1
|
He S, Xu Z, Han X. Lipidome disruption in Alzheimer's disease brain: detection, pathological mechanisms, and therapeutic implications. Mol Neurodegener 2025; 20:11. [PMID: 39871348 PMCID: PMC11773937 DOI: 10.1186/s13024-025-00803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Alzheimer's disease (AD) is among the most devastating neurodegenerative disorders with limited treatment options. Emerging evidence points to the involvement of lipid dysregulation in the development of AD. Nevertheless, the precise lipidomic landscape and the mechanistic roles of lipids in disease pathology remain poorly understood. This review aims to highlight the significance of lipidomics and lipid-targeting approaches in the diagnosis and treatment of AD. We summarized the connection between lipid dysregulation in the human brain and AD at both genetic and lipid species levels. We briefly introduced lipidomics technologies and discussed potential challenges and areas of future advancements in the lipidomics field for AD research. To elucidate the central role of lipids in converging multiple pathological aspects of AD, we reviewed the current knowledge on the interplay between lipids and major AD features, including amyloid beta, tau, and neuroinflammation. Finally, we assessed the progresses and obstacles in lipid-based therapeutics and proposed potential strategies for leveraging lipidomics in the treatment of AD.
Collapse
Affiliation(s)
- Sijia He
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA
| | - Ziying Xu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA.
| |
Collapse
|
2
|
Gharibani P, Abramson E, Shanmukha S, Smith MD, Godfrey WH, Lee JJ, Hu J, Baydyuk M, Dorion MF, Deng X, Guo Y, Calle AJ, A Hwang S, Huang JK, Calabresi PA, Kornberg MD, Kim PM. The protein kinase C modulator bryostatin-1 therapeutically targets microglia to attenuate neuroinflammation and promote remyelination. Sci Transl Med 2025; 17:eadk3434. [PMID: 39772770 DOI: 10.1126/scitranslmed.adk3434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/19/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
In multiple sclerosis (MS), microglia and macrophages within the central nervous system (CNS) play an important role in determining the balance among demyelination, neurodegeneration, and myelin repair. Phagocytic and regenerative functions of these CNS innate immune cells support remyelination, whereas chronic and maladaptive inflammatory activation promotes lesion expansion and disability, particularly in the progressive forms of MS. No currently approved drugs convincingly target microglia and macrophages within the CNS, contributing to the lack of therapies aimed at promoting remyelination and slowing disease progression for individuals with MS. Here, we found that the protein kinase C (PKC)-modulating drug bryostatin-1 (bryo-1), a CNS-penetrant compound with an established human safety profile, shifts the transcriptional programs of microglia and CNS-associated macrophages from a proinflammatory phenotype to a regenerative phenotype in vitro and in vivo. Treatment of microglia with bryo-1 stimulated scavenger pathways, phagocytosis, and secretion of factors that prevented the activation of neuroinflammatory reactive astrocytes while also promoting neuroaxonal health and oligodendrocyte differentiation. In line with these findings, systemic treatment of mice with bryo-1 augmented remyelination after a focal demyelinating injury. Our results demonstrate the potential of bryo-1 and possibly a wider class of PKC modulators as myelin-regenerative and supportive agents in MS and other neurologic diseases.
Collapse
Affiliation(s)
- Payam Gharibani
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Efrat Abramson
- Interdepartmental Neuroscience Program, Yale University School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Shruthi Shanmukha
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Matthew D Smith
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wesley H Godfrey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Judy J Lee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jingwen Hu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Maryna Baydyuk
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Marie-France Dorion
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Xiaojing Deng
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yu Guo
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Andrew J Calle
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Soonmyung A Hwang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jeffrey K Huang
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael D Kornberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Paul M Kim
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
3
|
Zhao Y, Guo Q, Tian J, Liu W, Wang X. TREM2 bridges microglia and extracellular microenvironment: Mechanistic landscape and therapeutical prospects on Alzheimer's disease. Ageing Res Rev 2025; 103:102596. [PMID: 39608728 DOI: 10.1016/j.arr.2024.102596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Neuroinflammation is closely related to the pathogenesis of Alzheimer's disease (AD). One of its prominent cellular components, microglia, is a potent coordinator of neuroinflammation in interplay with the characteristic AD pathological alterations including Aβ, tau, and neuronal defects, which constitute the AD-unique extracellular microenvironment. Mounting evidence implicates Triggering Receptors Expressed on Myeloid Cells 2 (TREM2) in the center of microglial activation, a vital event in the pathogenesis of AD. TREM2 is a pivotal microglial receptor that interacts with specific elements present in the AD microenvironment and induces microglial intracellular signallings contributing to phagocytosis, migration, cytokine production, metabolism, and survival, which shapes the microglial activation profile. It follows that TREM2 builds up a bridge between microglia and the extracellular microenvironment. This review illustrates how TREM2 modulates microglia to affect AD pathogenesis. Mainly presented facets in the review are i. the development of AD-specific microglial phenotypes (disease-associated microglia, DAM), ii. microglial interactions with major AD pathologies, and iii. the underlying intracellular signallings of microglial activation. Also, outstanding controversies regarding the nature of neuroinflammation are discussed. Through our illustration, we attempt to establish a TREM2-centered network of AD pathogenesis, in the hope as well to provide insights into the potential therapeutic strategies based on the underlying mechanisms.
Collapse
Affiliation(s)
- Yiheng Zhao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Guo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jia Tian
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| |
Collapse
|
4
|
Bunney TD, Kampyli C, Gregory A, Katan M. Characterisation of molecular mechanisms for PLCγ2 disease-linked variants. Adv Biol Regul 2024; 94:101053. [PMID: 39313402 DOI: 10.1016/j.jbior.2024.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
The phospholipase C enzyme PLCγ2 is best characterised in the context of immune cell regulation. Furthermore, many mutations discovered in PLCγ2 have been linked to the development of complex immune disorders as well as resistance to ibrutinib treatment in chronic lymphocytic leukaemia. Importantly, it has also been found that a rare variant of PLCγ2 (P522R) has a protective role in Alzheimer's disease (AD). Despite initial characterisation of these disease-linked variants, a comprehensive understanding of their differences and underpinning molecular mechanisms, needed to facilitate therapeutic efforts, is lacking. Here, we used available structural insights for PLCγ enzymes to further analyse PLCγ2 M1141K mutation, representative for mutations in immune disorders and cancer resistance, and the AD-protective variant, PLCγ2 P522R. Together with several other mutations in the autoinhibitory interface, the PLCγ2 M1141K mutation was strongly activating in a cell-based assay, under basal and stimulated conditions. Measurements of PLC activity in various in vitro assays demonstrated enhanced activity of PLCγ2 M1141K while the activity of PLCγ2 P522R was not significantly different from the WT. Similar trends were observed in several other assays, including direct liposome binding. However, an enhanced rate of phosphorylation of a functionally important tyrosine by Btk in vitro was observed for PLCγ2 P522R variants. To further assess implications of these in vitro findings in a cellular context relevant for the PLCγ2 P522R variant, microglia (BV2) stable cell lines were generated and analysed under growth conditions. The PLC activity in cells expressing PLCγ2 P522R at physiologically relevant levels was clearly enhanced compared to the WT, and differences in cell morphology observed. These data, combined with the structural insights, suggest that the PLCγ2 P522R variant has subtle, localised structural changes that do not directly affect the PLC activity by compromising autoinhibition, as determined for PLCγ2 M1141K. It is also likely that in contrast to the PLCγ2 M1141K, the functional impact of the P522R substitution completely depends on further interactions with upstream kinases and other regulatory proteins in a relevant cellular context, where changes in the PLCγ2 P522R variant could facilitate processes such as phosphorylation and protein-protein interactions.
Collapse
Affiliation(s)
- Tom D Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Charis Kampyli
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Ashley Gregory
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK.
| |
Collapse
|
5
|
Shin YC, Plummer-Medeiros AM, Mungenast A, Choi HW, TenDyke K, Zhu X, Shepard J, Sanders K, Zhuang N, Hu L, Qian D, Song K, Xu C, Wang J, Poda SB, Liao M, Chen Y. The crystal and cryo-EM structures of PLCγ2 reveal dynamic interdomain recognitions in autoinhibition. SCIENCE ADVANCES 2024; 10:eadn6037. [PMID: 39612343 PMCID: PMC11606444 DOI: 10.1126/sciadv.adn6037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Phospholipase C gamma 2 (PLCγ2) plays important roles in cell signaling downstream of various membrane receptors. PLCγ2 contains a multidomain inhibitory region critical for its regulation, while it has remained unclear how these domains contribute to PLCγ2 activity modulation. Here we determined three structures of human PLCγ2 in autoinhibited states, which reveal dynamic interactions at the autoinhibition interface, involving the conformational flexibility of the Src homology 3 (SH3) domain in the inhibitory region, and its previously unknown interaction with a carboxyl-terminal helical domain in the core region. We also determined a structure of PLCγ2 bound to the kinase domain of fibroblast growth factor receptor 1 (FGFR1), which demonstrates the recognition of FGFR1 by the nSH2 domain in the inhibitory region of PLCγ2. Our results provide structural insights into PLCγ2 regulation that will facilitate future mechanistic studies to understand the entire activation process.
Collapse
Affiliation(s)
- Young-Cheul Shin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | - Karen TenDyke
- Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA 02140, USA
| | - Xiaojie Zhu
- Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA 02140, USA
| | | | - Kristen Sanders
- Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA 02140, USA
| | - Ningning Zhuang
- Viva Biotech Ltd., 735 Ziping Road, Pudong New District, Shanghai 201318, China
| | - Liang Hu
- Viva Biotech Ltd., 735 Ziping Road, Pudong New District, Shanghai 201318, China
| | - Dongming Qian
- Viva Biotech Ltd., 735 Ziping Road, Pudong New District, Shanghai 201318, China
| | - Kangkang Song
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Cryo-EM Core Facility, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Chen Xu
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Cryo-EM Core Facility, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - John Wang
- Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA 02140, USA
| | - Suresh B. Poda
- Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA 02140, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yu Chen
- Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA 02140, USA
| |
Collapse
|
6
|
Roy N, Haq I, Ngo JC, Bennett DA, Teich AF, De Jager PL, Olah M, Sher F. Elevated expression of the retrotransposon LINE-1 drives Alzheimer's disease-associated microglial dysfunction. Acta Neuropathol 2024; 148:75. [PMID: 39604588 PMCID: PMC11602836 DOI: 10.1007/s00401-024-02835-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Aberrant activity of the retrotransposable element long interspersed nuclear element-1 (LINE-1) has been hypothesized to contribute to cellular dysfunction in age-related disorders, including late-onset Alzheimer's disease (LOAD). However, whether LINE-1 is differentially expressed in cell types of the LOAD brain, and whether these changes contribute to disease pathology is largely unknown. Here, we examined patterns of LINE-1 expression across neurons, astrocytes, oligodendrocytes, and microglia in human postmortem prefrontal cortex tissue from LOAD patients and cognitively normal, age-matched controls. We report elevated immunoreactivity of the open reading frame 1 protein (ORF1p) encoded by LINE-1 in microglia from LOAD patients and find that this immunoreactivity correlates positively with disease-associated microglial morphology. In human iPSC-derived microglia (iMG), we found that CRISPR-mediated transcriptional activation of LINE-1 drives changes in microglial morphology and cytokine secretion and impairs the phagocytosis of amyloid beta (Aβ). We also find LINE-1 upregulation in iMG induces transcriptomic changes genes associated with antigen presentation and lipid metabolism as well as impacting the expression of many AD-relevant genes. Our data posit that heightened LINE-1 expression may trigger microglial dysregulation in LOAD and that these changes may contribute to disease pathogenesis, suggesting a central role for LINE-1 activity in human LOAD.
Collapse
Affiliation(s)
- Nainika Roy
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Imdadul Haq
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Jason C Ngo
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Andrew F Teich
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Marta Olah
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Falak Sher
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA.
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA.
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
7
|
Staley HA, Jernigan JE, Bolen ML, Titus AM, Neighbarger N, Cole C, Menees KB, Wallings RL, Tansey MG. Alzheimer's disease-associated protective variant Plcg2-P522R modulates peripheral macrophage function in a sex-dimorphic manner. J Neuroinflammation 2024; 21:280. [PMID: 39487477 PMCID: PMC11529260 DOI: 10.1186/s12974-024-03271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
Genome-wide association studies have identified a protective mutation in the phospholipase C gamma 2 (PLCG2) gene which confers protection against Alzheimer's disease (AD)-associated cognitive decline. Therefore, PLCG2, which is primarily expressed in immune cells, has become a target of interest for potential therapeutic intervention. The protective allele, known as P522R, has been shown to be hyper-morphic in microglia, increasing phagocytosis of amyloid-beta (Aβ), and increasing the release of inflammatory cytokines. However, the effect of this protective mutation on peripheral tissue-resident macrophages, and the extent to which sex modifies this effect, has yet to be assessed. Herein, we show that peripheral macrophages carrying the P522R mutation do indeed show functional differences compared to their wild-type (WT) counterparts, however, these alterations occur in a sex-dependent manner. In macrophages from females, the P522R mutation increases lysosomal protease activity, cytokine secretion, and gene expression associated with cytokine secretion and apoptosis. In contrast, in macrophages from males, the mutation causes decreased phagocytosis and lysosomal protease activity, modest increases in cytokine secretion, and induction of gene expression associated with negative regulation of the immune response. Taken together, these results suggest that the mutation may be conferring different effects dependent on sex and cell type, and highlight the importance of considering sex as a biological variable when assessing the effects of genetic variants and implications for potential immune system-targeted therapies.
Collapse
Affiliation(s)
- Hannah A Staley
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Janna E Jernigan
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - MacKenzie L Bolen
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Ann M Titus
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Noelle Neighbarger
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Cassandra Cole
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Kelly B Menees
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Rebecca L Wallings
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA.
| |
Collapse
|
8
|
Zhang H, Cao D, Xu T, Chen E, Li G, Chen Y, Payne P, Province M, Li F. mosGraphFlow: a novel integrative graph AI model mining disease targets from multi-omic data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606219. [PMID: 39282361 PMCID: PMC11398418 DOI: 10.1101/2024.08.01.606219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Multi-omic data can better characterize complex cellular signaling pathways from multiple views compared to individual omic data. However, integrative multi-omic data analysis to rank key disease biomarkers and infer core signaling pathways remains an open problem. In this study, our novel contributions are that we developed a novel graph AI model, mosGraphFlow, for analyzing multi-omic signaling graphs (mosGraphs), 2) analyzed multi-omic mosGraph datasets of AD, and 3) identified, visualized and evaluated a set of AD associated signaling biomarkers and network. The comparison results show that the proposed model not only achieves the best classification accuracy but also identifies important AD disease biomarkers and signaling interactions. Moreover, the signaling sources are highlighted at specific omic levels to facilitate the understanding of the pathogenesis of AD. The proposed model can also be applied and expanded for other studies using multi-omic data. Model code is accessible via GitHub: https://github.com/FuhaiLiAiLab/mosGraphFlow.
Collapse
Affiliation(s)
- Heming Zhang
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Dekang Cao
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Computer Science and Engineering, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Tim Xu
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Computer Science and Engineering, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Emily Chen
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- School of Arts and Sciences, University of Rochester, Rochester, NY, 14627, USA
| | - Guangfu Li
- Department of Surgery, School of Medicine, University of Connecticut, CT, 06032, USA
| | - Yixin Chen
- Department of Computer Science and Engineering, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Philip Payne
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Fuhai Li
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
9
|
Baumgartner A, Robinson M, Golde T, Jaydev S, Huang S, Hadlock J, Funk C. Fokker-Planck diffusion maps of multiple single cell microglial transcriptomes reveals radial differentiation into substates associated with Alzheimer's pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.599924. [PMID: 38979220 PMCID: PMC11230164 DOI: 10.1101/2024.06.21.599924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The identification of microglia subtypes is important for understanding the role of innate immunity in neurodegenerative diseases. Current methods of unsupervised cell type identification assume a small noise-to-signal ratio of transcriptome measurements that would produce well-separated cell clusters. However, identification of subtypes is obscured by gene expression noise, diminishing the distances in transcriptome space between distinct cell types and blurring boundaries. Here we use Fokker-Planck (FP) diffusion maps to model cellular differentiation as a stochastic process whereby cells settle into local minima, corresponding to cell subtypes, in a potential landscape constructed from transcriptome data using a nearest neighbor graph approach. By applying critical transition fields, we identify individual cells on the verge of transitioning between subtypes, revealing microglial cells in inactivated, homeostatic state before radially transitioning into various specialized subtypes. Specifically, we show that cells from Alzheimer's disease patients are enriched in a microglia subtype associated to antigen presentation and T-cell recruitment.
Collapse
Affiliation(s)
| | | | - Todd Golde
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Institute Emory Brain Health, Emory University School of Medicine, Atlanta, GA, USA
| | - Suman Jaydev
- Department of Neurology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA
| | - Jennifer Hadlock
- Institute for Systems Biology, Seattle, WA
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, USA
| | - Cory Funk
- Institute for Systems Biology, Seattle, WA
| |
Collapse
|
10
|
Baruah P, Mahony C, Marshall JL, Smith CG, Monksfield P, Irving RI, Dumitriu IE, Buckley CD, Croft AP. Single-cell RNA sequencing analysis of vestibular schwannoma reveals functionally distinct macrophage subsets. Br J Cancer 2024; 130:1659-1669. [PMID: 38480935 DOI: 10.1038/s41416-024-02646-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Vestibular schwannomas (VSs) remain a challenge due to their anatomical location and propensity to growth. Macrophages are present in VS but their roles in VS pathogenesis remains unknown. OBJECTIVES The objective was to assess phenotypic and functional profile of macrophages in VS with single-cell RNA sequencing (scRNAseq). METHODS scRNAseq was carried out in three VS samples to examine characteristics of macrophages in the tumour. RT-qPCR was carried out on 10 VS samples for CD14, CD68 and CD163 and a panel of macrophage-associated molecules. RESULTS scRNAseq revealed macrophages to be a major constituent of VS microenvironment with three distinct subclusters based on gene expression. The subclusters were also defined by expression of CD163, CD68 and IL-1β. AREG and PLAUR were expressed in the CD68+CD163+IL-1β+ subcluster, PLCG2 and NCKAP5 were expressed in CD68+CD163+IL-1β- subcluster and AUTS2 and SPP1 were expressed in the CD68+CD163-IL-1β+ subcluster. RT-qPCR showed expression of several macrophage markers in VS of which CD14, ALOX15, Interleukin-1β, INHBA and Colony Stimulating Factor-1R were found to have a high correlation with tumour volume. CONCLUSIONS Macrophages form an important component of VS stroma. scRNAseq reveals three distinct subsets of macrophages in the VS tissue which may have differing roles in the pathogenesis of VS.
Collapse
Affiliation(s)
- Paramita Baruah
- Department of ENT, University Hospitals of Birmingham NHS Trust, Birmingham, UK.
- Department of ENT, University Hospitals of Leicester NHS Trust, Leicester, UK.
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| | - Christopher Mahony
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Jennifer L Marshall
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Charlotte G Smith
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Peter Monksfield
- Department of ENT, University Hospitals of Birmingham NHS Trust, Birmingham, UK
| | - Richard I Irving
- Department of ENT, University Hospitals of Birmingham NHS Trust, Birmingham, UK
| | - Ingrid E Dumitriu
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | | | - Adam P Croft
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
Visvanathan R, Utsuki T, Beck DE, Clayton WB, Lendy E, Sun KL, Liu Y, Hering KW, Mesecar A, Zhang ZY, Putt KS. A novel micellular fluorogenic substrate for quantitating the activity of 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma (PLCγ) enzymes. PLoS One 2024; 19:e0299541. [PMID: 38551930 PMCID: PMC10980208 DOI: 10.1371/journal.pone.0299541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/12/2024] [Indexed: 04/01/2024] Open
Abstract
The activities of the phospholipase C gamma (PLCγ) 1 and 2 enzymes are essential for numerous cellular processes. Unsurprisingly, dysregulation of PLCγ1 or PLCγ2 activity is associated with multiple maladies including immune disorders, cancers, and neurodegenerative diseases. Therefore, the modulation of either of these two enzymes has been suggested as a therapeutic strategy to combat these diseases. To aid in the discovery of PLCγ family enzyme modulators that could be developed into therapeutic agents, we have synthesized a high-throughput screening-amenable micellular fluorogenic substrate called C16CF3-coumarin. Herein, the ability of PLCγ1 and PLCγ2 to enzymatically process C16CF3-coumarin was confirmed, the micellular assay conditions were optimized, and the kinetics of the reaction were determined. A proof-of-principle pilot screen of the Library of Pharmacologically Active Compounds 1280 (LOPAC1280) was performed. This new substrate allows for an additional screening methodology to identify modulators of the PLCγ family of enzymes.
Collapse
Affiliation(s)
- Ramya Visvanathan
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States of America
- IUSM-Purdue TREAT-AD Center, West Lafayette, IN, United States of America
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States of America
| | - Tadanobu Utsuki
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States of America
- IUSM-Purdue TREAT-AD Center, West Lafayette, IN, United States of America
| | - Daniel E. Beck
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States of America
- IUSM-Purdue TREAT-AD Center, West Lafayette, IN, United States of America
| | - W. Brent Clayton
- IUSM-Purdue TREAT-AD Center, West Lafayette, IN, United States of America
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Emma Lendy
- IUSM-Purdue TREAT-AD Center, West Lafayette, IN, United States of America
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States of America
| | - Kuai-lin Sun
- Cayman Chemical Company, Ann Arbor, MI, United States of America
| | - Yinghui Liu
- Cayman Chemical Company, Ann Arbor, MI, United States of America
| | - Kirk W. Hering
- Cayman Chemical Company, Ann Arbor, MI, United States of America
| | - Andrew Mesecar
- IUSM-Purdue TREAT-AD Center, West Lafayette, IN, United States of America
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States of America
| | - Zhong-Yin Zhang
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States of America
- IUSM-Purdue TREAT-AD Center, West Lafayette, IN, United States of America
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States of America
| | - Karson S. Putt
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States of America
- IUSM-Purdue TREAT-AD Center, West Lafayette, IN, United States of America
| |
Collapse
|
12
|
Bull D, Matte JC, Navarron CM, McIntyre R, Whiting P, Katan M, Ducotterd F, Magno L. The hypermorphic PLCγ2 S707Y variant dysregulates microglial cell function - Insight into PLCγ2 activation in brain health and disease, and opportunities for therapeutic modulation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166978. [PMID: 38061598 DOI: 10.1016/j.bbadis.2023.166978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/29/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023]
Abstract
Phospholipase C-gamma 2 (PLCγ2) is highly expressed in hematopoietic and immune cells, where it is a key signalling node enabling diverse cellular functions. Within the periphery, gain-of-function (GOF) PLCγ2 variants, such as the strongly hypermorphic S707Y, cause severe immune dysregulation. The milder hypermorphic mutation PLCγ2 P522R increases longevity and confers protection in central nervous system (CNS) neurodegenerative disorders, implicating PLCγ2 as a novel therapeutic target for treating these CNS indications. Currently, nothing is known about what consequences strong PLCγ2 GOF has on CNS functionality, and more precisely on the specific biological functions of microglia. Using the PLCγ2 S707Y variant as a model of chronic activation we investigated the functional consequences of strong PLCγ2 GOF on human microglia. PLCγ2 S707Y expressing human inducible pluripotent stem cells (hiPSC)-derived microglia exhibited hypermorphic enzymatic activity under both basal and stimulated conditions, compared to PLCγ2 wild type. Despite the increase in PLCγ2 enzymatic activity, the PLCγ2 S707Y hiPSC-derived microglia display diminished functionality for key microglial processes including phagocytosis and cytokine secretion upon inflammatory challenge. RNA sequencing revealed a downregulation of genes related to innate immunity and response, providing molecular support for the phenotype observed. Our data suggests that chronic activation of PLCγ2 elicits a detrimental phenotype that is contributing to unfavourable CNS functions, and informs on the therapeutic window for targeting PLCγ2 in the CNS. Drug candidates targeting PLCγ2 will need to precisely mimic the effects of the PLCγ2 P522R variant on microglial function, but not those of the PLCγ2 S707Y variant.
Collapse
Affiliation(s)
- Daniel Bull
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Julie C Matte
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Carmen M Navarron
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Rebecca McIntyre
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Paul Whiting
- Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Fiona Ducotterd
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Lorenza Magno
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
13
|
Area-Gomez E, Schon EA. Towards a Unitary Hypothesis of Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2024; 98:1243-1275. [PMID: 38578892 DOI: 10.3233/jad-231318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The "amyloid cascade" hypothesis of Alzheimer's disease (AD) pathogenesis invokes the accumulation in the brain of plaques (containing the amyloid-β protein precursor [AβPP] cleavage product amyloid-β [Aβ]) and tangles (containing hyperphosphorylated tau) as drivers of pathogenesis. However, the poor track record of clinical trials based on this hypothesis suggests that the accumulation of these peptides is not the only cause of AD. Here, an alternative hypothesis is proposed in which the AβPP cleavage product C99, not Aβ, is the main culprit, via its role as a regulator of cholesterol metabolism. C99, which is a cholesterol sensor, promotes the formation of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a cholesterol-rich lipid raft-like subdomain of the ER that communicates, both physically and biochemically, with mitochondria. We propose that in early-onset AD (EOAD), MAM-localized C99 is elevated above normal levels, resulting in increased transport of cholesterol from the plasma membrane to membranes of intracellular organelles, such as ER/endosomes, thereby upregulating MAM function and driving pathology. By the same token, late-onset AD (LOAD) is triggered by any genetic variant that increases the accumulation of intracellular cholesterol that, in turn, boosts the levels of C99 and again upregulates MAM function. Thus, the functional cause of AD is upregulated MAM function that, in turn, causes the hallmark disease phenotypes, including the plaques and tangles. Accordingly, the MAM hypothesis invokes two key interrelated elements, C99 and cholesterol, that converge at the MAM to drive AD pathogenesis. From this perspective, AD is, at bottom, a lipid disorder.
Collapse
Affiliation(s)
- Estela Area-Gomez
- Department of Neurology, Columbia University, New York, NY, USA
- Centro de Investigaciones Biológicas "Margarita Salas", Spanish National Research Council, Madrid, Spain
| | - Eric A Schon
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Genetics and Development>, Columbia University, New York, NY, USA
| |
Collapse
|
14
|
Lancaster T, Creese B, Escott-Price V, Driver I, Menzies G, Khan Z, Corbett A, Ballard C, Williams J, Murphy K, Chandler H. Proof-of-concept recall-by-genotype study of extremely low and high Alzheimer's polygenic risk reveals autobiographical deficits and cingulate cortex correlates. Alzheimers Res Ther 2023; 15:213. [PMID: 38087383 PMCID: PMC10714651 DOI: 10.1186/s13195-023-01362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Genome-wide association studies demonstrate that Alzheimer's disease (AD) has a highly polygenic architecture, where thousands of independent genetic variants explain risk with high classification accuracy. This AD polygenic risk score (AD-PRS) has been previously linked to preclinical cognitive and neuroimaging features observed in asymptomatic individuals. However, shared variance between AD-PRS and neurocognitive features are small, suggesting limited preclinical utility. METHODS Here, we recruited sixteen clinically asymptomatic individuals (mean age 67; range 58-76) with either extremely low / high AD-PRS (defined as at least 2 standard deviations from the wider sample mean (N = 4504; N EFFECTIVE = 90)) with comparable age sex and education level. We assessed group differences in autobiographical memory and T1-weighted structural neuroimaging features. RESULTS We observed marked reductions in autobiographical recollection (Cohen's d = - 1.66; P FDR = 0.014) and midline structure (cingulate) thickness (Cohen's d = - 1.55, P FDR = 0.05), with no difference in hippocampal volume (P > 0.3). We further confirm the negative association between AD-PRS and cingulate thickness in a larger study with a comparable age (N = 31,966, β = - 0.002, P = 0.011), supporting the validity of our approach. CONCLUSIONS These observations conform with multiple streams of prior evidence suggesting alterations in cingulate structures may occur in individuals with higher AD genetic risk. We were able to use a genetically informed research design strategy that significantly improved the efficiency and power of the study. Thus, we further demonstrate that the recall-by-genotype of AD-PRS from wider samples is a promising approach for the detection, assessment, and intervention in specific individuals with increased AD genetic risk.
Collapse
Affiliation(s)
- Thomas Lancaster
- Department of Psychology, University of Bath, Bath, UK.
- School of Physics and Astronomy, Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK.
- Dementia Research Institute (UKDRI), Cardiff University, Cardiff, UK.
| | - Byron Creese
- Department of Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- Department of Life Sciences, Brunel University London, Uxbridge, west London, UK
| | - Valentina Escott-Price
- Division of Neuroscience and Mental Health, School of Medicine, Cardiff University, Cardiff, UK
| | - Ian Driver
- School of Physics and Astronomy, Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| | - Georgina Menzies
- Dementia Research Institute (UKDRI), Cardiff University, Cardiff, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Zunera Khan
- Institute of Psychiatry, King's College London, Psychology & Neuroscience, London, UK
| | - Anne Corbett
- Deptartment of Health & Community Sciences, University of Exeter, Exeter, UK
| | - Clive Ballard
- Department of Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Julie Williams
- Dementia Research Institute (UKDRI), Cardiff University, Cardiff, UK
| | - Kevin Murphy
- School of Physics and Astronomy, Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| | - Hannah Chandler
- School of Physics and Astronomy, Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| |
Collapse
|
15
|
Hopp SC, Rogers JG, Smith S, Campos G, Miller H, Barannikov S, Kuri EG, Wang H, Han X, Bieniek KF, Weintraub ST, Palavicini JP. Multi-omics analyses reveal novel effects of PLCγ2 deficiency in the mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570499. [PMID: 38106102 PMCID: PMC10723468 DOI: 10.1101/2023.12.06.570499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Phospholipase C gamma-2 (PLCγ2) catalyzes the hydrolysis of the membrane phosphatidylinositol-4,5-bisphosphate (PIP2) to form diacylglycerol (DAG) and inositol trisphosphate (IP3), which subsequently feed into numerous downstream signaling pathways. PLCG2 polymorphisms are associated with both reduced and increased risk of Alzheimer's disease (AD) and with longevity. In the brain, PLCG2 is highly expressed in microglia, where it is proposed to regulate phagocytosis, secretion of cytokines/chemokines, cell survival and proliferation. We analyzed the brains of three-month-old PLCγ2 knockout (KO), heterozygous (HET), and wild-type (WT) mice using multiomics approaches, including shotgun lipidomics, proteomics, and gene expression profiling, and immunofluorescence. Lipidomic analyses revealed sex-specific losses of total cerebrum PIP2 and decreasing trends of DAG content in KOs. In addition, PLCγ2 depletion led to significant losses of myelin-specific lipids and decreasing trends of myelin-enriched lipids. Consistent with our lipidomics results, RNA profiling revealed sex-specific changes in the expression levels of several myelin-related genes. Further, consistent with the available literature, gene expression profiling revealed subtle changes on microglia phenotype in mature adult KOs under baseline conditions, suggestive of reduced microglia reactivity. Immunohistochemistry confirmed subtle differences in density of microglia and oligodendrocytes in KOs. Exploratory proteomic pathway analyses revealed changes in KO and HET females compared to WTs, with over-abundant proteins pointing to mTOR signaling, and under-abundant proteins to oligodendrocytes. Overall, our data indicate that loss of PLCγ2 has subtle effects on brain homeostasis that may underlie enhanced vulnerability to AD pathology and aging via novel mechanisms in addition to regulation of microglia function.
Collapse
Affiliation(s)
- Sarah C. Hopp
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio
- Department of Pharmacology, University of Texas Health Science Center San Antonio
| | - Juliet Garcia Rogers
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio
| | - Sabrina Smith
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio
- Department of Pharmacology, University of Texas Health Science Center San Antonio
| | - Gabriela Campos
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio
- Costa Rica Institute of Technology (TEC)
| | - Henry Miller
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio
| | - Savannah Barannikov
- Department of Pathology and Laboratory Science, University of Texas Health Science Center San Antonio
| | | | - Hu Wang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio
| | - Xianlin Han
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio
- Department of Medicine, University of Texas Health Science Center San Antonio
| | - Kevin F. Bieniek
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio
- Department of Pathology and Laboratory Science, University of Texas Health Science Center San Antonio
| | - Susan T. Weintraub
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center San Antonio
| | - Juan Pablo Palavicini
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio
- Department of Medicine, University of Texas Health Science Center San Antonio
| |
Collapse
|
16
|
Terzioglu G, Young-Pearse TL. Microglial function, INPP5D/SHIP1 signaling, and NLRP3 inflammasome activation: implications for Alzheimer's disease. Mol Neurodegener 2023; 18:89. [PMID: 38017562 PMCID: PMC10685641 DOI: 10.1186/s13024-023-00674-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023] Open
Abstract
Recent genetic studies on Alzheimer's disease (AD) have brought microglia under the spotlight, as loci associated with AD risk are enriched in genes expressed in microglia. Several of these genes have been recognized for their central roles in microglial functions. Increasing evidence suggests that SHIP1, the protein encoded by the AD-associated gene INPP5D, is an important regulator of microglial phagocytosis and immune response. A recent study from our group identified SHIP1 as a negative regulator of the NLRP3 inflammasome in human iPSC-derived microglial cells (iMGs). In addition, we found evidence for a connection between SHIP1 activity and inflammasome activation in the AD brain. The NLRP3 inflammasome is a multiprotein complex that induces the secretion of pro-inflammatory cytokines as part of innate immune responses against pathogens and endogenous damage signals. Previously published studies have suggested that the NLRP3 inflammasome is activated in AD and contributes to AD-related pathology. Here, we provide an overview of the current understanding of the microglial NLRP3 inflammasome in the context of AD-related inflammation. We then review the known intracellular functions of SHIP1, including its role in phosphoinositide signaling, interactions with microglial phagocytic receptors such as TREM2 and evidence for its intersection with NLRP3 inflammasome signaling. Through rigorous examination of the intricate connections between microglial signaling pathways across several experimental systems and postmortem analyses, the field will be better equipped to tailor newly emerging therapeutic strategies targeting microglia in neurodegenerative diseases.
Collapse
Affiliation(s)
- Gizem Terzioglu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA, 02115, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA, 02115, USA.
| |
Collapse
|
17
|
Weaver DF. Druggable targets for the immunopathy of Alzheimer's disease. RSC Med Chem 2023; 14:1645-1661. [PMID: 37731705 PMCID: PMC10507808 DOI: 10.1039/d3md00096f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/21/2023] [Indexed: 09/22/2023] Open
Abstract
Alzheimer's disease (AD) is one of the leading threats to the health and socioeconomic well-being of humankind. Though research to develop disease modifying therapies for AD has traditionally focussed on the misfolding and aggregation of proteins, this approach has failed to yield a definitively curative agent. Accordingly, the search for additional or alternative approaches is a medicinal chemistry priority. Dysfunction of the brain's neuroimmune-neuroinflammation axis has emerged as a leading contender. Neuroimmunity however is mechanistically complex, rendering the recognition of candidate receptors a challenging task. Herein, a review of the role of neuroimmunity in the biomolecular pathogenesis of AD is presented with the identification of a 'druggable dozen' targets; in turn, each identified target represents one or more discrete receptors centred on a common biochemical mechanism. The druggable dozen is composed of both cellular and molecular messenger targets, with a 'targetable ten' microglial targets as well as two cytokine-based targets. For each target, the underlying molecular basis, with a consideration of strengths and weaknesses, is considered.
Collapse
Affiliation(s)
- Donald F Weaver
- Krembil Research Institute, University Health Network, Department of Chemistry, University of Toronto 60 Leonard Avenue Toronto ON M5T 0S8 Canada
| |
Collapse
|
18
|
Tsai AP, Dong C, Lin PBC, Oblak AL, Viana Di Prisco G, Wang N, Hajicek N, Carr AJ, Lendy EK, Hahn O, Atkins M, Foltz AG, Patel J, Xu G, Moutinho M, Sondek J, Zhang Q, Mesecar AD, Liu Y, Atwood BK, Wyss-Coray T, Nho K, Bissel SJ, Lamb BT, Landreth GE. Genetic variants of phospholipase C-γ2 alter the phenotype and function of microglia and confer differential risk for Alzheimer's disease. Immunity 2023; 56:2121-2136.e6. [PMID: 37659412 PMCID: PMC10564391 DOI: 10.1016/j.immuni.2023.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023]
Abstract
Genetic association studies have demonstrated the critical involvement of the microglial immune response in Alzheimer's disease (AD) pathogenesis. Phospholipase C-gamma-2 (PLCG2) is selectively expressed by microglia and functions in many immune receptor signaling pathways. In AD, PLCG2 is induced uniquely in plaque-associated microglia. A genetic variant of PLCG2, PLCG2P522R, is a mild hypermorph that attenuates AD risk. Here, we identified a loss-of-function PLCG2 variant, PLCG2M28L, that confers an increased AD risk. PLCG2P522R attenuated disease in an amyloidogenic murine AD model, whereas PLCG2M28L exacerbated the plaque burden associated with altered phagocytosis and Aβ clearance. The variants bidirectionally modulated disease pathology by inducing distinct transcriptional programs that identified microglial subpopulations associated with protective or detrimental phenotypes. These findings identify PLCG2M28L as a potential AD risk variant and demonstrate that PLCG2 variants can differentially orchestrate microglial responses in AD pathogenesis that can be therapeutically targeted.
Collapse
Affiliation(s)
- Andy P Tsai
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Chuanpeng Dong
- Department of Medical and Molecular Genetics, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Peter Bor-Chian Lin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adrian L Oblak
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gonzalo Viana Di Prisco
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nian Wang
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicole Hajicek
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam J Carr
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emma K Lendy
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Oliver Hahn
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Micaiah Atkins
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Aulden G Foltz
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jheel Patel
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Guixiang Xu
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Miguel Moutinho
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John Sondek
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qisheng Zhang
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew D Mesecar
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brady K Atwood
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tony Wyss-Coray
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kwangsik Nho
- Department of Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephanie J Bissel
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gary E Landreth
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
19
|
Powis G, Meuillet EJ, Indarte M, Booher G, Kirkpatrick L. Pleckstrin Homology [PH] domain, structure, mechanism, and contribution to human disease. Biomed Pharmacother 2023; 165:115024. [PMID: 37399719 DOI: 10.1016/j.biopha.2023.115024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
The pleckstrin homology [PH] domain is a structural fold found in more than 250 proteins making it the 11th most common domain in the human proteome. 25% of family members have more than one PH domain and some PH domains are split by one, or several other, protein domains although still folding to give functioning PH domains. We review mechanisms of PH domain activity, the role PH domain mutation plays in human disease including cancer, hyperproliferation, neurodegeneration, inflammation, and infection, and discuss pharmacotherapeutic approaches to regulate PH domain activity for the treatment of human disease. Almost half PH domain family members bind phosphatidylinositols [PIs] that attach the host protein to cell membranes where they interact with other membrane proteins to give signaling complexes or cytoskeleton scaffold platforms. A PH domain in its native state may fold over other protein domains thereby preventing substrate access to a catalytic site or binding with other proteins. The resulting autoinhibition can be released by PI binding to the PH domain, or by protein phosphorylation thus providing fine tuning of the cellular control of PH domain protein activity. For many years the PH domain was thought to be undruggable until high-resolution structures of human PH domains allowed structure-based design of novel inhibitors that selectively bind the PH domain. Allosteric inhibitors of the Akt1 PH domain have already been tested in cancer patients and for proteus syndrome, with several other PH domain inhibitors in preclinical development for treatment of other human diseases.
Collapse
Affiliation(s)
- Garth Powis
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA.
| | | | - Martin Indarte
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| | - Garrett Booher
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| | - Lynn Kirkpatrick
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| |
Collapse
|
20
|
Brase L, You SF, D'Oliveira Albanus R, Del-Aguila JL, Dai Y, Novotny BC, Soriano-Tarraga C, Dykstra T, Fernandez MV, Budde JP, Bergmann K, Morris JC, Bateman RJ, Perrin RJ, McDade E, Xiong C, Goate AM, Farlow M, Sutherland GT, Kipnis J, Karch CM, Benitez BA, Harari O. Single-nucleus RNA-sequencing of autosomal dominant Alzheimer disease and risk variant carriers. Nat Commun 2023; 14:2314. [PMID: 37085492 PMCID: PMC10121712 DOI: 10.1038/s41467-023-37437-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/15/2023] [Indexed: 04/23/2023] Open
Abstract
Genetic studies of Alzheimer disease (AD) have prioritized variants in genes related to the amyloid cascade, lipid metabolism, and neuroimmune modulation. However, the cell-specific effect of variants in these genes is not fully understood. Here, we perform single-nucleus RNA-sequencing (snRNA-seq) on nearly 300,000 nuclei from the parietal cortex of AD autosomal dominant (APP and PSEN1) and risk-modifying variant (APOE, TREM2 and MS4A) carriers. Within individual cell types, we capture genes commonly dysregulated across variant groups. However, specific transcriptional states are more prevalent within variant carriers. TREM2 oligodendrocytes show a dysregulated autophagy-lysosomal pathway, MS4A microglia have dysregulated complement cascade genes, and APOEε4 inhibitory neurons display signs of ferroptosis. All cell types have enriched states in autosomal dominant carriers. We leverage differential expression and single-nucleus ATAC-seq to map GWAS signals to effector cell types including the NCK2 signal to neurons in addition to the initially proposed microglia. Overall, our results provide insights into the transcriptional diversity resulting from AD genetic architecture and cellular heterogeneity. The data can be explored on the online browser ( http://web.hararilab.org/SNARE/ ).
Collapse
Affiliation(s)
- Logan Brase
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Shih-Feng You
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Ricardo D'Oliveira Albanus
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | | | - Yaoyi Dai
- Baylor College of Medicine, Houston, TX, USA
| | - Brenna C Novotny
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Carolina Soriano-Tarraga
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Taitea Dykstra
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Maria Victoria Fernandez
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John P Budde
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Kristy Bergmann
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John C Morris
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Randall J Bateman
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Richard J Perrin
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Eric McDade
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Chengjie Xiong
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Greg T Sutherland
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Bruno A Benitez
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
21
|
Diks AM, Teodosio C, de Mooij B, Groenland RJ, Naber BAE, de Laat IF, Vloemans SA, Rohde S, de Jonge MI, Lorenz L, Horsten D, van Dongen JJM, Berkowska MA, Holstege H. Carriers of the p.P522R variant in PLCγ2 have a slightly more responsive immune system. Mol Neurodegener 2023; 18:25. [PMID: 37081539 PMCID: PMC10116473 DOI: 10.1186/s13024-023-00604-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/14/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND The rs72824905 single-nucleotide polymorphism in the PLCG2 gene, encoding the p.P522R residue change in Phospholipase C gamma 2 (PLCγ2), associates with protection against several dementia subtypes and with increased likelihood of longevity. Cell lines and animal models indicated that p.P522R is a functional hypermorph. We aimed to confirm this in human circulating peripheral immune cells. METHODS We compared effects of p.P522R on immune system function between carriers and non-carriers (aged 59-103y), using in-depth immunophenotyping, functional B-cell and myeloid cell assays, and in vivo SARS-CoV-2 vaccination. RESULTS In line with expectations, p.P522R impacts immune cell function only slightly, but it does so across a wide array of immune cell types. Upon B-cell stimulation, we observed increased PLCγ2 phosphorylation and calcium release, suggesting increased B-cell sensitivity upon antigen recognition. Further, p.P522R-carriers had higher numbers of CD20++CD21-CD24+ naive B cells and IgG1+ memory B cells. In myeloid cells, normalized ROS production was higher upon PLCγ2-dependent stimulation. On classical monocytes, CD33 levels were elevated. Furthermore, carriers expressed lower levels of allergy-related FcεRI on several immune cell subsets. Nevertheless, carriers and non-carriers had similar serological responses to SARS-CoV-2 vaccination. CONCLUSION The immune system from p.P522R-carriers is slightly more responsive to stimulation than in non-carriers.
Collapse
Affiliation(s)
- Annieck M Diks
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands
- Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Cristina Teodosio
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca - CSIC), Salamanca, Spain
- Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Bas de Mooij
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands
| | - Rick J Groenland
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands
| | - Brigitta A E Naber
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands
| | - Inge F de Laat
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands
| | - Sandra A Vloemans
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands
| | - Susan Rohde
- Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Marien I de Jonge
- Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Linda Lorenz
- Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Debbie Horsten
- Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jacques J M van Dongen
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands.
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca - CSIC), Salamanca, Spain.
- Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.
| | - Magdalena A Berkowska
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands
| | - Henne Holstege
- Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
22
|
Abstract
Alzheimer's disease (AD) is a debilitating age-related neurodegenerative condition. Unbiased genetic studies have implicated a central role for microglia, the resident innate immune cells of the central nervous system, in AD pathogenesis. On-going efforts are clarifying the biology underlying these associations and the microglial pathways that are dysfunctional in AD. Several genetic risk factors converge to decrease the function of activating microglial receptors and increase the function of inhibitory receptors, resulting in a seemingly dampened microglial phenotype in AD. Moreover, many of these microglial proteins that are genetically associated with AD appear to interact and share pathways or regulatory mechanisms, presenting several points of convergence that may be strategic targets for therapeutic intervention. Here, we review some of these studies and their implications for microglial participation in AD pathogenesis.
Collapse
|
23
|
Visvanathan R, Utsuki T, Beck DE, Lendy E, Sun KL, Liu Y, Hering KW, Mesecar A, Zhang ZY, Putt KS. A novel fluorogenic reporter substrate for 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-2 (PLCγ2): Application to high-throughput screening for activators to treat Alzheimer's disease. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023:S2472-5552(23)00024-2. [PMID: 36933698 DOI: 10.1016/j.slasd.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
A rare coding variant in PLCγ2 (P522R) expressed in microglia induces a mild activation of enzymatic activity when compared to wild-type. This mutation is reported to be protective against the cognitive decline associated with late-onset Alzheimer's disease (LOAD) and therefore, activation of wild-type PLCγ2 has been suggested as a potential therapeutic target for the prevention and treatment of LOAD. Additionally, PLCγ2 has been associated with other diseases such as cancer and some autoimmune disorders where mutations with much greater increases in PLCγ2 activity have been identified. Here, pharmacological inhibition may provide a therapeutic effect. In order to facilitate our investigation of the activity of PLCγ2, we developed an optimized fluorogenic substrate to monitor enzymatic activity in aqueous solution. This was accomplished by first exploring the spectral properties of various "turn-on" fluorophores. The most promising turn-on fluorophore was incorporated into a water-soluble PLCγ2 reporter substrate, which we named C8CF3-coumarin. The ability of PLCγ2 to enzymatically process C8CF3-coumarin was confirmed, and the kinetics of the reaction were determined. Reaction conditions were optimized to identify small molecule activators, and a pilot screen of the Library of Pharmacologically Active Compounds 1280 (LOPAC1280) was performed with the goal of identifying small molecule activators of PLCγ2. The optimized screening conditions allowed identification of potential PLCγ2 activators and inhibitors, thus demonstrating the feasibility of this approach for high-throughput screening.
Collapse
Affiliation(s)
- Ramya Visvanathan
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA; IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Tadanobu Utsuki
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA; IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA
| | - Daniel E Beck
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA; IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA
| | - Emma Lendy
- IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA; Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Kuai-Lin Sun
- Cayman Chemical Company, 1180 East Ellsworth Road, Ann Arbor, MI 48108, USA
| | - Yinghui Liu
- Cayman Chemical Company, 1180 East Ellsworth Road, Ann Arbor, MI 48108, USA
| | - Kirk W Hering
- Cayman Chemical Company, 1180 East Ellsworth Road, Ann Arbor, MI 48108, USA
| | - Andrew Mesecar
- IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA; Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Zhong-Yin Zhang
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA; IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA; IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA.
| |
Collapse
|
24
|
van Lengerich B, Zhan L, Xia D, Chan D, Joy D, Park JI, Tatarakis D, Calvert M, Hummel S, Lianoglou S, Pizzo ME, Prorok R, Thomsen E, Bartos LM, Beumers P, Capell A, Davis SS, de Weerd L, Dugas JC, Duque J, Earr T, Gadkar K, Giese T, Gill A, Gnörich J, Ha C, Kannuswamy M, Kim DJ, Kunte ST, Kunze LH, Lac D, Lechtenberg K, Leung AWS, Liang CC, Lopez I, McQuade P, Modi A, Torres VO, Nguyen HN, Pesämaa I, Propson N, Reich M, Robles-Colmenares Y, Schlepckow K, Slemann L, Solanoy H, Suh JH, Thorne RG, Vieira C, Wind-Mark K, Xiong K, Zuchero YJY, Diaz D, Dennis MS, Huang F, Scearce-Levie K, Watts RJ, Haass C, Lewcock JW, Di Paolo G, Brendel M, Sanchez PE, Monroe KM. A TREM2-activating antibody with a blood-brain barrier transport vehicle enhances microglial metabolism in Alzheimer's disease models. Nat Neurosci 2023; 26:416-429. [PMID: 36635496 PMCID: PMC9991924 DOI: 10.1038/s41593-022-01240-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/29/2022] [Indexed: 01/13/2023]
Abstract
Loss-of-function variants of TREM2 are associated with increased risk of Alzheimer's disease (AD), suggesting that activation of this innate immune receptor may be a useful therapeutic strategy. Here we describe a high-affinity human TREM2-activating antibody engineered with a monovalent transferrin receptor (TfR) binding site, termed antibody transport vehicle (ATV), to facilitate blood-brain barrier transcytosis. Upon peripheral delivery in mice, ATV:TREM2 showed improved brain biodistribution and enhanced signaling compared to a standard anti-TREM2 antibody. In human induced pluripotent stem cell (iPSC)-derived microglia, ATV:TREM2 induced proliferation and improved mitochondrial metabolism. Single-cell RNA sequencing and morphometry revealed that ATV:TREM2 shifted microglia to metabolically responsive states, which were distinct from those induced by amyloid pathology. In an AD mouse model, ATV:TREM2 boosted brain microglial activity and glucose metabolism. Thus, ATV:TREM2 represents a promising approach to improve microglial function and treat brain hypometabolism found in patients with AD.
Collapse
Affiliation(s)
| | - Lihong Zhan
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Dan Xia
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Darren Chan
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - David Joy
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Joshua I Park
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | | | | | - Selina Hummel
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | | | | | - Rachel Prorok
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | | | - Laura M Bartos
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Philipp Beumers
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Anja Capell
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
| | | | - Lis de Weerd
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Jason C Dugas
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Joseph Duque
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Timothy Earr
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Kapil Gadkar
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Tina Giese
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Audrey Gill
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Johannes Gnörich
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Connie Ha
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | | | - Do Jin Kim
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Sebastian T Kunte
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Lea H Kunze
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Diana Lac
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | | | | | | | - Isabel Lopez
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Paul McQuade
- Takeda Pharmaceutical Company, Cambridge, MA, USA
| | - Anuja Modi
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | | | | | - Ida Pesämaa
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | | | - Marvin Reich
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | | | - Kai Schlepckow
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Luna Slemann
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Hilda Solanoy
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Jung H Suh
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | | | | | - Karin Wind-Mark
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Ken Xiong
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | | | - Dolo Diaz
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Mark S Dennis
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Fen Huang
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | | | - Ryan J Watts
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | | | - Matthias Brendel
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | | |
Collapse
|
25
|
Li H, Liu H, Lutz MW, Luo S. Novel Genetic Variants in TP37, PIK3R1, CALM1, and PLCG2 of the Neurotrophin Signaling Pathway Are Associated with the Progression from Mild Cognitive Impairment to Alzheimer's Disease. J Alzheimers Dis 2023; 91:977-987. [PMID: 36530083 PMCID: PMC9905310 DOI: 10.3233/jad-220680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a common neurodegenerative disease and mild cognitive impairment (MCI) is considered as the prodromal stage of AD. Previous studies showed that changes in the neurotrophin signaling pathway could lead to cognitive decline in AD. However, the association of single nucleotide polymorphisms (SNPs) in genes that are involved in this pathway with AD progression from MCI remains unclear. OBJECTIVE We investigated the associations between SNPs involved in the neurotrophin signaling pathway with AD progression. METHODS We performed single-locus analysis to identify neurotrophin-signaling-related SNPs associated with the AD progression using 767 patients from the Alzheimer's Disease Neuroimaging Initiative study and 1,373 patients from the National Alzheimer's Coordinating Center study. We constructed polygenic risk scores (PRSs) using the identified independent non-APOE SNPs and evaluated its prediction performance on AD progression. RESULTS We identified 25 SNPs significantly associated with AD progression with Bayesian false-discovery probability ≤0.8. Based on the linkage disequilibrium clumping and expression quantitative trait loci analysis, we found 6 potentially functional SNPs that were associated with AD progression independently. The PRS analysis quantified the combined effects of these SNPs on longitudinal cognitive assessments and biomarkers from cerebrospinal fluid and neuroimaging. The addition of PRSs to the prediction model for 3-year progression to AD from MCI significantly increased the predictive accuracy. CONCLUSION Genetic variants in the specific genes of the neurotrophin signaling pathway are predictors of AD progression. eQTL analysis supports that these SNPs regulate expression of key genes involved in the neurotrophin signaling pathway.
Collapse
Affiliation(s)
- Huiyue Li
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Michael W. Lutz
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | | |
Collapse
|
26
|
Novoa C, Salazar P, Cisternas P, Gherardelli C, Vera-Salazar R, Zolezzi JM, Inestrosa NC. Inflammation context in Alzheimer's disease, a relationship intricate to define. Biol Res 2022; 55:39. [PMID: 36550479 PMCID: PMC9784299 DOI: 10.1186/s40659-022-00404-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is characterized by the accumulation of amyloid β (Aβ) and hyperphosphorylated tau protein aggregates. Importantly, Aβ and tau species are able to activate astrocytes and microglia, which release several proinflammatory cytokines, such as tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β), together with reactive oxygen (ROS) and nitrogen species (RNS), triggering neuroinflammation. However, this inflammatory response has a dual function: it can play a protective role by increasing Aβ degradation and clearance, but it can also contribute to Aβ and tau overproduction and induce neurodegeneration and synaptic loss. Due to the significant role of inflammation in the pathogenesis of AD, several inflammatory mediators have been proposed as AD markers, such as TNF-α, IL-1β, Iba-1, GFAP, NF-κB, TLR2, and MHCII. Importantly, the use of anti-inflammatory drugs such as NSAIDs has emerged as a potential treatment against AD. Moreover, diseases related to systemic or local inflammation, including infections, cerebrovascular accidents, and obesity, have been proposed as risk factors for the development of AD. In the following review, we focus on key inflammatory processes associated with AD pathogenesis.
Collapse
Affiliation(s)
- Catalina Novoa
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile
| | - Paulina Salazar
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile
| | - Pedro Cisternas
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Camila Gherardelli
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile
| | - Roberto Vera-Salazar
- Facultad de Ciencias Médicas, Escuela de Kinesiología, Universidad de Santiago de Chile, Santiago, Chile
| | - Juan M Zolezzi
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile.
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
27
|
Demin KA, Krotova NA, Ilyin NP, Galstyan DS, Kolesnikova TO, Strekalova T, de Abreu MS, Petersen EV, Zabegalov KN, Kalueff AV. Evolutionarily conserved gene expression patterns for affective disorders revealed using cross-species brain transcriptomic analyses in humans, rats and zebrafish. Sci Rep 2022; 12:20836. [PMID: 36460699 PMCID: PMC9718822 DOI: 10.1038/s41598-022-22688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
Widespread, debilitating and often treatment-resistant, depression and other stress-related neuropsychiatric disorders represent an urgent unmet biomedical and societal problem. Although animal models of these disorders are commonly used to study stress pathogenesis, they are often difficult to translate across species into valuable and meaningful clinically relevant data. To address this problem, here we utilized several cross-species/cross-taxon approaches to identify potential evolutionarily conserved differentially expressed genes and their sets. We also assessed enrichment of these genes for transcription factors DNA-binding sites down- and up- stream from their genetic sequences. For this, we compared our own RNA-seq brain transcriptomic data obtained from chronically stressed rats and zebrafish with publicly available human transcriptomic data for patients with major depression and their respective healthy control groups. Utilizing these data from the three species, we next analyzed their differential gene expression, gene set enrichment and protein-protein interaction networks, combined with validated tools for data pooling. This approach allowed us to identify several key brain proteins (GRIA1, DLG1, CDH1, THRB, PLCG2, NGEF, IKZF1 and FEZF2) as promising, evolutionarily conserved and shared affective 'hub' protein targets, as well as to propose a novel gene set that may be used to further study affective pathogenesis. Overall, these approaches may advance cross-species brain transcriptomic analyses, and call for further cross-species studies into putative shared molecular mechanisms of affective pathogenesis.
Collapse
Affiliation(s)
- Konstantin A Demin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
| | - Nataliya A Krotova
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Nikita P Ilyin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | | | | | | | | | | | - Allan V Kalueff
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia.
- Institute of Neurosciences and Medicine, Novosibirsk, Russia.
- Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
28
|
Lissek T. Activity-Dependent Induction of Younger Biological Phenotypes. Adv Biol (Weinh) 2022; 6:e2200119. [PMID: 35976161 DOI: 10.1002/adbi.202200119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/11/2022] [Indexed: 01/28/2023]
Abstract
In several mammalian species, including humans, complex stimulation patterns such as cognitive and physical exercise lead to improvements in organ function, organism health and performance, as well as possibly longer lifespans. A framework is introduced here in which activity-dependent transcriptional programs, induced by these environmental stimuli, move somatic cells such as neurons and muscle cells toward a state that resembles younger cells to allow remodeling and adaptation of the organism. This cellular adaptation program targets several process classes that are heavily implicated in aging, such as mitochondrial metabolism, cell-cell communication, and epigenetic information processing, and leads to functional improvements in these areas. The activity-dependent gene program (ADGP) can be seen as a natural, endogenous cellular reprogramming mechanism that provides deep insight into the principles of inducible improvements in cell and organism function and can guide the development of therapeutic approaches for longevity. Here, these ADGPs are analyzed, exemplary critical molecular nexus points such as cAMP response element-binding protein, myocyte enhancer factor 2, serum response factor, and c-Fos are identified, and it is explored how one may leverage them to prevent, attenuate, and reverse human aging-related decline of body function.
Collapse
Affiliation(s)
- Thomas Lissek
- Interdisciplinary Center for Neurosciences, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| |
Collapse
|
29
|
Romero-Molina C, Garretti F, Andrews SJ, Marcora E, Goate AM. Microglial efferocytosis: Diving into the Alzheimer's disease gene pool. Neuron 2022; 110:3513-3533. [PMID: 36327897 DOI: 10.1016/j.neuron.2022.10.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
Genome-wide association studies and functional genomics studies have linked specific cell types, genes, and pathways to Alzheimer's disease (AD) risk. In particular, AD risk alleles primarily affect the abundance or structure, and thus the activity, of genes expressed in macrophages, strongly implicating microglia (the brain-resident macrophages) in the etiology of AD. These genes converge on pathways (endocytosis/phagocytosis, cholesterol metabolism, and immune response) with critical roles in core macrophage functions such as efferocytosis. Here, we review these pathways, highlighting relevant genes identified in the latest AD genetics and genomics studies, and describe how they may contribute to AD pathogenesis. Investigating the functional impact of AD-associated variants and genes in microglia is essential for elucidating disease risk mechanisms and developing effective therapeutic approaches.
Collapse
Affiliation(s)
- Carmen Romero-Molina
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Garretti
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shea J Andrews
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Edoardo Marcora
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
30
|
Jie X, Wu H, Yang M, He M, Zhao G, Ling S, Huang Y, Yue B, Yang N, Zhang X. Whole genome bisulfite sequencing reveals DNA methylation roles in the adaptive response of wildness training giant pandas to wild environment. Front Genet 2022; 13:995700. [PMID: 36303550 PMCID: PMC9592921 DOI: 10.3389/fgene.2022.995700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
DNA methylation modification can regulate gene expression without changing the genome sequence, which helps organisms to rapidly adapt to new environments. However, few studies have been reported in non-model mammals. Giant panda (Ailuropoda melanoleuca) is a flagship species for global biodiversity conservation. Wildness and reintroduction of giant pandas are the important content of giant pandas’ protection. However, it is unclear how wildness training affects the epigenetics of giant pandas, and we lack the means to assess the adaptive capacity of wildness training giant pandas. We comparatively analyzed genome-level methylation differences in captive giant pandas with and without wildness training to determine whether methylation modification played a role in the adaptive response of wildness training pandas. The whole genome DNA methylation sequencing results showed that genomic cytosine methylation ratio of all samples was 5.35%–5.49%, and the methylation ratio of the CpG site was the highest. Differential methylation analysis identified 544 differentially methylated genes (DMGs). The results of KEGG pathway enrichment of DMGs showed that VAV3, PLCG2, TEC and PTPRC participated in multiple immune-related pathways, and may participate in the immune response of wildness training giant pandas by regulating adaptive immune cells. A large number of DMGs enriched in GO terms may also be related to the regulation of immune activation during wildness training of giant pandas. Promoter differentially methylation analysis identified 1,199 genes with differential methylation at promoter regions. Genes with low methylation level at promoter regions and high expression such as, CCL5, P2Y13, GZMA, ANP32A, VWF, MYOZ1, NME7, MRPS31 and TPM1 were important in environmental adaptation for wildness training giant pandas. The methylation and expression patterns of these genes indicated that wildness training giant pandas have strong immunity, blood coagulation, athletic abilities and disease resistance. The adaptive response of giant pandas undergoing wildness training may be regulated by their negatively related promoter methylation. We are the first to describe the DNA methylation profile of giant panda blood tissue and our results indicated methylation modification is involved in the adaptation of captive giant pandas when undergoing wildness training. Our study also provided potential monitoring indicators for the successful reintroduction of valuable and threatened animals to the wild.
Collapse
Affiliation(s)
- Xiaodie Jie
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Honglin Wu
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, China
| | - Miao Yang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Ming He
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, China
| | - Guangqing Zhao
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Shanshan Ling
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, China
| | - Yan Huang
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, China
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Nan Yang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
- *Correspondence: Nan Yang, ; Xiuyue Zhang,
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
- *Correspondence: Nan Yang, ; Xiuyue Zhang,
| |
Collapse
|
31
|
Claes C, England WE, Danhash EP, Kiani Shabestari S, Jairaman A, Chadarevian JP, Hasselmann J, Tsai AP, Coburn MA, Sanchez J, Lim TE, Hidalgo JLS, Tu C, Cahalan MD, Lamb BT, Landreth GE, Spitale RC, Blurton‐Jones M, Davtyan H. The P522R protective variant of PLCG2 promotes the expression of antigen presentation genes by human microglia in an Alzheimer's disease mouse model. Alzheimers Dement 2022; 18:1765-1778. [PMID: 35142046 PMCID: PMC9360195 DOI: 10.1002/alz.12577] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/28/2023]
Abstract
The P522R variant of PLCG2, expressed by microglia, is associated with reduced risk of Alzheimer's disease (AD). Yet, the impact of this protective mutation on microglial responses to AD pathology remains unknown. Chimeric AD and wild-type mice were generated by transplanting PLCG2-P522R or isogenic wild-type human induced pluripotent stem cell microglia. At 7 months of age, single-cell and bulk RNA sequencing, and histological analyses were performed. The PLCG2-P522R variant induced a significant increase in microglial human leukocyte antigen (HLA) expression and the induction of antigen presentation, chemokine signaling, and T cell proliferation pathways. Examination of immune-intact AD mice further demonstrated that the PLCG2-P522R variant promotes the recruitment of CD8+ T cells to the brain. These data provide the first evidence that the PLCG2-P522R variant increases the capacity of microglia to recruit T cells and present antigens, promoting a microglial transcriptional state that has recently been shown to be reduced in AD patient brains.
Collapse
Affiliation(s)
- Christel Claes
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCaliforniaUSA
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCaliforniaUSA
| | - Whitney E. England
- Department of Pharmaceutical Sciences University of CaliforniaIrvineCaliforniaUSA
| | - Emma P. Danhash
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCaliforniaUSA
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCaliforniaUSA
| | - Sepideh Kiani Shabestari
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCaliforniaUSA
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Amit Jairaman
- Department of Physiology and BiophysicsUniversity of California IrvineIrvineCaliforniaUSA
| | - Jean Paul Chadarevian
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCaliforniaUSA
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCaliforniaUSA
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Jonathan Hasselmann
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCaliforniaUSA
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCaliforniaUSA
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Andy P. Tsai
- Stark Neurosciences Research InstituteIUSMIndianapolisIndianaUSA
| | - Morgan A. Coburn
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Jessica Sanchez
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Tau En Lim
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCaliforniaUSA
| | - Jorge L. S. Hidalgo
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCaliforniaUSA
| | - Christina Tu
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCaliforniaUSA
| | - Michael D. Cahalan
- Department of Physiology and BiophysicsUniversity of California IrvineIrvineCaliforniaUSA
| | - Bruce T. Lamb
- Stark Neurosciences Research InstituteIUSMIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsIUSMIndianapolisIndianaUSA
| | - Gary E. Landreth
- Stark Neurosciences Research InstituteIUSMIndianapolisIndianaUSA
- Department of Anatomy and Cell BiologyIUSMIndianapolisIndianaUSA
| | - Robert C. Spitale
- Department of Pharmaceutical Sciences University of CaliforniaIrvineCaliforniaUSA
| | - Mathew Blurton‐Jones
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCaliforniaUSA
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCaliforniaUSA
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Hayk Davtyan
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCaliforniaUSA
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCaliforniaUSA
| |
Collapse
|
32
|
Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L, Svensson M, Martinson I, Boza-Serrano A, Venero JL, Nielsen HM, Gouras GK, Deierborg T. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Mol Neurodegener 2022; 17:62. [PMID: 36153580 PMCID: PMC9509584 DOI: 10.1186/s13024-022-00566-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-β load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Sabine C. Konings
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Javier Frontiñán-Rubio
- Oxidative Stress and Neurodegeneration Group, Faculty of Medicine, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Juan García-Revilla
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Martina Svensson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Isak Martinson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Antonio Boza-Serrano
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luís Venero
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Henrietta M. Nielsen
- Department of Biochemistry and Biophysics at, Stockholm University, Stockholm, Sweden
| | - Gunnar K. Gouras
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
33
|
Li K, Ran B, Wang Y, Liu L, Li W. PLCγ2 impacts microglia-related effectors revealing variants and pathways important in Alzheimer’s disease. Front Cell Dev Biol 2022; 10:999061. [PMID: 36147734 PMCID: PMC9485805 DOI: 10.3389/fcell.2022.999061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is an irreversible neurodegenerative disease mainly characterized by memory loss and cognitive decline. The etiology of AD is complex and remains incompletely understood. In recent years, genome-wide association studies (GWAS) have increasingly highlighted the central role of microglia in AD pathology. As a trans-membrane receptor specifically present on the microglia in the central nervous system, phosphatidylinositol-specific phospholipase C gamma 2 (PLCγ2) plays an important role in neuroinflammation. GWAS data and corresponding pathological research have explored the effects of PLCG2 variants on amyloid burden and tau pathologies that underline AD. The link between PLCγ2 and other AD-related effectors in human and mouse microglia has also been established, placing PLCγ2 downstream of the triggering receptor expressed on myeloid cells 2 (TREM2), toll-like receptor 4 (TLR4), Bruton’s tyrosine kinase (BTK), and colony-stimulating factor 1 receptor (CSF1R). Because the research on PLCγ2’s role in AD is still in its early stages, few articles have been published, therefore in this paper, we integrate the relevant research published to date, review the structural features, expression patterns, and related pathways of PLCγ2, and summarize the recent studies on important PLCG2 variants related to AD. Furthermore, the possibility and challenge of using PLCγ2 to develop therapeutic drugs for AD are also discussed.
Collapse
|
34
|
Heavener KS, Bradshaw EM. The aging immune system in Alzheimer's and Parkinson's diseases. Semin Immunopathol 2022; 44:649-657. [PMID: 35505128 PMCID: PMC9519729 DOI: 10.1007/s00281-022-00944-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/20/2022] [Indexed: 11/03/2022]
Abstract
The neurodegenerative diseases Alzheimer's disease (AD) and Parkinson's disease (PD) both have a myriad of risk factors including genetics, environmental exposures, and lifestyle. However, aging is the strongest risk factor for both diseases. Aging also profoundly influences the immune system, with immunosenescence perhaps the most prominent outcome. Through genetics, mouse models, and pathology, there is a growing appreciation of the role the immune system plays in neurodegenerative diseases. In this review, we explore the intersection of aging and the immune system in AD and PD.
Collapse
Affiliation(s)
- Kelsey S Heavener
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Elizabeth M Bradshaw
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
35
|
Ibanez KR, McFarland KN, Phillips J, Allen M, Lessard CB, Zobel L, De La Cruz EG, Shah S, Vo Q, Wang X, Quicksall Z, Ryu D, Funk C, Ertekin-Taner N, Prokop S, Golde TE, Chakrabarty P. Deletion of Abi3/Gngt2 influences age-progressive amyloid β and tau pathologies in distinctive ways. Alzheimers Res Ther 2022; 14:104. [PMID: 35897046 PMCID: PMC9327202 DOI: 10.1186/s13195-022-01044-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/06/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND The S209F variant of Abelson Interactor Protein 3 (ABI3) increases risk for Alzheimer's disease (AD), but little is known about its function in relation to AD pathogenesis. METHODS Here, we use a mouse model that is deficient in Abi3 locus to study how the loss of function of Abi3 impacts two cardinal neuropathological hallmarks of AD-amyloid β plaques and tau pathology. Our study employs extensive neuropathological and transcriptomic characterization using transgenic mouse models and adeno-associated virus-mediated gene targeting strategies. RESULTS Analysis of bulk RNAseq data confirmed age-progressive increase in Abi3 levels in rodent models of AD-type amyloidosis and upregulation in AD patients relative to healthy controls. Using RNAscope in situ hybridization, we localized the cellular distribution of Abi3 in mouse and human brains, finding that Abi3 is expressed in both microglial and non-microglial cells. Next, we evaluated Abi3-/- mice and document that both Abi3 and its overlapping gene, Gngt2, are disrupted in these mice. Using multiple transcriptomic datasets, we show that expression of Abi3 and Gngt2 are tightly correlated in rodent models of AD and human brains, suggesting a tight co-expression relationship. RNAseq of the Abi3-Gngt2-/- mice revealed upregulation of Trem2, Plcg2, and Tyrobp, concomitant with induction of an AD-associated neurodegenerative signature, even in the absence of AD-typical neuropathology. In APP mice, loss of Abi3-Gngt2 resulted in a gene dose- and age-dependent reduction in Aβ deposition. Additionally, in Abi3-Gngt2-/- mice, expression of a pro-aggregant form of human tau exacerbated tauopathy and astrocytosis. Further, using in vitro culture assays, we show that the AD-associated S209F mutation alters the extent of ABI3 phosphorylation. CONCLUSIONS These data provide an important experimental framework for understanding the role of Abi3-Gngt2 function and early inflammatory gliosis in AD. Our studies also demonstrate that inflammatory gliosis could have opposing effects on amyloid and tau pathology, highlighting the unpredictability of targeting immune pathways in AD.
Collapse
Affiliation(s)
- Kristen R Ibanez
- Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Karen N McFarland
- Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
- Department of Neurology, University of Florida, Gainesville, FL, 32610, USA
| | - Jennifer Phillips
- Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Christian B Lessard
- Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Lillian Zobel
- Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Elsa Gonzalez De La Cruz
- Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Shivani Shah
- Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Quan Vo
- Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Zachary Quicksall
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Daniel Ryu
- Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Cory Funk
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
- Department of Pathology, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Todd E Golde
- Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Paramita Chakrabarty
- Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
36
|
Solomon S, Sampathkumar NK, Carre I, Mondal M, Chennell G, Vernon AC, Ruepp MD, Mitchell JC. Heterozygous expression of the Alzheimer's disease-protective PLCγ2 P522R variant enhances Aβ clearance while preserving synapses. Cell Mol Life Sci 2022; 79:453. [PMID: 35895133 PMCID: PMC9329165 DOI: 10.1007/s00018-022-04473-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND A rare coding variant, P522R, in the phospholipase C gamma 2 (PLCG2) gene has been identified as protective against late-onset Alzheimer's disease (AD), but the mechanism is unknown. PLCG2 is exclusively expressed in microglia within the central nervous system, and altered microglial function has been implicated in the progression of AD. METHODS Healthy control hiPSCs were CRISPR edited to generate cells heterozygous and homozygous for the PLCG2P522R variant. Microglia derived from these hiPSC's were used to investigate the impact of PLCγ2P522R on disease relevant processes, specifically microglial capacity to take up amyloid beta (Aβ) and synapses. Targeted qPCR assessment was conducted to explore expression changes in core AD linked and microglial genes, and mitochondrial function was assessed using an Agilent Seahorse assay. RESULTS Heterozygous expression of the P522R variant resulted in increased microglial clearance of Aβ, while preserving synapses. This was associated with the upregulation of a number of genes, including the anti-inflammatory cytokine Il-10, and the synapse-linked CX3CR1, as well as alterations in mitochondrial function, and increased cellular motility. The protective capacity of PLCγ2P522R appeared crucially dependent on (gene) 'dose', as cells homozygous for the variant showed reduced synapse preservation, and a differential gene expression profile relative to heterozygous cells. CONCLUSION These findings suggest that PLCγ2P522R may result in increased surveillance by microglia, and prime them towards an anti-inflammatory state, with an increased capacity to respond to increasing energy demands, but highlights the delicate balance of this system, with increasing PLCγ2P522R 'dose' resulting in reduced beneficial impacts.
Collapse
Affiliation(s)
- Shiden Solomon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- UK Dementia Research Institute, King’s College London, London, UK
| | - Nirmal Kumar Sampathkumar
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- UK Dementia Research Institute, King’s College London, London, UK
- Present Address: Alzheimer’s Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Ivo Carre
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- UK Dementia Research Institute, King’s College London, London, UK
| | - Mrityunjoy Mondal
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- UK Dementia Research Institute, King’s College London, London, UK
| | - George Chennell
- Wohl Cellular Imaging Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Marc-David Ruepp
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- UK Dementia Research Institute, King’s College London, London, UK
| | - Jacqueline C Mitchell
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
37
|
Zhu Y, Cao B, Tolone A, Yan J, Christensen G, Arango-Gonzalez B, Ueffing M, Paquet-Durand F. In vitro Model Systems for Studies Into Retinal Neuroprotection. Front Neurosci 2022; 16:938089. [PMID: 35873807 PMCID: PMC9301112 DOI: 10.3389/fnins.2022.938089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Therapy development for neurodegenerative diseases of the retina constitutes a major unmet medical need, and this may be particularly relevant for inherited diseases of the retina, which are largely untreatable to this day. Therapy development necessitates appropriate models to improve the understanding of the underlying degenerative mechanisms, as well as for the testing and evaluation of novel treatment approaches. This review provides an overview of various in vitro model systems used to study retinal neuroprotection. The in vitro methods and technologies discussed range from primary retinal cell cultures and cell lines, to retinal organoids and organotypic retinal explants, to the cultivation of whole eyeballs. The advantages and disadvantages of these methods are compared and evaluated, also in view of the 3R principles (i.e., the refinement, reduction, and replacement of live animal testing), to identify suitable in vitro alternatives for in vivo experimentation. The article further expands on the use of in vitro models to test and evaluate neuroprotective treatments and to aid the development of retinal drug delivery systems. Among the pharmacological agents tested and characterized in vitro are such that interfere with aberrant cyclic guanosine monophosphate (cGMP) -signaling or such that inhibit the activities of poly (ADP-ribose) polymerase (PARP), histone deacetylases (HDAC), calpain-type proteases, as well as unfolded protein response-related stress. We then introduce nanoparticle-based drug delivery systems and discuss how different in vitro systems may be used to assess their efficacy in the treatment of retinal diseases. The summary provides a brief comparison of available in vitro models and relates their advantages and limitations to the various experimental requirements, for instance, for studies into disease mechanisms, novel treatments, or retinal toxicity. In many cases, combinations of different in vitro models may be required to obtain a comprehensive view of the efficacy of a given retinal neuroprotection approach.
Collapse
Affiliation(s)
- Yu Zhu
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Bowen Cao
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
- Molecular Biology of Retinal Degenerations, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Arianna Tolone
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Jie Yan
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Gustav Christensen
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Blanca Arango-Gonzalez
- Molecular Biology of Retinal Degenerations, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Marius Ueffing
- Molecular Biology of Retinal Degenerations, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- *Correspondence: Marius Ueffing,
| | - François Paquet-Durand
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- François Paquet-Durand,
| |
Collapse
|
38
|
Li RY, Qin Q, Yang HC, Wang YY, Mi YX, Yin YS, Wang M, Yu CJ, Tang Y. TREM2 in the pathogenesis of AD: a lipid metabolism regulator and potential metabolic therapeutic target. Mol Neurodegener 2022; 17:40. [PMID: 35658903 PMCID: PMC9166437 DOI: 10.1186/s13024-022-00542-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is a single-pass transmembrane immune receptor that is mainly expressed on microglia in the brain and macrophages in the periphery. Recent studies have identified TREM2 as a risk factor for Alzheimer’s disease (AD). Increasing evidence has shown that TREM2 can affect lipid metabolism both in the central nervous system (CNS) and in the periphery. In the CNS, TREM2 affects the metabolism of cholesterol, myelin, and phospholipids and promotes the transition of microglia into a disease-associated phenotype. In the periphery, TREM2 influences lipid metabolism by regulating the onset and progression of obesity and its complications, such as hypercholesterolemia, atherosclerosis, and nonalcoholic fatty liver disease. All these altered lipid metabolism processes could influence the pathogenesis of AD through several means, including affecting inflammation, insulin resistance, and AD pathologies. Herein, we will discuss a potential pathway that TREM2 mediates lipid metabolism to influence the pathogenesis of AD in both the CNS and periphery. Moreover, we discuss the possibility that TREM2 may be a key factor that links central and peripheral lipid metabolism under disease conditions, including AD. This link may be due to impacts on the integrity of the blood–brain barrier, and we introduce potential pathways by which TREM2 affects the blood–brain barrier. Moreover, we discuss the role of lipids in TREM2-associated treatments for AD. We propose some potential therapies targeting TREM2 and discuss the prospect and limitations of these therapies.
Collapse
Affiliation(s)
- Rui-Yang Li
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Qi Qin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Han-Chen Yang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Ying-Ying Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying-Xin Mi
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Yun-Si Yin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Meng Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Chao-Ji Yu
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China.
| |
Collapse
|
39
|
Xu YJ, Au NPB, Ma CHE. Functional and Phenotypic Diversity of Microglia: Implication for Microglia-Based Therapies for Alzheimer’s Disease. Front Aging Neurosci 2022; 14:896852. [PMID: 35693341 PMCID: PMC9178186 DOI: 10.3389/fnagi.2022.896852] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease and is closely associated with the accumulation of β-amyloid (Aβ) and neurofibrillary tangles (NFTs). Apart from Aβ and NFT pathologies, AD patients also exhibit a widespread microglial activation in various brain regions with elevated production of pro-inflammatory cytokines, a phenomenon known as neuroinflammation. In healthy central nervous system, microglia adopt ramified, “surveying” phenotype with compact cell bodies and elongated processes. In AD, the presence of pathogenic proteins such as extracellular Aβ plaques and hyperphosphorylated tau, induce the transformation of ramified microglia into amoeboid microglia. Ameboid microglia are highly phagocytic immune cells and actively secrete a cascade of pro-inflammatory cytokines and chemokines. However, the phagocytic ability of microglia gradually declines with age, and thus the clearance of pathogenic proteins becomes highly ineffective, leading to the accumulation of Aβ plaques and hyperphosphorylated tau in the aging brain. The accumulation of pathogenic proteins further augments the neuroinflammatory responses and sustains the activation of microglia. The excessive production of pro-inflammatory cytokines induces a massive loss of functional synapses and neurons, further worsening the disease condition of AD. More recently, the identification of a subset of microglia by transcriptomic studies, namely disease-associated microglia (DAM), the progressive transition from homeostatic microglia to DAM is TREM2-dependent and the homeostatic microglia gradually acquire the state of DAM during the disease progression of AD. Recent in-depth transcriptomic analysis identifies ApoE and Trem2 from microglia as the major risk factors for AD pathogenesis. In this review, we summarize current understandings of the functional roles of age-dependent microglial activation and neuroinflammation in the pathogenesis of AD. To this end, the exponential growth in transcriptomic data provides a solid foundation for in silico drug screening and gains further insight into the development of microglia-based therapeutic interventions for AD.
Collapse
Affiliation(s)
- Yi-Jun Xu
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ngan Pan Bennett Au
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- *Correspondence: Chi Him Eddie Ma,
| |
Collapse
|
40
|
Golde TE. Alzheimer’s disease – the journey of a healthy brain into organ failure. Mol Neurodegener 2022; 17:18. [PMID: 35248124 PMCID: PMC8898417 DOI: 10.1186/s13024-022-00523-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
As the most common dementia, Alzheimer’s disease (AD) exacts an immense personal, societal, and economic toll. AD was first described at the neuropathological level in the early 1900s. Today, we have mechanistic insight into select aspects of AD pathogenesis and have the ability to clinically detect and diagnose AD and underlying AD pathologies in living patients. These insights demonstrate that AD is a complex, insidious, degenerative proteinopathy triggered by Aβ aggregate formation. Over time Aβ pathology drives neurofibrillary tangle (NFT) pathology, dysfunction of virtually all cell types in the brain, and ultimately, overt neurodegeneration. Yet, large gaps in our knowledge of AD pathophysiology and huge unmet medical need remain. Though we largely conceptualize AD as a disease of aging, heritable and non-heritable factors impact brain physiology, either continuously or at specific time points during the lifespan, and thereby alter risk for devolvement of AD. Herein, I describe the lifelong journey of a healthy brain from birth to death with AD, while acknowledging the many knowledge gaps that remain regarding our understanding of AD pathogenesis. To ensure the current lexicon surrounding AD changes from inevitable, incurable, and poorly manageable to a lexicon of preventable, curable, and manageable we must address these knowledge gaps, develop therapies that have a bigger impact on clinical symptoms or progression of disease and use these interventions at the appropriate stage of disease.
Collapse
|
41
|
Kim J, Jung SH, Choe YS, Kim S, Kim B, Kim HR, Son SJ, Hong CH, Na DL, Kim HJ, Cho SJ, Won HH, Seo SW. Ethnic differences in the frequency of β-amyloid deposition in cognitively normal individuals. Neurobiol Aging 2022; 114:27-37. [DOI: 10.1016/j.neurobiolaging.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
|
42
|
Han S, Yuan R, Cui Y, He J, Wang QQ, Zhuo Y, Yang S, Gao H. Hederasaponin C Alleviates Lipopolysaccharide-Induced Acute Lung Injury In Vivo and In Vitro Through the PIP2/NF-κB/NLRP3 Signaling Pathway. Front Immunol 2022; 13:846384. [PMID: 35281058 PMCID: PMC8913935 DOI: 10.3389/fimmu.2022.846384] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
Gene transcription is governed by epigenetic regulation that is essential for the pro-inflammatory mediators surge following pathological triggers. Acute lung injury (ALI) is driven by pro-inflammatory cytokines produced by the innate immune system, which involves the nod-like receptor 3 (NLRP3) inflammasome and nuclear factor-κB (NF-κB) pathways. These two pathways are interconnected and share a common inducer the phosphatidylinositol 4,5-bisphosphate (PIP2), an epigenetic regulator of (Ribosomal ribonucleic acid (rRNA) gene transcription, to regulate inflammation by the direct inhibition of NF-κB phosphorylation and NLRP3 inflammasome activation. Herein, we report that hederasaponin C (HSC) exerted a therapeutic effect against ALI through the regulation of the PIP2/NF-κB/NLRP3 signaling pathway. In lipopolysaccharide (LPS)/lipopolysaccharide + adenosine triphosphate (LPS+ATP)-stimulated macrophages, our results showed that HSC remarkably inhibited the secretion of interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α). Moreover, HSC inhibited NF-κB/p65 nuclear translocation and the binding of PIP2 to transforming growth factor-β activated kinase 1 (TAK1). The intracellular calcium (Ca2+) level was decreased by HSC via the PIP2 signaling pathway, which subsequently inhibited the activation of NLRP3 inflammasome. HSC markedly alleviated LPS-induced ALI, restored lung function of mice, and rescued ALI-induced mice death. In addition, HSC significantly reduced the level of white blood cells (WBC), neutrophils, and lymphocytes, as well as pro-inflammatory mediators like IL-6, IL-1β, and TNF-α. Hematoxylin and eosin (H&E) staining results suggested HSC has a significant therapeutic effect on lung injury of mice. Interestingly, the PIP2/NF-κB/NLRP3 signaling pathway was further confirmed by the treatment of HSC with ALI, which is consistent with the treatment of HSC with LPS/LPS+ATP-stimulated macrophages. Overall, our findings revealed that HSC demonstrated significant anti-inflammatory activity through modulating the PIP2/NF-κB/NLRP3 axis in vitro and in vivo, suggesting that HSC is a potential therapeutic agent for the clinical treatment of ALI.
Collapse
Affiliation(s)
- Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Renyikun Yuan
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yushun Cui
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jia He
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qin-Qin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Youqiong Zhuo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Guangxi University of Chinese Medicine, Nanning, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Hongwei Gao,
| |
Collapse
|
43
|
Tsai AP, Dong C, Lin PBC, Messenger EJ, Casali BT, Moutinho M, Liu Y, Oblak AL, Lamb BT, Landreth GE, Bissel SJ, Nho K. PLCG2 is associated with the inflammatory response and is induced by amyloid plaques in Alzheimer's disease. Genome Med 2022; 14:17. [PMID: 35180881 PMCID: PMC8857783 DOI: 10.1186/s13073-022-01022-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/07/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by robust microgliosis and phenotypic changes that accompany disease pathogenesis. Accumulating evidence from genetic studies suggests the importance of phospholipase C γ 2 (PLCG2) in late-onset AD (LOAD) pathophysiology. However, the role of PLCG2 in AD is still poorly understood. METHODS Using bulk RNA-Seq (N=1249) data from the Accelerating Medicines Partnership-Alzheimer's Disease Consortium (AMP-AD), we investigated whether PLCG2 expression increased in the brains of LOAD patients. We also evaluated the relationship between PLCG2 expression levels, amyloid plaque density, and expression levels of microglia specific markers (AIF1 and TMEM119). Finally, we investigated the longitudinal changes of PLCG2 expression in the 5xFAD mouse model of AD. To further understand the role of PLCG2 in different signaling pathways, differential gene expression and co-expression network analyses were performed using bulk RNA-Seq and microglial single-cell RNA-Seq data. To substantiate the human analyses, we performed differential gene expression analysis on wild-type (WT) and inactivated Plcg2 mice and used immunostaining to determine if the differentially expressed genes/pathways were altered by microglial cell coverage or morphology. RESULTS We observed significant upregulation of PLCG2 expression in three brain regions of LOAD patients and significant positive correlation of PLCG2 expression with amyloid plaque density. These findings in the human brain were validated in the 5xFAD amyloid mouse model, which showed disease progression-dependent increases in Plcg2 expression associated with amyloid pathology. Of note, increased Plcg2 expression levels in 5xFAD mice were abolished by reducing microglia. Furthermore, using bulk RNA-Seq data, we performed differential expression analysis by comparing cognitively normal older adults (CN) with 75th percentile (high) and 25th percentile (low) PLCG2 gene expression levels to identify pathways related to inflammation and the inflammatory response. The findings in the human brain were validated by differential expression analyses between WT and plcg2 inactivated mice. PLCG2 co-expression network analysis of microglial single-cell RNA-Seq data identified pathways related to the inflammatory response including regulation of I-kappaB/NF-kappa B signaling and response to lipopolysaccharide. CONCLUSIONS Our results provide further evidence that PLCG2 plays an important role in AD pathophysiology and may be a potential target for microglia-targeted AD therapies.
Collapse
Affiliation(s)
- Andy P. Tsai
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN USA
| | - Chuanpeng Dong
- Department of Medical and Molecular Genetics, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Peter Bor-Chian Lin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN USA
| | - Evan J. Messenger
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN USA
| | - Brad T. Casali
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN USA
- Northeast Ohio Medical University, Rootstown, OH USA
| | - Miguel Moutinho
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Adrian L. Oblak
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA
| | - Bruce T. Lamb
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Gary E. Landreth
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Stephanie J. Bissel
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Kwangsik Nho
- Department of Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA
| |
Collapse
|
44
|
Khani M, Gibbons E, Bras J, Guerreiro R. Challenge accepted: uncovering the role of rare genetic variants in Alzheimer's disease. Mol Neurodegener 2022; 17:3. [PMID: 35000612 PMCID: PMC8744312 DOI: 10.1186/s13024-021-00505-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
The search for rare variants in Alzheimer's disease (AD) is usually deemed a high-risk - high-reward situation. The challenges associated with this endeavor are real. Still, the application of genome-wide technologies to large numbers of cases and controls or to small, well-characterized families has started to be fruitful.Rare variants associated with AD have been shown to increase risk or cause disease, but also to protect against the development of AD. All of these can potentially be targeted for the development of new drugs.Multiple independent studies have now shown associations of rare variants in NOTCH3, TREM2, SORL1, ABCA7, BIN1, CLU, NCK2, AKAP9, UNC5C, PLCG2, and ABI3 with AD and suggested that they may influence disease via multiple mechanisms. These genes have reported functions in the immune system, lipid metabolism, synaptic plasticity, and apoptosis. However, the main pathway emerging from the collective of genes harboring rare variants associated with AD is the Aβ pathway. Associations of rare variants in dozens of other genes have also been proposed, but have not yet been replicated in independent studies. Replication of this type of findings is one of the challenges associated with studying rare variants in complex diseases, such as AD. In this review, we discuss some of these primary challenges as well as possible solutions.Integrative approaches, the availability of large datasets and databases, and the development of new analytical methodologies will continue to produce new genes harboring rare variability impacting AD. In the future, more extensive and more diverse genetic studies, as well as studies of deeply characterized families, will enhance our understanding of disease pathogenesis and put us on the correct path for the development of successful drugs.
Collapse
Affiliation(s)
- Marzieh Khani
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Elizabeth Gibbons
- Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave. N.E., Grand Rapids, Michigan 49503-2518 USA
| | - Jose Bras
- Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave. N.E., Grand Rapids, Michigan 49503-2518 USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI USA
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave. N.E., Grand Rapids, Michigan 49503-2518 USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI USA
| |
Collapse
|
45
|
Abstract
With the expected rise in Alzheimer's disease and related dementias (ADRD) in the coming decades due to the aging population and a lack of effective disease-modifying treatments, there is a need for preventive strategies that may tap into resilience parameters. A wide array of resilience strategies has been proposed including genetics, socioeconomic status, lifestyle modifications, behavioral changes, and management of comorbid disease. These different strategies can be broadly classified as distinguishing between modifiable and non-modifiable risk factors, some of which can be quantified so that their clinical intervention can be effectively accomplished. A clear shift in research focus from dementia risk to addressing disease resistance and resilience is emerging that has provided new potential therapeutic targets. Here we review and summarize the latest investigations of resilience mechanisms and methods of quantifying resilience for clinical research. These approaches include identifying genetic variants that may help identify novel pathways (e.g., lipid metabolism, cellular trafficking, synaptic function, inflammation) for therapeutic treatments and biomarkers for use in a precision medicine-like regimen. In addition, innovative structural and molecular neuroimaging analyses may assist in detecting and quantifying pathological changes well before the onset of clinical symptoms setting up the possibility of primary and secondary prevention trials. Lastly, we summarize recent studies demonstrating the study of resilience in caregivers of persons living with dementia may have direct and indirect impact on the quality of care and patient outcomes.
Collapse
Affiliation(s)
- Mahesh S. Joshi
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| | - James E. Galvin
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| |
Collapse
|
46
|
Jonas LA, Jain T, Li YM. Functional insight into LOAD-associated microglial response genes. Open Biol 2022; 12:210280. [PMID: 35078351 PMCID: PMC8790339 DOI: 10.1098/rsob.210280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/01/2021] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs), neuronal and synaptic loss and inflammation of the central nervous system (CNS). The majority of AD research has been dedicated to the understanding of two major AD hallmarks (i.e. Aβ and NFTs); however, recent genome-wide association studies (GWAS) data indicate neuroinflammation as having a critical role in late-onset AD (LOAD) development, thus unveiling a novel avenue for AD therapeutics. Recent evidence has provided much support to the innate immune system's involvement with AD progression; however, much remains to be uncovered regarding the role of glial cells, specifically microglia, in AD. Moreover, numerous variants in immune and/or microglia-related genes have been identified in whole-genome sequencing and GWAS analyses, including such genes as TREM2, CD33, APOE, API1, MS4A, ABCA7, BIN1, CLU, CR1, INPP5D, PICALM and PLCG2. In this review, we aim to provide an insight into the function of the major LOAD-associated microglia response genes.
Collapse
Affiliation(s)
- Lauren A. Jonas
- Weill Cornell, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tanya Jain
- Weill Cornell, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yue-Ming Li
- Weill Cornell, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
47
|
Frisoni GB, Altomare D, Thal DR, Ribaldi F, van der Kant R, Ossenkoppele R, Blennow K, Cummings J, van Duijn C, Nilsson PM, Dietrich PY, Scheltens P, Dubois B. The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nat Rev Neurosci 2022; 23:53-66. [PMID: 34815562 PMCID: PMC8840505 DOI: 10.1038/s41583-021-00533-w] [Citation(s) in RCA: 223] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 01/03/2023]
Abstract
The current conceptualization of Alzheimer disease (AD) is driven by the amyloid hypothesis, in which a deterministic chain of events leads from amyloid deposition and then tau deposition to neurodegeneration and progressive cognitive impairment. This model fits autosomal dominant AD but is less applicable to sporadic AD. Owing to emerging information regarding the complex biology of AD and the challenges of developing amyloid-targeting drugs, the amyloid hypothesis needs to be reconsidered. Here we propose a probabilistic model of AD in which three variants of AD (autosomal dominant AD, APOE ε4-related sporadic AD and APOE ε4-unrelated sporadic AD) feature decreasing penetrance and decreasing weight of the amyloid pathophysiological cascade, and increasing weight of stochastic factors (environmental exposures and lower-risk genes). Together, these variants account for a large share of the neuropathological and clinical variability observed in people with AD. The implementation of this model in research might lead to a better understanding of disease pathophysiology, a revision of the current clinical taxonomy and accelerated development of strategies to prevent and treat AD.
Collapse
Affiliation(s)
- Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland.
| | - Daniele Altomare
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, and Leuven Brain Institute, University of Leuven, Leuven, Belgium
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Rik van der Kant
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
- Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Kaj Blennow
- Cinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences; University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Cornelia van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Peter M Nilsson
- Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
- Life Science Partners, Amsterdam, Netherlands
| | - Bruno Dubois
- Institut de la Mémoire et de la Maladie d'Alzheimer, IM2A, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, Paris, France
- Institut du Cerveau et de la Moelle Épinière, UMR-S975, INSERM, Paris, France
| |
Collapse
|
48
|
Stepanichev MY. Using Genome Editing for Alzheimer’s Disease Therapy: from Experiment to Clinic. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421040139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Sakr F, Dyrba M, Bräuer AU, Teipel S. Association of Lipidomics Signatures in Blood with Clinical Progression in Preclinical and Prodromal Alzheimer's Disease. J Alzheimers Dis 2021; 85:1115-1127. [PMID: 34897082 DOI: 10.3233/jad-201504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Lipidomics may provide insight into biochemical processes driving Alzheimer's disease (AD) pathogenesis and ensuing clinical trajectories. OBJECTIVE To identify a peripheral lipidomics signature associated with AD pathology and investigate its potential to predict clinical progression. METHODS We used Bayesian elastic net regression to select plasma lipid classes associated with the CSF pTau/Aβ42 ratio as a biomarker of AD pathology in preclinical and prodromal AD cases from the ADNI cohort. Consensus clustering of the selected lipid classes was used to identify lipidomic endophenotypes and study their association with clinical progression. RESULTS In the APOE4-adjusted model, ether-glycerophospholipids, lyso-glycerophospholipids, free-fatty acids, cholesterol esters, and complex sphingolipids were found to be associated with the CSF pTau/Aβ 42 ratio. We found an optimal number of five lipidomic endophenotypes in the prodromal and preclinical cases, respectively. In the prodromal cases, these clusters differed with respect to the risk of clinical progression as measured by clinical dementia rating score conversion. CONCLUSION Lipid alterations can be captured at the earliest phases of AD. A lipidomic signature in blood may provide a dynamic overview of an individual's metabolic status and may support identifying different risks of clinical progression.
Collapse
Affiliation(s)
- Fatemah Sakr
- Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Anatomy Research Group, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Martin Dyrba
- German Centre for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Anja U Bräuer
- Anatomy Research Group, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Centre for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Stefan Teipel
- Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | | |
Collapse
|
50
|
Phospholipase Cγ2 regulates endocannabinoid and eicosanoid networks in innate immune cells. Proc Natl Acad Sci U S A 2021; 118:2112971118. [PMID: 34607960 DOI: 10.1073/pnas.2112971118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Human genetic studies have pointed to a prominent role for innate immunity and lipid pathways in immunological and neurodegenerative disorders. Our understanding of the composition and function of immunomodulatory lipid networks in innate immune cells, however, remains incomplete. Here, we show that phospholipase Cγ2 (PLCγ2 or PLCG2)-mutations in which are associated with autoinflammatory disorders and Alzheimer's disease-serves as a principal source of diacylglycerol (DAG) pools that are converted into a cascade of bioactive endocannabinoid and eicosanoid lipids by DAG lipase (DAGL) and monoacylglycerol lipase (MGLL) enzymes in innate immune cells. We show that this lipid network is tonically stimulated by disease-relevant human mutations in PLCγ2, as well as Fc receptor activation in primary human and mouse macrophages. Genetic disruption of PLCγ2 in mouse microglia suppressed DAGL/MGLL-mediated endocannabinoid-eicosanoid cross-talk and also caused widespread transcriptional and proteomic changes, including the reorganization of immune-relevant lipid pathways reflected in reductions in DAGLB and elevations in PLA2G4A. Despite these changes, Plcg2 -/- mice showed generally normal proinflammatory cytokine and chemokine responses to lipopolysaccharide treatment, instead displaying a more restricted deficit in microglial activation that included impairments in prostaglandin production and CD68 expression. Our findings enhance the understanding of PLCγ2 function in innate immune cells, delineating a role in cross-talk with endocannabinoid/eicosanoid pathways and modulation of subsets of cellular responses to inflammatory stimuli.
Collapse
|