human small airway epithelial cells (SAECs). Biomass burning and agricultural dust demonstrated the most potent toxicological responses, exhibited as significant (p < 0.05) up-regulation of HMOX1 (oxidative stress) and TNFα (inflammatory response) genes as well as epigenetic alterations (altered expression of DNA methyltransferases DNMT1, DNMT3A, and DNMT3B, enzymatic activity, and DNA methylation of alpha satellite elements) that were evident at both 24 h and 72 h of exposure. We further demonstrate evidence of aridification in the state of Arkansas and the presence of winds capable of transporting agricultural dust- and biomass burning-associated particles far beyond their origination. Partnerships in the form of citizen science projects may provide important solutions to prevent and mitigate the negative effects of the rapidly evolving climate and improve the well-being of rural communities. Furthermore, the identification of the most toxic types of particulate matter could inform local policies related to agriculture, biomass burning, and dust control.
Collapse
Affiliation(s)
- Isabelle Racine Miousse
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Rachel B. Hale
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Scott Alsbrook
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Gunnar Boysen
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | - Chul Hyun Park
- Clinton School of Public Service, University of Arkansas, Little Rock, AR 72201, USA
| | - Robert Richards
- Clinton School of Public Service, University of Arkansas, Little Rock, AR 72201, USA
| | - Justin Reedy
- Department of Communication, University of Oklahoma, Norman, OK 73019, USA
| | - Marie-Cécile Chalbot
- Department of Biological Sciences, New York City College of Technology, City University of New York, New York, NY 10018, USA
| | - Ilias G. Kavouras
- Department of Environmental, Occupational and Geospatial Health Sciences, City University of New York, New York, NY 10018, USA
| | - Igor Koturbash
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
11
|
Yaskolka Meir A, Yun H, Stampfer MJ, Liang L, Hu FB. Nutrition, DNA methylation and obesity across life stages and generations. Epigenomics 2023; 15:991-1015. [PMID: 37933548 DOI: 10.2217/epi-2023-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Obesity is a complex multifactorial condition that often manifests in early life with a lifelong burden on metabolic health. Diet, including pre-pregnancy maternal diet, in utero nutrition and dietary patterns in early and late life, can shape obesity development. Growing evidence suggests that epigenetic modifications, specifically DNA methylation, might mediate or accompany these effects across life stages and generations. By reviewing human observational and intervention studies conducted over the past 10 years, this work provides a comprehensive overview of the evidence linking nutrition to DNA methylation and its association with obesity across different age periods, spanning from preconception to adulthood and identify future research directions in the field.
Collapse
Affiliation(s)
- Anat Yaskolka Meir
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Huan Yun
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Meir J Stampfer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Medicine, Channing Division of Network Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Frank B Hu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Medicine, Channing Division of Network Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Mervish N, Valle C, Teitelbaum SL. Epidemiologic Advances Generated by the Human Health Exposure Analysis Resource Program. CURR EPIDEMIOL REP 2023; 10:148-157. [PMID: 38318392 PMCID: PMC10840994 DOI: 10.1007/s40471-023-00323-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 02/07/2024]
Affiliation(s)
- Nancy Mervish
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | |
Collapse
|
13
|
Stepanyan A, Petrackova A, Hakobyan S, Savara J, Davitavyan S, Kriegova E, Arakelyan A. Long-term environmental metal exposure is associated with hypomethylation of CpG sites in NFKB1 and other genes related to oncogenesis. Clin Epigenetics 2023; 15:126. [PMID: 37550793 PMCID: PMC10405444 DOI: 10.1186/s13148-023-01536-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Long-term environmental exposure to metals leads to epigenetic changes and may increase risks to human health. The relationship between the type and level of metal exposure and epigenetic changes in subjects exposed to high concentrations of metals in the environment is not yet clear. The aim of our study is to find the possible association of environmental long-term exposure to metals with DNA methylation changes of genes related to immune response and carcinogenesis. We investigated the association of plasma levels of 21 essential and non-essential metals detected by ICP-MS and the methylation level of 654 CpG sites located on NFKB1, CDKN2A, ESR1, APOA5, IGF2 and H19 genes assessed by targeted bisulfite sequencing in a cohort of 40 subjects living near metal mining area and 40 unexposed subjects. Linear regression was conducted to find differentially methylated positions with adjustment for gender, age, BMI class, smoking and metal concentration. RESULTS In the metal-exposed group, five CpGs in the NFKB1 promoter region were hypomethylated compared to unexposed group. Four differentially methylated positions (DMPs) were associated with multiple metals, two of them are located on NFKB1 gene, and one each on CDKN2A gene and ESR1 gene. Two DMPs located on NFKB1 (chr4:102500951, associated with Be) and IGF2 (chr11:2134198, associated with U) are associated with specific metal levels. The methylation status of the seven CpGs located on NFKB1 (3), ESR1 (2) and CDKN2A (2) positively correlated with plasma levels of seven metals (As, Sb, Zn, Ni, U, I and Mn). CONCLUSIONS Our study revealed methylation changes in NFKB1, CDKN2A, IGF2 and ESR1 genes in individuals with long-term human exposure to metals. Further studies are needed to clarify the effect of environmental metal exposure on epigenetic mechanisms and pathways involved.
Collapse
Affiliation(s)
- Ani Stepanyan
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Republic of Armenia.
| | - Anna Petrackova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Siras Hakobyan
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Republic of Armenia
| | - Jakub Savara
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Suren Davitavyan
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Republic of Armenia
| | - Eva Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Arsen Arakelyan
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Republic of Armenia
| |
Collapse
|
14
|
Patel P, Selvaraju V, Babu JR, Geetha T. Association of the DNA Methylation of Obesity-Related Genes with the Dietary Nutrient Intake in Children. Nutrients 2023; 15:2840. [PMID: 37447167 DOI: 10.3390/nu15132840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The occurrence of obesity stems from both genetic and external influences. Despite thorough research and attempts to address it through various means such as dietary changes, physical activity, education, and medications, a lasting solution to this widespread problem remains elusive. Nutrients play a crucial role in various cellular processes, including the regulation of gene expression. One of the mechanisms by which nutrients can affect gene expression is through DNA methylation. This modification can alter the accessibility of DNA to transcription factors and other regulatory proteins, thereby influencing gene expression. Nutrients such as folate and vitamin B12 are involved in the one-carbon metabolism pathway, which provides the methyl groups necessary for DNA methylation. Studies have shown that the inadequate intake of these nutrients can lead to alterations in DNA methylation patterns. For this study, we aim to understand the differences in the association of the dietary intake between normal weight and overweight/obese children and between European American and African American children with the DNA methylation of the three genes NRF1, FTO, and LEPR. The research discovered a significant association between the nutritional intake of 6-10-years-old children, particularly the methyl donors present in their diet, and the methylation of the NRF1, FTO, and LEPR genes. Additionally, the study emphasizes the significance of considering health inequalities, particularly family income and maternal education, when investigating the epigenetic impact of methyl donors in diet and gene methylation.
Collapse
Affiliation(s)
- Priyadarshni Patel
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | | | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
15
|
Dufault RJ, Crider RA, Deth RC, Schnoll R, Gilbert SG, Lukiw WJ, Hitt AL. Higher rates of autism and attention deficit/hyperactivity disorder in American children: Are food quality issues impacting epigenetic inheritance? World J Clin Pediatr 2023; 12:25-37. [PMID: 37034430 PMCID: PMC10075020 DOI: 10.5409/wjcp.v12.i2.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/25/2022] [Accepted: 01/10/2023] [Indexed: 03/06/2023] Open
Abstract
In the United States, schools offer special education services to children who are diagnosed with a learning or neurodevelopmental disorder and have difficulty meeting their learning goals. Pediatricians may play a key role in helping children access special education services. The number of children ages 6-21 in the United States receiving special education services increased 10.4% from 2006 to 2021. Children receiving special education services under the autism category increased 242% during the same period. The demand for special education services for children under the developmental delay and other health impaired categories increased by 184% and 83% respectively. Although student enrollment in American schools has remained stable since 2006, the percentage distribution of children receiving special education services nearly tripled for the autism category and quadrupled for the developmental delay category by 2021. Allowable heavy metal residues remain persistent in the American food supply due to food ingredient manufacturing processes. Numerous clinical trial data indicate heavy metal exposures and poor diet are the primary epigenetic factors responsible for the autism and attention deficit hyperactivity disorder epidemics. Dietary heavy metal exposures, especially inorganic mercury and lead may impact gene behavior across generations. In 2021, the United States Congress found heavy metal residues problematic in the American food supply but took no legislative action. Mandatory health warning labels on select foods may be the only way to reduce dietary heavy metal exposures and improve child learning across generations.
Collapse
Affiliation(s)
- Renee J Dufault
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- College of Graduate Health Studies, A.T. Still University, Kirksville, MO 63501, United States
| | - Raquel A Crider
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
| | - Richard C Deth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33314, United States
| | - Roseanne Schnoll
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- Department of Health and Nutrition Sciences, Brooklyn College of CUNY, Brooklyn, NY 11210, United States
| | - Steven G Gilbert
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- Department of Research, Institute of Neurotoxicology and Neurological Disorders, Seattle, WA 98105, United States
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States
| | - Amanda L Hitt
- Food Integrity Campaign, Government Accountability Project, Columbia, WA 20006, United States
- Department of Legal, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
| |
Collapse
|
16
|
Wang C, Xu Z, Qiu X, Wei Y, Peralta AA, Yazdi MD, Jin T, Li W, Just A, Heiss J, Hou L, Zheng Y, Coull BA, Kosheleva A, Sparrow D, Amarasiriwardena C, Wright RO, Baccarelli AA, Schwartz JD. Epigenome-wide DNA methylation in leukocytes and toenail metals: The normative aging study. ENVIRONMENTAL RESEARCH 2023; 217:114797. [PMID: 36379232 PMCID: PMC9825663 DOI: 10.1016/j.envres.2022.114797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Environmental metal exposures have been associated with multiple deleterious health endpoints. DNA methylation (DNAm) may provide insight into the mechanisms underlying these relationships. Toenail metals are non-invasive biomarkers, reflecting a medium-term time exposure window. OBJECTIVES This study examined variation in leukocyte DNAm and toenail arsenic (As), cadmium (Cd), lead (Pb), manganese (Mn), and mercury (Hg) among elderly men in the Normative Aging Study, a longitudinal cohort. METHODS We repeatedly collected samples of blood and toenail clippings. We measured DNAm in leukocytes with the Illumina HumanMethylation450 K BeadChip. We first performed median regression to evaluate the effects of each individual toenail metal on DNAm at three levels: individual cytosine-phosphate-guanine (CpG) sites, regions, and pathways. Then, we applied a Bayesian kernel machine regression (BKMR) to assess the joint and individual effects of metal mixtures on DNAm. Significant CpGs were identified using a multiple testing correction based on the independent degrees of freedom approach for correlated outcomes. The approach considers the effective degrees of freedom in the DNAm data using the principal components that explain >95% variation of the data. RESULTS We included 564 subjects (754 visits) between 1999 and 2013. The numbers of significantly differentially methylated CpG sites, regions, and pathways varied by metals. For example, we found six significant pathways for As, three for Cd, and one for Mn. The As-associated pathways were associated with cancer (e.g., skin cancer) and cardiovascular disease, whereas the Cd-associated pathways were related to lung cancer. Metal mixtures were also associated with 47 significant CpG sites, as well as pathways, mainly related to cancer and cardiovascular disease. CONCLUSIONS This study provides an approach to understanding the potential epigenetic mechanisms underlying observed relations between toenail metals and adverse health endpoints.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Xinye Qiu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Adjani A Peralta
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Mahdieh Danesh Yazdi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Tingfan Jin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Wenyuan Li
- School of Public Health and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Allan Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan Heiss
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - David Sparrow
- VA Normative Aging Study, VA Boston Healthcare System, Boston, MA 02130, USA; Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Chitra Amarasiriwardena
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
17
|
Smith AR, Lin PID, Rifas-Shiman SL, Wright RO, Coull B, Hivert MF, Hubbard A, Oken E, Cardenas A. Associations of Prenatal First Trimester Essential and Nonessential Metal Mixtures with Body Size and Adiposity in Childhood. Epidemiology 2023; 34:80-89. [PMID: 36455248 PMCID: PMC9720697 DOI: 10.1097/ede.0000000000001560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/23/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Prenatal nonessential metals may contribute to postnatal adiposity, whereas essential metals may have metabolic benefits. We evaluated joint and individual associations between prenatal metals and childhood adiposity. METHODS We measured concentrations of six nonessential (arsenic, barium, cadmium, cesium, lead, and mercury) and four essential (magnesium, manganese, selenium, and zinc) metals in first trimester maternal blood from a prebirth cohort. We collected anthropometric measures in early childhood, mid-childhood, and early adolescence including subscapular+tricep skinfold thickness (mm) (N = 715-859), waist circumference (cm) (N = 717-882), and body mass index (BMI) (z-score) (N = 716-875). We measured adiposity in mid-childhood and early adolescence using bone densitometry total- and trunk- fat mass index (kg/m 2 ) (N = 511-599). We estimated associations using adjusted quantile g-computation and linear regression. RESULTS The nonessential metal mixture was associated with higher total (β = 0.07, 95% CI = 0.01, 0.12) and trunk fat mass index (β = 0.12, CI = 0.02, 0.22), waist circumference (β = 0.01, CI = 0.00, 0.01), and BMI (β = 0.24, CI = 0.07, 0.41) in mid-childhood, and total fat mass index (β = 0.07, CI = 0.01, 0.14), and BMI (β = 0.19, CI = 0.02, 0.37) in early adolescence. The essential metal mixture was associated with lower early adolescence total-(β = -0.11, CI = -0.17, -0.04) and trunk- fat mass index (β = -0.13, CI = -0.21, -0.05), subscapular+tricep skinfold thickness (β = -0.02, CI = -0.03, -0.00), waist circumference (β = -0.003, CI = -0.01, -0.00), and BMI (β = -0.16, CI = -0.28, -0.04). Cadmium and cesium were individually associated with childhood adiposity at different timepoints. CONCLUSIONS Prenatal first-trimester essential metals were associated with lower childhood adiposity, whereas nonessential metals were associated with higher adiposity into adolescence.
Collapse
Affiliation(s)
- Anna R. Smith
- From the Division of Environmental Health Sciences, School of Public Health and Center for Computational Biology, University of California, Berkeley, Berkeley, California
| | - Pi-I D. Lin
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Sheryl L. Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Robert O. Wright
- Department of Environmental Medicine and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Brent Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
- Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Alan Hubbard
- Division of Biostatistics, School of Public Health and Center for Computational Biology, University of California, Berkeley, Berkeley, California
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA
| |
Collapse
|
18
|
Michael T, Kohn E, Daniel S, Hazan A, Berkovitch M, Brik A, Hochwald O, Borenstein-Levin L, Betser M, Moskovich M, Livne A, Keidar R, Rorman E, Groisman L, Weiner Z, Rabin AM, Solt I, Levy A. Prenatal exposure to heavy metal mixtures and anthropometric birth outcomes: a cross-sectional study. Environ Health 2022; 21:139. [PMID: 36581953 PMCID: PMC9798586 DOI: 10.1186/s12940-022-00950-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Numerous studies have suggested significant associations between prenatal exposure to heavy metals and newborn anthropometric measures. However, little is known about the effect of various heavy metal mixtures at relatively low concentrations. Hence, this study aimed to investigate associations between prenatal exposures to a wide range of individual heavy metals and heavy metal mixtures with anthropometric measures of newborns. METHODS We recruited 975 mother-term infant pairs from two major hospitals in Israel. Associations between eight heavy metals (arsenic, cadmium, chromium, mercury, nickel, lead, selenium, and thallium) detected in maternal urine samples on the day of delivery with weight, length, and head circumference at birth were estimated using linear and Bayesian kernel machine regression (BKMR) models. RESULTS Most heavy metals examined in our study were observed in lower concentrations than in other studies, except for selenium. In the linear as well as the BKMR models, birth weight and length were negatively associated with levels of chromium. Birth weight was found to be negatively associated with thallium and positively associated with nickel. CONCLUSION By using a large sample size and advanced statistical models, we could examine the association between prenatal exposure to metals in relatively low concentrations and anthropometric measures of newborns. Chromium was suggested to be the most influential metal in the mixture, and its associations with birth weight and length were found negative. Head circumference was neither associated with any of the metals, yet the levels of metals detected in our sample were relatively low. The suggested associations should be further investigated and could shed light on complex biochemical processes involved in intrauterine fetal development.
Collapse
Affiliation(s)
- Tal Michael
- Department of Epidemiology, Biostatistics, and Community Health Sciences, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev Beer-Sheva, Beersheba, Israel
| | - Elkana Kohn
- Clinical Pharmacology and Toxicology Unit, Pediatric Division, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Sharon Daniel
- Department of Epidemiology, Biostatistics, and Community Health Sciences, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev Beer-Sheva, Beersheba, Israel
- Clalit Health Services, Southern District, Beer-Sheva, Israel
| | - Ariela Hazan
- Clinical Pharmacology and Toxicology Unit, Pediatric Division, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Matitiahu Berkovitch
- Clinical Pharmacology and Toxicology Unit, Pediatric Division, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Anna Brik
- Clinical Pharmacology and Toxicology Unit, Pediatric Division, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ori Hochwald
- Neonatal Intensive Care Unit, Rambam Health Care Campus, and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Liron Borenstein-Levin
- Neonatal Intensive Care Unit, Rambam Health Care Campus, and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Moshe Betser
- Delivery Rooms and Maternity Ward, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Miki Moskovich
- Delivery Rooms and Maternity Ward, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ayelet Livne
- Neonatal Intensive Care Unit, Shamir (Assaf Harofeh) Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rimona Keidar
- Neonatal Intensive Care Unit, Shamir (Assaf Harofeh) Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Efrat Rorman
- National Public Health Laboratory, Ministry of Health, Tel-Aviv, Israel
| | - Luda Groisman
- National Public Health Laboratory, Ministry of Health, Tel-Aviv, Israel
| | - Zeev Weiner
- Department of Obstetrics and Gynecology, Rambam Health Care Campus and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, POB 9602, 31096, Haifa, Israel
| | - Adi Malkoff Rabin
- Department of Obstetrics and Gynecology, Rambam Health Care Campus and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, POB 9602, 31096, Haifa, Israel
| | - Ido Solt
- Department of Obstetrics and Gynecology, Rambam Health Care Campus and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, POB 9602, 31096, Haifa, Israel.
| | - Amalia Levy
- Department of Epidemiology, Biostatistics, and Community Health Sciences, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev Beer-Sheva, Beersheba, Israel
- Environment and Health Epidemiology Research Center, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
19
|
Schrott R, Song A, Ladd-Acosta C. Epigenetics as a Biomarker for Early-Life Environmental Exposure. Curr Environ Health Rep 2022; 9:604-624. [PMID: 35907133 DOI: 10.1007/s40572-022-00373-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW There is interest in evaluating the developmental origins of health and disease (DOHaD) which emphasizes the role of prenatal and early-life environments on non-communicable health outcomes throughout the life course. The ability to rigorously assess and identify early-life risk factors for later health outcomes, including those with childhood onset, in large population samples is often limited due to measurement challenges such as impractical costs associated with prospective studies with a long follow-up duration, short half-lives for some environmental toxicants, and lack of biomarkers that capture inter-individual differences in biologic response to external environments. RECENT FINDINGS Epigenomic patterns, and DNA methylation in particular, have emerged as a potential objective biomarker to address some of these study design and exposure measurement challenges. In this article, we summarize the literature to date on epigenetic changes associated with specific prenatal and early-life exposure domains as well as exposure mixtures in human observational studies and their biomarker potential. Additionally, we highlight evidence for other types of epigenetic patterns to serve as exposure biomarkers. Evidence strongly supports epigenomic biomarkers of exposure that are detectable across the lifespan and across a range of exposure domains. Current and future areas of research in this field seek to expand these lines of evidence to other environmental exposures, to determine their specificity, and to develop predictive algorithms and methylation scores that can be used to evaluate early-life risk factors for health outcomes across the life span.
Collapse
Affiliation(s)
- Rose Schrott
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ashley Song
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
20
|
Elkin ER, Higgins C, Aung MT, Bakulski KM. Metals Exposures and DNA Methylation: Current Evidence and Future Directions. Curr Environ Health Rep 2022; 9:673-696. [PMID: 36282474 PMCID: PMC10082670 DOI: 10.1007/s40572-022-00382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF THE REVIEW Exposure to essential and non-essential metals is widespread. Metals exposure is linked to epigenetic, particularly DNA methylation, differences. The strength of evidence with respect to the metal exposure type, timing, and level, as well as the DNA methylation association magnitude, and reproducibility are not clear. Focusing on the most recent 3 years, we reviewed the human epidemiologic evidence (n = 26 studies) and the toxicologic animal model evidence (n = 18 studies) for associations between metals exposure and DNA methylation. RECENT FINDINGS In humans, the greatest number of studies focused on lead exposure, followed by studies examining cadmium and arsenic. Approximately half of studies considered metals exposure during the in utero period and measured DNA methylation with the genome-wide Illumina arrays in newborn blood or placenta. Few studies performed formal replication testing or meta-analyses. Toxicology studies of metals and epigenetics had diversity in model systems (mice, rats, drosophila, tilapia, and zebrafish were represented), high heterogeneity of tissues used for DNA methylation measure (liver, testis, ovary, heart, blood, brain, muscle, lung, kidney, whole embryo), and a variety of technologies used for DNA methylation assessment (global, gene specific, genome-wide). The most common metals tested in toxicologic studies were lead and cadmium. Together, the recent studies reviewed provide the strongest evidence for DNA methylation signatures with prenatal metals exposures. There is also mounting epidemiologic evidence supporting lead, arsenic, and cadmium exposures with DNA methylation signatures in adults. The field of metals and DNA methylation is strengthened by the inclusion of both epidemiology and toxicology approaches, and further advancements can be made by coordinating efforts or integrating analyses across studies. Future advances in understanding the molecular basis of sequence specific epigenetic responses to metals exposures, methods for handling exposure mixtures in a genome-wide analytic framework, and pipelines to facilitate collaborative testing will continue to advance the field.
Collapse
Affiliation(s)
- Elana R Elkin
- Department of Environmental Health School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Cesar Higgins
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Max T Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
21
|
Tung PW, Kennedy EM, Burt A, Hermetz K, Karagas M, Marsit CJ. Prenatal lead (Pb) exposure is associated with differential placental DNA methylation and hydroxymethylation in a human population. Epigenetics 2022; 17:2404-2420. [PMID: 36148884 PMCID: PMC9665158 DOI: 10.1080/15592294.2022.2126087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022] Open
Abstract
Prenatal lead (Pb) exposure is associated with adverse developmental outcomes and to epigenetic alterations such as DNA methylation and hydroxymethylation in animal models and in newborn blood. Given the importance of the placenta in foetal development, we sought to examine how prenatal Pb exposure was associated with differential placental DNA methylation and hydroxymethylation and to identify affected biological pathways linked to developmental outcomes. Maternal (n = 167) and infant (n = 172) toenail and placenta (n = 115) samples for prenatal Pb exposure were obtained from participants in a US birth cohort, and methylation and hydroxymethylation data were quantified using the Illumina Infinium MethylationEPIC BeadChip. An epigenome-wide association study was applied to identify differential methylation and hydroxymethylation associated with Pb exposure. Biological functions of the Pb-associated genes were determined by overrepresentation analysis through ConsensusPathDB. Prenatal Pb quantified from maternal toenail, infant toenail, and placenta was associated with 480, 27, and 2 differentially methylated sites (q < 0.05), respectively, with both increases and decreases associated with exposure. Alternatively, we identified 2, 1, and 14 differentially hydroxymethylated site(s) associated with maternal toenail, infant toenail, and placental Pb, respectively, with most showing increases in hydroxymethylation with exposure. Significantly overrepresented pathways amongst genes associated with differential methylation and hydroxymethylation (q < 0.10) included mechanisms pertaining to nervous system and organ development, calcium transport and regulation, and signalling activities. Our results suggest that both methylation and hydroxymethylation in the placenta can be variable based on Pb exposure and that the pathways impacted could affect placental function.
Collapse
Affiliation(s)
- Pei Wen Tung
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA, USA
| | - Elizabeth M. Kennedy
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA, USA
| | - Amber Burt
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA, USA
| | - Karen Hermetz
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA, USA
| | - Margaret Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, Lebanon
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
22
|
Mishra PK, Kumari R, Bhargava A, Bunkar N, Chauhan P, Tiwari R, Shandilya R, Srivastava RK, Singh RD. Prenatal exposure to environmental pro-oxidants induces mitochondria-mediated epigenetic changes: a cross-sectional pilot study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74133-74149. [PMID: 35633452 DOI: 10.1007/s11356-022-21059-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/20/2022] [Indexed: 05/24/2023]
Abstract
Mitochondria play a central role in maintaining cellular and metabolic homeostasis during vital development cycles of foetal growth. Optimal mitochondrial functions are important not only to sustain adequate energy production but also for regulated epigenetic programming. However, these organelles are subtle targets of environmental exposures, and any perturbance in the defined mitochondrial machinery during the developmental stage can lead to the re-programming of the foetal epigenetic landscape. As these modifications can be transferred to subsequent generations, we herein performed a cross-sectional study to have an in-depth understanding of this intricate phenomenon. The study was conducted with two arms: whereas the first group consisted of in utero pro-oxidant exposed individuals and the second group included controls. Our results showed higher levels of oxidative mtDNA damage and associated integrated stress response among the exposed individuals. These disturbances were found to be closely related to the observed discrepancies in mitochondrial biogenesis. The exposed group showed mtDNA hypermethylation and changes in allied mitochondrial functioning. Altered expression of mitomiRs and their respective target genes in the exposed group indicated the possibilities of a disturbed mitochondrial-nuclear cross talk. This was further confirmed by the modified activity of the mitochondrial stress regulators and pro-inflammatory mediators among the exposed group. Importantly, the disturbed DNMT functioning, hypermethylation of nuclear DNA, and higher degree of post-translational histone modifications established the existence of aberrant epigenetic modifications in the exposed individuals. Overall, our results demonstrate the first molecular insights of in utero pro-oxidant exposure associated changes in the mitochondrial-epigenetic axis. Although, our study might not cement an exposure-response relationship for any particular environmental pro-oxidant, but suffice to establish a dogma of mito-epigenetic reprogramming at intrauterine milieu with chronic illness, a hitherto unreported interaction.
Collapse
Affiliation(s)
- Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India.
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
| | - Neha Bunkar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
| | - Prachi Chauhan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
| | - Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Radha Dutt Singh
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
23
|
Xiao L, Cheng H, Cai H, Wei Y, Zan G, Feng X, Liu C, Li L, Huang L, Wang F, Chen X, Zou Y, Yang X. Associations of Heavy Metals with Activities of Daily Living Disability: An Epigenome-Wide View of DNA Methylation and Mediation Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:87009. [PMID: 36036794 PMCID: PMC9423034 DOI: 10.1289/ehp10602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/07/2022] [Accepted: 08/15/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND Exposure to heavy metals has been reported to be associated with multiple diseases. However, direct associations and potential mechanisms of heavy metals with physical disability remain unclear. OBJECTIVES We aimed to quantify associations of heavy metals with physical disability and further explore the potential mechanisms of DNA methylation on the genome scale. METHODS A cross-sectional study of 4,391 older adults was conducted and activities of daily living (ADL) disability were identified using a 14-item scale questionnaire including basic and instrumental activities to assess the presence of disability (yes or no) rated on a scale of dependence. Odds ratios (ORs) and 95% confidence intervals (CI) were estimated to quantify associations between heavy metals and ADL disability prevalence using multivariate logistic regression and Bayesian kernel machine regression (BKMR) models. Whole blood-derived DNA methylation was measured using the HumanMethylationEPIC BeadChip array. An ADL disability-related epigenome-wide DNA methylation association study (EWAS) was performed among 212 sex-matched ADL disability cases and controls, and mediation analysis was further applied to explore potential mediators of DNA methylation. RESULTS Each 1-standard deviation (SD) higher difference in log10-transformed manganese, copper, arsenic, and cadmium level was significantly associated with a 14% (95% CI: 1.05, 1.24), 16% (95% CI:1.07, 1.26), 22% (95% CI:1.13, 1.33), and 15% (95% CI:1.06, 1.26) higher odds of ADL disability, which remained significant in the multiple-metal and BKMR models. A total of 85 differential DNA methylation sites were identified to be associated with ADL disability prevalence, among which methylation level at cg220000984 and cg23012519 (annotated to IRGM and PKP3) mediated 31.0% and 31.2% of manganese-associated ADL disability prevalence, cg06723863 (annotated to ESRP2) mediated 32.4% of copper-associated ADL disability prevalence, cg24433124 (nearest to IER3) mediated 15.8% of arsenic-associated ADL disability prevalence, and cg07905190 and cg17485717 (annotated to FREM1 and TCP11L1) mediated 21.5% and 30.5% of cadmium-associated ADL disability prevalence (all p<0.05). DISCUSSION Our findings suggested that heavy metals contributed to higher prevalence of ADL disability and that locus-specific DNA methylation are partial mediators, providing potential biomarkers for further cellular mechanism studies. https://doi.org/10.1289/EHP10602.
Collapse
Affiliation(s)
- Lili Xiao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Haiqing Cai
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yue Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Gaohui Zan
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiuming Feng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Chaoqun Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Longman Li
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Lulu Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xing Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW At elevated levels, the essential element manganese (Mn) is neurotoxic and increasing evidence indicates that environmental Mn exposure early in life negatively affects neurodevelopment. In this review, we describe how underlying genetics may confer susceptibility to elevated Mn concentrations and how the epigenetic effects of Mn may explain the association between Mn exposure early in life and its toxic effects later in life. RECENT FINDINGS Common polymorphisms in the Mn transporter genes SLC30A10 and SLC39A8 seem to have a large impact on intracellular Mn levels and, in turn, neurotoxicity. Genetic variation in iron regulatory genes may to lesser extent also influence Mn levels and toxicity. Recent studies on Mn and epigenetic mechanisms indicate that Mn-related changes in DNA methylation occur early in life. One human and two animal studies found persistent changes from in utero exposure to Mn but whether these changes have functional effects remains unknown. Genetics seems to play a major role in susceptibility to Mn toxicity and should therefore be considered in risk assessment. Mn appears to interfere with epigenetic processes, potentially leading to persistent changes in developmental programming, which warrants further study.
Collapse
|