1
|
Zuo D, Zuo B, Wang L, Hu D, Yang Y, Chen Y, Huang B. Impact of a 7-day short peptide diet on gut microbiota and metabolomics in septic mice. Front Nutr 2025; 12:1522429. [PMID: 40070479 PMCID: PMC11893400 DOI: 10.3389/fnut.2025.1522429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Objective Our study aim is to explore the mechanisms of short peptide passages on intestinal dysfunction in septic mice utilizing a metabolomics approach, which provides a new scientific basis for the clinical study of sepsis. Methods Mices were allocated at random into four groups: control (Con), cecal ligation and puncture followed by one, three or 7 day short-peptide-based enteral nutrition group (CLP + SPEN1), (CLP + SPEN3), and (CLP + SPEN7) groups. A liquid chromatography-mass spectrometry-based metabolomics method was used to analyze changes in serum metabolites in septic mice. Results Short peptides showed effectiveness in reducing symptoms, mucosal inflammation, and intestinal function damage scores in septic mice. The 16sRNA analysis showcased significant variances in the distribution of bacterial communities between the CLP + SPEN1, CLP + SPEN3, and CLP + SPEN7 groups. At the phylum level, statistically significant variances in the relative abundance of Proteobacteria, Firmicutes, and Bacteroidetes were recognized. The metabolomics analysis results showed significant separation of metabolites between the CLP + SPEN1 and CLP + SPEN3 groups, as well as significant differences in metabolite profiles between the CLP + SPEN3 and CLP + SPEN7 groups. Utilizing a differential Venn diagram, four metabolites were commonly different; 10-heptadecanoic and dodecanoic acids had statistical significance. The abundance of both dodecanoic and lactic acid bacteria was negatively associated at the genus level. Conclusion Short peptides were found to promote the growth of beneficial bacteria, Lactobacillus and uncultured_bacterium_f_Muribaculaceae, while reducing intestinal metabolites such as Dodecanoic acid and 10-Heptadecenoic acid. Moreover the Lactobacillus may play a significant therapeutic role in the treatment of sepsis. However, due to the limited number of experimental samples, the exact mechanism of action of short peptides awaits further confirmation.
Collapse
Affiliation(s)
- Dan Zuo
- Clinical Nutrition Department, The Affiliated Dazu’s Hospital of Chongqing Medical University, Chongqing, China
| | - Binyu Zuo
- School of Stomatology, Xinjiang Medical University, Xinjiang, China
| | - Liuyang Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dabi Hu
- Department of Critical Care Medicine, The Affiliated Dazu’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Yang
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Yong Chen
- Department of Critical Care Medicine, The Affiliated Dazu’s Hospital of Chongqing Medical University, Chongqing, China
| | - Biao Huang
- Department of Critical Care Medicine, The Affiliated Dazu’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Hui Y, Liu Y, Yang G, Weng Y, Hou F, Wang X, Fang S, Gao H, Zhao CX. Critical Role of Nanomaterial Mechanical Properties in Drug Delivery, Nanovaccines and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413779. [PMID: 39737655 DOI: 10.1002/adma.202413779] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/17/2024] [Indexed: 01/01/2025]
Abstract
Nanomaterials have become essential in the daily lives, finding applications in food, skincare, drugs, and vaccines. Traditionally, the surface chemistry of nanoparticles (NPs) is considered the key factor in determining their interactions with biological systems. However, recent studies have shown that the mechanical properties of nanomaterials are equally important in regulating nano-bio interactions, though they have often been overlooked. Tuning the mechanical properties of nanomaterials and designing them for biomedical applications is thus crucial. This review begins by discussing the various mechanical cues in biological processes, including how viruses and cells adjust their mechanical properties throughout their life cycles. Basic concepts and terminology related to NP mechanical properties are introduced. Next, five different groups of nanomaterials with tunable mechanical properties are explored. The review then examines the impact of NP mechanical properties on their interactions in vitro and in vivo, covering tumor-targeted drug delivery, nanovaccines, and emerging applications such as oral and intranasal drug delivery. Current challenges in the field and perspectives on future developments are also provided.
Collapse
Affiliation(s)
- Yue Hui
- School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia
| | - Yun Liu
- School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia
| | - Guangze Yang
- School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia
| | - Yilun Weng
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Fei Hou
- School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia
| | - Xing Wang
- School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Huajian Gao
- Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Chun-Xia Zhao
- School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia
| |
Collapse
|
3
|
Ortiz Moyano R, Raya Tonetti F, Elean M, Imamura Y, Fukuyama K, Suda Y, Melnikov V, Suvorov A, Vizoso-Pinto MG, Kitazawa H, Villena J. Bacterium-like Particles from Corynebacterium pseudodiphtheriticum as Mucosal Adjuvant for the Development of Pneumococcal Vaccines. Vaccines (Basel) 2024; 12:412. [PMID: 38675794 PMCID: PMC11053776 DOI: 10.3390/vaccines12040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Previously, it was shown that intranasally (i.n.) administered Corynebacterium pseudodiphtheriticum 090104 (Cp) or CP-derived bacterium-like particles (BLPs) improve the immunogenicity of the pneumococcal conjugate vaccine (PCV). This work aimed to deepen the characterization of the adjuvant properties of Cp and CP-derived BLPs for their use in the development of pneumococcal vaccines. The ability of Cp and CP-derived BLPs to improve both the humoral and cellular specific immune responses induced by i.n. administered polysaccharide-based commercial pneumococcal vaccine (Pneumovax 23®) and the chimeric recombinant PSPF (PsaA-Spr1875-PspA-FliC) protein was evaluated, as well as the protection against Streptococcus pneumoniae infection in infant mice. Additionally, whether the immunization protocols, including Cp and CP-derived BLPs, together with the pneumococcal vaccines can enhance the resistance to secondary pneumococcal pneumonia induced after inflammatory lung damage mediated by the activation of Toll-like receptor 3 (TLR3) was assessed. The results showed that both Cp and CP-derived BLPs increased the immunogenicity and protection induced by two pneumococcal vaccines administered through the nasal route. Of note, the nasal priming with the PSPF T-dependent antigen co-administered with Cp or CP-derived BLPs efficiently stimulated humoral and cellular immunity and increased the resistance to primary and secondary pneumococcal infections. The CP-derived BLPs presented a stronger effect than live bacteria. Given safety concerns associated with live bacterium administration, especially in high-risk populations, such as infants, the elderly, and immunocompromised patients, BLPs emerge as an attractive mucosal adjuvant to improve the host response to pneumococcal infections and to enhance the vaccines already in the market or in development.
Collapse
Affiliation(s)
- Ramiro Ortiz Moyano
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (F.R.T.); (M.E.)
| | - Fernanda Raya Tonetti
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (F.R.T.); (M.E.)
| | - Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (F.R.T.); (M.E.)
| | - Yoshiya Imamura
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (Y.I.); (K.F.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Kohtaro Fukuyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (Y.I.); (K.F.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai 980-8572, Japan;
| | - Vyacheslav Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | - Alexander Suvorov
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197022 Saint Petersburg, Russia;
| | - María Guadalupe Vizoso-Pinto
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, San Miguel de Tucumán 4000, Argentina;
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (Y.I.); (K.F.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (F.R.T.); (M.E.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (Y.I.); (K.F.)
| |
Collapse
|
4
|
Cai Y, Liu P, Zhou X, Yuan J, Chen Q. Probiotics therapy show significant improvement in obesity and neurobehavioral disorders symptoms. Front Cell Infect Microbiol 2023; 13:1178399. [PMID: 37249983 PMCID: PMC10213414 DOI: 10.3389/fcimb.2023.1178399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Obesity is a complex metabolic disease, with cognitive impairment being an essential complication. Gut microbiota differs markedly between individuals with and without obesity. The microbial-gut-brain axis is an important pathway through which metabolic factors, such as obesity, affect the brain. Probiotics have been shown to alleviate symptoms associated with obesity and neurobehavioral disorders. In this review, we evaluated previously published studies on the effectiveness of probiotic interventions in reducing cognitive impairment, depression, and anxiety associated with obesity or a high-fat diet. Most of the probiotics studied have beneficial health effects on obesity-induced cognitive impairment and anxiety. They positively affect immune regulation, the hypothalamic-pituitary-adrenal axis, hippocampal function, intestinal mucosa protection, and glucolipid metabolism regulation. Probiotics can influence changes in the composition of the gut microbiota and the ratio between various flora. However, probiotics should be used with caution, particularly in healthy individuals. Future research should further explore the mechanisms underlying the gut-brain axis, obesity, and cognitive function while overcoming the significant variation in study design and high risk of bias in the current evidence.
Collapse
|
5
|
Bubnov R, Spivak M. Pathophysiology-Based Individualized Use of Probiotics and Prebiotics for Metabolic Syndrome: Implementing Predictive, Preventive, and Personalized Medical Approach. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2023:133-196. [DOI: 10.1007/978-3-031-19564-8_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Jingjing E, Jingya Z, Rongze M, Zichao C, Caiqing Y, Ruixue W, Qiaoling Z, Ying Y, Jing L, Junguo W. Study of the internal mechanism of L-glutamate for improving the survival rate of Lactiplantibacillus plantarum LIP-1 after freeze-drying. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Montazeri-Najafabady N, Kazemi K, Gholami A. Recent advances in antiviral effects of probiotics: potential mechanism study in prevention and treatment of SARS-CoV-2. Biologia (Bratisl) 2022; 77:3211-3228. [PMID: 35789756 PMCID: PMC9244507 DOI: 10.1007/s11756-022-01147-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
SARS-CoV-2 is responsible for coronavirus disease 2019 (COVID-19), progressively extended worldwide countries on an epidemic scale. Along with all the drug treatments suggested to date, currently, there are no approved management protocols and treatment regimens for SARS-CoV-2. The unavailability of optimal medication and effective vaccines against SARS-CoV-2 indicates the requirement for alternative therapies. Probiotics are living organisms that deliberate beneficial effects on the host when used sufficiently and in adequate amounts, and fermented food is their rich source. Probiotics affect viruses by antiviral mechanisms and reduce diarrhea and respiratory tract infection. At this point, we comprehensively evaluated the antiviral effects of probiotics and their mechanism with a particular focus on SARS-CoV-2. In this review, we suggested the conceptual and potential mechanisms of probiotics by which they could exhibit antiviral properties against SARS-CoV-2, according to the previous evidence concerning the mechanism of antiviral effects of probiotics. This study reviewed recent studies that speculate about the role of probiotics in the prevention of the SARS-CoV-2-induced cytokine storm through the mechanisms such as induction of anti-inflammatory cytokines (IL-10), downregulation of pro-inflammatory cytokines (TNF-α, IL-2, IL-6), inhibition of JAK signaling pathway, and act as HDAC inhibitor. Also, the recent clinical trials and their outcome have been reviewed.
Collapse
Affiliation(s)
- Nima Montazeri-Najafabady
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kimia Kazemi
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Mirza Alizadeh A, Hosseini H, Mollakhalili Meybodi N, Hashempour-Baltork F, Alizadeh-Sani M, Tajdar-Oranj B, Pirhadi M, Mousavi Khaneghah A. Mitigation of potentially toxic elements in food products by probiotic bacteria: A comprehensive review. Food Res Int 2022; 152:110324. [PMID: 35181105 DOI: 10.1016/j.foodres.2021.110324] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022]
Abstract
Potentially toxic elements (PTEs) as non-degradable elements (especially carcinogenic types for humans such as lead (Pb), cadmium (Cd), mercury (Hg), and arsenic (As)) are widely distributed in the environment. They are one of the most concerned pollutants that can be absorbed and accumulated in the human body, primarily via contaminated water and foods. Acute or chronic poisoning of humans to PTEs can pose some serious risks for human health even at low concentrations. In this context, some methods are introduced to eliminate or reduce their concentration. While the biological treatment by bacterial strains, particularly probiotic bacteria, is considered as an effective method for reducing or eliminating of them. The consumption of probiotics as nonpathogenic microorganisms at regular and adequate dose offer some beneficial health impacts, it can also be applied to remove PTEs in both alive and non-alive states. This review aimed to provide an overview regarding the efficacy of different types of probiotic bacteria for PTEs removal from various environments such as food, water, in vitro, and in vivo conditions.
Collapse
Affiliation(s)
- Adel Mirza Alizadeh
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Neda Mollakhalili Meybodi
- Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fataneh Hashempour-Baltork
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Alizadeh-Sani
- Division of Food Safety and Hygiene, Environmental Health Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Tajdar-Oranj
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Pirhadi
- Division of Food Safety and Hygiene, Environmental Health Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil
| |
Collapse
|
9
|
Huang X, Chen L, Li Z, Zheng B, Liu N, Fang Q, Jiang J, Rao T, Ouyang D. The efficacy and toxicity of antineoplastic antimetabolites: Role of gut microbiota. Toxicology 2021; 460:152858. [PMID: 34273448 DOI: 10.1016/j.tox.2021.152858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
The incidence and mortality of cancer are rapidly growing all over the world. Nowadays, antineoplastic antimetabolites still play a key role in the chemotherapy of cancer. However, the interindividual variations in the efficacy and toxicity of antineoplastic antimetabolites are nonnegligible challenges to their clinical applications. Although many studies have focused on genetic variation, the reasons for these interindividual variations have still not been fully understood. Gut microbiota is reported to be associated with the efficacy and toxicity of antineoplastic antimetabolites. In this review, we summarize the interaction of antineoplastic antimetabolites on gut microbiota and the influences of shifted gut microbiota profiles on the efficacy and toxicity of antineoplastic antimetabolites. The factors affecting the efficacy and toxicity of antineoplastic antimetabolites via gut microbiota are also discussed. In addition, we present our viewpoints that regulating the gut microbiota may increase the efficacy and decrease the toxicity of antineoplastic antimetabolites. This will help us better understand the new mechanism via gut microbiota and promote individualized use of antineoplastic antimetabolites.
Collapse
Affiliation(s)
- Xinyi Huang
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
| | - Lulu Chen
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, 411000, PR China
| | - Zhenyu Li
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China; Department of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China
| | - Binjie Zheng
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
| | - Na Liu
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
| | - Qing Fang
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
| | - Jinsheng Jiang
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China; Sanjin Group Hunan Sanjin Pharmaceutical Co., Ltd., 320 Deshan Road, Hunan, 415000, PR China
| | - Tai Rao
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China.
| | - Dongsheng Ouyang
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China.
| |
Collapse
|
10
|
Song X, Wang W, Ding S, Liu X, Wang Y, Ma H. Puerarin ameliorates depression-like behaviors of with chronic unpredictable mild stress mice by remodeling their gut microbiota. J Affect Disord 2021; 290:353-363. [PMID: 34049088 DOI: 10.1016/j.jad.2021.04.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Puerarin is an isoflavone derivative isolated from the traditional Chinese medicine Pueraria Lobelia, which has proven to relieve depression-like behavior. However, its underlying antidepressant mechanisms have been poorly characterized. Herein, we explored whether Puerarin's antidepressant effect is associated with changes in the gut microbiota (GM). METHODS The model of depression in mice featuring chronic unpredictable mild stress (CUMS) was eastablished, and its antidepressant effect was estimated by sugar water preference and forced swimming test. Genomic DNA extracted from fecal samples was employed to sequence the 16S rRNA gene for gut microbiota identification. RESULTS Puerarin (100 mg/kg) treatment was found to alleviate the CUMS-induced depression-like behaviors. Furthermore, chronic stress led to pathological microbial flora, which was principally marked by the increased abundance of pathogenic bacteria (Proteobacteria, Flexispira, Desulfovibrio) and the decreased abundance of beneficial bacteria (Firmicutes, Bacillales, Lactobacillus). Intriguingly, puerarin treatment reversed these changes. LIMITATIONS The specific role and anti-depression mechanism of characteristic gut microflora were not confirmed. CONCLUSION Puerarin can remedy stress-induced disruptions of normal gut microflora. It is suggested that the antidepressant mechanism of puerarin may closely interact with restoring beneficial microflora.
Collapse
Affiliation(s)
- Xujiao Song
- School of Chemical and Biological Engineering, Yichun University, Yichun 336000, China
| | - Weihao Wang
- School of Chemical and Biological Engineering, Yichun University, Yichun 336000, China
| | - Shanshan Ding
- School of Chemical and Biological Engineering, Yichun University, Yichun 336000, China
| | - Xingyue Liu
- School of Chemical and Biological Engineering, Yichun University, Yichun 336000, China
| | - Yan Wang
- School of Chemical and Biological Engineering, Yichun University, Yichun 336000, China
| | - Hao Ma
- School of Aesthetic Medicine, Yichun University, Yichun 336000, China.
| |
Collapse
|
11
|
Oevreeide IH, Szydlak R, Luty M, Ahmed H, Prot V, Skallerud BH, Zemła J, Lekka M, Stokke BT. On the Determination of Mechanical Properties of Aqueous Microgels-Towards High-Throughput Characterization. Gels 2021; 7:64. [PMID: 34072792 PMCID: PMC8261632 DOI: 10.3390/gels7020064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Aqueous microgels are distinct entities of soft matter with mechanical signatures that can be different from their macroscopic counterparts due to confinement effects in the preparation, inherently made to consist of more than one domain (Janus particles) or further processing by coating and change in the extent of crosslinking of the core. Motivated by the importance of the mechanical properties of such microgels from a fundamental point, but also related to numerous applications, we provide a perspective on the experimental strategies currently available and emerging tools being explored. Albeit all techniques in principle exploit enforcing stress and observing strain, the realization differs from directly, as, e.g., by atomic force microscope, to less evident in a fluid field combined with imaging by a high-speed camera in high-throughput strategies. Moreover, the accompanying analysis strategies also reflect such differences, and the level of detail that would be preferred for a comprehensive understanding of the microgel mechanical properties are not always implemented. Overall, the perspective is that current technologies have the capacity to provide detailed, nanoscopic mechanical characterization of microgels over an extended size range, to the high-throughput approaches providing distributions over the mechanical signatures, a feature not readily accessible by atomic force microscopy and micropipette aspiration.
Collapse
Affiliation(s)
- Ingrid Haga Oevreeide
- Biophysics and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (I.H.O.); (H.A.)
| | - Renata Szydlak
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (R.S.); (M.L.); (J.Z.)
| | - Marcin Luty
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (R.S.); (M.L.); (J.Z.)
| | - Husnain Ahmed
- Biophysics and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (I.H.O.); (H.A.)
| | - Victorien Prot
- Biomechanics, Department of Structural Engineering, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (V.P.); (B.H.S.)
| | - Bjørn Helge Skallerud
- Biomechanics, Department of Structural Engineering, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (V.P.); (B.H.S.)
| | - Joanna Zemła
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (R.S.); (M.L.); (J.Z.)
| | - Małgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (R.S.); (M.L.); (J.Z.)
| | - Bjørn Torger Stokke
- Biophysics and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (I.H.O.); (H.A.)
| |
Collapse
|
12
|
Puebla-Barragan S, Reid G. Probiotics in Cosmetic and Personal Care Products: Trends and Challenges. Molecules 2021; 26:1249. [PMID: 33652548 PMCID: PMC7956298 DOI: 10.3390/molecules26051249] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Probiotics, defined as "live microorganisms that, when administered in adequate amounts, confer a health benefit on the host," are becoming increasingly popular and marketable. However, too many of the products currently labelled as probiotics fail to comply with the defining characteristics. In recent years, the cosmetic industry has increased the number of products classified as probiotics. While there are several potential applications for probiotics in personal care products, specifically for oral, skin, and intimate care, proper regulation of the labelling and marketing standards is still required to guarantee that consumers are indeed purchasing a probiotic product. This review explores the current market, regulatory aspects, and potential applications of probiotics in the personal care industry.
Collapse
Affiliation(s)
- Scarlett Puebla-Barragan
- Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, ON N6C 2R5, Canada
- Departments of Microbiology & Immunology and Surgery, University of Western Ontario, London, ON N6A 3K7, Canada;
| | - Gregor Reid
- Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, ON N6C 2R5, Canada
- Departments of Microbiology & Immunology and Surgery, University of Western Ontario, London, ON N6A 3K7, Canada;
| |
Collapse
|
13
|
Ekine-Afolabi BA, Njan AA, Rotimi SO, R. I. A, Elbehi AM, Cash E, Adeyeye A. The Impact of Diet on the Involvement of Non-Coding RNAs, Extracellular Vesicles, and Gut Microbiome-Virome in Colorectal Cancer Initiation and Progression. Front Oncol 2020; 10:583372. [PMID: 33381452 PMCID: PMC7769005 DOI: 10.3389/fonc.2020.583372] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/22/2020] [Indexed: 02/05/2023] Open
Abstract
Cancer is the major cause of morbidity and mortality in the world today. The third most common cancer and which is most diet related is colorectal cancer (CRC). Although there is complexity and limited understanding in the link between diet and CRC, the advancement in research methods have demonstrated the involvement of non-coding RNAs (ncRNAs) as key regulators of gene expression. MicroRNAs (miRNAs) which are a class of ncRNAs are key players in cancer related pathways in the context of dietary modulation. The involvement of ncRNA in cancer progression has recently been clarified throughout the last decade. ncRNAs are involved in biological processes relating to tumor onset and progression. The advances in research have given insights into cell to cell communication, by highlighting the pivotal involvement of extracellular vesicle (EV) associated-ncRNAs in tumorigenesis. The abundance and stability of EV associated ncRNAs act as a new diagnostic and therapeutic target for cancer. The understanding of the deranging of these molecules in cancer can give access to modulating the expression of the ncRNAs, thereby influencing the cancer phenotype. Food derived exosomes/vesicles (FDE) are gaining interest in the implication of exosomes in cell-cell communication with little or no understanding to date on the role FDE plays. There are resident microbiota in the colon; to which the imbalance in the normal intestinal occurrence leads to chronic inflammation and the production of carcinogenic metabolites that lead to neoplasm. Limited studies have shown the implication of various types of microbiome in CRC incidence, without particular emphasis on fungi and protozoa. This review discusses important dietary factors in relation to the expression of EV-associated ncRNAs in CRC, the impact of diet on the colon ecosystem with particular emphasis on molecular mechanisms of interactions in the ecosystem, the influence of homeostasis regulators such as glutathione, and its conjugating enzyme-glutathione S-transferase (GST) polymorphism on intestinal ecosystem, oxidative stress response, and its relationship to DNA adduct fighting enzyme-0-6-methylguanine-DNA methyltransferase. The understanding of the molecular mechanisms and interaction in the intestinal ecosystem will inform on the diagnostic, preventive and prognosis as well as treatment of CRC.
Collapse
Affiliation(s)
- Bene A. Ekine-Afolabi
- ZEAB Therapeutic, London, United Kingdom
- Cancer Biology and Therapeutics, High Impact Cancer Research Postgraduate Certificate Program, Harvard Medical School, Boston, MA, United States
| | - Anoka A. Njan
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | | | - Anu R. I.
- Cancer Biology and Therapeutics, High Impact Cancer Research Postgraduate Certificate Program, Harvard Medical School, Boston, MA, United States
- Department of Clinical Biochemistry, MVR Cancer Centre and Research Institute, Calicut, India
| | - Attia M. Elbehi
- Cancer Biology and Therapeutics, High Impact Cancer Research Postgraduate Certificate Program, Harvard Medical School, Boston, MA, United States
- School of Care and Health Sciences, University of South Wales, Cardif, United Kingdom
| | - Elizabeth Cash
- Cancer Biology and Therapeutics, High Impact Cancer Research Postgraduate Certificate Program, Harvard Medical School, Boston, MA, United States
- Department of Otolaryngology-Head and Neck Surgery and Communicative Disorders, University of Louisville School of Medicine, Louisville, KY, United States
| | - Ademola Adeyeye
- Department of Surgery, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| |
Collapse
|
14
|
Mendes KL, de Farias Lelis D, Athayde Souza LA, Brito RVJ, Andrade MC, Nobre SAM, Guimarães ALS, Batista de Paula AM, de Lima JP, Hilzendeger AM, Santos SHS. Lactococcus lactis and Resveratrol Decrease Body Weight and Increase Benefic Gastrointestinal Microbiota in Mice. Protein Pept Lett 2020; 28:761-768. [PMID: 33302826 DOI: 10.2174/0929866527999201209214850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/22/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The microbiome is now known for its important role in whole-body homeostasis. A dysbiosis of the normal microbiota is correlated with metabolic disorders. In this sense, the search for compounds able to modulate the microbiome is needed. Resveratrol, a natural compound found in grapes seems to be a promising candidate. OBJECTIVE In this study, our motivation was to evaluate the effects of the association between Resveratrol and Lactococcus lactis, a probiotic, on the composition of the gastrointestinal microbiota and body weight of mice. METHODS Twenty female mice were divided into 4 groups: (1) standard diet, (2) standard diet plus Lactococcus lactis, (3) standard diet plus resveratrol, and (4) standard diet plus Lactococcus lactis and resveratrol. At the end of the treatment period, samples of blood, mucus, stomach, and small and large intestines were collected for analysis. Total levels of Immunoglobulin A and Immunoglobulin E, Lac+ and Lac- bacteria and Lactobacillus were measured. RESULTS The main results indicate that the association between resveratrol and probiotics was able to decrease mice body weight, as compared to the other groups, in addition to decrease the number of Lac- bacteria and increasing the number of Lac+ bacteria. The levels of secretory IgA were also decreased, compared to the animals treated with only probiotics or resveratrol. CONCLUSION We observed potential synergism between Resveratrol and Lactococcus lactis mainly in modulating the stomach and intestinal microbiota.
Collapse
Affiliation(s)
- Keila Lopes Mendes
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Deborah de Farias Lelis
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Letícia Antunes Athayde Souza
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Ronize Viviane Jorge Brito
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Mariléia Chaves Andrade
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Sérgio Avelino Mota Nobre
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - André Luiz Sena Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Alfredo Maurício Batista de Paula
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Juliana Pinto de Lima
- Institute of Agrarian Sciences, Universidade Federal de Minas Gerais, Montes Claros, Minas Gerais, Brazil
| | - Aline M Hilzendeger
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, United States
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| |
Collapse
|
15
|
Alvarenga L, Cardozo LFMF, Lindholm B, Stenvinkel P, Mafra D. Intestinal alkaline phosphatase modulation by food components: predictive, preventive, and personalized strategies for novel treatment options in chronic kidney disease. EPMA J 2020; 11:565-579. [PMID: 33240450 PMCID: PMC7680467 DOI: 10.1007/s13167-020-00228-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022]
Abstract
Alkaline phosphatase (AP) is a ubiquitous membrane-bound glycoprotein that catalyzes phosphate monoesters' hydrolysis from organic compounds, an essential process in cell signaling. Four AP isozymes have been described in humans, placental AP, germ cell AP, tissue nonspecific AP, and intestinal AP (IAP). IAP plays a crucial role in gut microbial homeostasis, nutrient uptake, and local and systemic inflammation, and its dysfunction is associated with persistent inflammatory disorders. AP is a strong predictor of mortality in the general population and patients with cardiovascular and chronic kidney disease (CKD). However, little is known about IAP modulation and its possible consequences in CKD, a disease characterized by gut microbiota imbalance and persistent low-grade inflammation. Mitigating inflammation and dysbiosis can prevent cardiovascular complications in patients with CKD, and monitoring factors such as IAP can be useful for predicting those complications. Here, we review IAP's role and the results of nutritional interventions targeting IAP in experimental models to prevent alterations in the gut microbiota, which could be a possible target of predictive, preventive, personalized medicine (PPPM) to avoid CKD complications. Microbiota and some nutrients may activate IAP, which seems to have a beneficial impact on health; however, data on CKD remains scarce.
Collapse
Affiliation(s)
- L. Alvarenga
- Post Graduation Program in Medical Sciences, (UFF) Federal Fluminense University Niterói-Rio de Janeiro (RJ), Niterói, Brazil
| | - L. F. M. F. Cardozo
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói, Rio de Janeiro (RJ) Brazil
| | - B. Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - P. Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - D. Mafra
- Post Graduation Program in Medical Sciences, (UFF) Federal Fluminense University Niterói-Rio de Janeiro (RJ), Niterói, Brazil
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói, Rio de Janeiro (RJ) Brazil
| |
Collapse
|
16
|
Li X, Liu J, Zhang W, Wu Y, Li J, Foda MF, Han H. Biogenic Hybrid Nanosheets Activated Photothermal Therapy and Promoted Anti-PD-L1 Efficacy for Synergetic Antitumor Strategy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29122-29132. [PMID: 32501679 DOI: 10.1021/acsami.0c09111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Bacteria show promise for use in the field of combination cancer therapy because of their abilities to accumulate in tumors and their roles as natural immunologic adjuvants. However, the huge size of bacteria decreases their chances of being delivered into tumor cells. Moreover, their toxins may cause systemic toxicity in living organisms. Here, we proposed a method to in situ synthesize Au nanoparticles on the surface of Escherichia coli (E. coli), followed by sonication to acquire Au nanoparticles loaded membrane nanosheets (AuMNs) for use in photothermal and combination cancer therapy. Compared to E. coli-loaded Au nanoparticles (E. coli@Au), the small size of membrane nanosheets can be successfully delivered into tumor cells. In addition, the enrichment of AuMNs in tumor site is significantly enhanced via EPR effect, facilitating to activate photothermal conversion under 808 nm laser. Besides, the function of bacteria as natural immunologic adjuvants to promote anti-PD-L1 efficacy is still retained in AuMNs, while the inflammation and damage to viscera caused by AuMNs were milder than E. coli@Au. This study aims to decrease the systemic toxicity of bacteria and promote anti-PD-L1 efficacy in bacteria-mediated combination therapy, so as to open up a new avenue for drug delivery via natural processes.
Collapse
Affiliation(s)
- Xuyu Li
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiawei Liu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Weiyun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Wu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinjie Li
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mohamed F Foda
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor Toukh 13736, Egypt
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
17
|
Manirarora JN, Kosiewicz MM, Alard P. Feeding lactobacilli impacts lupus progression in (NZBxNZW)F1 lupus-prone mice by enhancing immunoregulation. Autoimmunity 2020; 53:323-332. [PMID: 32552071 DOI: 10.1080/08916934.2020.1777282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the relationship between autoimmunity and microorganisms is complex, there is evidence that microorganisms can prevent the development of various autoimmune diseases. Lactobacilli are beneficial gut bacteria that play an important role in immune system development. The goals of this study were to assess the ability of three different strains of lactobacilli (L. casei B255, L. reuteri DSM 17509 and L. plantarum LP299v) to control lupus development/progression in (NZBxNZW)F1 (BWF1) lupus-prone mice before and after disease onset, and identify the mechanisms mediating protection. BWF1 mice fed with individual L. casei or L. reuteri before disease onset exhibited delayed lupus onset and increased survival, while feeding L. plantarum had little impact. In vitro treatment of BWF1 dendritic cells with individual lactobacilli strains upregulated IL-10 production to various extents, with L. casei being the most effective. The protection mediated by L. casei was associated with upregulation of B7-1 and B7-2 by antigen presenting cells, two costimulatory molecules important for regulatory T cell (Treg) induction. Moreover, feeding L. casei lead to increased percentages of CD4+Foxp3+ Tregs and IL10-producing T cells in the lymphoid organs of treated mice. More importantly, mice fed L. casei after disease onset remained stable for several months, i.e. exhibited delayed anti-nucleic acid production and kidney disease progression, and increased survival. Therefore, feeding lactobacilli appears to delay lupus progression possibly via mechanisms involving Treg induction and IL-10 production. Altogether, these data support the notion that ingestion of lactobacilli, with immunoregulatory properties, may be a viable strategy for controlling disease development and progression in patients with lupus, i.e. extending remission length and reducing flare frequency.
Collapse
Affiliation(s)
- Jean N Manirarora
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Michele M Kosiewicz
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Pascale Alard
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
18
|
Variations in the Morphology, Mechanics and Adhesion of Persister and Resister E. coli Cells in Response to Ampicillin: AFM Study. Antibiotics (Basel) 2020; 9:antibiotics9050235. [PMID: 32392749 PMCID: PMC7277365 DOI: 10.3390/antibiotics9050235] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Persister bacterial cells are great at surviving antibiotics. The phenotypic means by which they do that are underexplored. As such, atomic force microscope (AFM) was used to quantify the contributions of the surface properties of the outer membrane of multidrug resistance (MDR)-Escherichia coli Strains (A5 and A9) in the presence of ampicillin at minimum inhibitory concentration (MIC) (resistant cells) and at 20× MIC (persistent cells). The properties quantified were morphology, root mean square (RMS) roughness, adhesion, elasticity, and bacterial surface biopolymers' thickness and grafting density. Compared to untreated cells, persister cells of E. coli A5 increased their RMS, adhesion, apparent grafting density, and elasticity by 1.2, 3.4, 2.0, and 3.3 folds, respectively, and decreased their surface area and brush thickness by 1.3 and 1.2 folds, respectively. Similarly, compared to untreated cells, persister cells of E. coli A9 increased their RMS, adhesion and elasticity by 1.6, 4.4, and 4.5 folds, respectively; decreased their surface area and brush thickness by 1.4 and 1.6 folds, respectively; and did not change their grafting densities. Our results indicate that resistant and persistent E. coli A5 cells battled ampicillin by decreasing their size and going through dormancy. The resistant E. coli A9 cells resisted ampicillin through elongation, increased surface area, and adhesion. In contrast, the persistent E. coli A9 cells resisted ampicillin through increased roughness, increased surface biopolymers' grafting densities, increased cellular elasticities, and decreased surface areas. Mechanistic insights into how the resistant and persistent E. coli cells respond to ampicillin's treatment are instrumental to guide design efforts exploring the development of new antibiotics or renovating the existing antibiotics that may kill persistent bacteria by combining more than one mechanism of action.
Collapse
|
19
|
Fan H, Du J, Liu X, Zheng WW, Zhuang ZH, Wang CD, Gao R. Effects of pentasa-combined probiotics on the microflora structure and prognosis of patients with inflammatory bowel disease. TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 30:680-685. [PMID: 31418411 DOI: 10.5152/tjg.2019.18426] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND/AIMS The aim of the present study was to investigate the effects of the combination treatment of pentasa and probiotics on the microflora composition and prognosis in patients with inflammatory bowel disease (IBD). MATERIALS AND METHODS A total of 40 patients with IBD (19 control group and 21 observation group) were randomized. Patients in the control group were given pentasa, and patients in the observation group were given probiotics along with pentasa. The microflora composition, biochemical indices, inflammatory markers, and activity scores of the two groups were analyzed. RESULTS After treatment, the number of enterobacteria, enterococci, saccharomyces, and bacteroides; the levels of fecal lactoferrin, 1-antitrypsin, β2-microglobulin, high-sensitivity C-reactive protein, and interleukin (IL)-6; activity scores; and recurrence rate in the observation group were significantly lower than those in the control group. Bifidobacterium and lactobacillus counts and IL-4 levels were significantly higher in the observation group than in the control group. CONCLUSION The combination of probiotics and pentasa can improve microflora composition in patients with IBD and reduce the level of inflammatory cytokines; therefore, it is worthy of further clinical validation.
Collapse
Affiliation(s)
- Hua Fan
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Juan Du
- Second Department of Gastroenterology, General Hospital of Yankuang Group, Zoucheng, Shandong Province, China
| | - Xia Liu
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Wei-Wei Zheng
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Ze-Hao Zhuang
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Cheng-Dang Wang
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Rui Gao
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
20
|
Huang X, Fang Q, Rao T, Zhou L, Zeng X, Tan Z, Chen L, Ouyang D. Leucovorin ameliorated methotrexate induced intestinal toxicity via modulation of the gut microbiota. Toxicol Appl Pharmacol 2020; 391:114900. [PMID: 32061593 DOI: 10.1016/j.taap.2020.114900] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/17/2022]
Abstract
Methotrexate (MTX) is a widely used therapeutic agent for the treatment of cancer and autoimmune diseases. However, its efficacy is often limited by adverse effects, such as intestinal toxicity. Although treatment with leucovorin (LV) is the most common method to reduce the toxic effects of MTX, it may also compromise the therapeutic effects of MTX. The gut microbiome has been reported to be associated with the intestinal toxicity of MTX. In this study, the intestinal damage of MTX was ameliorated by treatment with LV. Moreover, the population, diversity, and principal components of the gut microbiota in MTX-treated mice were restored by treatment with LV. The only element of the gut microbiota that was significantly changed after treatment with LV was Bifidobacterium, and supplementation with Bifidobacterium longum ameliorated MTX-induced intestinal damage. In conclusion, our results suggest that the balance and the composition of gut microbiota have an important role in the LV-mediated protection against MTX-induced intestinal toxicity. This work provides foundation of data in support of a new potential mechanism for the prevention of MTX-induced intestinal toxicity.
Collapse
Affiliation(s)
- Xinyi Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha 411000, PR China
| | - Qing Fang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha 411000, PR China
| | - Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha 411000, PR China
| | - Luping Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha 411000, PR China
| | - Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha 411000, PR China
| | - Zhirong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha 411000, PR China
| | - Lulu Chen
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha 411000, PR China
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha 411000, PR China.
| |
Collapse
|
21
|
Effect of probiotics on obesity-related markers per enterotype: a double-blind, placebo-controlled, randomized clinical trial. EPMA J 2020; 11:31-51. [PMID: 32140184 DOI: 10.1007/s13167-020-00198-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023]
Abstract
Background Prevention and improvement of disease symptoms are important issues, and probiotics are suggested as a good treatment for controlling the obesity. Human gut microbiota has different community structures. Because gut microbial composition is assumed to be linked to probiotic function, this study evaluated the efficacy of probiotics on obesity-related clinical markers according to gut microbial enterotype. Methods Fifty subjects with body mass index over 25 kg/m2 were randomly assigned to either the probiotic or placebo group. Each group received either unlabeled placebo or probiotic capsules for 12 weeks. Body weight, waist circumference, and body composition were measured every 3 weeks. Using computed tomography, total abdominal fat area and visceral fat area were measured. Blood and fecal samples were collected before and after the intervention for biochemical parameters and gut microbial compositions analysis. Results Gut microbial compositions of all the subjects were classified into two enterotypes according to Prevotella/Bacteroides ratio. The fat percentage, blood glucose, and insulin significantly increased in the Prevotella-rich enterotype of the placebo group. The obesity-related markers, such as waist circumference, total fat area, visceral fat, and ratio of visceral to subcutaneous fat area, were significantly reduced in the probiotic group. The decrease of obesity-related markers was greater in the Prevotella-rich enterotype than in the Bacteroides-rich enterotype. Conclusion Administration of probiotics improved obesity-related markers in obese people, and the efficacy of probiotics differed per gut microbial enterotype and greater responses were observed in the Prevotella-dominant enterotype.
Collapse
|
22
|
Wang S, Ahmadi S, Nagpal R, Jain S, Mishra SP, Kavanagh K, Zhu X, Wang Z, McClain DA, Kritchevsky SB, Kitzman DW, Yadav H. Lipoteichoic acid from the cell wall of a heat killed Lactobacillus paracasei D3-5 ameliorates aging-related leaky gut, inflammation and improves physical and cognitive functions: from C. elegans to mice. GeroScience 2020; 42:333-352. [PMID: 31814084 PMCID: PMC7031475 DOI: 10.1007/s11357-019-00137-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022] Open
Abstract
Increased inflammation associated with leaky gut is a major risk factor for morbidity and mortality in older adults; however, successful preventive and therapeutic strategies against these conditions are not available. In this study, we demonstrate that a human-origin Lactobacillus paracasei D3-5 strain (D3-5), even in the non-viable form, extends life span of Caenorhabditis elegans. In addition, feeding of heat-killed D3-5 to old mice (> 79 weeks) prevents high- fat diet-induced metabolic dysfunctions, decreases leaky gut and inflammation, and improves physical and cognitive functions. D3-5 feeding significantly increases mucin production, and proportionately, the abundance of mucin-degrading bacteria Akkermansia muciniphila also increases. Mechanistically, we show that the lipoteichoic acid (LTA), a cell wall component of D3-5, enhances mucin (Muc2) expression by modulating TLR-2/p38-MAPK/NF-kB pathway, which in turn reduces age-related leaky gut and inflammation. The findings indicate that the D3-5 and its LTA can prevent/treat age-related leaky gut and inflammation.
Collapse
Affiliation(s)
- Shaohua Wang
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Shokouh Ahmadi
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ravinder Nagpal
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Shalini Jain
- Department of Endocrinology and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Mouse Metabolic Phenotyping Core, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sidharth P Mishra
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kylie Kavanagh
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Pathology-Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Biomedical Sciences, University of Tasmania, Hobart, Australia
| | - Xuewei Zhu
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Zhan Wang
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Donald A McClain
- Department of Endocrinology and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Mouse Metabolic Phenotyping Core, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Stephen B Kritchevsky
- Department of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Dalane W Kitzman
- Department of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Cardiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hariom Yadav
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
23
|
Bubnov R, Babenko L, Lazarenko L, Kryvtsova M, Shcherbakov O, Zholobak N, Golubnitschaja O, Spivak M. Can tailored nanoceria act as a prebiotic? Report on improved lipid profile and gut microbiota in obese mice. EPMA J 2019; 10:317-335. [PMID: 31832109 PMCID: PMC6882984 DOI: 10.1007/s13167-019-00190-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Microbiome modulation is a pillar intervention to treat metabolic syndrome, prestages, and cascade of related pathologies such as atherosclerosis, among others. Lactobacillus and Bifidobacterium probiotic strains demonstrate efficacy to reduce obesity, dyslipidemia, and improve metabolic health. Novel prebiotic substances composed with known probiotics may strongly synergize health benefits to the host. The aim of this study was to evaluate beneficial effects of Lactobacillus and Bifidobacterium strains (probiotics) if composed with nanoceria (potential prebiotic) to reduce cholesterol levels and restore gut microbiota in obese mice. MATERIALS AND METHODS Two lines of mice were used in the study: BALB/c mice (6-8 weeks, 18-24 g) and CBA mice (11-12 months, 20-26 g); experimental animals were fed by fat-enriched diet 3 weeks before the evaluation. Animals were divided into groups to test probiotic strains and nanoceria. All groups received probiotic strains orally and cerium dioxide orally or intravenously in various composition. A group of untreated animals was used as a control. Cholesterol level and gut microbiota of mice were studied. RESULTS Cerium dioxide nanoparticles, probiotic strain L. casei ІМV В-7280, and composition B. animalis VKB/B. animalis VKL applied separately and in different combinations all reduced at different levels free and bound cholesterol in blood serum of mice fed by fat-enriched diet. The combination of 0.01 M nanoceria and probiotic strain L. casei ІМV В-7280 resulted in the fastest cholesterol level decrease in both young and mature animals. Oral administration of CeO2 applied alone reduced the number of microscopic fungi in the gut of mice and Gram-positive cocci (staphylococci and/or streptococci). Application of L. casei IMV B-7280 as a probiotic strain increased most significantly the number of lactobacilli and bifidobacteria in the gut of mice. The most significant normalization of gut microbiota was observed after oral administration of alternatively either L. casei IMV B-7280 + 0.1 M CeO2 or L. casei IMV B-7280 + 0.01 M CeO2. CONCLUSION Dietary application of nanoceria combined with probiotic strains L. casei IMV B-7280, B. animalis VKB, and B. animals VKL has significantly reduced both free and bound cholesterol levels in serum. Simultaneous administration of probiotics and cerium nanoparticles as a prebiotic, in various combinations, significantly enhanced positive individual effects of them on the gut microbiota spectrum. The presented results provide novel insights into mechanisms behind nutritional supplements and open new perspectives for application of probiotics combined with substances demonstrating prebiotic qualities benefiting, therefore, the host health. Follow-up translational measures are discussed to bring new knowledge from lab to the patient. If validated in a large-scale clinical study, this approach might be instrumental for primary and secondary prevention in obese individual and patients diagnosed with diabetes. To this end, individualized prediction and treatments tailored to the person are strongly recommended to benefit the health condition of affected individuals.
Collapse
Affiliation(s)
- Rostyslav Bubnov
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
- Clinical Hospital “Pheophania” of State Affairs Department, Zabolotny Str., 21, Kyiv, 03143 Ukraine
| | - Lidiia Babenko
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
| | - Liudmyla Lazarenko
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
| | - Maryna Kryvtsova
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
| | - Oleksandr Shcherbakov
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
| | - Nadiya Zholobak
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
| | - Olga Golubnitschaja
- Radiological Clinic, UKB, Excellence University of Bonn, Bonn, Germany
- Breast Cancer Research Centre, UKB, Excellence University of Bonn, Bonn, Germany
- Centre for Integrated Oncology, Cologne-Bonn, UKB, Excellence University of Bonn, Bonn, Germany
| | - Mykola Spivak
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
- LCL ‘DIAPROF’, Svitlycky Str., 35, Kyiv, 04123 Ukraine
| |
Collapse
|
24
|
Probiotic Lactobacillus and Bifidobacterium strains possess safety characteristics, antiviral activities and host adherence factors revealed by genome mining. EPMA J 2019; 10:337-350. [PMID: 31832110 DOI: 10.1007/s13167-019-00184-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/11/2019] [Indexed: 02/07/2023]
Abstract
Background Probiotics belonging to Lactobacillus and Bifidobacterium spp. have been exploited for their health benefits in treatment and prevention of many pathological conditions and promoting human health. Recent advances in understanding probiotics-human interaction through microbiome research in the context of various medical conditions suggest their provisional role in preventive, personalized, and predictive medicine. To streamline their application in disease prevention, development of personalized-based treatments, or their use as biomarkers for predictive diagnosis, in vitro screening for strains with potential probiotic properties should be performed. In this work, we aimed to emphasize the probiotic features of four Lactobacillus and two Bifidobacterium probiotic strains which showed antagonistic properties against microbial pathogens. Methods Firstly, cytotoxicity assessment of cell-free preparations from these strains was performed using a baby hamster kidney (BHK) cells and cell viability was measured by means of sulfo-rhodamine B stain. Secondly, Newcastle disease (ND) and infectious bursal disease (IBD) viruses which pose a great threat in infected poultry were used for assessing antiviral activity of probiotics. Thirdly, the genomes of six probiotic strains were used to identify genes encoding host adherence factors that mediate interaction with human tissues. Results Probiotic preparations exhibited insignificant toxicity as indicated by the high survival rate of BHK cells (surviving fraction varied from 0.82 to 0.99) as compared to the untreated control. Cell-free preparations of probiotics mixed with equal volume of ND and IBD viruses (106 and 104 Tissue Culture Infectious Dose 50, respectively) reduced the titer of ND and IBD viruses on chicken embryo fibroblast cells. Genome mining analysis revealed that the draft genomes of these strains were predicted to encode LPXTG-containing proteins, surface layer proteins, tight adherence pili, sortase-dependent pili, fibronectin, or collagen binding proteins and other factors that adhere to human tissues such as mucus. Such adherence factors enable probiotic bacteria to interact and colonize the host. Conclusion Taken together, safety privileges, antiviral activities, and genomically encoded host interaction factors confirmed probiotic features of the six probiotic strains and their potential in promoting human health.
Collapse
|
25
|
Uzoechi SC, Abu-Lail NI. Changes in Cellular Elasticities and Conformational Properties of Bacterial Surface Biopolymers of Multidrug-Resistant Escherichia coli (MDR- E. coli) Strains in Response to Ampicillin. ACTA ACUST UNITED AC 2019; 5. [PMID: 31179402 PMCID: PMC6550352 DOI: 10.1016/j.tcsw.2019.100019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The roles of the thicknesses and grafting densities of the surface biopolymers of four multi-drug resistant (MDR) Escherichia coli bacterial strains that varied in their biofilm formation in controlling cellular elasticities after exposure to ampicillin were investigated using atomic force microscopy. Exposure to ampicillin was carried out at minimum inhibitory concentrations for different duration times. Our results indicated that the four strains resisted ampicillin through variable mechanisms. Strain A5 did not change its cellular properties upon exposure to ampicillin and as such resisted ampicillin through dormancy. Strain H5 increased its biopolymer brush thickness, adhesion and biofilm formation and kept its roughness, surface area and cell elasticity unchanged upon exposure to ampicillin. As such, this strain likely limits the diffusion of ampicillin by forming strong biofilms. At three hours’ exposure to ampicillin, strains D4 and A9 increased their roughness, surface areas, biofilm formation, and brush thicknesses and decreased their elasticities. Therefore, at short exposure times to ampicillin, these strains resisted ampicillin through forming strong biofilms that impede ampicillin diffusion. At eight hours’ exposure to ampicillin, strains D4 and A9 collapsed their biopolymers, increased their apparent grafting densities and increased their cellular elasticities. Therefore, at long exposure times to ampicillin, cells utilized their higher rigidity to reduce the diffusion of ampicillin into the cells. The findings of this study clearly point to the potential of using the nanoscale characterization of MDR bacterial properties as a means to monitor cell modifications that enhance “phenotypic antibiotic resistance”.
Collapse
Affiliation(s)
- Samuel C Uzoechi
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164.,Department of Biomedical Technology, Federal University of Technology, Owerri, PMB 1526, Owerri, Nigeria
| | - Nehal I Abu-Lail
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249
| |
Collapse
|
26
|
Shit P, Misra AK. Synthesis of a hexasaccharide repeating unit of the cell wall polysaccharide of Bifidobacterium animalis subsp. lactis LKM512. Carbohydr Res 2019; 473:12-17. [PMID: 30599388 DOI: 10.1016/j.carres.2018.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/18/2018] [Accepted: 12/23/2018] [Indexed: 10/27/2022]
Abstract
A convergent synthesis of the hexasaccharide as its 2-aminoethyl glycoside corresponding to the repeating unit of the cell wall polysaccharide of Bifidobacterium animalis subsp. lactis LKM512 has been achieved applying a [4 + 2] glycosylation strategy. The disaccharide thioglycoside donor was prepared by combining a d-galactofuranosyl thioglycoside with another l-rhamnosyl thioglycoside acceptor. The yields of the individual glycosylation steps were highly satisfactory with excellent stereo outcome. An α-glycosidic linkage of the d-galactofuranosyl moiety in the hexasaccharide was achieved in very good yield.
Collapse
Affiliation(s)
- Pradip Shit
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII-M, Kolkata, 700054, India
| | - Anup Kumar Misra
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII-M, Kolkata, 700054, India.
| |
Collapse
|
27
|
Laiño J, Villena J, Suvorov A, Zelaya H, Ortiz Moyano R, Salva S, Alvarez S. Nasal immunization with recombinant chimeric pneumococcal protein and cell wall from immunobiotic bacteria improve resistance of infant mice to Streptococcus pneumoniae infection. PLoS One 2018; 13:e0206661. [PMID: 30395582 PMCID: PMC6218053 DOI: 10.1371/journal.pone.0206661] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
Respiratory tract infections and invasive disease caused by Streptococcus pneumoniae in high-risk groups are a major global health problem. Available human vaccines have reduced immunogenicity and low immunological memory in these populations, as well as high cost as a public health strategy in poor communities. In addition, no single pneumococcal protein antigen has been able to elicit protection comparable to that achieved using protein-polysaccharide conjugate vaccines. In this context, chimeric pneumococcal proteins raise as potential good vaccine candidates because of their simplicity of production and reduced cost. The aim of this work was to study whether the nasal immunization of infant mice with the recombinant chimeric pneumococcal protein (PSFP) was able to improve resistance to S. pneumoniae, and whether the immunomodulatory strain Lactobacillus rhamnosus CRL1505 or its cell wall (CW1505) could be used as effective mucosal adjuvants. Our results showed that the nasal immunization with PSPF improved pneumococcal-specific IgA and IgG levels in broncho-alveolar lavage (BAL), reduced lung bacterial counts, and avoided dissemination of pneumococci into the blood. Of interest, immunization with PSPF elicited cross-protective immunity against different pneumococcal serotypes. It was also observed that the nasal immunization of infant mice with PSPF+CW1505 significantly increased the production of pneumococcal-specific IgA and IgG in BAL, as well as IgM and IgG in serum when compared with PSPF alone. PSPF+CW1505 immunization also improved the reduction of pneumococcal lung colonization and its dissemination in to the bloodstream when compared to PSPF alone. Our results suggest that immunization with PSPF together with the cell wall of the immunomodulatory strain L. rhamnosus CRL1505 as a mucosal adjuvant could be an interesting alternative to improve protection against pneumococcal infection in children.
Collapse
Affiliation(s)
- Jonathan Laiño
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
- * E-mail: (JV); (AS); (SA)
| | - Alexander Suvorov
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, Saint-Petersburg, Russia
- Saint-Petersburg State University, Saint-Petersburg, Russia
- * E-mail: (JV); (AS); (SA)
| | - Hortensia Zelaya
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
| | - Ramiro Ortiz Moyano
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
| | - Susana Salva
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
| | - Susana Alvarez
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
- * E-mail: (JV); (AS); (SA)
| |
Collapse
|
28
|
Xu M, Jiang Z, Huang W, Yin J, Ou S, Jiang Y, Meng L, Cao S, Yu A, Cao J, Shen Y. Altered Gut Microbiota Composition in Subjects Infected With Clonorchis sinensis. Front Microbiol 2018; 9:2292. [PMID: 30323795 PMCID: PMC6172334 DOI: 10.3389/fmicb.2018.02292] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/07/2018] [Indexed: 12/29/2022] Open
Abstract
Clonorchiasis is an infectious disease caused by helminths of Clonorchis sinensis (C. sinensis). The adult parasite mainly inhabits the bile duct and gall bladder, and results in various complications to the hepatobiliary system. The amount of bile secreted into the intestine is reduced in cases of C. sinensis infection, which may alter the pH of the gut and decrease the amount of surfactant protein D released from the gallbladder. However, the impact of parasitic infection on the human gut microbiome remains unclear. To this end, we examined the gut microbiota composition in 47 modified Kato–Katz thick smear-positive (egg-positive) volunteers and 42 healthy controls from five rural communities. Subjects were grouped into four sub-populations based on age and infection status. High-throughput 16S rRNA gene sequencing revealed significant changes in alpha diversity between EP1 and EN1. The beta diversity showed alterations between C. sinensis-infected subjects and healthy controls. In C. sinensis infected patients, we found the significant reduction of certain taxa, such as Bacteroides and anti-inflammatory Bifidobacterium (P < 0.05). Bacteroides, a predominant gut bacteria in healthy populations, was negatively correlated with the number of C. sinensis eggs per gram (EPG, r = −0.37, P adjust < 0.01 in 20–60 years old group; r = −0.64, P adjust = 0.04 in the 60+ years old group). What’s more, the reduction in the abundance of Bifidobacterium, a common probiotic, was decreased particularly in the 60 + years old group (r = −0.50, P = 0.04). The abundance of Dorea, a potentially pro-inflammatory microbe, was higher in infected subjects than in healthy individuals (P < 0.05). Variovorax was a unique bacteria that was only detected in infected subjects. These results clearly demonstrate the significant influence of C. sinensis infection on the human gut microbiota and provided new insights into the control, prevention, diagnosis, and clinical study of clonorchiasis through the human gut microbiota.
Collapse
Affiliation(s)
- Meng Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Zhihua Jiang
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Wen Huang
- Tengxian Center for Disease Control and Prevention, Tengxian, China
| | - Jianhai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Shen Ou
- Tengxian Center for Disease Control and Prevention, Tengxian, China
| | - Yanyan Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Liyu Meng
- Tengxian Center for Disease Control and Prevention, Tengxian, China
| | - Shengkui Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Aiping Yu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| |
Collapse
|
29
|
Bubnov RV, Babenko LP, Lazarenko LM, Mokrozub VV, Spivak MY. Specific properties of probiotic strains: relevance and benefits for the host. EPMA J 2018; 9:205-223. [PMID: 29896319 PMCID: PMC5972142 DOI: 10.1007/s13167-018-0132-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Probiotics have tremendous potential to develop healthy diets, treatment, and prevention. Investigation of in vitro cultural properties of health-promoting microorganisms like lactic acid bacteria (LAB) and bifidobacteria is crucial to select probiotic strains for treatments based on gut microbiota modulation to justify individualized and personalized approach for nutrition and prevention of variety of diseases. The aim was to study the biological properties of LAB and bifidobacteria probiotic strains, namely adhesive properties; resistance to antibiotics; and biological fluids (gastric juice, bile, pancreatic enzymes), and to overview the literature in the field. MATERIALS AND METHODS We studied six LAB strains (Lactobacillus acidophilus ІМV В-7279, L. casei ІМV В-7280, L. delbrueckii subsp. bulgaricus ІМV В-7281, L. rhamnosus LB-3 VK6, L. delbrueckii LE VK8, L. plantarum LM VK7), and two bifidobacteria strains (Bifidobacterium animalis VKL, B. animalis VKB). We characterized tinctorial, culturally morphological, physiological, and biochemical properties of probiotic strains of LAB and bifidobacteria by commonly used research methods. Determination of the resistance to antibiotics was carried out using disc-diffusion method. The effects of gastric juice, bile, and pancreatin on the viability of LAB and bifidobacteria were evaluated. Adhesive properties of LAB and bifidobacteria to epithelial cells were assessed calculating three indicators: average adhesion rate (AAR), participation rate of epithelial cells (PRE), and adhesiveness index of microorganisms (AIM). Electron microscopy of LAB and bifidobacteria cells was conducted. RESULTS The studied strains of LAB and bifidobacteria did not form spores, were positively stained by Gram, grow on medium in a wide range of pH (1.0-9.0, optimum pH 5.5-6.5), were sensitive to a wide range of antibiotics; and showed different resistance to gastric juice, bile, and pancreatic enzymes. The most resistant to antibiotics were L. rhamnosus LB-3 VK6 and L. delbrueckii LE VK8 strains. The most susceptible to gastric juice was L. plantarum LM VK7, which stopped its growth at 8% of gastric juice; L. acidophilus IMV B-7279, B. animalis VKL, and B. animalis VKB strains were resistant even in the 100% concentration. Strains L. acidophilus IMV В-7279, L. casei IMV В-7280, B. animalis VKL, B. animalis VKB, L. rhamnosus LB-3 VK6, L. delbrueckii LE VK8, and L. delbrueckii subsp. bulgaricus IMV В-7281 were resistant to pancreatic enzymes. Adhesive properties of the strains according to AIM index were high in L. casei IMV В-7280, B. animalis VKL, and B. animalis VKB; were moderate in L. delbrueckii subsp. bulgaricus IMV В-7281; and were low in L. acidophilus IMV В-7279, L. rhamnosus LB-3 VK6, L. delbrueckii LE VK8, and L. plantarum LM VK7. CONCLUSION We recognized strain-dependent properties of studied LAB and bifidobacteria probiotic strains (adhesive ability, resistance to antibiotics, and gut biological fluids) and discussed potential for most effective individualized treatment for gut and distant sites microbiome modulation.
Collapse
Affiliation(s)
- Rostyslav V. Bubnov
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv, 03143 Ukraine
- Clinical Hospital ‘Pheophania’ of State Affairs Department, Zabolotny str., 21, Kyiv, 03143 Ukraine
| | - Lidiia P. Babenko
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv, 03143 Ukraine
| | - Liudmyla M. Lazarenko
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv, 03143 Ukraine
| | - Victoria V. Mokrozub
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv, 03143 Ukraine
| | - Mykola Ya. Spivak
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv, 03143 Ukraine
- PJSC «SPC Diaproph-Med», Svitlycky Str., 35, Kyiv, 04123 Ukraine
| |
Collapse
|
30
|
Sichetti M, De Marco S, Pagiotti R, Traina G, Pietrella D. Anti-inflammatory effect of multistrain probiotic formulation (L. rhamnosus, B. lactis, and B. longum). Nutrition 2018; 53:95-102. [PMID: 29674267 DOI: 10.1016/j.nut.2018.02.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVE In recent years, a great number of studies have been directed toward the evaluation of gastrointestinal microbiota modulation through the introduction of beneficial microorganisms, also known as probiotics. Many studies have highlighted how this category of bacteria is very important for the good development, functioning, and maintenance of our immune system. There is a delicate balance between the immune system, located under the gut epithelial barrier, and the microbiota, but many factors can induce a disequilibrium that leads to an inflammatory state and dysbiosis. The aim of this work is to verify the anti-inflammatory effects of a probiotic formulation of Lactobacillus rhamnosus, Bifidobacterium lactis, and Bifidobacterium longum (Serobioma). METHODS To mimic the natural host compartmentalization between probiotics and immune cells through the intestinal epithelial barrier in vitro, the transwell model was used. We focused on a particular subset of immune cells that play a key role in the mucosal immune system. The immunomodulatory effects of probiotic formulation were investigated in the human macrophage cell line THP1 and macrophages derived from ex vivo human peripheral blood mononuclear cells. RESULTS Probiotic formulation induced a significant increase in anti-inflammatory cytokine interleukin-10 (IL-10) production and was able to decrease the secretion of the major proinflammatory cytokines IL-1β and IL-6 by 70% and 80%, respectively. Finally, for the first time, the ability of probiotic formulation to favor the macrophage M2 phenotype has been identified. CONCLUSION The transwell model is an intriguing toll approach to studying the human epithelial barrier.
Collapse
Affiliation(s)
- Marzia Sichetti
- Unit of Biochemical Sciences and Health, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy; Unit of Food and Nutritional Sciences, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Stefania De Marco
- Unit of Biochemical Sciences and Health, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Rita Pagiotti
- Unit of Biochemical Sciences and Health, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Giovanna Traina
- Unit of Food and Nutritional Sciences, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Donatella Pietrella
- Unit of Biochemical Sciences and Health, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
| |
Collapse
|
31
|
Ruiz L, Delgado S, Ruas-Madiedo P, Sánchez B, Margolles A. Bifidobacteria and Their Molecular Communication with the Immune System. Front Microbiol 2017; 8:2345. [PMID: 29255450 PMCID: PMC5722804 DOI: 10.3389/fmicb.2017.02345] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/15/2017] [Indexed: 12/16/2022] Open
Abstract
Bifidobacterium represents a genus within the phylum Actinobacteria which is one of the major phyla in the healthy intestinal tract of humans. Bifidobacterium is one of the most abundant genera in adults, but its predominance is even more pronounced in infants, especially during lactation, when they can constitute the majority of the total bacterial population. They are one of the pioneering colonizers of the early gut microbiota, and they are known to play important roles in the metabolism of dietary components, otherwise indigestible in the upper parts of the intestine, and in the maturation of the immune system. Bifidobacteria have been shown to interact with human immune cells and to modulate specific pathways, involving innate and adaptive immune processes. In this mini-review, we provide an overview of the current knowledge on the immunomodulatory properties of bifidobacteria and the mechanisms and molecular players underlying these processes, focusing on the corresponding implications for human health. We deal with in vitro models suitable for studying strain-specific immunomodulatory activities. These include peripheral blood mononuclear cells and T cell-mediated immune responses, both effector and regulatory cell responses, as well as the modulation of the phenotype of dendritic cells, among others. Furthermore, preclinical studies, mainly germ-free, gnotobiotic, and conventional murine models, and human clinical trials, are also discussed. Finally, we highlight evidence supporting the immunomodulatory effects of bifidobacterial molecules (proteins and peptides, exopolysaccharides, metabolites, and DNA), as well as the role of bifidobacterial metabolism in maintaining immune homeostasis through cross-feeding mechanisms.
Collapse
Affiliation(s)
- Lorena Ruiz
- Dairy Research Institute, Spanish National Research Council (Instituto de Productos Lácteos de Asturias - CSIC), Villaviciosa, Spain
| | - Susana Delgado
- Dairy Research Institute, Spanish National Research Council (Instituto de Productos Lácteos de Asturias - CSIC), Villaviciosa, Spain
| | - Patricia Ruas-Madiedo
- Dairy Research Institute, Spanish National Research Council (Instituto de Productos Lácteos de Asturias - CSIC), Villaviciosa, Spain
| | - Borja Sánchez
- Dairy Research Institute, Spanish National Research Council (Instituto de Productos Lácteos de Asturias - CSIC), Villaviciosa, Spain
| | - Abelardo Margolles
- Dairy Research Institute, Spanish National Research Council (Instituto de Productos Lácteos de Asturias - CSIC), Villaviciosa, Spain
| |
Collapse
|
32
|
Jazayeri O, Daghighi SM, Rezaee F. Lifestyle alters GUT-bacteria function: Linking immune response and host. Best Pract Res Clin Gastroenterol 2017; 31:625-635. [PMID: 29566905 DOI: 10.1016/j.bpg.2017.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/03/2017] [Indexed: 02/07/2023]
Abstract
Microbiota in human is a "mixture society" of different species (i.e. bacteria, viruses, funguses) populations with a different way of relationship classification to Human. Human GUT serves as the host of the majority of different bacterial populations (GUT flora, more than 500 species), which are with us ("from the beginning") in an innate manner known as the commensal (no harm to each other) and symbiotic (mutual benefit) relationship. A homeostatic balance of host-bacteria relationship is very important and vital for a normal health process. However, this beneficial relationship and delicate homeostatic state can be disrupted by the imbalance of microbiome-composition of gut microbiota, expressing a pathogenic state. A strict homeostatic balance of microbiome-composition strongly depends on several factors; 1- lifestyle, 2- geography, 3- ethnicities, 4- "mom" as prime of the type of bacterial colonization in infant and 5- the disease. With such diversity in individuals combined with huge number of different bacterial species and their interactions, it is wise to perform an in-depth systems biology (e.g. genomics, proteomics, glycomics, and etcetera) analysis of personalized microbiome. Only in this way, we are able to generate a map of complete GUT microbiota and, in turn, to determine its interaction with host and intra-interaction with pathogenic bacteria. A specific microbiome analysis provides us the knowledge to decipher the nature of interactions between the GUT microbiota and the host and its response to the invading bacteria in a pathogenic state. The GUT-bacteria composition is independent of geography and ethnicity but lifestyle well affects GUT-bacteria composition and function. Microbiome knowledge obtained by systems biology also helps us to change the behavior of GUT microbiota in response to the pathogenic microbes as protection. Functional microbiome changes in response to environmental factors will be discussed in this review.
Collapse
Affiliation(s)
- Omid Jazayeri
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - S Mojtaba Daghighi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Iran
| | - Farhad Rezaee
- Department of Gastroenterology-Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
33
|
Bubnov RV, Babenko LP, Lazarenko LM, Mokrozub VV, Demchenko OA, Nechypurenko OV, Spivak MY. Comparative study of probiotic effects of Lactobacillus and Bifidobacteria strains on cholesterol levels, liver morphology and the gut microbiota in obese mice. EPMA J 2017; 8:357-376. [PMID: 29209439 PMCID: PMC5700021 DOI: 10.1007/s13167-017-0117-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 08/18/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Microbiome-modulating interventions are promising for treatment and prevention of metabolic syndrome. The number of probiotic strains demonstrated ability to decrease cholesterol level in vivo, however, it was poorly confirmed in a clinical setting. The aim was to study the effects of L. acidophilus IMV B-7279, L. casei IMV B-7280, B. animalіs VKL and B. animalіs VKB separately and in various compositions on the level of serum cholesterol, gut microbiota contents and liver morphology on a high-calorie-induced obesity model in BALB/c mice. MATERIALS AND METHODS We used for the study female BALB/c mice 6-8 weeks old (18-24 g). Experimental animals were fed by a fat-enriched diet (FED), and 8 experimental groups were formed (12 mice in each group) to test strains of probiotic bacteria L. delbrueckii subsp. bulgaricus IMV B-7281, L. casei IMV B-7280, B. animalіs VKL and B. animalіs VKB and compositions. We used ultrasound for in vivo assessment of the liver and visceral (mesenteric) fat size. In the blood serum of the obese mice, the level of cholesterol was estimated. The liver morphology and gut microbiota of obese mice were studied. RESULTS We revealed that after treatment with all of the studied probiotic bacteria and compositions of B. animalis VKL/B. animalis VKB/L. casei IMV B-7280, the weight of obese mice decreased, and cholesterol and its fraction levels in serum were reduced. The size of the liver slightly decreased after treatment with L. delbrueckii subsp. bulgaricus IMV B-7281, B. аnimalis VKB or probiotic compositions; we observed reduction of the mesenteric fat size after injection of all these probiotic bacteria (separately) and probiotic compositions. We defined the strain-dependent effects on serum lipid profiles, liver morphology and the gut microbiota. The B. animalis VKL/B. animalis VKB/L. casei IMV B-7280 composition effectively recovered the liver morphological structure of obese mice. The number of Lactobacillus spp., Bifidobacterium spp. and coliform bacteria increased, the number of staphylococci and streptococci reduced, and the number of microscopic fungi significantly decreased in the gut of obese mice after treatment with L. casei IMV B-7280, L. delbrueckii subsp. bulgaricus IMV B-7281, B. animalis (separately) or their compositions. CONCLUSION L. casei IMV B-7280 (separately) and a composition of B. animalis VKL/B. animalis VKB/L. casei IMV B-7280 are effective at decreasing the weight of obese mice, decreasing cholesterol level, restoring the liver morphology and beneficially modulating the gut microbiome in high-calorie-induced obesity.
Collapse
Affiliation(s)
- Rostyslav V. Bubnov
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
- Clinical Hospital ‘Pheophania’ of State Affairs Department, Zabolotny str., 21, Kyiv, 03143 Ukraine
| | - Lidiia P. Babenko
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
| | - Liudmyla M. Lazarenko
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
| | - Viktoria V. Mokrozub
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
| | - Oleksandr A. Demchenko
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
| | - Oleksiy V. Nechypurenko
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
| | - Mykola Ya. Spivak
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
- LCL ‘DIAPROF’, Svitlycky Str., 35, Kyiv, 04123 Ukraine
| |
Collapse
|
34
|
Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, Lazarenko L, Babenko L, Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, Bubnov R, Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, Demchenko O, Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, Zotsenko V, Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, Boyko N, Uzhhorod State University of Ministry of Education and Science of Ukraine, Spivak M, Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, LCL Diaprof. Immunobiotics are the Novel Biotech Drugs with Antibacterial and Immunomodulatory Properties. MIKROBIOLOHICHNYI ZHURNAL 2017; 79:66-75. [DOI: 10.15407/microbiolj79.01.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
|
35
|
Benne N, van Duijn J, Kuiper J, Jiskoot W, Slütter B. Orchestrating immune responses: How size, shape and rigidity affect the immunogenicity of particulate vaccines. J Control Release 2016; 234:124-34. [PMID: 27221070 DOI: 10.1016/j.jconrel.2016.05.033] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 02/05/2023]
Abstract
Particulate carrier systems are promising drug delivery vehicles for subunit vaccination as they can enhance and direct the type of T cell response. In order to develop vaccines with optimal immunogenicity, a thorough understanding of parameters that could affect the strength and quality of immune responses is required. Pathogens have different dimensions and stimulate the immune system in a specific way. It is therefore not surprising that physicochemical characteristics of particulate vaccines, such as particle size, shape, and rigidity, affect multiple processes that impact their immunogenicity. Among these processes are the uptake of the particles from the site of administration, passage through lymphoid tissue and the uptake, antigen processing and activation of antigen-presenting cells. Herein, we systematically review the role of the size, shape and rigidity of particulate vaccines in enhancing and skewing T cell response and attempted to provide a "roadmap" for rational vaccine design.
Collapse
Affiliation(s)
- Naomi Benne
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Janine van Duijn
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bram Slütter
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
36
|
Abedin-Do A, Taherian-Esfahani Z, Ghafouri-Fard S, Ghafouri-Fard S, Motevaseli E. Immunomodulatory effects of Lactobacillus strains: emphasis on their effects on cancer cells. Immunotherapy 2015; 7:1307-29. [PMID: 26595390 DOI: 10.2217/imt.15.92] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lactobacilli are a group of normal microbiota whose immunomodulatory effects have been known for a long time. Recently, they have gained more attention for their direct and indirect effects on cancer cells. Several cell line experiments, animal model studies as well as clinical trials have indicated their inhibitory effects on cancer initiation and progression. Different lactobacilli strains could modulate innate and adoptive immune system. Such effects have been documented in modulation of function of T cells, dendritic cells and macrophages as well as cytokine production. In this review, the various immunomodulatory effects of lactobacilli on tumor cells as well as their direct cytotoxic effects on cancer cells are discussed.
Collapse
Affiliation(s)
- Atieh Abedin-Do
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Zahra Taherian-Esfahani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Somayyeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Blanton C, He Z, Gottschall-Pass KT, Sweeney MI. Probiotics Blunt the Anti-Hypertensive Effect of Blueberry Feeding in Hypertensive Rats without Altering Hippuric Acid Production. PLoS One 2015; 10:e0142036. [PMID: 26544724 PMCID: PMC4636313 DOI: 10.1371/journal.pone.0142036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/14/2015] [Indexed: 01/29/2023] Open
Abstract
Previously we showed that feeding polyphenol-rich wild blueberries to hypertensive rats lowered systolic blood pressure. Since probiotic bacteria produce bioactive metabolites from berry polyphenols that enhance the health benefits of berry consumption, we hypothesized that adding probiotics to a blueberry-enriched diet would augment the anti-hypertensive effects of blueberry consumption. Groups (n = 8) of male spontaneously hypertensive rats were fed one of four AIN '93G-based diets for 8 weeks: Control (CON); 3% freeze-dried wild blueberry (BB); 1% probiotic bacteria (PRO); or 3% BB + 1% PRO (BB+PRO). Blood pressure was measured at weeks 0, 2, 4, 6, and 8 by the tail-cuff method, and urine was collected at weeks 4 and 8 to determine markers of oxidative stress (F2-isoprostanes), nitric oxide synthesis (nitrites), and polyphenol metabolism (hippuric acid). Data were analyzed using mixed models ANOVA with repeated measures. Diet had a significant main effect on diastolic blood pressure (p = 0.046), with significantly lower measurements in the BB- vs. CON-fed rats (p = 0.035). Systolic blood pressure showed a similar but less pronounced response to diet (p = 0.220), again with the largest difference between the BB and CON groups. Absolute increase in blood pressure between weeks 0 and 8 tended to be smaller in the BB and PRO vs. CON and BB+PRO groups (systolic increase, p = 0.074; diastolic increase, p = 0.185). Diet had a significant main effect on hippuric acid excretion (p<0.0001), with 2- and ~1.5-fold higher levels at weeks 4 and 8, respectively, in the BB and BB+PRO vs. PRO and CON groups. Diet did not have a significant main effect on F2-isoprostane (p = 0.159) or nitrite excretion (p = 0.670). Our findings show that adding probiotics to a blueberry-enriched diet does not enhance and actually may impair the anti-hypertensive effect of blueberry consumption. However, probiotic bacteria are not interfering with blueberry polyphenol metabolism into hippuric acid.
Collapse
Affiliation(s)
- Cynthia Blanton
- Department of Nutrition, Idaho State University, Pocatello, Idaho, United States of America
- * E-mail:
| | - Zhengcheng He
- Department of Biology, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Katherine T. Gottschall-Pass
- Department of Applied Human Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Marva I. Sweeney
- Department of Biology, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|
38
|
Bubnov RV, Spivak MY, Lazarenko LM, Bomba A, Boyko NV. Probiotics and immunity: provisional role for personalized diets and disease prevention. EPMA J 2015; 6:14. [PMID: 26221192 PMCID: PMC4517425 DOI: 10.1186/s13167-015-0036-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 12/13/2022]
Abstract
There is great interest in the interaction between diet and immune system and concomitantly in the potential of probiotic bacteria, especially given recent advances in understanding of gut microbiota effects on health in the context of microbiome research. Following our recent study on bacterial wall elasticity as a predictive measure of phagocytic cellular reactions and related outcomes, a question was raised regarding the scope of the application of these findings in various medical conditions in the context of predictive, preventive, and personalized medicine (PPPM). This summarizing review of the data describes the contributions, both observed and potential, of probiotics to the gut-brain axis and various medical conditions, including immune and atopic states, metabolic and inflammatory diseases-including liver disease and diabetes mellitus-cancer, and more. It also suggests novel insights for a number of beneficial applications of probiotics and advances in development of novel probiotic-based treatments and personalized diets, as well as application of sophisticated imaging techniques and nanobiotechnologies that can be adopted in the near future by innovative medical experts, warranting further research and practical translation.
Collapse
Affiliation(s)
- Rostyslav V. Bubnov
- />Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154, Zabolotny St., Kyiv, 03680 Ukraine
- />Clinical Hospital “Pheophania” of State Affairs Department, Zabolotny Str., 21, Kyiv, 03680 Ukraine
| | - Mykola Ya Spivak
- />Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154, Zabolotny St., Kyiv, 03680 Ukraine
- />LCL “Diaprof”, Svitlycky Str., 35, Kyiv, 04123 Ukraine
| | - Liudmyla M. Lazarenko
- />Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154, Zabolotny St., Kyiv, 03680 Ukraine
| | - Alojz Bomba
- />Cassovia Life Sciences, Palárikova 4, 04011 Košice, Slovak Republiс
- />Institute of Experimental Medicine, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovak Republiс
| | - Nadiya V. Boyko
- />Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154, Zabolotny St., Kyiv, 03680 Ukraine
- />Cassovia Life Sciences, Palárikova 4, 04011 Košice, Slovak Republiс
| |
Collapse
|