1
|
Ewees MG, El-Mahdy MA, Hannawi Y, Zweier JL. Tobacco cigarette smoking induces cerebrovascular dysfunction followed by oxidative neuronal injury with the onset of cognitive impairment. J Cereb Blood Flow Metab 2025; 45:48-65. [PMID: 39136181 PMCID: PMC11572251 DOI: 10.1177/0271678x241270415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/21/2024] [Accepted: 06/25/2024] [Indexed: 09/26/2024]
Abstract
While chronic smoking triggers cardiovascular disease, controversy remains regarding its effects on the brain and cognition. We investigated the effects of long-term cigarette smoke (CS) exposure (CSE) on cerebrovascular function, neuronal injury, and cognition in a novel mouse exposure model. Longitudinal studies were performed in CS or air-exposed mice, 2 hours/day, for up to 60 weeks. Hypertension and carotid vascular endothelial dysfunction (VED) occurred by 16 weeks of CSE, followed by reduced carotid artery blood flow, with oxidative stress detected in the carotid artery, and subsequently in the brain of CS-exposed mice with generation of reactive oxygen species (ROS) and secondary protein and DNA oxidation, microglial activation and astrocytosis. Brain small vessels exhibited decreased levels of endothelial NO synthase (eNOS), enlarged perivascular spaces with blood brain barrier (BBB) leak and decreased levels of tight-junction proteins. In the brain, amyloid-β deposition and phosphorylated-tau were detected with increases out to 60 weeks, at which time mice exhibited impaired spatial learning and memory. Thus, long-term CSE initiates a cascade of ROS generation and oxidative damage, eNOS dysfunction with cerebral hypoperfusion, as well as cerebrovascular and BBB damage with intracerebral inflammation, and neuronal degeneration, followed by the onset of impaired cognition and memory.
Collapse
Affiliation(s)
- Mohamed G Ewees
- Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Mohamed A El-Mahdy
- Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yousef Hannawi
- Division of Cerebrovascular Diseases and Neurocritical Care, Department of Neurology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Jay L Zweier
- Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Ruiz-Uribe NE, Manser P, Butcher B, Li Y, Blendstrup M, Baker S, Sanabria Bohorquez S, Teng E. Cross-sectional and prognostic associations of baseline [ 18F]GTP1 tau PET signal and white matter lesion volumes for cognitive and functional decline in prodromal-to-mild Alzheimer's disease. J Alzheimers Dis 2025; 103:465-475. [PMID: 39801050 DOI: 10.1177/13872877241302497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
BACKGROUND In Alzheimer's disease (AD), tau and white matter lesion pathology are associated with clinical severity and subsequent decline, but their relative relationships with clinical assessments remain uncertain. OBJECTIVE To examine cross-sectional and prognostic associations between baseline [18F]GTP1 tau positron emission tomography (PET) standardized uptake value ratio (SUVRs) and T1 white matter hypointensity (WMHypo) volumes with clinical indices. METHODS We analyzed participants with biomarker-confirmed prodromal (n = 127) or mild (n = 233) AD with baseline [18F]GTP1 tau PET and MRI and longitudinal Clinical Dementia Rating-Sum of Boxes (CDR-SB), 13-item version of the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog13), Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), Mini-Mental Status Examination (MMSE), and Alzheimer's Disease Cooperative Study-Activities of Daily Living (ADCS-ADL) data. RESULTS Higher baseline [18F]GTP1 SUVRs were independently associated with poorer baseline performance and faster rates of subsequent decline on all five clinical outcome measures. Higher baseline WMHypo volumes were independently associated with poorer baseline performance on the CDR-SB, ADAS-Cog13, RBANS, and MMSE and faster rates of subsequent decline on the CDR-SB and ADCS-ADL. CONCLUSIONS The independent associations of tau and white matter lesion pathology with clinical decline in AD suggest future prognostic models should include both imaging modalities.
Collapse
Affiliation(s)
- Nancy E Ruiz-Uribe
- Genentech, Inc., South San Francisco, CA, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Paul Manser
- Genentech, Inc., South San Francisco, CA, USA
| | | | - Yihao Li
- Genentech, Inc., South San Francisco, CA, USA
| | | | - Suzanne Baker
- Genentech, Inc., South San Francisco, CA, USA
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Edmond Teng
- Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
3
|
Li TR, Li BL, Xu XR, Zhong J, Wang TS, Liu FQ. Association of white matter hyperintensities with cognitive decline and neurodegeneration. Front Aging Neurosci 2024; 16:1412735. [PMID: 39328245 PMCID: PMC11425965 DOI: 10.3389/fnagi.2024.1412735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Background The relationship between white matter hyperintensities (WMH) and the core features of Alzheimer's disease (AD) remains controversial. Further, due to the prevalence of co-pathologies, the precise role of WMH in cognition and neurodegeneration also remains uncertain. Methods Herein, we analyzed 1803 participants with available WMH volume data, extracted from the ADNI database, including 756 cognitively normal controls, 783 patients with mild cognitive impairment (MCI), and 264 patients with dementia. Participants were grouped according to cerebrospinal fluid (CSF) pathology (A/T profile) severity. Linear regression analysis was applied to evaluate the factors associated with WMH volume. Modeled by linear mixed-effects, the increase rates (Δ) of the WMH volume, cognition, and typical neurodegenerative markers were assessed. The predictive effectiveness of WMH volume was subsequently tested using Cox regression analysis, and the relationship between WMH/ΔWMH and other indicators such as cognition was explored through linear regression analyses. Furthermore, we explored the interrelationship among amyloid-β deposition, cognition, and WMH using mediation analysis. Results Higher WMH volume was associated with older age, lower CSF amyloid-β levels, hypertension, and smoking history (all p ≤ 0.001), as well as cognitive status (MCI, p < 0.001; dementia, p = 0.008), but not with CSF tau levels. These results were further verified in any clinical stage, except hypertension and smoking history in the dementia stage. Although WMH could not predict dementia conversion, its increased levels at baseline were associated with a worse cognitive performance and a more rapid memory decline. Longitudinal analyses showed that baseline dementia and positive amyloid-β status were associated with a greater accrual of WMH volume, and a higher ΔWMH was also correlated with a faster cognitive decline. In contrast, except entorhinal cortex thickness, the WMH volume was not found to be associated with any other neurodegenerative markers. To a lesser extent, WMH mediates the relationship between amyloid-β and cognition. Conclusion WMH are non-specific lesions that are associated with amyloid-β deposition, cognitive status, and a variety of vascular risk factors. Despite evidence indicating only a weak relationship with neurodegeneration, early intervention to reduce WMH lesions remains a high priority for preserving cognitive function in the elderly.
Collapse
Affiliation(s)
- Tao-Ran Li
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Bai-Le Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xin-Ran Xu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jin Zhong
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Tai-Shan Wang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Department of Neurology, Yangzhou Friendship Hospital, Yangzhou, China
| | - Feng-Qi Liu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
4
|
Delvenne A, Gobom J, Schindler SE, Kate MT, Reus LM, Dobricic V, Tijms BM, Benzinger TLS, Cruchaga C, Teunissen CE, Ramakers I, Martinez‐Lage P, Tainta M, Vandenberghe R, Schaeverbeke J, Engelborghs S, Roeck ED, Popp J, Peyratout G, Tsolaki M, Freund‐Levi Y, Lovestone S, Streffer J, Barkhof F, Bertram L, Blennow K, Zetterberg H, Visser PJ, Vos SJB. CSF proteomic profiles of neurodegeneration biomarkers in Alzheimer's disease. Alzheimers Dement 2024; 20:6205-6220. [PMID: 38970402 PMCID: PMC11497678 DOI: 10.1002/alz.14103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/08/2024]
Abstract
INTRODUCTION We aimed to unravel the underlying pathophysiology of the neurodegeneration (N) markers neurogranin (Ng), neurofilament light (NfL), and hippocampal volume (HCV), in Alzheimer's disease (AD) using cerebrospinal fluid (CSF) proteomics. METHODS Individuals without dementia were classified as A+ (CSF amyloid beta [Aβ]42), T+ (CSF phosphorylated tau181), and N+ or N- based on Ng, NfL, or HCV separately. CSF proteomics were generated and compared between groups using analysis of covariance. RESULTS Only a few individuals were A+T+Ng-. A+T+Ng+ and A+T+NfL+ showed different proteomic profiles compared to A+T+Ng- and A+T+NfL-, respectively. Both Ng+ and NfL+ were associated with neuroplasticity, though in opposite directions. Compared to A+T+HCV-, A+T+HCV+ showed few proteomic changes, associated with oxidative stress. DISCUSSION Different N markers are associated with distinct neurodegenerative processes and should not be equated. N markers may differentially complement disease staging beyond amyloid and tau. Our findings suggest that Ng may not be an optimal N marker, given its low incongruency with tau pathophysiology. HIGHLIGHTS In Alzheimer's disease, neurogranin (Ng)+, neurofilament light (NfL)+, and hippocampal volume (HCV)+ showed differential protein expression in cerebrospinal fluid. Ng+ and NfL+ were associated with neuroplasticity, although in opposite directions. HCV+ showed few proteomic changes, related to oxidative stress. Neurodegeneration (N) markers may differentially refine disease staging beyond amyloid and tau. Ng might not be an optimal N marker, as it relates more closely to tau.
Collapse
|
5
|
Leitner D, Kavanagh T, Kanshin E, Balcomb K, Pires G, Thierry M, Suazo JI, Schneider J, Ueberheide B, Drummond E, Wisniewski T. Differences in the cerebral amyloid angiopathy proteome in Alzheimer's disease and mild cognitive impairment. Acta Neuropathol 2024; 148:9. [PMID: 39039355 PMCID: PMC11263258 DOI: 10.1007/s00401-024-02767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by amyloid beta (Aβ) deposition in cerebrovasculature. It is prevalent with aging and Alzheimer's disease (AD), associated with intracerebral hemorrhage, and contributes to cognitive deficits. To better understand molecular mechanisms, CAA(+) and CAA(-) vessels were microdissected from paraffin-embedded autopsy temporal cortex of age-matched Control (n = 10), mild cognitive impairment (MCI; n = 4), and sporadic AD (n = 6) cases, followed by label-free quantitative mass spectrometry. 257 proteins were differentially abundant in CAA(+) vessels compared to neighboring CAA(-) vessels in MCI, and 289 in AD (p < 0.05, fold-change > 1.5). 84 proteins changed in the same direction in both groups, and many changed in the same direction among proteins significant in at least one group (p < 0.0001, R2 = 0.62). In CAA(+) vessels, proteins significantly increased in both AD and MCI were particularly associated with collagen-containing extracellular matrix, while proteins associated with ribonucleoprotein complex were significantly decreased in both AD and MCI. In neighboring CAA(-) vessels, 61 proteins were differentially abundant in MCI, and 112 in AD when compared to Control cases. Increased proteins in CAA(-) vessels were associated with extracellular matrix, external encapsulating structure, and collagen-containing extracellular matrix in MCI; collagen trimer in AD. Twenty two proteins were increased in CAA(-) vessels of both AD and MCI. Comparison of the CAA proteome with published amyloid-plaque proteomic datasets identified many proteins similarly enriched in CAA and plaques, as well as a protein subset hypothesized as preferentially enriched in CAA when compared to plaques. SEMA3G emerged as a CAA specific marker, validated immunohistochemically and with correlation to pathology levels (p < 0.0001; R2 = 0.90). Overall, the CAA(-) vessel proteomes indicated changes in vessel integrity in AD and MCI in the absence of Aβ, and the CAA(+) vessel proteome was similar in MCI and AD, which was associated with vascular matrix reorganization, protein translation deficits, and blood brain barrier breakdown.
Collapse
Affiliation(s)
- Dominique Leitner
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Kaleah Balcomb
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Geoffrey Pires
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Manon Thierry
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Jianina I Suazo
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Julie Schneider
- Department Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison Street, Suite 1000, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Beatrix Ueberheide
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia.
| | - Thomas Wisniewski
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
6
|
Delvenne A, Vandendriessche C, Gobom J, Burgelman M, Dujardin P, De Nolf C, Tijms BM, Teunissen CE, Schindler SE, Verhey F, Ramakers I, Martinez-Lage P, Tainta M, Vandenberghe R, Schaeverbeke J, Engelborghs S, De Roeck E, Popp J, Peyratout G, Tsolaki M, Freund-Levi Y, Lovestone S, Streffer J, Bertram L, Blennow K, Zetterberg H, Visser PJ, Vandenbroucke RE, Vos SJB. Involvement of the choroid plexus in Alzheimer's disease pathophysiology: findings from mouse and human proteomic studies. Fluids Barriers CNS 2024; 21:58. [PMID: 39020361 PMCID: PMC11256635 DOI: 10.1186/s12987-024-00555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/03/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Structural and functional changes of the choroid plexus (ChP) have been reported in Alzheimer's disease (AD). Nonetheless, the role of the ChP in the pathogenesis of AD remains largely unknown. We aim to unravel the relation between ChP functioning and core AD pathogenesis using a unique proteomic approach in mice and humans. METHODS We used an APP knock-in mouse model, APPNL-G-F, exhibiting amyloid pathology, to study the association between AD brain pathology and protein changes in mouse ChP tissue and CSF using liquid chromatography mass spectrometry. Mouse proteomes were investigated at the age of 7 weeks (n = 5) and 40 weeks (n = 5). Results were compared with previously published human AD CSF proteomic data (n = 496) to identify key proteins and pathways associated with ChP changes in AD. RESULTS ChP tissue proteome was dysregulated in APPNL-G-F mice relative to wild-type mice at both 7 and 40 weeks. At both ages, ChP tissue proteomic changes were associated with epithelial cells, mitochondria, protein modification, extracellular matrix and lipids. Nonetheless, some ChP tissue proteomic changes were different across the disease trajectory; pathways related to lysosomal function, endocytosis, protein formation, actin and complement were uniquely dysregulated at 7 weeks, while pathways associated with nervous system, immune system, protein degradation and vascular system were uniquely dysregulated at 40 weeks. CSF proteomics in both mice and humans showed similar ChP-related dysregulated pathways. CONCLUSIONS Together, our findings support the hypothesis of ChP dysfunction in AD. These ChP changes were related to amyloid pathology. Therefore, the ChP could become a novel promising therapeutic target for AD.
Collapse
Affiliation(s)
- Aurore Delvenne
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Johan Gobom
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Marlies Burgelman
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Pieter Dujardin
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Clint De Nolf
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Centers (AUMC), Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Suzanne E Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, USA
| | - Frans Verhey
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Inez Ramakers
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | | | - Mikel Tainta
- Fundación CITA-Alzhéimer Fundazioa, San Sebastian, Spain
| | - Rik Vandenberghe
- Neurology Service, University Hospitals Leuven, Louvain, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Louvain, Belgium
| | - Jolien Schaeverbeke
- Neurology Service, University Hospitals Leuven, Louvain, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Louvain, Belgium
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Bru-BRAIN, Universitair Ziekenhuis Brussel, Brussels, Belgium
- NEUR Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Ellen De Roeck
- Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Julius Popp
- Old Age Psychiatry, University Hospital Lausanne, Lausanne, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatry University Hospital Zürich, Zurich, Switzerland
| | | | - Magda Tsolaki
- 1st Department of Neurology, AHEPA University Hospital, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, Thessaloniki, Greece
| | - Yvonne Freund-Levi
- Department of Neurobiology, Caring Sciences and Society (NVS), Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry in Region Örebro County and School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Old Age Psychiatry, Psychology & Neuroscience, King's College, London, UK
| | - Simon Lovestone
- University of Oxford, Oxford, UK
- Johnson and Johnson Medical Ltd., Wokingham, UK
| | - Johannes Streffer
- Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- H. Lundbeck A/S, Valby, Denmark
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, People's Republic of China
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Stephanie J B Vos
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| |
Collapse
|
7
|
Yang HS, Yau WYW, Carlyle BC, Trombetta BA, Zhang C, Shirzadi Z, Schultz AP, Pruzin JJ, Fitzpatrick CD, Kirn DR, Rabin JS, Buckley RF, Hohman TJ, Rentz DM, Tanzi RE, Johnson KA, Sperling RA, Arnold SE, Chhatwal JP. Plasma VEGFA and PGF impact longitudinal tau and cognition in preclinical Alzheimer's disease. Brain 2024; 147:2158-2168. [PMID: 38315899 PMCID: PMC11146430 DOI: 10.1093/brain/awae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/08/2023] [Accepted: 12/21/2023] [Indexed: 02/07/2024] Open
Abstract
Vascular dysfunction is increasingly recognized as an important contributor to the pathogenesis of Alzheimer's disease. Alterations in vascular endothelial growth factor (VEGF) pathways have been implicated as potential mechanisms. However, the specific impact of VEGF proteins in preclinical Alzheimer's disease and their relationships with other Alzheimer's disease and vascular pathologies during this critical early period remain to be elucidated. We included 317 older adults from the Harvard Aging Brain Study, a cohort of individuals who were cognitively unimpaired at baseline and followed longitudinally for up to 12 years. Baseline VEGF family protein levels (VEGFA, VEGFC, VEGFD, PGF and FLT1) were measured in fasting plasma using high-sensitivity immunoassays. Using linear mixed effects models, we examined the interactive effects of baseline plasma VEGF proteins and amyloid PET burden (Pittsburgh Compound-B) on longitudinal cognition (Preclinical Alzheimer Cognitive Composite-5). We further investigated if effects on cognition were mediated by early neocortical tau accumulation (flortaucipir PET burden in the inferior temporal cortex) or hippocampal atrophy. Lastly, we examined the impact of adjusting for baseline cardiovascular risk score or white matter hyperintensity volume. Baseline plasma VEGFA and PGF each showed a significant interaction with amyloid burden on prospective cognitive decline. Specifically, low VEGFA and high PGF were associated with greater cognitive decline in individuals with elevated amyloid, i.e. those on the Alzheimer's disease continuum. Concordantly, low VEGFA and high PGF were associated with accelerated longitudinal tau accumulation in those with elevated amyloid. Moderated mediation analyses confirmed that accelerated tau accumulation fully mediated the effects of low VEGFA and partially mediated (31%) the effects of high PGF on faster amyloid-related cognitive decline. The effects of VEGFA and PGF on tau and cognition remained significant after adjusting for cardiovascular risk score or white matter hyperintensity volume. There were concordant but non-significant associations with longitudinal hippocampal atrophy. Together, our findings implicate low VEGFA and high PGF in accelerating early neocortical tau pathology and cognitive decline in preclinical Alzheimer's disease. Additionally, our results underscore the potential of these minimally-invasive plasma biomarkers to inform the risk of Alzheimer's disease progression in the preclinical population. Importantly, VEGFA and PGF appear to capture distinct effects from vascular risks and cerebrovascular injury. This highlights their potential as new therapeutic targets, in combination with anti-amyloid and traditional vascular risk reduction therapies, to slow the trajectory of preclinical Alzheimer's disease and delay or prevent the onset of cognitive decline.
Collapse
Affiliation(s)
- Hyun-Sik Yang
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Wai-Ying Wendy Yau
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Becky C Carlyle
- Harvard Medical School, Boston, MA 02115, USA
- Alzheimer’s Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Physiology, Anatomy and Genetics, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3PT, UK
| | - Bianca A Trombetta
- Alzheimer’s Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Can Zhang
- Harvard Medical School, Boston, MA 02115, USA
- Alzheimer’s Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Zahra Shirzadi
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Aaron P Schultz
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Jeremy J Pruzin
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Banner Alzheimer’s Institute, Phoenix, AZ 85006, USA
| | | | - Dylan R Kirn
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Jennifer S Rabin
- Harquail Centre for Neuromodulation and Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Medicine, Rehabilitation Sciences Institute, University of Toronto, Toronto, ON M5G 1V7, Canada
| | - Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Dorene M Rentz
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Rudolph E Tanzi
- Harvard Medical School, Boston, MA 02115, USA
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Steven E Arnold
- Harvard Medical School, Boston, MA 02115, USA
- Alzheimer’s Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Jasmeer P Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Abdul Hamid H, Hambali A, Okon U, Che Mohd Nassir CMN, Mehat MZ, Norazit A, Mustapha M. Is cerebral small vessel disease a central nervous system interstitial fluidopathy? IBRO Neurosci Rep 2024; 16:98-105. [PMID: 39007087 PMCID: PMC11240297 DOI: 10.1016/j.ibneur.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/20/2023] [Accepted: 12/22/2023] [Indexed: 07/16/2024] Open
Abstract
A typical anatomical congregate and functionally distinct multicellular cerebrovascular dynamic confer diverse blood-brain barrier (BBB) and microstructural permeabilities to conserve the health of brain parenchymal and its microenvironment. This equanimity presupposes the glymphatic system that governs the flow and clearance of metabolic waste and interstitial fluids (ISF) through venous circulation. Following the introduction of glymphatic system concept, various studies have been carried out on cerebrospinal fluid (CSF) and ISF dynamics. These studies reported that the onset of multiple diseases can be attributed to impairment in the glymphatic system, which is newly referred as central nervous system (CNS) interstitial fluidopathy. One such condition includes cerebral small vessel disease (CSVD) with poorly understood pathomechanisms. CSVD is an umbrella term to describe a chronic progressive disorder affecting the brain microvasculature (or microcirculation) involving small penetrating vessels that supply cerebral white and deep gray matter. This review article proposes CSVD as a form of "CNS interstitial fluidopathy". Linking CNS interstitial fluidopathy with CSVD will open a better insight pertaining to the perivascular space fluid dynamics in CSVD pathophysiology. This may lead to the development of treatment and therapeutic strategies to ameliorate the pathology and adverse effect of CSVD.
Collapse
Affiliation(s)
- Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Aqilah Hambali
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Udemeobong Okon
- Department of Physiology, Faculty of Basic Medical Science, University of Calabar, Etagbor, PMB 1115 Calabar, Nigeria
| | - Che Mohd Nasril Che Mohd Nassir
- Department of Anatomy and Physiology, School of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin (UniSZA), 20400 Kuala Terengganu, Terengganu, Malaysia
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Anwar Norazit
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
9
|
Huszár Z, Engh MA, Pavlekovics M, Sato T, Steenkamp Y, Hanseeuw B, Terebessy T, Molnár Z, Hegyi P, Csukly G. Risk of conversion to mild cognitive impairment or dementia among subjects with amyloid and tau pathology: a systematic review and meta-analysis. Alzheimers Res Ther 2024; 16:81. [PMID: 38610055 PMCID: PMC11015617 DOI: 10.1186/s13195-024-01455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Measurement of beta-amyloid (Aβ) and phosphorylated tau (p-tau) levels offers the potential for early detection of neurocognitive impairment. Still, the probability of developing a clinical syndrome in the presence of these protein changes (A+ and T+) remains unclear. By performing a systematic review and meta-analysis, we investigated the risk of mild cognitive impairment (MCI) or dementia in the non-demented population with A+ and A- alone and in combination with T+ and T- as confirmed by PET or cerebrospinal fluid examination. METHODS A systematic search of prospective and retrospective studies investigating the association of Aβ and p-tau with cognitive decline was performed in three databases (MEDLINE via PubMed, EMBASE, and CENTRAL) on January 9, 2024. The risk of bias was assessed using the Cochrane QUIPS tool. Odds ratios (OR) and Hazard Ratios (HR) were pooled using a random-effects model. The effect of neurodegeneration was not studied due to its non-specific nature. RESULTS A total of 18,162 records were found, and at the end of the selection process, data from 36 cohorts were pooled (n= 7,793). Compared to the unexposed group, the odds ratio (OR) for conversion to dementia in A+ MCI patients was 5.18 [95% CI 3.93; 6.81]. In A+ CU subjects, the OR for conversion to MCI or dementia was 5.79 [95% CI 2.88; 11.64]. Cerebrospinal fluid Aβ42 or Aβ42/40 analysis and amyloid PET imaging showed consistent results. The OR for conversion in A+T+ MCI subjects (11.60 [95% CI 7.96; 16.91]) was significantly higher than in A+T- subjects (2.73 [95% CI 1.65; 4.52]). The OR for A-T+ MCI subjects was non-significant (1.47 [95% CI 0.55; 3.92]). CU subjects with A+T+ status had a significantly higher OR for conversion (13.46 [95% CI 3.69; 49.11]) than A+T- subjects (2.04 [95% CI 0.70; 5.97]). Meta-regression showed that the ORs for Aβ exposure decreased with age in MCI. (beta = -0.04 [95% CI -0.03 to -0.083]). CONCLUSIONS Identifying Aβ-positive individuals, irrespective of the measurement technique employed (CSF or PET), enables the detection of the most at-risk population before disease onset, or at least at a mild stage. The inclusion of tau status in addition to Aβ, especially in A+T+ cases, further refines the risk assessment. Notably, the higher odds ratio associated with Aβ decreases with age. TRIAL REGISTRATION The study was registered in PROSPERO (ID: CRD42021288100).
Collapse
Affiliation(s)
- Zsolt Huszár
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6, Budapest, 1083, Hungary
| | - Marie Anne Engh
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Márk Pavlekovics
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
- Department of Neurology, Jahn Ferenc Teaching Hospital, Köves utca 1, Budapest, 1204, Hungary
| | - Tomoya Sato
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Yalea Steenkamp
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Bernard Hanseeuw
- Department of Neurology and Institute of Neuroscience, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, 1200, Belgium
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02155, USA
| | - Tamás Terebessy
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Zsolt Molnár
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, Üllői út 78/A, Budapest, Hungary
- Department of Anesthesiology and Intensive Therapy, Poznan University of Medical Sciences, 49 Przybyszewskiego St, Poznan, Poland
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, 7624, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Tömő 25-29, Budapest, 1083, Hungary
- Translational Pancreatology Research Group, Interdisciplinary Centre of Excellence for Research Development and Innovation University of Szeged, Budapesti 9, Szeged, 6728, Hungary
| | - Gábor Csukly
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary.
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6, Budapest, 1083, Hungary.
| |
Collapse
|
10
|
Moonen JEF, Haan R, Bos I, Teunissen C, van de Giessen E, Tomassen J, den Braber A, van der Landen SM, de Geus EJC, Legdeur N, van Harten AC, Trieu C, de Boer C, Kroeze L, Barkhof F, Visser PJ, van der Flier WM. Contributions of amyloid beta and cerebral small vessel disease in clinical decline. Alzheimers Dement 2024; 20:1868-1880. [PMID: 38146222 PMCID: PMC10984432 DOI: 10.1002/alz.13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/27/2023]
Abstract
INTRODUCTION We assessed whether co-morbid small vessel disease (SVD) has clinical predictive value in preclinical or prodromal Alzheimer's disease. METHODS In 1090 non-demented participants (65.4 ± 10.7 years) SVD was assessed with magnetic resonance imaging and amyloid beta (Aβ) with lumbar puncture and/or positron emission tomography scan (mean follow-up for cognitive function 3.1 ± 2.4 years). RESULTS Thirty-nine percent had neither Aβ nor SVD (A-V-), 21% had SVD only (A-V+), 23% Aβ only (A+V-), and 17% had both (A+V+). Pooled cohort linear mixed model analyses demonstrated that compared to A-V- (reference), A+V- had a faster rate of cognitive decline. Co-morbid SVD (A+V+) did not further increase rate of decline. Cox regression showed that dementia risk was modestly increased in A-V+ (hazard ratio [95% confidence interval: 1.8 [1.0-3.2]) and most strongly in A+ groups. Also, mortality risk was increased in A+ groups. DISCUSSION In non-demented persons Aβ was predictive of cognitive decline, dementia, and mortality. SVD modestly predicts dementia in A-, but did not increase deleterious effects in A+. HIGHLIGHTS Amyloid beta (Aβ; A) was predictive for cognitive decline, dementia, and mortality. Small vessel disease (SVD) had no additional deleterious effects in A+. SVD modestly predicted dementia in A-. Aβ should be assessed even when magnetic resonance imaging indicates vascular cognitive impairment.
Collapse
Affiliation(s)
- Justine E. F. Moonen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Renée Haan
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Isabelle Bos
- Nivel, Research Institute for Better CareUtrechtthe Netherlands
| | - Charlotte Teunissen
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
- Neurochemistry LaboratoryDepartment of Clinical ChemistryAmsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Elsmarieke van de Giessen
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
- Department of Radiology & Nuclear MedicineVrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
| | - Jori Tomassen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Anouk den Braber
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Sophie M. van der Landen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Eco J. C. de Geus
- Department of Biological PsychologyVU UniversityAmsterdamthe Netherlands
| | - Nienke Legdeur
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Argonde C. van Harten
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Calvin Trieu
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Casper de Boer
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Lior Kroeze
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Frederik Barkhof
- Department of Radiology & Nuclear MedicineVrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Institute of Healthcare Engineering and the Institute of Neurology, University College LondonLondonUK
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNS), Maastricht UniversityMaastrichtthe Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of NeurogeriatricsKarolinska InstitutetSolnaSweden
| | - Wiesje M. van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| |
Collapse
|
11
|
van Gils V, Ramakers I, Jansen WJ, Banning L, Kučikienė D, Costa AS, Schulz JB, Visser PJ, Verhey F, Reetz K, Vos SJ. Contributions of Vascular Burden and Amyloid Abnormality to Cognitive Decline in Memory Clinic Patients. J Alzheimers Dis Rep 2023; 7:1299-1311. [PMID: 38143773 PMCID: PMC10742024 DOI: 10.3233/adr-230040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/01/2023] [Indexed: 12/26/2023] Open
Abstract
Background Alzheimer's disease pathology and vascular burden are highly prevalent and often co-occur in elderly. It remains unclear how both relate to cognitive decline. Objective To investigate whether amyloid abnormality and vascular burden synergistically contribute to cognitive decline in a memory clinic population. Methods We included 227 patients from Maastricht and Aachen memory clinics. Amyloid abnormality (A+) was defined by CSF Aβ42 using data-driven cut-offs. Vascular burden (V+) was defined as having moderate to severe white matter hyperintensities, or any microbleeds, macrohemorrhage or infarcts on MRI. Longitudinal change in global cognition, memory, processing speed, executive functioning, and verbal fluency was analysed across the A-V-, A-V+, A+V-, A+V+ groups by linear mixed models. Additionally, individual MRI measures, vascular risk and vascular disease were used as V definitions. Results At baseline, the A+V+ group scored worse on global cognition and verbal fluency compared to all other groups, and showed worse memory compared to A-V+ and A-V- groups. Over time (mean 2.7+ - 1.5 years), A+V+ and A+V- groups showed faster global cognition decline than A-V+ and A-V- groups. Only the A+V- group showed decline on memory and verbal fluency. The A-V+ group did not differ from the A-V- group. Individual MRI vascular measures only indicated an independent association of microbleeds with executive functioning decline. Findings were similar using other V definitions. Conclusions Our study demonstrates that amyloid abnormality predicts cognitive decline independent from vascular burden in a memory clinic population. Vascular burden shows a minor contribution to cognitive decline in these patients. This has important prognostic implications.
Collapse
Affiliation(s)
- Veerle van Gils
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Inez Ramakers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Willemijn J. Jansen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Leonie Banning
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Domantė Kučikienė
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Ana Sofia Costa
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
- JARA Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich and RWTH Aachen University, Aachen, Germany
| | - Jörg B. Schulz
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
- JARA Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich and RWTH Aachen University, Aachen, Germany
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Frans Verhey
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Kathrin Reetz
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
- JARA Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich and RWTH Aachen University, Aachen, Germany
| | - Stephanie J.B. Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
12
|
Vipin A, Kumar D, Soo SA, Zailan FZ, Leow YJ, Koh CL, Ng ASL, Ng KP, Kandiah N. APOE4 carrier status determines association between white matter disease and grey matter atrophy in early-stage dementia. Alzheimers Res Ther 2023; 15:103. [PMID: 37270543 DOI: 10.1186/s13195-023-01251-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND White matter hyperintensities, a neuroimaging marker of small-vessel cerebrovascular disease and apolipoprotein ε4 (APOE4) allele, are important dementia risk factors. However, APOE4 as a key effect modifier in the relationship between white matter hyperintensities and grey matter volume needs further exploration. METHODS One hundred ninety-two early-stage dementia (including mild cognitive impairment and mild dementia) and 259 cognitively unimpaired participants from a neurocognitive research cohort with neuroimaging data, APOE genotyping, and neuropsychological assessments were studied. We investigated independent and interactive effects of white matter hyperintensities and APOE4 on whole-brain voxel-wise grey matter volume using voxel-based morphometry (uncorrected p < 0.001; minimum cluster size = 100 voxels). We further assessed interactive effects between APOE4 and white matter hyperintensities on global cognition, memory, and executive function in early-stage dementia and cognitively unimpaired participants. RESULTS Independent of APOE4 status, higher white matter hyperintensity load was associated with greater grey matter atrophy across frontal, parietal, temporal, and occipital lobes in cognitively unimpaired and early-stage dementia subjects. However, interaction analyses and independent sample analyses revealed that APOE4 non-carriers demonstrated greater white matter hyperintensity-associated grey matter atrophy compared to APOE4 carriers in both cognitively unimpaired and early-stage dementia groups. Additional confirmatory analyses among APOE4 non-carriers demonstrated that white matter hyperintensities resulted in widespread grey matter loss. Analyses of cognitive function demonstrated that higher white matter hyperintensity load was associated with worse global (Mini-Mental State Examination, Montreal Cognitive Assessment) and executive function (Color Trails 2) in APOE4 non-carriers compared to APOE4 carriers in early-stage dementia but not cognitively unimpaired participants. CONCLUSIONS The association between white matter hyperintensities and grey matter loss is more pronounced in APOE4 non-carriers than APOE4 carriers in the cognitively unimpaired and early-stage dementia stages. Furthermore, white matter hyperintensity presence results in poorer executive function in APOE4 non-carriers compared to APOE4 carriers. This finding may have significant impact on the design of clinical trials with disease modifying therapies.
Collapse
Grants
- MOE AcRF Tier 3 Award MOE2017-T3-1-002 Ministry of Education - Singapore
- MOE AcRF Tier 3 Award MOE2017-T3-1-002 Ministry of Education - Singapore
- MOE AcRF Tier 3 Award MOE2017-T3-1-002 Ministry of Education - Singapore
- MOE AcRF Tier 3 Award MOE2017-T3-1-002 Ministry of Education - Singapore
- MOE AcRF Tier 3 Award MOE2017-T3-1-002 Ministry of Education - Singapore
- MOE AcRF Tier 3 Award MOE2017-T3-1-002 Ministry of Education - Singapore
- NMRC/CIRG/1415/2015, NMRC/CSA/063/2014, MOH-CSAINV18nov-0007, NMRC/CIRG/14MAY025 National Medical Research Council
- NMRC/CIRG/1415/2015, NMRC/CSA/063/2014, MOH-CSAINV18nov-0007, NMRC/CIRG/14MAY025 National Medical Research Council
- NMRC/CIRG/1415/2015, NMRC/CSA/063/2014, MOH-CSAINV18nov-0007, NMRC/CIRG/14MAY025 National Medical Research Council
- NMRC/CIRG/1415/2015, NMRC/CSA/063/2014, MOH-CSAINV18nov-0007, NMRC/CIRG/14MAY025 National Medical Research Council
- NMRC/CIRG/1415/2015, NMRC/CSA/063/2014, MOH-CSAINV18nov-0007, NMRC/CIRG/14MAY025 National Medical Research Council
- NMRC/CIRG/1415/2015, NMRC/CSA/063/2014, MOH-CSAINV18nov-0007, NMRC/CIRG/14MAY025 National Medical Research Council
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
Collapse
Affiliation(s)
- Ashwati Vipin
- Dementia Research Centre - Lee Kong Chian School of Medicine, Nanyang Technology University, 11 Mandalay Road, Singapore, 308232, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | - Dilip Kumar
- Dementia Research Centre - Lee Kong Chian School of Medicine, Nanyang Technology University, 11 Mandalay Road, Singapore, 308232, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | - See Ann Soo
- Dementia Research Centre - Lee Kong Chian School of Medicine, Nanyang Technology University, 11 Mandalay Road, Singapore, 308232, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | - Fatin Zahra Zailan
- Dementia Research Centre - Lee Kong Chian School of Medicine, Nanyang Technology University, 11 Mandalay Road, Singapore, 308232, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | - Yi Jin Leow
- Dementia Research Centre - Lee Kong Chian School of Medicine, Nanyang Technology University, 11 Mandalay Road, Singapore, 308232, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | - Chen Ling Koh
- National Neuroscience Institute, Singapore, Singapore
| | - Adeline Su Lyn Ng
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Kok Pin Ng
- Dementia Research Centre - Lee Kong Chian School of Medicine, Nanyang Technology University, 11 Mandalay Road, Singapore, 308232, Singapore
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Nagaendran Kandiah
- Dementia Research Centre - Lee Kong Chian School of Medicine, Nanyang Technology University, 11 Mandalay Road, Singapore, 308232, Singapore.
- National Neuroscience Institute, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
13
|
Delvenne A, Gobom J, Tijms B, Bos I, Reus LM, Dobricic V, Kate MT, Verhey F, Ramakers I, Scheltens P, Teunissen CE, Vandenberghe R, Schaeverbeke J, Gabel S, Popp J, Peyratout G, Martinez-Lage P, Tainta M, Tsolaki M, Freund-Levi Y, Lovestone S, Streffer J, Barkhof F, Bertram L, Blennow K, Zetterberg H, Visser PJ, Vos SJB. Cerebrospinal fluid proteomic profiling of individuals with mild cognitive impairment and suspected non-Alzheimer's disease pathophysiology. Alzheimers Dement 2023; 19:807-820. [PMID: 35698882 DOI: 10.1002/alz.12713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 04/06/2022] [Accepted: 05/12/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Suspected non-Alzheimer's disease pathophysiology (SNAP) is a biomarker concept that encompasses individuals with neuronal injury but without amyloidosis. We aim to investigate the pathophysiology of SNAP, defined as abnormal tau without amyloidosis, in individuals with mild cognitive impairment (MCI) by cerebrospinal fluid (CSF) proteomics. METHODS Individuals were classified based on CSF amyloid beta (Aβ)1-42 (A) and phosphorylated tau (T), as cognitively normal A-T- (CN), MCI A-T+ (MCI-SNAP), and MCI A+T+ (MCI-AD). Proteomics analyses, Gene Ontology (GO), brain cell expression, and gene expression analyses in brain regions of interest were performed. RESULTS A total of 96 proteins were decreased in MCI-SNAP compared to CN and MCI-AD. These proteins were enriched for extracellular matrix (ECM), hemostasis, immune system, protein processing/degradation, lipids, and synapse. Fifty-one percent were enriched for expression in the choroid plexus. CONCLUSION The pathophysiology of MCI-SNAP (A-T+) is distinct from that of MCI-AD. Our findings highlight the need for a different treatment in MCI-SNAP compared to MCI-AD.
Collapse
Affiliation(s)
- Aurore Delvenne
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Johan Gobom
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Betty Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Isabelle Bos
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Lianne M Reus
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
| | - Mara Ten Kate
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Frans Verhey
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Inez Ramakers
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Centers (AUMC), Amsterdam Neuroscience, the Netherlands
| | - Rik Vandenberghe
- Neurology Service, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jolien Schaeverbeke
- Neurology Service, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Silvy Gabel
- Neurology Service, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Julius Popp
- Old Age Psychiatry, University Hospital Lausanne, Lausanne, Switzerland
- Department of Geriatric Psychiatry, Psychiatry University Hospital Zürich, Zürich, Switzerland
| | | | | | - Mikel Tainta
- Fundación CITA-Alzhéimer Fundazioa, San Sebastian, Spain
| | - Magda Tsolaki
- 1st Department of Neurology, AHEPA University Hospital, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, Thessaloniki, Greece
| | - Yvonne Freund-Levi
- Department of Neurobiology, Caring Sciences and Society (NVS), Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry in Region Örebro County and School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Old Age Psychiatry, Psychology & Neuroscience, King's College, London, UK
| | - Simon Lovestone
- University of Oxford, Oxford, United Kingdom (currently at Johnson and Johnson Medical Ltd.), London, UK
| | - Johannes Streffer
- Institute Born-Bunge, Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Belgium
- UCB Biopharma SPRL, Brain-l'Alleud, Belgium
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Institutes of Neurology & Healthcare Engineering, UCL London, London, UK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Stephanie J B Vos
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
14
|
Wu M, Schweitzer N, Iordanova BE, Halligan-Eddy E, Tudorascu DL, Mathis CA, Lopresti BJ, Kamboh MI, Cohen AD, Snitz BE, Klunk WE, Aizenstein HJ. In Pre-Clinical AD Small Vessel Disease is Associated With Altered Hippocampal Connectivity and Atrophy. Am J Geriatr Psychiatry 2023; 31:112-123. [PMID: 36274019 PMCID: PMC10768933 DOI: 10.1016/j.jagp.2022.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Small Vessel Disease (SVD) is known to be associated with higher AD risk, but its relationship to amyloidosis in the progression of AD is unclear. In this cross-sectional study of cognitively normal older adults, we explored the interactive effects of SVD and amyloid-beta (Aβ) pathology on hippocampal functional connectivity during an associative encoding task and on hippocampal volume. METHODS This study included 61 cognitively normal older adults (age range: 65-93 years, age mean ± standard deviation: 75.8 ± 6.4, 41 [67.2%] female). PiB PET, T2-weighted FLAIR, T1-weighted and face-name fMRI images were acquired on each participant to evaluate brain Aβ, white matter hyperintensities (WMH+/- status), gray matter density, and hippocampal functional connectivity. RESULTS We found that, in WMH (+) older adults greater Aβ burden was associated with greater hippocampal local connectivity (i.e., hippocampal-parahippocampal connectivity) and lower gray matter density in medial temporal lobe (MTL), whereas in WMH (-) older adults greater Aβ burden was associated with greater hippocampal distal connectivity (i.e., hippocampal-prefrontal connectivity) and no changes in MTL gray matter density. Moreover, greater hippocampal local connectivity was associated with MTL atrophy. CONCLUSION These observations support a hippocampal excitotoxicity model linking SVD to neurodegeneration in preclinical AD. This may explain how SVD may accelerate the progression from Aβ positivity to neurodegeneration, and subsequent AD.
Collapse
Affiliation(s)
- Minjie Wu
- Department of Psychiatry (MW, EHE, DLT, ADC, WEK, HJA), University of Pittsburgh, Pittsburgh, PA.
| | - Noah Schweitzer
- Department of Bioengineering (NS, BEI, HJA), University of Pittsburgh, Pittsburgh, PA
| | - Bistra E Iordanova
- Department of Bioengineering (NS, BEI, HJA), University of Pittsburgh, Pittsburgh, PA
| | - Edythe Halligan-Eddy
- Department of Psychiatry (MW, EHE, DLT, ADC, WEK, HJA), University of Pittsburgh, Pittsburgh, PA
| | - Dana L Tudorascu
- Department of Psychiatry (MW, EHE, DLT, ADC, WEK, HJA), University of Pittsburgh, Pittsburgh, PA; Departments of Medicine and Biostatistics (DLT), University of Pittsburgh, Pittsburgh, PA
| | - Chester A Mathis
- Department of Radiology (CAM, BJL), University of Pittsburgh, Pittsburgh, PA
| | - Brian J Lopresti
- Department of Radiology (CAM, BJL), University of Pittsburgh, Pittsburgh, PA
| | - M Ilyas Kamboh
- Department of Human Genetics (MIK), University of Pittsburgh, Pittsburgh, PA
| | - Ann D Cohen
- Department of Psychiatry (MW, EHE, DLT, ADC, WEK, HJA), University of Pittsburgh, Pittsburgh, PA
| | - Beth E Snitz
- Department of Neurology (BES), University of Pittsburgh, Pittsburgh, PA
| | - William E Klunk
- Department of Psychiatry (MW, EHE, DLT, ADC, WEK, HJA), University of Pittsburgh, Pittsburgh, PA
| | - Howard J Aizenstein
- Department of Psychiatry (MW, EHE, DLT, ADC, WEK, HJA), University of Pittsburgh, Pittsburgh, PA; Department of Bioengineering (NS, BEI, HJA), University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
15
|
Edwards L, Thomas KR, Weigand AJ, Edmonds EC, Clark AL, Walker KS, Brenner EK, Nation DA, Maillard P, Bondi MW, Bangen KJ. White Matter Hyperintensity Volume and Amyloid-PET Synergistically Impact Memory Independent of Tau-PET in Older Adults Without Dementia. J Alzheimers Dis 2023; 94:695-707. [PMID: 37302031 PMCID: PMC10357163 DOI: 10.3233/jad-221209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) and cerebrovascular disease are common, co-existing pathologies in older adults. Whether the effects of cerebrovascular disease and AD biomarkers on cognition are additive or synergistic remains unclear. OBJECTIVE To examine whether white matter hyperintensity (WMH) volume moderates the independent association between each AD biomarker and cognition. METHODS In 586 older adults without dementia, linear regressions tested the interaction between amyloid-β (Aβ) positron emission tomography (PET) and WMH volume on cognition, independent of tau-PET. We also tested the interaction between tau-PET and WMH volume on cognition, independent of Aβ-PET. RESULTS Adjusting for tau-PET, the quadratic effect of WMH interacted with Aβ-PET to impact memory. There was no interaction between either the linear or quadratic effect of WMH and Aβ-PET on executive function. There was no interaction between WMH volume and tau-PET on either cognitive measure. CONCLUSION Results suggest that cerebrovascular lesions act synergistically with Aβ to affect memory, independent of tau, highlighting the importance of incorporating vascular pathology into biomarker assessment of AD.
Collapse
Affiliation(s)
- Lauren Edwards
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Kelsey R. Thomas
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Alexandra J. Weigand
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Emily C. Edmonds
- Banner Alzheimer’s Institute, Tucson, AZ, USA
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Alexandra L. Clark
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | | | - Einat K. Brenner
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Daniel A. Nation
- Department of Psychology, University of California Irvine, Irvine, CA, USA
| | - Pauline Maillard
- Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Mark W. Bondi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Katherine J. Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
16
|
An in vitro study on probable inhibition of cerebrovascular disease by salidroside as a potent small molecule against Aβ aggregation and cytotoxicity in cerebrovascular endothelial cells. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
17
|
Wan MD, Liu H, Liu XX, Zhang WW, Xiao XW, Zhang SZ, Jiang YL, Zhou H, Liao XX, Zhou YF, Tang BS, Wang JL, Guo JF, Jiao B, Shen L. Associations of multiple visual rating scales based on structural magnetic resonance imaging with disease severity and cerebrospinal fluid biomarkers in patients with Alzheimer’s disease. Front Aging Neurosci 2022; 14:906519. [PMID: 35966797 PMCID: PMC9374170 DOI: 10.3389/fnagi.2022.906519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/13/2022] [Indexed: 12/11/2022] Open
Abstract
The relationships between multiple visual rating scales based on structural magnetic resonance imaging (sMRI) with disease severity and cerebrospinal fluid (CSF) biomarkers in patients with Alzheimer’s disease (AD) were ambiguous. In this study, a total of 438 patients with clinically diagnosed AD were recruited. All participants underwent brain sMRI scan, and medial temporal lobe atrophy (MTA), posterior atrophy (PA), global cerebral atrophy-frontal sub-scale (GCA-F), and Fazekas rating scores were visually evaluated. Meanwhile, disease severity was assessed by neuropsychological tests such as the Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Clinical Dementia Rating (CDR). Among them, 95 patients were tested for CSF core biomarkers, including Aβ1–42, Aβ1–40, Aβ1–42/Aβ1–40, p-tau, and t-tau. As a result, the GCA-F and Fazekas scales showed positively significant correlations with onset age (r = 0.181, p < 0.001; r = 0.411, p < 0.001, respectively). Patients with late-onset AD (LOAD) showed higher GCA-F and Fazekas scores (p < 0.001, p < 0.001). With regard to the disease duration, the MTA and GCA-F were positively correlated (r = 0.137, p < 0.05; r = 0.106, p < 0.05, respectively). In terms of disease severity, a positively significant association emerged between disease severity and the MTA, PA GCA-F, and Fazekas scores (p < 0.001, p < 0.001, p < 0.001, p < 0.05, respectively). Moreover, after adjusting for age, gender, and APOE alleles, the MTA scale contributed to moderate to severe AD in statistical significance independently by multivariate logistic regression analysis (p < 0.05). The model combining visual rating scales, age, gender, and APOE alleles showed the best performance for the prediction of moderate to severe AD significantly (AUC = 0.712, sensitivity = 51.5%, specificity = 84.6%). In addition, we observed that the MTA and Fazekas scores were associated with a lower concentration of Aβ1–42 (p < 0.031, p < 0.022, respectively). In summary, we systematically analyzed the benefits of multiple visual rating scales in predicting the clinical status of AD. The visual rating scales combined with age, gender, and APOE alleles showed best performance in predicting the severity of AD. MRI biomarkers in combination with CSF biomarkers can be used in clinical practice.
Collapse
Affiliation(s)
- Mei-dan Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xi-xi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei-wei Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xue-wen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Si-zhe Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ya-ling Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin-xin Liao
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Ya-fang Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Bei-sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Jun-Ling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Ji-feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Bin Jiao,
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- *Correspondence: Lu Shen,
| |
Collapse
|
18
|
Kučikienė D, Costa AS, Banning LCP, van Gils V, Schulz JB, Ramakers IHGB, Verhey FRJ, Vos SJB, Reetz K. The Role of Vascular Risk Factors in Biomarker-Based AT(N) Groups: A German-Dutch Memory Clinic Study. J Alzheimers Dis 2022; 87:185-195. [PMID: 35275532 DOI: 10.3233/jad-215391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The relation between vascular risk factors (VRFs) and Alzheimer's disease (AD) is important due to possible pathophysiological association. OBJECTIVE To assess the prevalence of VRFs in biomarker-based AT(N) groups and the associations between VRFs, AD cerebrospinal fluid (CSF) biomarkers, brain magnetic resonance imaging (MRI), and cognition in clinical context. METHODS We included patients from two memory clinics in University Hospital Aachen (Germany) and Maastricht University Medical Centre (The Netherlands). Subjects were older than 45 years and had available data on demographics, VRFs, CSF AD biomarkers, and MRI. We categorized individuals in normal AD biomarkers, non-AD change, and AD-continuum groups based on amyloid (A), tau (T), and neurodegeneration (N) status in CSF and MRI. Regression models were corrected for age, sex, and site. RESULTS We included 838 participants (mean age 68.7, 53.2% male, mean MMSE 24.9). The most common VRFs were smoking (60.9%), hypertension (54.6%), and dyslipidemia (37.8%). Alcohol abuse and smoking were most frequent in the non-AD-change group, and coronary heart disease and carotid artery stenosis in the AD continuum group. Higher rates of depression were found in the normal AD biomarkers group. Parietal atrophy and cortical microbleeds were specific for the AD continuum group. Carotid artery stenosis was associated with pathological Aβ 42 and T-tau values, and diabetes and alcohol abuse were associated with worse medial temporal atrophy and atrial fibrillation, with worse cognition. CONCLUSION VRFs are common in memory clinic patients, showing differences across the AT(N) biomarker groups. This is important for prevention and individualized treatment of dementia.
Collapse
Affiliation(s)
- Domantė Kučikienė
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Ana Sofia Costa
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany.,JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich, Jülich, Germany and RWTH Aachen University, Aachen, Germany
| | - Leonie C P Banning
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, the Netherlands
| | - Veerle van Gils
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, the Netherlands
| | - Jörg B Schulz
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany.,JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich, Jülich, Germany and RWTH Aachen University, Aachen, Germany
| | - Inez H G B Ramakers
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, the Netherlands
| | - Frans R J Verhey
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, the Netherlands
| | - Stephanie J B Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, the Netherlands
| | - Kathrin Reetz
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany.,JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich, Jülich, Germany and RWTH Aachen University, Aachen, Germany
| |
Collapse
|
19
|
Differential Effects of White Matter Hyperintensities and Regional Amyloid Deposition on Regional Cortical Thickness. Neurobiol Aging 2022; 115:12-19. [DOI: 10.1016/j.neurobiolaging.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
|
20
|
Abdelnour C, Ferreira D, van de Beek M, Cedres N, Oppedal K, Cavallin L, Blanc F, Bousiges O, Wahlund LO, Pilotto A, Padovani A, Boada M, Pagonabarraga J, Kulisevsky J, Aarsland D, Lemstra AW, Westman E. Parsing heterogeneity within dementia with Lewy bodies using clustering of biological, clinical, and demographic data. Alzheimers Res Ther 2022; 14:14. [PMID: 35063023 PMCID: PMC8783432 DOI: 10.1186/s13195-021-00946-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) includes various core clinical features that result in different phenotypes. In addition, Alzheimer's disease (AD) and cerebrovascular pathologies are common in DLB. All this increases the heterogeneity within DLB and hampers clinical diagnosis. We addressed this heterogeneity by investigating subgroups of patients with similar biological, clinical, and demographic features. METHODS We studied 107 extensively phenotyped DLB patients from the European DLB consortium. Factorial analysis of mixed data (FAMD) was used to identify dimensions in the data, based on sex, age, years of education, disease duration, Mini-Mental State Examination (MMSE), cerebrospinal fluid (CSF) levels of AD biomarkers, core features of DLB, and regional brain atrophy. Subsequently, hierarchical clustering analysis was used to subgroup individuals based on the FAMD dimensions. RESULTS We identified 3 dimensions using FAMD that explained 38% of the variance. Subsequent hierarchical clustering identified 4 clusters. Cluster 1 was characterized by amyloid-β and cerebrovascular pathologies, medial temporal atrophy, and cognitive fluctuations. Cluster 2 had posterior atrophy and showed the lowest frequency of visual hallucinations and cognitive fluctuations and the worst cognitive performance. Cluster 3 had the highest frequency of tau pathology, showed posterior atrophy, and had a low frequency of parkinsonism. Cluster 4 had virtually normal AD biomarkers, the least regional brain atrophy and cerebrovascular pathology, and the highest MMSE scores. CONCLUSIONS This study demonstrates that there are subgroups of DLB patients with different biological, clinical, and demographic characteristics. These findings may have implications in the diagnosis and prognosis of DLB, as well as in the treatment response in clinical trials.
Collapse
Affiliation(s)
- Carla Abdelnour
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya-Barcelona, Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
- Department of Medicine of the Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Marleen van de Beek
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Nira Cedres
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Psychology, Sensory Cognitive Interaction Laboratory (SCI-lab), Stockholm University, Stockholm, Sweden
| | - Ketil Oppedal
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Radiology, Stavanger University Hospital, Stavanger, Norway
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - Lena Cavallin
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Radiology Karolinska University Hospital, Stockholm, Sweden
| | - Frédéric Blanc
- Service, Memory Resources and Research Centre, University Hospital of Strasbourg, Strasbourg, France
- Team IMIS/Neurocrypto, French National Center for Scientific Research, ICube Laboratory and Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
- Centre Mémoire, de Ressources et de Recherche d'Alsace (Strasbourg-Colmar), Strasbourg, France
| | - Olivier Bousiges
- Centre Mémoire, de Ressources et de Recherche d'Alsace (Strasbourg-Colmar), Strasbourg, France
- Laboratory of Biochemistry and Molecular Biology, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, University Hospital of Strasbourg, Strasbourg, France
| | - Lars-Olof Wahlund
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Mercè Boada
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya-Barcelona, Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau. Biomedical Research Institute (IIB-Sant Pau), Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau. Biomedical Research Institute (IIB-Sant Pau), Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Dag Aarsland
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Afina W Lemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Eric Westman
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
21
|
Giong HK, Lee JS. Systematic expression profiling of neuropathy-related aminoacyl-tRNA synthetases in zebrafish during development. Biochem Biophys Res Commun 2022; 587:92-98. [PMID: 34872004 DOI: 10.1016/j.bbrc.2021.11.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/27/2021] [Indexed: 12/01/2022]
Abstract
Aminoacyl tRNA synthetases (ARSs) are a group of proteins, acting as transporters to transfer and attach the appropriate amino acids onto their cognate tRNAs for translation. So far, 18 out of 20 cytoplasmic ARSs are reported to be connected to different neuropathy disorders with multi-organ defects that are often accompanied with developmental delays. Thus, it is important to understand functions and impacts of ARSs at the whole organism level. Here, we systematically analyzed the spatiotemporal expression of 14 ars and 2 aimp genes during development in zebrafish that have not be previously reported. Not only in the brain, their dynamic expression patterns in several tissues such as in the muscles, liver and intestine suggest diverse roles in a wide range of development processes in addition to neuronal function, which is consistent with potential involvement in multiple syndrome diseases associated with ARS mutations. In particular, hinted by its robust expression pattern in the brain, we confirmed that aimp1 is required for the formation of cerebrovasculature by a loss-of-function approach. Overall, our systematic profiling data provides a useful basis for studying roles of ARSs during development and understanding their potential functions in the etiology of related diseases.
Collapse
Affiliation(s)
- Hoi-Khoanh Giong
- Disease Target Structure Research Center, KRIBB, Daejeon, South Korea; KRIBB School, University of Science and Technology, Daejeon, South Korea; Dementia DTC R&D Convergence Program, KIST, Seoul, South Korea
| | - Jeong-Soo Lee
- Disease Target Structure Research Center, KRIBB, Daejeon, South Korea; KRIBB School, University of Science and Technology, Daejeon, South Korea; Dementia DTC R&D Convergence Program, KIST, Seoul, South Korea.
| |
Collapse
|
22
|
Xia Y, Yassi N, Raniga P, Bourgeat P, Desmond P, Doecke J, Ames D, Laws SM, Fowler C, Rainey-Smith SR, Martins R, Maruff P, Villemagne VL, Masters CL, Rowe CC, Fripp J, Salvado O. Comorbidity of Cerebrovascular and Alzheimer's Disease in Aging. J Alzheimers Dis 2021; 78:321-334. [PMID: 32986666 DOI: 10.3233/jad-200419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Cerebrovascular disease often coexists with Alzheimer's disease (AD). While both diseases share common risk factors, their interrelationship remains unclear. Increasing the understanding of how cerebrovascular changes interact with AD is essential to develop therapeutic strategies and refine biomarkers for early diagnosis. OBJECTIVE We investigate the prevalence and risk factors for the comorbidity of amyloid-β (Aβ) and cerebrovascular disease in the Australian Imaging, Biomarkers and Lifestyle Study of Ageing, and further examine their cross-sectional association. METHODS A total of 598 participants (422 cognitively normal, 89 with mild cognitive impairment, 87 with AD) underwent positron emission tomography and structural magnetic resonance imaging for assessment of Aβ deposition and cerebrovascular disease. Individuals were categorized based on the comorbidity status of Aβ and cerebrovascular disease (V) as Aβ-V-, Aβ-V+, Aβ+V-, or Aβ+V+. RESULTS Advancing age was associated with greater likelihood of cerebrovascular disease, high Aβ load and their comorbidity. Apolipoprotein E ɛ4 carriage was only associated with Aβ positivity. Greater total and regional WMH burden were observed in participants with AD. However, no association were observed between Aβ and WMH measures after stratification by clinical classification, suggesting that the observed association between AD and cerebrovascular disease was driven by the common risk factor of age. CONCLUSION Our observations demonstrate common comorbid condition of Aβ and cerebrovascular disease in later life. While our study did not demonstrate a convincing cross-sectional association between Aβ and WMH burden, future longitudinal studies are required to further confirm this.
Collapse
Affiliation(s)
- Ying Xia
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, QLD, Australia
| | - Nawaf Yassi
- Department of Medicine and Neurology, Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia.,Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Parnesh Raniga
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, QLD, Australia
| | - Pierrick Bourgeat
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, QLD, Australia
| | - Patricia Desmond
- Department of Radiology, The Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - James Doecke
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, QLD, Australia
| | - David Ames
- National Ageing Research Institute, Parkville, VIC, Australia.,Academic Unit for Psychiatry of Old Age, University of Melbourne, Parkville, VIC, Australia
| | - Simon M Laws
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, WA, Australia.,Sir James McCusker Alzheimer's Disease Research Unit, Hollywood Private Hospital, Perth, WA, Australia
| | - Christopher Fowler
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Stephanie R Rainey-Smith
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Sir James McCusker Alzheimer's Disease Research Unit, Hollywood Private Hospital, Perth, WA, Australia
| | - Ralph Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Sir James McCusker Alzheimer's Disease Research Unit, Hollywood Private Hospital, Perth, WA, Australia
| | - Paul Maruff
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Cog State Ltd, Melbourne, VIC, Australia
| | - Victor L Villemagne
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, VIC, Australia.,Department of Medicine, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Christopher C Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, VIC, Australia.,Department of Medicine, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
| | - Jurgen Fripp
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, QLD, Australia
| | - Olivier Salvado
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, QLD, Australia.,CSIRO Data61, Brisbane, QLD, Australia
| | | |
Collapse
|
23
|
Yu GX, Zhang T, Hou XH, Ou YN, Hu H, Wang ZT, Guo Y, Xu W, Tan L, Yu JT, Tan L. Associations of Vascular Risk with Cognition, Brain Glucose Metabolism, and Clinical Progression in Cognitively Intact Elders. J Alzheimers Dis 2021; 80:321-330. [PMID: 33523005 DOI: 10.3233/jad-201117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Increasing evidence supports an important role of vascular risk in cognitive decline and dementia. OBJECTIVE This study aimed to examine whether vascular risk was associated with cognitive decline, cerebral hypometabolism, and clinical progression in cognitively intact elders. METHODS Vascular risk was assessed by the Framingham Heart Study general Cardiovascular disease (FHS-CVD) risk score. The cross-sectional and longitudinal associations of FHS-CVD risk score with cognition and brain glucose metabolism were explored using multivariate linear regression and linear mixed effects models, respectively. The risk of clinical progression conversion was assessed using Kaplan-Meier survival curves and multivariate Cox proportional hazard models. RESULTS A total of 491 cognitively intact elders were included from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Participants with high FHS-CVD risk scores had lower baseline Mini-Mental State Examination (MMSE) (p = 0.009), executive function (EF) (p < 0.001), memory function (MEM) (p < 0.001) scores, and F18-fluorodeoxyglucose positron emission tomography (FDG-PET) uptake (p < 0.001) than those with low FHS-CVD risk scores. In longitudinal analyses, individuals with higher FHS-CVD risk scores had greater longitudinal declines in MMSE (p = 0.043), EF (p = 0.029) scores, and FDG-PET uptake (p = 0.035). Besides, individuals with a higher vascular risk had an increased risk of clinical progression (p = 0.004). CONCLUSION These findings indicated effects of vascular risk on cognitive decline, cerebral hypometabolism, and clinical progression. Early detection and management of vascular risk factors might be useful in the prevention of dementia.
Collapse
Affiliation(s)
- Guang-Xiang Yu
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China.,Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ting Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-He Hou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yu Guo
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lin Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | | |
Collapse
|
24
|
Wang M, Lv J, Huang X, Wisniewski T, Zhang W. High-fat diet-induced atherosclerosis promotes neurodegeneration in the triple transgenic (3 × Tg) mouse model of Alzheimer's disease associated with chronic platelet activation. ALZHEIMERS RESEARCH & THERAPY 2021; 13:144. [PMID: 34454596 PMCID: PMC8403418 DOI: 10.1186/s13195-021-00890-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023]
Abstract
Background Epidemiological studies link vascular disease risk factors such as atherosclerosis, hypertension, and diabetes mellitus with Alzheimer’s disease (AD). Whether there are direct links between these conditions to β-amyloid (Aβ) aggregation and tau pathology is uncertain. Methods To investigate the possible link between atherosclerosis and AD pathology, we subjected triple transgenic (3 × Tg) AD mice to a high-fat diet (HFD) at 3 months of age, which corresponds to early adulthood in humans. Results After 9 months of treatment, HFD-treated 3 × Tg mice exhibited worse memory deficits accompanied by blood hypercoagulation, thrombocytosis, and chronic platelet activation. Procoagulant platelets from HFD-treated 3 × Tg mice actively induced the conversion of soluble Aβ40 into fibrillar Aβ aggregates, associated with increased expression of integrin αIIbβ3 and clusterin. At 9 months and older, platelet-associated fibrillar Aβ aggregates were observed to obstruct the cerebral blood vessels in HFD-treated 3 × Tg mice. HFD-treated 3 × Tg mice exhibited a greater cerebral amyloid angiopathy (CAA) burden and increased cerebral vascular permeability, as well as more extensive neuroinflammation, tau hyperphosphorylation, and neuron loss. Disaggregation of preexisting platelet micro-clots with humanized GPIIIa49-66 scFv Ab (A11) significantly reduced platelet-associated fibrillar Aβ aggregates in vitro and improved vascular permeability in vivo. Conclusions These findings suggest that a major contribution of atherosclerosis to AD pathology is via its effects on blood coagulation and the formation of platelet-mediated Aβ aggregates that compromise cerebral blood flow and therefore neuronal function. This leads to cognitive decline. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00890-9.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Junyan Lv
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Xiaoshan Huang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Thomas Wisniewski
- Center for Cognitive Neurology and Departments of Neurology, Pathology and Psychiatry, New York University School of Medicine, Science Building, Rm1017, 435 East 30th Street, New York, NY, 10016, USA.
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
25
|
Patel AG, Nehete PN, Krivoshik SR, Pei X, Cho EL, Nehete BP, Ramani MD, Shao Y, Williams LE, Wisniewski T, Scholtzova H. Innate immunity stimulation via CpG oligodeoxynucleotides ameliorates Alzheimer's disease pathology in aged squirrel monkeys. Brain 2021; 144:2146-2165. [PMID: 34128045 PMCID: PMC8502485 DOI: 10.1093/brain/awab129] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease is the most common cause of dementia and the only illness among the top 10 causes of death for which there is no disease-modifying therapy. The failure rate of clinical trials is very high, in part due to the premature translation of successful results in transgenic mouse models to patients. Extensive evidence suggests that dysregulation of innate immunity and microglia/macrophages plays a key role in Alzheimer's disease pathogenesis. Activated resident microglia and peripheral macrophages can display protective or detrimental phenotypes depending on the stimulus and environment. Toll-like receptors (TLRs) are a family of innate immune regulators known to play an important role in governing the phenotypic status of microglia. We have shown in multiple transgenic Alzheimer's disease mouse models that harnessing innate immunity via TLR9 agonist CpG oligodeoxynucleotides (ODNs) modulates age-related defects associated with immune cells and safely reduces amyloid plaques, oligomeric amyloid-β, tau pathology, and cerebral amyloid angiopathy (CAA) while promoting cognitive benefits. In the current study we have used a non-human primate model of sporadic Alzheimer's disease pathology that develops extensive CAA-elderly squirrel monkeys. The major complications in current immunotherapeutic trials for Alzheimer's disease are amyloid-related imaging abnormalities, which are linked to the presence and extent of CAA; hence, the prominence of CAA in elderly squirrel monkeys makes them a valuable model for studying the safety of the CpG ODN-based concept of immunomodulation. We demonstrate that long-term use of Class B CpG ODN 2006 induces a favourable degree of innate immunity stimulation without producing excessive or sustained inflammation, resulting in efficient amelioration of both CAA and tau Alzheimer's disease-related pathologies in association with behavioural improvements and in the absence of microhaemorrhages in aged elderly squirrel monkeys. CpG ODN 2006 has been well established in numerous human trials for a variety of diseases. The present evidence together with our earlier, extensive preclinical research, validates the beneficial therapeutic outcomes and safety of this innovative immunomodulatory approach, increasing the likelihood of CpG ODN therapeutic efficacy in future clinical trials.
Collapse
Affiliation(s)
- Akash G Patel
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Pramod N Nehete
- Department of Comparative Medicine, the University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Sara R Krivoshik
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Xuewei Pei
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Elizabeth L Cho
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Bharti P Nehete
- Department of Comparative Medicine, the University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Margish D Ramani
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Yongzhao Shao
- Division of Biostatistics, Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Lawrence E Williams
- Department of Comparative Medicine, the University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Henrieta Scholtzova
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
- Department of Comparative Medicine, the University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| |
Collapse
|
26
|
Moore EE, Liu D, Bown CW, Kresge HA, Gupta DK, Pechman KR, Mendes LA, Davis LT, Gifford KA, Anderson AW, Wang TJ, Landman BA, Hohman TJ, Jefferson AL. Lower cardiac output is associated with neurodegeneration among older adults with normal cognition but not mild cognitive impairment. Brain Imaging Behav 2021; 15:2040-2050. [PMID: 33040257 PMCID: PMC8035362 DOI: 10.1007/s11682-020-00398-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 01/21/2023]
Abstract
Subclinical cardiac dysfunction is associated with smaller total brain volume on magnetic resonance imaging (MRI). To study whether cardiac output relates to regional measurements of grey and white matter structure, older adults (n = 326) underwent echocardiogram to quantify cardiac output (L/min) and brain MRI. Linear regressions related cardiac output to grey matter volumes measured on T1 and white matter hyperintensities assessed on T2-FLAIR. Voxelwise analyses related cardiac output to diffusion tensor imaging adjusting for demographic, genetic, and vascular risk factors. Follow-up models assessed a cardiac output x diagnosis interaction with stratification (normal cognition, mild cognitive impairment). Cardiac output interacted with diagnosis, such that lower cardiac output related to smaller total grey matter (p = 0.01), frontal lobe (p = 0.01), and occipital lobe volumes (p = 0.01) among participants with normal cognition. When excluding participants with cardiovascular disease and atrial fibrillation, associations emerged with smaller parietal lobe (p = 0.005) and hippocampal volume (p = 0.05). Subtle age-related cardiac changes may disrupt neuronal homeostasis and impact grey matter integrity prior to cognitive impairment.
Collapse
Affiliation(s)
- Elizabeth E Moore
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, 1207 17th Avenue South, Suite 204, Nashville, TN, 37212, USA
- Medical Scientist Training Program, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Dandan Liu
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, 1207 17th Avenue South, Suite 204, Nashville, TN, 37212, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Corey W Bown
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, 1207 17th Avenue South, Suite 204, Nashville, TN, 37212, USA
| | - Hailey A Kresge
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, 1207 17th Avenue South, Suite 204, Nashville, TN, 37212, USA
| | - Deepak K Gupta
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kimberly R Pechman
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, 1207 17th Avenue South, Suite 204, Nashville, TN, 37212, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lisa A Mendes
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - L Taylor Davis
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, 1207 17th Avenue South, Suite 204, Nashville, TN, 37212, USA
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katherine A Gifford
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, 1207 17th Avenue South, Suite 204, Nashville, TN, 37212, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam W Anderson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Thomas J Wang
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bennett A Landman
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, 1207 17th Avenue South, Suite 204, Nashville, TN, 37212, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Angela L Jefferson
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, 1207 17th Avenue South, Suite 204, Nashville, TN, 37212, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
27
|
Vipin A, Wong BYX, Kumar D, Low A, Ng KP, Kandiah N. Association between white matter hyperintensity load and grey matter atrophy in mild cognitive impairment is not unidirectional. Aging (Albany NY) 2021; 13:10973-10988. [PMID: 33861727 PMCID: PMC8109133 DOI: 10.18632/aging.202977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/05/2021] [Indexed: 12/23/2022]
Abstract
Neuroimaging measures of Alzheimer's disease (AD) include grey matter volume (GMV) alterations in the Default Mode Network (DMN) and Executive Control Network (ECN). Small-vessel cerebrovascular disease, often visualised as white matter hyperintensities (WMH) on MRI, is often seen in AD. However, the relationship between WMH load and GMV needs further examination. We examined the load-dependent influence of WMH on GMV and cognition in 183 subjects. T1-MRI data from 93 Mild Cognitive Impairment (MCI) and 90 cognitively normal subjects were studied and WMH load was categorized into low, medium and high terciles. We examined how differing loads of WMH related to whole-brain voxel-wise and regional DMN and ECN GMV. We further investigated how regional GMV moderated the relationship between WMH and cognition. We found differential load-dependent effects of WMH burden on voxel-wise and regional atrophy in only MCI. At high load, as expected WMH negatively related to both ECN and DMN GMV, however at low load, WMH positively related to ECN GMV. Additionally, negative associations between WMH and memory and executive function were moderated by regional GMV. Our results demonstrate non-unidirectional relationships between WMH load, GMV and cognition in MCI.
Collapse
Affiliation(s)
- Ashwati Vipin
- National Neuroscience Institute, Singapore, Singapore
| | | | - Dilip Kumar
- National Neuroscience Institute, Singapore, Singapore
| | - Audrey Low
- National Neuroscience Institute, Singapore, Singapore
| | - Kok Pin Ng
- National Neuroscience Institute, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore.,Lee Kong Chian-Nanyang Technological University, Singapore, Singapore
| | - Nagaendran Kandiah
- National Neuroscience Institute, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore.,Lee Kong Chian-Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
28
|
Nichols JB, Malek-Ahmadi M, Tariot PN, Serrano GE, Sue LI, Beach TG. Vascular Lesions, APOE ε4, and Tau Pathology in Alzheimer Disease. J Neuropathol Exp Neurol 2021; 80:240-246. [PMID: 33617650 PMCID: PMC7899190 DOI: 10.1093/jnen/nlaa160] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We sought to determine the associations among cerebral amyloid angiopathy (CAA), white matter rarefaction (WMR), circle of Willis atherosclerosis (CWA), and total microinfarct number with Braak neurofibrillary stage in postmortem individuals with and without Alzheimer disease (AD). Data from 355 cases of autopsied individuals with Braak stage I-VI who had antemortem consensus diagnoses of cognitively unimpaired (n = 183), amnestic mild cognitive impairment (n = 31), and AD dementia (n = 141) were used. The association between Braak stage and vascular lesions were individually assessed using multivariable linear regression that adjusted for age at death, APOE ε4 carrier status, sex, education, and neuritic plaque density. CAA (p = 0.007) and WMR (p < 0.001) were associated with Braak stage, independent of amyloid load; microinfarct number and CWA showed no association. Analyses of the interactions between APOE ε4 carrier status and vascular lesions found that greater WMR and positive ε4 carrier status were associated with higher Braak stages. These results suggest that CAA and WMR are statistically linked to the severity of AD-related NFT pathology. The statistical link between WMR and NFT load may be strengthened by the presence of APOE ε4 carrier status. An additional finding was that Lewy body pathology was most prevalent in higher Braak stages.
Collapse
Affiliation(s)
- Jodie B Nichols
- From the Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona, USA
| | | | | | - Geidy E Serrano
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| |
Collapse
|
29
|
Eckerström C, Eckerström M, Göthlin M, Molinder A, Jonsson M, Kettunen P, Svensson J, Rolstad S, Wallin A. Characteristic Biomarker and Cognitive Profile in Incipient Mixed Dementia. J Alzheimers Dis 2020; 73:597-607. [PMID: 31815692 PMCID: PMC7029359 DOI: 10.3233/jad-190651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background: Research has shown that mixed dementia is more common than previously believed but little is known of its early stages. Objective: To examine if incipient mixed dementia can be differentiated from incipient Alzheimer’s disease (AD) and subcortical ischemic vascular dementia (SVD) using neuropsychological tests, cerebrospinal fluid (CSF) markers, and magnetic resonance imaging markers. Methods: We included 493 patients and controls from the Gothenburg MCI study and used the dementia groups for marker selection (CSF total-tau (T-tau), phospho-tau (P-tau), and amyloid-β42 (Aβ42), 11 neuropsychological tests, and 92 regional brain volumes) and to obtain cut-off values which were then applied to the MCI groups. Results: Incipient mixed dementia was best differentiated from incipient AD by the Word fluency F-A-S test and the Trail making test A. CSF T-tau, P-tau, and Aβ42 differentiated incipient mixed dementia from incipient SVD. Conclusion: Incipient mixed dementia is characterized by an AD-like biomarker profile and an SVD-like cognitive profile. Incipient mixed dementia can be separated from incipient AD and incipient SVD using CSF markers and cognitive testing.
Collapse
Affiliation(s)
- Carl Eckerström
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marie Eckerström
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mattias Göthlin
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Molinder
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michael Jonsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Svensson
- Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sindre Rolstad
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
30
|
Guo Y, Li H, Tan L, Chen S, Yang Y, Ma Y, Zuo C, Dong Q, Tan L, Yu J. Discordant Alzheimer's neurodegenerative biomarkers and their clinical outcomes. Ann Clin Transl Neurol 2020; 7:1996-2009. [PMID: 32949193 PMCID: PMC7545611 DOI: 10.1002/acn3.51196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/08/2020] [Accepted: 08/25/2020] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE In the 2018 ATN framework, Alzheimer's neurodegenerative biomarkers comprised cerebrospinal fluid (CSF) total tau, 18 F-fluorodeoxyglucose-positron emission tomography, and brain atrophy. We aimed to assess the clinical outcomes of having discordant Alzheimer's neurodegenerative biomarkers. METHODS A total of 721 non-demented individuals from the Alzheimer's Disease Neuroimaging Initiative database were included and then further categorized into concordant-negative, discordant, and concordant-positive groups. Demographic distributions of the groups were compared. Longitudinal changes in clinical outcomes and risk of conversion were assessed using linear mixed-effects models and multivariate Cox proportional hazard models, respectively. RESULTS Discordant group was intermediate to concordant-negative and concordant-positive groups in terms of APOE ε4 positivity, CSF amyloid-beta, and phosphorylated tau. Compared with concordant-negative group, discordant group deteriorated faster in cognitive scores (Mini-Mental State Examination, the Clinical Dementia Rating Scale-Sum of Boxes, and the Functional Activities Questionnaire) and demonstrated greater rates of atrophy in brain structures (hippocampus, entorhinal cortex, and whole brain), and concordant-positive group performed worse over time than discordant group. Moreover, the risk of cognitive decline increased from concordant-negative to discordant to concordant-positive. The results from longitudinal analyses were validated in A+T+, cognitively normal, and mild cognitive impairment individuals, and were also validated by applying different cutoffs and neurodegenerative biomarkers. INTERPRETATION Discordant neurodegenerative status denotes a stage of cognitive function which is intermediate between concordant-negative and concordant-positive. Identification of discordant cases would provide insights into intervention and new therapy approaches, particularly in A+T+ individuals. Moreover, this work may be a complement to the ATN scheme.
Collapse
Affiliation(s)
- Yu Guo
- Department of NeurologyQingdao Municipal Hospital Affiliated to Qingdao UniversityQingdaoChina
| | - Hong‐Qi Li
- Department of Neurology and Institute of NeurologyHuashan Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Lin Tan
- Department of NeurologyQingdao Municipal Hospital Affiliated to Qingdao UniversityQingdaoChina
| | - Shi‐Dong Chen
- Department of Neurology and Institute of NeurologyHuashan Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Yu‐Xiang Yang
- Department of Neurology and Institute of NeurologyHuashan Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Ya‐Hui Ma
- Department of NeurologyQingdao Municipal Hospital Affiliated to Qingdao UniversityQingdaoChina
| | - Chuan‐Tao Zuo
- PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Qiang Dong
- Department of Neurology and Institute of NeurologyHuashan Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Lan Tan
- Department of NeurologyQingdao Municipal Hospital Affiliated to Qingdao UniversityQingdaoChina
| | - Jin‐Tai Yu
- Department of Neurology and Institute of NeurologyHuashan Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | | |
Collapse
|
31
|
Maliszewska-Cyna E, Vecchio LM, Thomason LAM, Oore JJ, Steinman J, Joo IL, Dorr A, McLaurin J, Sled JG, Stefanovic B, Aubert I. The effects of voluntary running on cerebrovascular morphology and spatial short-term memory in a mouse model of amyloidosis. Neuroimage 2020; 222:117269. [PMID: 32818618 DOI: 10.1016/j.neuroimage.2020.117269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/27/2022] Open
Abstract
Physical activity has been correlated with a reduced risk of cognitive decline, including that associated with vascular dementia, mild cognitive impairment (MCI) and Alzheimer's disease (AD); recent literature suggests this may in part result from benefits to the cerebrovascular network. Using a transgenic (Tg) mouse model of AD, we evaluated the effect of running on cortical and hippocampal vascular morphology, cerebral amyloid angiopathy, amyloid plaque load, and spatial memory. TgCRND8 mice present with progressive amyloid pathology, advancing from the cortex to the hippocampus in a time-dependent manner. We postulated that the characteristic progression of pathology could lead to differential, time-dependent effects of physical activity on vascular morphology in these brain regions at 6 months of age. We used two-photon fluorescent microscopy and 3D vessel tracking to characterize vascular and amyloid pathology in sedentary TgCRND8 mice compared those who have a history of physical activity (unlimited access to a running wheel, from 3 to 6 months of age). In sedentary TgCRND8 mice, capillary density was found to be lower in the cortex and higher in the hippocampus compared to non-transgenic (nonTg) littermates. Capillary length, vessel branching, and non-capillary vessel tortuosity were also higher in the hippocampus of sedentary TgCRND8 compared to nonTg mice. Three months of voluntary running resulted in normalizing cortical and hippocampal microvascular morphology, with no significant difference between TgCRND8 and nonTg mice. The benefits of physical activity on cortical and hippocampal vasculature in 6-month old TgCRND8 mice were not paralleled by significant changes on parenchymal and cerebral amyloid pathology. Short-term spatial memory- as evaluated by performance in the Y-maze- was significantly improved in running compared to sedentary TgCRND8 mice. These results suggest that long-term voluntary running contributes to the maintenance of vascular morphology and spatial memory in TgCRND8 mice, even in the absence of an effect on amyloid pathology.
Collapse
Affiliation(s)
- Ewelina Maliszewska-Cyna
- Hurvitz Brain Sciences, Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave, S112, Toronto, Ontario M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Laura M Vecchio
- Hurvitz Brain Sciences, Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave, S112, Toronto, Ontario M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| | - Lynsie A M Thomason
- Hurvitz Brain Sciences, Physical Sciences, Sunnybrook Research Institute, Canada
| | - Jonathan J Oore
- Hurvitz Brain Sciences, Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave, S112, Toronto, Ontario M4N 3M5, Canada
| | - Joe Steinman
- Mouse Imaging Centre, Hospital for Sick Children, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | - Illsung Lewis Joo
- Hurvitz Brain Sciences, Physical Sciences, Sunnybrook Research Institute, Canada
| | - Adrienne Dorr
- Hurvitz Brain Sciences, Physical Sciences, Sunnybrook Research Institute, Canada
| | - JoAnne McLaurin
- Hurvitz Brain Sciences, Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave, S112, Toronto, Ontario M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - John G Sled
- Mouse Imaging Centre, Hospital for Sick Children, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | - Bojana Stefanovic
- Hurvitz Brain Sciences, Physical Sciences, Sunnybrook Research Institute, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | - Isabelle Aubert
- Hurvitz Brain Sciences, Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave, S112, Toronto, Ontario M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
32
|
Malek-Ahmadi M, Chen K, Perez SE, Mufson EJ. Cerebral Amyloid Angiopathy and Neuritic Plaque Pathology Correlate with Cognitive Decline in Elderly Non-Demented Individuals. J Alzheimers Dis 2020; 67:411-422. [PMID: 30594928 DOI: 10.3233/jad-180765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is a vascular neuropathology commonly reported in non-cognitively impaired (NCI), mild cognitive impairment, and Alzheimer's disease (AD) brains. However, it is unknown whether similar findings are present in non-demented elderly subjects. OBJECTIVE This study determined the association between CAA and cognition among elderly NCI subjects with varying levels of AD pathology. METHODS Data from 182 cases that received a diagnosis of NCI at their first clinical assessment were obtained from the Rush Religious Orders study (RROS). A cognitive composite score was used to measure cognitive decline. CAA was dichotomized as present or absent. Cases were also dichotomized according to CERAD neuropathological diagnosis and Braak staging. A mixed model-repeated measures analysis assessed decline on the cognitive composite score. RESULTS CAA, alone, was not associated with cognitive decline [-0.87 (95% CI: -3.33, 1.58), p = 0.49]. However, among those with CAA, the High CERAD group had significantly greater decline relative to the Low CERAD group [-4.08 (95% CI: -7.10, -1.06), p = 0.008]. The High and Low CERAD groups were not significantly different [-1.77 (95% CI: -6.14, 2.60), p = 0.43] in those without CAA. Composite score decline in the High and Low Braak groups with [-1.32 (95% CI: -4.40, 1.75), p = 0.40] or without [0.27 (95% CI: -4.01, 4.56), p = 0.90] CAA was not significantly different. CONCLUSION The current data shows that an interaction between CAA and plaque load is associated with greater decline on a cognitive composite score used to test non-cognitively impaired elderly participants in AD prevention trials.
Collapse
Affiliation(s)
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Sylvia E Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
33
|
Vanherle L, Matuskova H, Don-Doncow N, Uhl FE, Meissner A. Improving Cerebrovascular Function to Increase Neuronal Recovery in Neurodegeneration Associated to Cardiovascular Disease. Front Cell Dev Biol 2020; 8:53. [PMID: 32117979 PMCID: PMC7020256 DOI: 10.3389/fcell.2020.00053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Mounting evidence indicates that the presence of cardiovascular disease (CVD) and risk factors elevates the incidence of cognitive impairment (CI) and dementia. CVD and associated decline in cardiovascular function can impair cerebral blood flow (CBF) regulation, leading to the disruption of oxygen and nutrient supply in the brain where limited intracellular energy storage capacity critically depends on CBF to sustain proper neuronal functioning. During hypertension and acute as well as chronic CVD, cerebral hypoperfusion and impaired cerebrovascular function are often associated with neurodegeneration and can lead to CI and dementia. Currently, all forms of neurodegeneration associated to CVD lack effective treatments, which highlights the need to better understand specific mechanisms linking cerebrovascular dysfunction and CBF deficits to neurodegeneration. In this review, we discuss vascular targets that have already shown attenuation of neurodegeneration or CI associated to hypertension, heart failure (HF) and stroke by improving cerebrovascular function or CBF deficits.
Collapse
Affiliation(s)
- Lotte Vanherle
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Hana Matuskova
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.,Department of Neurology, University Hospital Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Nicholas Don-Doncow
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Franziska E Uhl
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Anja Meissner
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
34
|
Yassi N, Hilal S, Xia Y, Lim YY, Watson R, Kuijf H, Fowler C, Yates P, Maruff P, Martins R, Ames D, Chen C, Rowe CC, Villemagne VL, Salvado O, Desmond PM, Masters CL. Influence of Comorbidity of Cerebrovascular Disease and Amyloid-β on Alzheimer’s Disease. J Alzheimers Dis 2020; 73:897-907. [DOI: 10.3233/jad-191028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Nawaf Yassi
- Departments of Medicine and Neurology, Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Saima Hilal
- Memory Aging and Cognition Centre, Department of Pharmacology, National University of Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Ying Xia
- The Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia
| | - Yen Ying Lim
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Rosie Watson
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Hugo Kuijf
- Image Sciences Institute, University Medical Center, Utrecht, Utrecht, Netherlands
| | - Christopher Fowler
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Paul Yates
- Department of Aged Care Services, Austin Health, Heidelberg, Australia
- Department of Medicine, Austin Hospital, University of Melbourne, Heidelberg, Australia
| | | | - Ralph Martins
- Centre of Excellence for Alzheimer’s Disease Research and Care, Edith Cowan University, Perth, Australia
| | - David Ames
- Academic Unit for Psychiatry of Old Age, University of Melbourne, Parkville, Australia
- National Ageing Research Institute, Parkville, Australia
| | - Christopher Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, National University of Singapore, Singapore
| | - Christopher C. Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Victor L. Villemagne
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Australia
| | - Olivier Salvado
- Data61, Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia
| | - Patricia M. Desmond
- Department of Radiology, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Colin L. Masters
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| |
Collapse
|
35
|
An Assessment of the Relationship between Structural and Functional Imaging of Cerebrovascular Disease and Cognition-Related Fibers. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:4347676. [PMID: 32411283 PMCID: PMC7201792 DOI: 10.1155/2020/4347676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/05/2019] [Accepted: 12/23/2019] [Indexed: 11/18/2022]
Abstract
In order to assess the relationship between structural and functional imaging of cerebrovascular disease and cognition-related fibers, this paper chooses a total of 120 patients who underwent cerebral small vessel disease (CSVD) treatment at a designated hospital by this study from June 2013 to June 2018 and divides them into 3 groups according to the random number table method: vascular dementia (VaD) group, vascular cognitive impairment no dementia (VCIND) group, and noncognition impairment (NCI) group with 40 cases of patients in each group. Cognitive function measurement and imaging examination were performed for these 3 groups of patients, and the observation indicators of cognitive state examination (CSE), mental assessment scale (MAS), clock drawing test (CDT), adult intelligence scale (AIS), frontal assessment battery (FAB), verbal fluency test (VFT), trail making test (TMT), cognitive index (CI), white matter lesions (WML), third ventricle width (TVW), and frontal horn index (FHI) were tested, respectively. The results shows that the average scores of CSE, MAS, AIS, and VFT in the VaD and VCIND group are lower than those of the NCI group and the differences are statistically significant (P < 0.05); the average scores of FAB, TMT, and CI in the VaD group are higher than those of the VCIND group and the differences are also statistically significant (P < 0.05); the average scores of FHI and TVW in the VaD group are lower than those of the VCIND and NCI group with statistically significant differences (P < 0.05); the average scores of WML, CDT, and AIS in the VaD group are higher than those of the VCIND and NCI group with statistically significant differences (P < 0.05). Therefore, it is believed that the structural and functional imaging features of cerebrovascular disease are closely related to cognition-related fibers, and the incidence of white matter lesions is closely related to the degree of lesions and cognitive dysfunction of cerebral small vessel disease, in which a major risk factor for cognitive dysfunction in patients with small blood vessels is the severity of white matter lesions; brain imaging and neuropsychiatric function assessment can better understand the relationship between cerebrovascular disease and cognitive impairment. The results of this study provide a reference for the further research studies on the relationship between structural and functional imaging of cerebrovascular disease and cognition-related fibers.
Collapse
|
36
|
Cedres N, Ferreira D, Machado A, Shams S, Sacuiu S, Waern M, Wahlund LO, Zettergren A, Kern S, Skoog I, Westman E. Predicting Fazekas scores from automatic segmentations of white matter signal abnormalities. Aging (Albany NY) 2020; 12:894-901. [PMID: 31927535 PMCID: PMC6977667 DOI: 10.18632/aging.102662] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/24/2019] [Indexed: 01/06/2023]
Abstract
Different measurements of white matter signal abnormalities (WMSA) are often used across studies, which hinders combination of WMSA data from different cohorts. We investigated associations between three commonly used measurements of WMSA, aiming to further understand the association between them and their potential interchangeability: the Fazekas scale, the lesion segmentation tool (LST), and FreeSurfer. We also aimed at proposing cut-off values for estimating low and high Fazekas scale WMSA burden from LST and FreeSurfer WMSA, to facilitate clinical use and interpretation of LST and FreeSurfer WMSA data. A population-based cohort of 709 individuals (all of them 70 years old, 52% female) was investigated. We found a strong association between LST and FreeSurfer WMSA, and an association of Fazekas scores with both LST and FreeSurfer WMSA. The proposed cut-off values were 0.00496 for LST and 0.00321 for FreeSurfer (Total Intracranial volumes (TIV)-corrected values). This study provides data on the association between Fazekas scores, hyperintense WMSA, and hypointense WMSA in a large population-based cohort. The proposed cut-off values for translating LST and FreeSurfer WMSA estimations to low and high Fazekas scale WMSA burden may facilitate the combination of WMSA measurements from different cohorts that used either a FLAIR or a T1-weigthed sequence.
Collapse
Affiliation(s)
- Nira Cedres
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet (KI), Stockholm, Sweden
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet (KI), Stockholm, Sweden
| | - Alejandra Machado
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet (KI), Stockholm, Sweden
| | - Sara Shams
- Department of Clinical Neuroscience, KI, Stockholm, Sweden.,Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Simona Sacuiu
- Centre for Ageing and Health at The University of Gothenburg, Gothenburg, Sweden.,Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at The University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Neuropsychiatry, Gothenburg, Sweden
| | - Margda Waern
- Centre for Ageing and Health at The University of Gothenburg, Gothenburg, Sweden.,Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at The University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Psychosis Department, Gothenburg, Sweden
| | - Lars-Olof Wahlund
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet (KI), Stockholm, Sweden
| | - Anna Zettergren
- Centre for Ageing and Health at The University of Gothenburg, Gothenburg, Sweden.,Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at The University of Gothenburg, Gothenburg, Sweden
| | - Silke Kern
- Centre for Ageing and Health at The University of Gothenburg, Gothenburg, Sweden.,Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at The University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Neuropsychiatry, Gothenburg, Sweden
| | - Ingmar Skoog
- Centre for Ageing and Health at The University of Gothenburg, Gothenburg, Sweden.,Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at The University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Neuropsychiatry, Gothenburg, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet (KI), Stockholm, Sweden.,Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
37
|
Malek-Ahmadi M, Perez SE, Chen K, Mufson EJ. Braak Stage, Cerebral Amyloid Angiopathy, and Cognitive Decline in Early Alzheimer's Disease. J Alzheimers Dis 2020; 74:189-197. [PMID: 31985469 PMCID: PMC10026689 DOI: 10.3233/jad-191151] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of this study was to determine the interaction between cerebral amyloid angiopathy (CAA) and Braak staging on cognition in the elderly. The study used a total of 141 subjects consisting of 72 non-cognitively impaired (NCI), 33 mild cognitive impairment (MCI), 36 Alzheimer's disease (AD) cases displaying Braak stages 0-II and III from the Rush Religious Order Study cohort. The association between Braak stage and CAA status and cognition was evaluated using a series of regression models that adjusted for age at death, sex, education, APOEɛ4 status, and Consortium to Establish a Registry for Alzheimer's Disease (CERAD) neuropathological diagnosis. Individuals with CAA were more likely to be classified as Braak stage III relative to those without CAA [OR = 2.33, 95% CI (1.06, 5.14), p = 0.04]. A significant interaction was found between Braak stage and CAA status on a global cognitive score (β = -0.58, SE = 0.25, p = 0.02). Episodic memory also showed a significant association between Braak stage and CAA (β= -0.75, SE = 0.35, p = 0.03). These data suggest that there is a significant interaction between tau pathology and cerebrovascular lesions on cognition within the AD clinical spectrum.
Collapse
Affiliation(s)
| | - Sylvia E. Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Kewei Chen
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
| | - Elliott J. Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
38
|
Vipin A, Foo HJL, Lim JKW, Chander RJ, Yong TT, Ng ASL, Hameed S, Ting SKS, Zhou J, Kandiah N. Regional White Matter Hyperintensity Influences Grey Matter Atrophy in Mild Cognitive Impairment. J Alzheimers Dis 2019; 66:533-549. [PMID: 30320575 DOI: 10.3233/jad-180280] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The association between cerebrovascular disease pathology (measured by white matter hyperintensities, WMH) and brain atrophy in early Alzheimer's disease (AD) remain to be elucidated. Thus, we investigated how WMH influence neurodegeneration and cognition in prodromal and clinical AD. We examined 51 healthy controls, 35 subjects with mild cognitive impairment (MCI), and 30 AD patients. We tested how total and regional WMH is related to specific grey matter volume (GMV) reductions in MCI and AD compared to controls. Stepwise regression analysis was further performed to investigate the association of GMV and regional WMH volume with global cognition. We found that total WMH volume was highest in AD but showed the strongest association with lower GMV in MCI. Frontal and parietal WMH had the most extensive influence on GMV loss in MCI. Additionally, parietal lobe WMH volume (but not hippocampal atrophy) was significantly associated with global cognition in MCI while smaller hippocampal volume (but not WMH volume) was associated with lower global cognition in AD. Thus, although WMH volume was highest in AD subjects, it had a more pervasive influence on brain structure and cognitive impairment in MCI. Our study thus highlights the importance of early detection of cerebrovascular disease, as its intervention at the MCI stage might potentially slow down neurodegeneration.
Collapse
Affiliation(s)
- Ashwati Vipin
- Center for Cognitive Neuroscience, Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore
| | - Heidi Jing Ling Foo
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Joseph Kai Wei Lim
- Center for Cognitive Neuroscience, Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore
| | - Russell Jude Chander
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Ting Ting Yong
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Adeline Su Lyn Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Shahul Hameed
- Department of Neurology, Singapore General Hospital, Singapore
| | | | - Juan Zhou
- Center for Cognitive Neuroscience, Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore.,Clinical Imaging Research Centre, The Agency for Science, Technology and Research and National University of Singapore, Singapore
| | - Nagaendran Kandiah
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
39
|
Marcotte C, Potvin O, Collins DL, Rheault S, Duchesne S. Brain atrophy and patch-based grading in individuals from the CIMA-Q study: a progressive continuum from subjective cognitive decline to AD. Sci Rep 2019; 9:13532. [PMID: 31537852 PMCID: PMC6753115 DOI: 10.1038/s41598-019-49914-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 08/29/2019] [Indexed: 01/18/2023] Open
Abstract
It has been proposed that individuals developing Alzheimer's disease (AD) first experience a phase expressing subjective complaints of cognitive decline (SCD) without objective cognitive impairment. Using magnetic resonance imaging (MRI), our objective was to verify whether SNIPE probability grading, a new MRI analysis technique, would distinguish between clinical dementia stage of AD: Cognitively healthy controls without complaint (CH), SCD, mild cognitive impairment, and AD. SNIPE score in the hippocampus and entorhinal cortex was applied to anatomical T1-weighted MRI of 143 participants from the Consortium pour l'identification précoce de la maladie Alzheimer - Québec (CIMA-Q) study and compared to standard atrophy measures (volumes and cortical thicknesses). Compared to standard atrophy measures, SNIPE score appeared more sensitive to differentiate clinical AD since differences between groups reached a higher level of significance and larger effect sizes. However, no significant difference was observed between SCD and CH groups. Combining both types of measures did not improve between-group differences. Further studies using a combination of biomarkers beyond anatomical MRI might be needed to identify individuals with SCD who are on the beginning of the clinical continuum of AD.
Collapse
Affiliation(s)
| | - Olivier Potvin
- Centre de recherche CERVO Research Centre, Québec, Canada
| | - D Louis Collins
- Montreal Neurological Institute, McGill University, Montreal, Canada
- True Positive Medical Devices Inc., Montreal, Canada
| | - Sylvie Rheault
- Département de neurosciences, Université de Montréal, Montréal, Canada
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, Canada
| | - Simon Duchesne
- Centre de recherche CERVO Research Centre, Québec, Canada.
- True Positive Medical Devices Inc., Montreal, Canada.
- Département de radiologie et médecine nucléaire, Faculté de médecine, Université Laval, Québec, Canada.
| |
Collapse
|
40
|
Bos I, Vos SJB, Schindler SE, Hassenstab J, Xiong C, Grant E, Verhey F, Morris JC, Visser PJ, Fagan AM. Vascular risk factors are associated with longitudinal changes in cerebrospinal fluid tau markers and cognition in preclinical Alzheimer's disease. Alzheimers Dement 2019; 15:1149-1159. [PMID: 31378575 DOI: 10.1016/j.jalz.2019.04.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/25/2019] [Accepted: 04/10/2019] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Vascular factors increase the risk of Alzheimer's disease (AD). We investigated the associations between such factors, longitudinal AD cerebrospinal fluid biomarkers, and cognition. METHODS 433 cognitively normal participants were classified into four biomarker groups using their baseline amyloid (A+/-) and tau status (T+/-). 184 participants had undergone serial cerebrospinal fluid collection. Frequencies of risk factors and the Framingham Risk Score (FRS) were compared, and we tested the influence of risk factors on change in biomarker concentrations and cognition. RESULTS The absence of obesity, presence of hypertension, and a high FRS were associated with an increase in tau levels, particularly in A+T+ individuals. Risk factors were not associated with amyloid. Depression was associated with higher cognitive scores, whereas high FRS was associated with lower scores and a faster decline. DISCUSSION Our results demonstrate that vascular risk factors may enhance neurodegeneration but not amyloid accumulation in preclinical AD.
Collapse
Affiliation(s)
- Isabelle Bos
- Department of Psychiatry & Neuropsychology, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
| | - Stephanie J B Vos
- Department of Psychiatry & Neuropsychology, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
| | - Suzanne E Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Chengjie Xiong
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth Grant
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Frans Verhey
- Department of Psychiatry & Neuropsychology, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Pieter Jelle Visser
- Department of Psychiatry & Neuropsychology, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands; Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Anne M Fagan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
41
|
Araque Caballero MÁ, Suárez-Calvet M, Duering M, Franzmeier N, Benzinger T, Fagan AM, Bateman RJ, Jack CR, Levin J, Dichgans M, Jucker M, Karch C, Masters CL, Morris JC, Weiner M, Rossor M, Fox NC, Lee JH, Salloway S, Danek A, Goate A, Yakushev I, Hassenstab J, Schofield PR, Haass C, Ewers M. White matter diffusion alterations precede symptom onset in autosomal dominant Alzheimer's disease. Brain 2019; 141:3065-3080. [PMID: 30239611 PMCID: PMC6158739 DOI: 10.1093/brain/awy229] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/20/2018] [Indexed: 12/30/2022] Open
Abstract
White matter alterations are present in the majority of patients with Alzheimer's disease type dementia. However, the spatiotemporal pattern of white matter changes preceding dementia symptoms in Alzheimer's disease remains unclear, largely due to the inherent diagnostic uncertainty in the preclinical phase and increased risk of confounding age-related vascular disease and stroke in late-onset Alzheimer's disease. In early-onset autosomal-dominantly inherited Alzheimer's disease, participants are destined to develop dementia, which provides the opportunity to assess brain changes years before the onset of symptoms, and in the absence of ageing-related vascular disease. Here, we assessed mean diffusivity alterations in the white matter in 64 mutation carriers compared to 45 non-carrier family non-carriers. Using tract-based spatial statistics, we mapped the interaction of mutation status by estimated years from symptom onset on mean diffusivity. For major atlas-derived fibre tracts, we determined the earliest time point at which abnormal mean diffusivity changes in the mutation carriers were detectable. Lastly, we assessed the association between mean diffusivity and cerebrospinal fluid biomarkers of amyloid, tau, phosphorylated-tau, and soluble TREM2, i.e. a marker of microglia activity. Results showed a significant interaction of mutations status by estimated years from symptom onset, i.e. a stronger increase of mean diffusivity, within the posterior parietal and medial frontal white matter in mutation carriers compared with non-carriers. The earliest increase of mean diffusivity was observed in the forceps major, forceps minor and long projecting fibres-many connecting default mode network regions-between 5 to 10 years before estimated symptom onset. Higher mean diffusivity in fibre tracts was associated with lower grey matter volume in the tracts' projection zones. Global mean diffusivity was correlated with lower cerebrospinal fluid levels of amyloid-β1-42 but higher levels of tau, phosphorylated-tau and soluble TREM2. Together, these results suggest that regionally selective white matter degeneration occurs years before the estimated symptom onset. Such white matter alterations are associated with primary Alzheimer's disease pathology and microglia activity in the brain.
Collapse
Affiliation(s)
- Miguel Ángel Araque Caballero
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Marc Suárez-Calvet
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany.,Biomedical Center, Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Duering
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Tammie Benzinger
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Anne M Fagan
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany.,Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mathias Jucker
- Hertie Institute for Clinical Brain Research, Tübingen, Germany and German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Celeste Karch
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA.,Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - John C Morris
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael Weiner
- University of California at San Francisco, San Francisco, CA94143, USA
| | - Martin Rossor
- Dementia Research Centre, University College London, Queen Square, London, UK
| | - Nick C Fox
- Dementia Research Centre, University College London, Queen Square, London, UK
| | - Jae-Hong Lee
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Stephen Salloway
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Adrian Danek
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany.,Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alison Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Igor Yakushev
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Jason Hassenstab
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Peter R Schofield
- Neuroscience Research Australia, Barker Street Randwick, Sydney, Australia.,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany.,Biomedical Center, Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| |
Collapse
|
42
|
Caunca MR, De Leon-Benedetti A, Latour L, Leigh R, Wright CB. Neuroimaging of Cerebral Small Vessel Disease and Age-Related Cognitive Changes. Front Aging Neurosci 2019; 11:145. [PMID: 31316367 PMCID: PMC6610261 DOI: 10.3389/fnagi.2019.00145] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/31/2019] [Indexed: 01/04/2023] Open
Abstract
Subclinical cerebrovascular disease is frequently identified in neuroimaging studies and is thought to play a role in the pathogenesis of cognitive disorders. Identifying the etiologies of different types of lesions may help investigators differentiate between age-related and pathological cerebrovascular damage in cognitive aging. In this review article, we aim to describe the epidemiology and etiology of various brain magnetic resonance imaging (MRI) measures of vascular damage in cognitively normal, older adult populations. We focus here on population-based prospective cohort studies of cognitively unimpaired older adults, as well as discuss the heterogeneity of MRI findings and their relationships with cognition. This review article emphasizes the need for a better understanding of subclinical cerebrovascular disease in cognitively normal populations, in order to more effectively identify and prevent cognitive decline in our rapidly aging population.
Collapse
Affiliation(s)
- Michelle R Caunca
- Division of Epidemiology and Population Health Sciences, Department of Public Health Sciences, Leonard M. Miller School of Medicine, Evelyn F. McKnight Brain Institute, University of Miami, Miami, FL, United States.,Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Andres De Leon-Benedetti
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Lawrence Latour
- National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health, Bethesda, MD, United States
| | - Richard Leigh
- National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health, Bethesda, MD, United States
| | - Clinton B Wright
- National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
43
|
Alosco ML, Sugarman MA, Besser LM, Tripodis Y, Martin B, Palmisano JN, Kowall NW, Au R, Mez J, DeCarli C, Stein TD, McKee AC, Killiany RJ, Stern RA. A Clinicopathological Investigation of White Matter Hyperintensities and Alzheimer's Disease Neuropathology. J Alzheimers Dis 2019; 63:1347-1360. [PMID: 29843242 DOI: 10.3233/jad-180017] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND White matter hyperintensities (WMH) on magnetic resonance imaging (MRI) have been postulated to be a core feature of Alzheimer's disease. Clinicopathological studies are needed to elucidate and confirm this possibility. OBJECTIVE This study examined: 1) the association between antemortem WMH and autopsy-confirmed Alzheimer's disease neuropathology (ADNP), 2) the relationship between WMH and dementia in participants with ADNP, and 3) the relationships among cerebrovascular disease, WMH, and ADNP. METHODS The sample included 82 participants from the National Alzheimer's Coordinating Center's Data Sets who had quantitated volume of WMH from antemortem FLAIR MRI and available neuropathological data. The Clinical Dementia Rating (CDR) scale (from MRI visit) operationalized dementia status. ADNP+ was defined by moderate to frequent neuritic plaques and Braak stage III-VI at autopsy. Cerebrovascular disease neuropathology included infarcts or lacunes, microinfarcts, arteriolosclerosis, atherosclerosis, and cerebral amyloid angiopathy. RESULTS 60/82 participants were ADNP+. Greater volume of WMH predicted increased odds for ADNP (p = 0.037). In ADNP+ participants, greater WMH corresponded with increased odds for dementia (CDR≥1; p = 0.038). WMH predicted cerebral amyloid angiopathy, microinfarcts, infarcts, and lacunes (ps < 0.04). ADNP+ participants were more likely to have moderate-severe arteriolosclerosis and cerebral amyloid angiopathy compared to ADNP-participants (ps < 0.04). CONCLUSIONS This study found a direct association between total volume of WMH and increased odds for having ADNP. In patients with Alzheimer's disease, FLAIR MRI WMH may be able to provide key insight into disease severity and progression. The association between WMH and ADNP may be explained by underlying cerebrovascular disease.
Collapse
Affiliation(s)
- Michael L Alosco
- Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Michael A Sugarman
- Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA.,Department of Neuropsychology, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, USA
| | - Lilah M Besser
- National Alzheimer's Coordinating Center, University of Washington, Seattle, WA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA.,Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Brett Martin
- Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA.,Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Joseph N Palmisano
- Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA.,Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Neil W Kowall
- Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.,Neurology Service, VA Boston Healthcare System, Boston, MA, USA
| | - Rhoda Au
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.,Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA, USA.,Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Charles DeCarli
- Department of Neurology, University of California at Davis Health System, Sacramento, CA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.,U.S. Department of Veteran Affairs, VA Boston Healthcare System, Boston, MA, USA.,Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.,U.S. Department of Veteran Affairs, VA Boston Healthcare System, Boston, MA, USA.,Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Ronald J Killiany
- Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.,Center for Biomedical Imaging, Boston University School of Medicine, Boston, MA, USA
| | - Robert A Stern
- Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, USA.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.,Department of Neurosurgery, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW The aim of this study was to discuss the contribution of neuroimaging studies to our understanding of Alzheimer's disease. We now have the capability of measuring both tau and beta-amyloid (Aβ) proteins in the brain, which together with more traditional neuroimaging modalities, has led the field to focus on using neuroimaging to better characterize disease mechanisms underlying Alzheimer's disease. RECENT FINDINGS Studies have utilized tau and Aβ PET, as well as [18F]fluorodeoxyglucose PET, and structural and functional MRI, to investigate the following topics: phenotypic variability in Alzheimer's disease , including how neuroimaging findings are related to clinical phenotype and age; multimodality analyses to investigate the relationships between different neuroimaging modalities and what that teaches us about disease mechanisms; disease staging by assessing neuroimaging changes in the very earliest phases of the disease in cognitively normal individuals and individuals carrying an autosomal dominant Alzheimer's disease mutation; and influence of other comorbidities and proteins to the disease process. SUMMARY The findings shed light on the role of tau and Aβ, as well as age and other comorbidities, in the neurodegenerative process in Alzheimer's disease. This knowledge will be crucial in the development of better disease biomarkers and targeted therapeutic approaches.
Collapse
|
45
|
Yang Q, Chen K, Zhang H, Zhang W, Gong C, Zhang Q, Liu P, Sun T, Xu Y, Qian X, Qiu W, Ma C. Correlations Between Single Nucleotide Polymorphisms, Cognitive Dysfunction, and Postmortem Brain Pathology in Alzheimer's Disease Among Han Chinese. Neurosci Bull 2019; 35:193-204. [PMID: 30783964 DOI: 10.1007/s12264-019-00343-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/01/2018] [Indexed: 12/14/2022] Open
Abstract
In this study, the distribution of five Alzheimer's disease (AD)-related single nucleotide polymorphisms (SNPs) in the Han population was examined in combination with the evaluation of clinical cognition and brain pathological analysis. The associations among SNPs, clinical daily cognitive states, and postmortem neuropathological changes were analyzed in 110 human brains from the Chinese Academy of Medical Sciences/Peking Union Medical College (CAMS/PUMC) Human Brain Bank. APOE ε4 (OR = 4.482, P = 0.004), the RS2305421 GG genotype (adjusted OR = 4.397, P = 0.015), and the RS10498633 GT genotype (adjusted OR = 2.375, P = 0.028) were associated with a higher score on the ABC (Aβ plaque score, Braak NFT stage, and CERAD neuritic plaque score) dementia scale. These results advance our understanding of the pathogenesis of AD, the relationship between pathological diagnosis and clinical diagnosis, and the SNPs in the Han population for future research.
Collapse
Affiliation(s)
- Qian Yang
- Institute of Basic Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.,Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100005, China
| | - Kang Chen
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100005, China.,Eight-Year MD Program, Peking Union Medical College, Beijing, 100730, China
| | - Hanlin Zhang
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100005, China.,Eight-Year MD Program, Peking Union Medical College, Beijing, 100730, China
| | - Wanying Zhang
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Changlin Gong
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100005, China.,Eight-Year MD Program, Peking Union Medical College, Beijing, 100730, China
| | - Qing Zhang
- Institute of Basic Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.,Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100005, China
| | - Pan Liu
- Institute of Basic Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.,Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100005, China
| | - Tianyi Sun
- Institute of Basic Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.,Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100005, China
| | - Yuanyuan Xu
- National Experimental Teaching Demonstration Center of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Xiaojing Qian
- Institute of Basic Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Wenying Qiu
- Institute of Basic Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Chao Ma
- Institute of Basic Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
46
|
Elahi FM, Casaletto KB, Altendahl M, Staffaroni AM, Fletcher E, Filshtein TJ, Glymour MM, Miller BL, Hinman JD, DeCarli C, Goetzl EJ, Kramer JH. "Liquid Biopsy" of White Matter Hyperintensity in Functionally Normal Elders. Front Aging Neurosci 2018; 10:343. [PMID: 30483114 PMCID: PMC6244607 DOI: 10.3389/fnagi.2018.00343] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/11/2018] [Indexed: 12/14/2022] Open
Abstract
Background and Objective: In the aging brain, increased blood-brain barrier (BBB) leakage and white matter hyperintensity (WMH) on MRI are frequently presumed secondary to cerebral small vessel disease (cSVD) or endotheliopathy. We investigate this association in vivo by quantifying protein cargo from endothelial-derived exosomes (EDE), and comparing levels between two groups of functionally normal elders with and without WMH. In addition, we study associations of EDE proteins with upstream and downstream factors, such as inflammation and neurodegenerative changes, respectively. Methods: Twenty six neurologically normal older adults completed general health questionnaires, neuropsychological and physical examinations, and brain MRI. WMH was visually graded with modified Fazekas score of 2 or greater used to classify 11 subjects as cases, and 15 without WMH as controls. Plasma total exosomes were precipitated and EDEs enriched by sequential immuno-precipitations. In addition, we quantified three inflammatory cytokines from plasma and imaging variables on MRI. Group means were compared, the discriminant functions of biomarkers calculated, and the association of EDE biomarkers with plasma inflammatory markers, cognition, and imaging outcomes assessed via regression modeling. Results: Plasma levels of EDE cargo proteins GLUT1, LAT1, P-GP, and NOSTRIN were significantly higher in subjects with WMH in comparison to those without. In contrast, EDE levels of the marker with low expression in brain (VCAM1) were equal between groups. The effect sizes for each of the brain-expressed cargo proteins (GLUT1, LAT1, and P-GP) were such that age-adjusted logistic regressions revealed areas under the curve (AUC) with range of 0.82–0.89, differentiating subjects with WMH from those without. VCAM1 poorly discriminated between groups (AUC:0.55). Higher levels of all brain-expressed EDE proteins were also associated with lower cognitive function, unrelated to burden of WMH. Levels of LAT1 and P-GP were significantly inversely associated with global gray matter volumes, and EDE GLUT1, LAT-1, and P-GP concentrations were significantly associated with systemic IL-6 levels. Conclusion: In a case control study of clinically normal adults with and without WMH, concentrations of EDE proteins were significantly higher in subjects with WMH in comparison to controls. This work is a first step toward in vivo dissection of molecular changes in endothelia of functionally normal subjects with radiographic evidence of age-associated white matter disease.
Collapse
Affiliation(s)
- Fanny M Elahi
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Kaitlin B Casaletto
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Marie Altendahl
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Adam M Staffaroni
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Evan Fletcher
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Teresa J Filshtein
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Maria M Glymour
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Jason D Hinman
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Charles DeCarli
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Edward J Goetzl
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States.,Jewish Home of San Francisco, San Francisco, CA, United States
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
47
|
Bos I, Verhey FR, Ramakers IHGB, Jacobs HIL, Soininen H, Freund-Levi Y, Hampel H, Tsolaki M, Wallin ÅK, van Buchem MA, Oleksik A, Verbeek MM, Rikkert MO, van der Flier WM, Scheltens P, Aalten P, Visser PJ, Vos SJB. Correction to: Cerebrovascular and amyloid pathology in predementia stages: the relationship with neurodegeneration and cognitive decline. Alzheimers Res Ther 2018; 10:56. [PMID: 29925412 PMCID: PMC6011342 DOI: 10.1186/s13195-018-0391-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/30/2018] [Indexed: 11/28/2022]
Abstract
Upon publication of this article [1], it was noticed that there were some inconsistencies in Tables 1, 2 and 3. Some of the superscript letters were incorrectly assigned. Please see below the correct tables.
Collapse
Affiliation(s)
- Isabelle Bos
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands.
| | - Frans R Verhey
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Inez H G B Ramakers
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Heidi I L Jacobs
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Hilkka Soininen
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
- Neurocenter and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Yvonne Freund-Levi
- Department of Neurobiology, Caring Sciences and Society (NVS), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Harald Hampel
- AXA Research Fund and UPMC Chair Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Paris, France
- Institut du cerveau et de la moelle (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| | - Magda Tsolaki
- Memory and Dementia Center, 3rd Department of Neurology, Aristotle University of Thessaloniki, G Papanicolau" General Hospital, Thessaloniki, Greece
| | - Åsa K Wallin
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ania Oleksik
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel M Verbeek
- Departments of Neurology and Laboratory Medicine, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel Olde Rikkert
- Radboudumc Alzheimer Centre, Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wiesje M van der Flier
- Department of Neurology, Alzheimer Centre, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, Netherlands
| | - Philip Scheltens
- Department of Neurology, Alzheimer Centre, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, Netherlands
| | - Pauline Aalten
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Alzheimer Centre, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, Netherlands
| | - Stephanie J B Vos
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
48
|
Physiological changes in neurodegeneration - mechanistic insights and clinical utility. Nat Rev Neurol 2018; 14:259-271. [PMID: 29569624 DOI: 10.1038/nrneurol.2018.23] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effects of neurodegenerative syndromes extend beyond cognitive function to involve key physiological processes, including eating and metabolism, autonomic nervous system function, sleep, and motor function. Changes in these physiological processes are present in several conditions, including frontotemporal dementia, amyotrophic lateral sclerosis, Alzheimer disease and the parkinsonian plus conditions. Key neural structures that mediate physiological changes across these conditions include neuroendocrine and hypothalamic pathways, reward pathways, motor systems and the autonomic nervous system. In this Review, we highlight the key changes in physiological processing in neurodegenerative syndromes and the similarities in these changes between different progressive neurodegenerative brain conditions. The changes and similarities between disorders might provide novel insights into the human neural correlates of physiological functioning. Given the evidence that physiological changes can arise early in the neurodegenerative process, these changes could provide biomarkers to aid in the early diagnosis of neurodegenerative diseases and in treatment trials.
Collapse
|