1
|
Ball BK, Park JH, Proctor EA, Brubaker DK. Cross-disease modeling of peripheral blood identifies biomarkers of type 2 diabetes predictive of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627991. [PMID: 39713369 PMCID: PMC11661382 DOI: 10.1101/2024.12.11.627991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Type 2 diabetes (T2D) is a significant risk factor for Alzheimer's disease (AD). Despite multiple studies reporting this connection, the mechanism by which T2D exacerbates AD is poorly understood. It is challenging to design studies that address co-occurring and comorbid diseases, limiting the number of existing evidence bases. To address this challenge, we expanded the applications of a computational framework called Translatable Components Regression (TransComp-R), initially designed for cross-species translation modeling, to perform cross-disease modeling to identify biological programs of T2D that may exacerbate AD pathology. Using TransComp-R, we combined peripheral blood-derived T2D and AD human transcriptomic data to identify T2D principal components predictive of AD status. Our model revealed genes enriched for biological pathways associated with inflammation, metabolism, and signaling pathways from T2D principal components predictive of AD. The same T2D PC predictive of AD outcomes unveiled sex-based differences across the AD datasets. We performed a gene expression correlational analysis to identify therapeutic hypotheses tailored to the T2D-AD axis. We identified six T2D and two dementia medications that induced gene expression profiles associated with a non-T2D or non-AD state. Finally, we assessed our blood-based T2DxAD biomarker signature in post-mortem human AD and control brain gene expression data from the hippocampus, entorhinal cortex, superior frontal gyrus, and postcentral gyrus. Using partial least squares discriminant analysis, we identified a subset of genes from our cross-disease blood-based biomarker panel that significantly separated AD and control brain samples. Our methodological advance in cross-disease modeling identified biological programs in T2D that may predict the future onset of AD in this population. This, paired with our therapeutic gene expression correlational analysis, also revealed alogliptin, a T2D medication that may help prevent the onset of AD in T2D patients.
Collapse
|
2
|
Kandpal M, Baral B, Varshney N, Jain AK, Chatterji D, Meena AK, Pandey RK, Jha HC. Gut-brain axis interplay via STAT3 pathway: Implications of Helicobacter pylori derived secretome on inflammation and Alzheimer's disease. Virulence 2024; 15:2303853. [PMID: 38197252 PMCID: PMC10854367 DOI: 10.1080/21505594.2024.2303853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
Helicobacter pylori is a pathogenic bacterium that causes gastritis and gastric carcinoma. Besides gastric complications its potential link with gut-brain axis disruption and neurological disorders has also been reported. The current study investigated the plausible role and its associated molecular mechanism underlying H. pylori mediated gut-brain axis disruption and neuroinflammation leading to neurological modalities like Alzheimer's disease (AD). We have chosen the antimicrobial resistant and susceptible H. pylori strains on the basis of broth dilution method. We have observed the increased inflammatory response exerted by H. pylori strains in the gastric as well as in the neuronal compartment after treatment with Helicobacter pylori derived condition media (HPCM). Further, elevated expression of STAT1, STAT3, and AD-associated proteins- APP and APOE4 was monitored in HPCM-treated neuronal and neuron-astrocyte co-cultured cells. Excessive ROS generation has been found in these cells. The HPCM treatment to LN229 causes astrogliosis, evidenced by increased glial fibrillary acidic protein. Our results indicate the association of STAT3 as an important regulator in the H. pylori-mediated pathogenesis in neuronal cells. Notably, the inhibition of STAT3 by its specific inhibitor, BP-1-102, reduced the expression of pSTAT3 and AD markers in neuronal compartment induced by HPCM. Thus, our study demonstrates that H. pylori infection exacerbates inflammation in AGS cells and modulates the activity of STAT3 regulatory molecules. H. pylori secretome could affect neurological compartments by promoting STAT3 activation and inducing the expression of AD-associated signature markers. Further, pSTAT-3 inhibition mitigates the H. pylori associated neuroinflammation and amyloid pathology.
Collapse
Affiliation(s)
- Meenakshi Kandpal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, India
| | - Budhadev Baral
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, India
| | - Nidhi Varshney
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, India
| | - Ajay Kumar Jain
- Department of Gastroenterology, Choithram Hospital and Research Center, Indore, Madhya Pradesh, India
| | - Debi Chatterji
- Department of Gastroenterology, Choithram Hospital and Research Center, Indore, Madhya Pradesh, India
| | | | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, India
| |
Collapse
|
3
|
Roy N, Haq I, Ngo JC, Bennett DA, Teich AF, De Jager PL, Olah M, Sher F. Elevated expression of the retrotransposon LINE-1 drives Alzheimer's disease-associated microglial dysfunction. Acta Neuropathol 2024; 148:75. [PMID: 39604588 PMCID: PMC11602836 DOI: 10.1007/s00401-024-02835-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Aberrant activity of the retrotransposable element long interspersed nuclear element-1 (LINE-1) has been hypothesized to contribute to cellular dysfunction in age-related disorders, including late-onset Alzheimer's disease (LOAD). However, whether LINE-1 is differentially expressed in cell types of the LOAD brain, and whether these changes contribute to disease pathology is largely unknown. Here, we examined patterns of LINE-1 expression across neurons, astrocytes, oligodendrocytes, and microglia in human postmortem prefrontal cortex tissue from LOAD patients and cognitively normal, age-matched controls. We report elevated immunoreactivity of the open reading frame 1 protein (ORF1p) encoded by LINE-1 in microglia from LOAD patients and find that this immunoreactivity correlates positively with disease-associated microglial morphology. In human iPSC-derived microglia (iMG), we found that CRISPR-mediated transcriptional activation of LINE-1 drives changes in microglial morphology and cytokine secretion and impairs the phagocytosis of amyloid beta (Aβ). We also find LINE-1 upregulation in iMG induces transcriptomic changes genes associated with antigen presentation and lipid metabolism as well as impacting the expression of many AD-relevant genes. Our data posit that heightened LINE-1 expression may trigger microglial dysregulation in LOAD and that these changes may contribute to disease pathogenesis, suggesting a central role for LINE-1 activity in human LOAD.
Collapse
Affiliation(s)
- Nainika Roy
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Imdadul Haq
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Jason C Ngo
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Andrew F Teich
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Marta Olah
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Falak Sher
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA.
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA.
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
Lin CX, Li HD, Wang J. LIMO-GCN: a linear model-integrated graph convolutional network for predicting Alzheimer disease genes. Brief Bioinform 2024; 26:bbae611. [PMID: 39592152 PMCID: PMC11596108 DOI: 10.1093/bib/bbae611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/02/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a complex disease with its genetic etiology not fully understood. Gene network-based methods have been proven promising in predicting AD genes. However, existing approaches are limited in their ability to model the nonlinear relationship between networks and disease genes, because (i) any data can be theoretically decomposed into the sum of a linear part and a nonlinear part, (ii) the linear part can be best modeled by a linear model since a nonlinear model is biased and can be easily overfit, and (iii) existing methods do not separate the linear part from the nonlinear part when building the disease gene prediction model. To address the limitation, we propose linear model-integrated graph convolutional network (LIMO-GCN), a generic disease gene prediction method that models the data linearity and nonlinearity by integrating a linear model with GCN. The reason to use GCN is that it is by design naturally suitable to dealing with network data, and the reason to integrate a linear model is that the linearity in the data can be best modeled by a linear model. The weighted sum of the prediction of the two components is used as the final prediction of LIMO-GCN. Then, we apply LIMO-GCN to the prediction of AD genes. LIMO-GCN outperforms the state-of-the-art approaches including GCN, network-wide association studies, and random walk. Furthermore, we show that the top-ranked genes are significantly associated with AD based on molecular evidence from heterogeneous genomic data. Our results indicate that LIMO-GCN provides a novel method for prioritizing AD genes.
Collapse
Affiliation(s)
- Cui-Xiang Lin
- School of Computer Science and Engineering, Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, Hunan 410083, P.R. China
- School of Mathematics and Computational Science, National Center for Applied Mathematics in Hunan, Xiangtan University, Xiangtan, Hunan 411105, P.R. China
| | - Hong-Dong Li
- School of Computer Science and Engineering, Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, Hunan 410083, P.R. China
| | - Jianxin Wang
- School of Computer Science and Engineering, Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, Hunan 410083, P.R. China
| |
Collapse
|
5
|
Wen CH, Kang HY, Chan JYH. Brain Amyloid-β Peptide Is Associated with Pain Intensity and Cognitive Dysfunction in Osteoarthritic Patients. Int J Mol Sci 2024; 25:12575. [PMID: 39684287 DOI: 10.3390/ijms252312575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Considerable studies have demonstrated that osteoarthritis (OA) is a risk factor for dementia. The precise mechanisms underlying the association between OA and increased risk for cognitive dysfunction, however, remain unclear. This study aimed at exploring the associations between pro-inflammatory cytokines/chemokines, biomarkers of Alzheimer's disease (AD), pain intensity, and cognitive decline in knee joint OA patients. A total of 50 patients (26 in OA group and 24 in non-OA control group) were enrolled in this prospective, observational study. The visual analogue scale (VAS) score for pain intensity and Cognitive Abilities Screening Instrument (CASI) score for cognitive functions were examined in both groups. The plasma and cerebrospinal fluid (CSF) levels of pro-inflammatory molecules (IL-1β, IL-6, TNF-α, fractalkine, BDNF, MCP-1, and TGF-β), as well as biomarkers of AD (Aβ40, Aβ42, total-tau, and phospho-tau), were measured by multiplex immunoassay. Correlations among plasma or CSF biomarkers and questionnaire scores were assessed using Pearson's correlation coefficient and simple linear regressions. There were more patients in the OA group whose CASI cutoff percentiles were
Collapse
Affiliation(s)
- Chun-Hsien Wen
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan
- Department of Nursing, Meiho University, Pingtung 912009, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hong-Yo Kang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| |
Collapse
|
6
|
Guo T, Chen L, Luan L, Yang M, Zhang X, Yang H. Variations in inflammatory regulators in male patients with chronic schizophrenia associated with psychopathology and cognitive deficits. BMC Psychiatry 2024; 24:811. [PMID: 39548412 PMCID: PMC11566147 DOI: 10.1186/s12888-024-06288-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Immune dysregulation has been identified as a contributing factor in the pathophysiology of schizophrenia. This study aimed to investigate variations in specific immune regulators and their correlation with psychopathology and cognitive functions in male patients with chronic schizophrenia. METHODS Employing a cross-sectional design, this study included 72 male patients with chronic schizophrenia. The Positive and Negative Syndrome Scale (PANSS) and the Repeatable Battery for the Assessment of Neuropsychological Status were utilized to assess psychopathology and cognitive functions, respectively. RESULTS Serum levels of interleukin (IL)-4, IL-10, IL-12p40, IL-13, and monocyte chemoattractant protein-1 (MCP-1) were measured. There were significantly increased levels of IL-4, IL-13, and MCP-1, alongside decreased levels of IL-10 in patients compared to controls (all P < 0.05). IL-4 levels showed a significant negative association with PANSS positive symptoms (beta=-0.222, P = 0.042). After controlling for antipsychotic medication, BMI, and smoking, this correlation was no longer significant (r=-0.232, P = 0.055). Additionally, positive correlations of IL-4 (beta = 0.297, P = 0.008), IL-13 (beta = 0.371, P = 0.001), and MCP-1 (beta = 0.280, P = 0.013) with language scores were observed. Increased levels of IL-4 (P = 0.044, OR = 1.994), IL-13 (P = 0.019, OR = 2.245), as well as IL-4 and MCP-1 interactions (P = 0.043, OR = 2.000) were positively associated with the risk of chronic schizophrenia, while lower levels of IL-10 (P = 0.003, OR = 0.2.867) were also linked to an increased risk. CONCLUSION The identified associations between specific immune markers and the clinical and cognitive features of chronic schizophrenia in males underscored the potential immune-mediated mechanisms underlying schizophrenia.
Collapse
Affiliation(s)
- Tianming Guo
- Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Lihua Chen
- Medical College of Soochow University, Suzhou, 215137, PR China
| | - Lingshu Luan
- Xuzhou Medical University, Xuzhou, 221004, PR China
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, No. 316, Jiefangdong Road, Lianyungang, Jiangsu, 222003, PR China
| | - Man Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, No. 316, Jiefangdong Road, Lianyungang, Jiangsu, 222003, PR China
| | - Xiaobin Zhang
- Suzhou Psychiatric Hospital, Institute of Mental Health, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, PR China.
| | - Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, No. 316, Jiefangdong Road, Lianyungang, Jiangsu, 222003, PR China.
- Suzhou Psychiatric Hospital, Institute of Mental Health, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, PR China.
| |
Collapse
|
7
|
Dhauria M, Mondal R, Deb S, Shome G, Chowdhury D, Sarkar S, Benito-León J. Blood-Based Biomarkers in Alzheimer's Disease: Advancing Non-Invasive Diagnostics and Prognostics. Int J Mol Sci 2024; 25:10911. [PMID: 39456697 PMCID: PMC11507237 DOI: 10.3390/ijms252010911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is expected to rise dramatically in incidence due to the global population aging. Traditional diagnostic approaches, such as cerebrospinal fluid analysis and positron emission tomography, are expensive and invasive, limiting their routine clinical use. Recent advances in blood-based biomarkers, including amyloid-beta, phosphorylated tau, and neurofilament light, offer promising non-invasive alternatives for early AD detection and disease monitoring. This review synthesizes current research on these blood-based biomarkers, highlighting their potential to track AD pathology and enhance diagnostic accuracy. Furthermore, this review uniquely integrates recent findings on protein-protein interaction networks and microRNA pathways, exploring novel combinations of proteomic, genomic, and epigenomic biomarkers that provide new insights into AD's molecular mechanisms. Additionally, we discuss the integration of these biomarkers with advanced neuroimaging techniques, emphasizing their potential to revolutionize AD diagnostics. Although large-scale validation is still needed, these biomarkers represent a critical advancement toward more accessible, cost-effective, and early diagnostic tools for AD.
Collapse
Affiliation(s)
| | - Ritwick Mondal
- Department of Clinical Pharmacology and Therapeutic Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India;
| | - Shramana Deb
- Department of Stroke Medicine, Institute of Neuroscience, Kolkata 700017, India;
| | - Gourav Shome
- Department of Biological Sciences, Bose Institute, Kolkata 700054, India;
| | - Dipanjan Chowdhury
- Department of Internal Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India; (D.C.); (S.S.)
| | - Shramana Sarkar
- Department of Internal Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India; (D.C.); (S.S.)
| | - Julián Benito-León
- Department of Neurology, University Hospital “12 de Octubre”, ES-28041 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), ES-28041 Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ES-28029 Madrid, Spain
- Department of Medicine, Complutense University, ES-28040 Madrid, Spain
| |
Collapse
|
8
|
Yan Q, Liu M, Xie Y, Lin Y, Fu P, Pu Y, Wang B. Kidney-brain axis in the pathogenesis of cognitive impairment. Neurobiol Dis 2024; 200:106626. [PMID: 39122123 DOI: 10.1016/j.nbd.2024.106626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The kidney-brain axis is a bidirectional communication network connecting the kidneys and the brain, potentially affected by inflammation, uremic toxin, vascular injury, neuronal degeneration, and so on, leading to a range of diseases. Numerous studies emphasize the disruptions of the kidney-brain axis may contribute to the high morbidity of neurological disorders, such as cognitive impairment (CI) in the natural course of chronic kidney disease (CKD). Although the pathophysiology of the kidney-brain axis has not been fully elucidated, epidemiological data indicate that patients at all stages of CKD have a higher risk of developing CI compared with the general population. In contrast to other reviews, we mentioned some commonly used medicines in CKD that may play a pivotal role in the pathogenesis of CI. Revealing the pathophysiology interactions between kidney damage and brain function can reduce the potential risk of future CI. This review will deeply explore the characteristics, indicators, and potential pathophysiological mechanisms of CKD-related CI. It will provide a theoretical basis for identifying CI that progresses during CKD and ultimately prevents and treats CKD-related CI.
Collapse
Affiliation(s)
- Qianqian Yan
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Mengyuan Liu
- Department of Anesthesiology, Air Force Hospital of Western Theater Command, PLA, Chengdu 610011, China
| | - Yiling Xie
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yimi Lin
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ping Fu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yaoyu Pu
- Department of Rheumatology and Immunology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Bo Wang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
Rabl M, Clark C, Dayon L, Popp J. Neuropsychiatric symptoms in cognitive decline and Alzheimer's disease: biomarker discovery using plasma proteomics. J Neurol Neurosurg Psychiatry 2024:jnnp-2024-333819. [PMID: 39288961 DOI: 10.1136/jnnp-2024-333819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND AND OBJECTIVES Neuropsychiatric symptoms (NPS) are common in older people with cognitive impairment and Alzheimer's disease (AD). No biomarkers to detect the related pathology or predict the clinical evolution of NPS are available yet. This study aimed to identify plasma proteins that may serve as biomarkers for NPS and NPS-related clinical disease progression. METHODS A panel of 190 plasma proteins was quantified using Luminex xMAP in the Alzheimer's Disease Neuroimaging Initiative cohort. NPS and cognitive performance were assessed at baseline and after 1 and 2 years. Logistic regression, receiver operating characteristic analysis and cross-validation were used to address the relations of interest. RESULTS A total of 507 participants with mild cognitive impairment (n=396) or mild AD dementia (n=111) were considered. Selected plasma proteins improved the prediction of NPS (area under the curve (AUC) from 0.61 to 0.76, p<0.001) and future NPS (AUC from 0.63 to 0.80, p<0.001) when added to a reference model. Distinct protein panels were identified for single symptoms. Among the selected proteins, ANGT, CCL1 and IL3 were associated with NPS at all three time points while CCL1, serum glutamic oxaloacetic transaminase and complement factor H were also associated with cognitive decline. The associations were independent of the presence of cerebral AD pathology as assessed using cerebrospinal fluid biomarkers. CONCLUSIONS Plasma proteins are associated with NPS and improve prediction of future NPS.
Collapse
Affiliation(s)
- Miriam Rabl
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Psychiatric University Hospital, Zurich, Switzerland
| | - Christopher Clark
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Psychiatric University Hospital, Zurich, Switzerland
| | - Loïc Dayon
- Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, Lausanne, Switzerland
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Julius Popp
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Psychiatric University Hospital, Zurich, Switzerland
- Old-Age Psychiatry Service, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
10
|
Kostic M, Zivkovic N, Cvetanovic A, Basic J, Stojanovic I. Dissecting the immune response of CD4 + T cells in Alzheimer's disease. Rev Neurosci 2024:revneuro-2024-0090. [PMID: 39238424 DOI: 10.1515/revneuro-2024-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
The formation of amyloid-β (Aβ) plaques is a neuropathological hallmark of Alzheimer's disease (AD), however, these pathological aggregates can also be found in the brains of cognitively unimpaired elderly population. In that context, individual variations in the Aβ-specific immune response could be key factors that determine the level of Aβ-induced neuroinflammation and thus the propensity to develop AD. CD4+ T cells are the cornerstone of the immune response that coordinate the effector functions of both adaptive and innate immunity. However, despite intensive research efforts, the precise role of these cells during AD pathogenesis is still not fully elucidated. Both pathogenic and beneficial effects have been observed in various animal models of AD, as well as in humans with AD. Although this functional duality of CD4+ T cells in AD can be simply attributed to the vast phenotype heterogeneity of this cell lineage, disease stage-specific effect have also been proposed. Therefore, in this review, we summarized the current understanding of the role of CD4+ T cells in the pathophysiology of AD, from the aspect of their antigen specificity, activation, and phenotype characteristics. Such knowledge is of practical importance as it paves the way for immunomodulation as a therapeutic option for AD treatment, given that currently available therapies have not yielded satisfactory results.
Collapse
Affiliation(s)
- Milos Kostic
- Department of Immunology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Nikola Zivkovic
- Department of Pathology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ana Cvetanovic
- Department of Oncology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Jelena Basic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ivana Stojanovic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| |
Collapse
|
11
|
Wu XR, Wu BS, Kang JJ, Chen LM, Deng YT, Chen SD, Dong Q, Feng JF, Cheng W, Yu JT. Contribution of copy number variations to education, socioeconomic status and cognition from a genome-wide study of 305,401 subjects. Mol Psychiatry 2024:10.1038/s41380-024-02717-z. [PMID: 39215183 DOI: 10.1038/s41380-024-02717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Educational attainment (EA), socioeconomic status (SES) and cognition are phenotypically and genetically linked to health outcomes. However, the role of copy number variations (CNVs) in influencing EA/SES/cognition remains unclear. Using a large-scale (n = 305,401) genome-wide CNV-level association analysis, we discovered 33 CNV loci significantly associated with EA/SES/cognition, 20 of which were novel (deletions at 2p22.2, 2p16.2, 2p12, 3p25.3, 4p15.2, 5p15.33, 5q21.1, 8p21.3, 9p21.1, 11p14.3, 13q12.13, 17q21.31, and 20q13.33, as well as duplications at 3q12.2, 3q23, 7p22.3, 8p23.1, 8p23.2, 17q12 (105 kb), and 19q13.32). The genes identified in gene-level tests were enriched in biological pathways such as neurodegeneration, telomere maintenance and axon guidance. Phenome-wide association studies further identified novel associations of EA/SES/cognition-associated CNVs with mental and physical diseases, such as 6q27 duplication with upper respiratory disease and 17q12 (105 kb) duplication with mood disorders. Our findings provide a genome-wide CNV profile for EA/SES/cognition and bridge their connections to health. The expanded candidate CNVs database and the residing genes would be a valuable resource for future studies aimed at uncovering the biological mechanisms underlying cognitive function and related clinical phenotypes.
Collapse
Affiliation(s)
- Xin-Rui Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ju-Jiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Li-Min Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Xu H, Wu Z, Zhao Y, Hu C, Li P, Deng C, Li L, Bai Y, Song N, Luo J, Feng F, He C, Li Y, Zhang S. Antineutrophil cytoplasmic antibody is an independent risk factor in rheumatoid arthritis-associated interstitial lung disease. Clin Chim Acta 2024; 561:119845. [PMID: 38969087 DOI: 10.1016/j.cca.2024.119845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
OBJECTIVES This study aimed to investigate the clinical relevance of antineutrophil cytoplasmic antibody (ANCA) in patients with rheumatoid arthritis-associated interstitial lung disease (RA-ILD). METHODS Detailed clinical records of rheumatoid arthritis (RA) patients who underwent ANCA screening tests were collected. ANCA measurements were determined by indirect immunofluorescence assay (IIF) and enzyme-linked immunosorbent assay (ELISA). Clinical characteristics were compared between ANCA-positive and ANCA-negative groups, and multivariable logistic models were used to evaluate the independent association of ANCA with ILD in RA patients. RESULTS The prevalence of ANCA by IIF was significantly higher in RA-ILD patients compared to those with RA without ILD (31.7 % vs. 19.5 %, p < 0.001). RA-ILD patients positive for ANCA exhibited elevated levels of inflammatory markers and greater disease activity, and showed more severe impairment of lung function compared to ANCA-negative RA-ILD patients. Multivariable logistic regression analysis revealed an independent association of ANCA, especially pANCA, with RA-ILD. ANCA specificities for BPI, elastase, and cathepsin-G were found in 15.6 % of RA-ILD patients; the specificities for most others remain unknown. CONCLUSIONS The findings suggest a potential role for ANCA/pANCA in stratifying the risk of RA and provide supplementary information to the existing clinically available assays. This additional information may be valuable in identifying RA patients who require further investigations for RA-ILD, such as high-resolution computed tomography (HRCT). These results emphasize the potential clinical relevance of ANCA in the context of RA-ILD.
Collapse
Affiliation(s)
- Honglin Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ziyan Wu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yang Zhao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chaojun Hu
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ping Li
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuiwen Deng
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijun Li
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yina Bai
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Song
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinmei Luo
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Futai Feng
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengmei He
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Shulan Zhang
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
13
|
Zhang F, Zhang W. Research progress in Alzheimer's disease and bone-brain axis. Ageing Res Rev 2024; 98:102341. [PMID: 38759893 DOI: 10.1016/j.arr.2024.102341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Alzheimer's disease (AD) is the most common type of cognitive impairment. AD is closely related to orthopedic diseases, such as osteoporosis and osteoarthritis, in terms of epidemiology and pathogenesis. Brain and bone tissues can regulate each other in different manners through bone-brain axis. This article reviews the research progress of the relationship between AD and orthopedic diseases, bone-brain axis mechanisms of AD, and AD therapy by targeting bone-brain axis, in order to deepen the understanding of bone-brain communication, promote early diagnosis and explore new therapy for AD patients.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| |
Collapse
|
14
|
Arfaei R, Mikaeili N, Daj F, Boroumand A, Kheyri A, Yaraghi P, Shirzad Z, Keshavarz M, Hassanshahi G, Jafarzadeh A, Shahrokhi VM, Khorramdelazad H. Decoding the role of the CCL2/CCR2 axis in Alzheimer's disease and innovating therapeutic approaches: Keeping All options open. Int Immunopharmacol 2024; 135:112328. [PMID: 38796962 DOI: 10.1016/j.intimp.2024.112328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Alzheimer's disease (AD), as a neurodegenerative disorder, distresses the elderly in large numbers and is characterized by β-amyloid (Aβ) accumulation, elevated tau protein levels, and chronic inflammation. The brain's immune system is aided by microglia and astrocytes, which produce chemokines and cytokines. Nevertheless, dysregulated expression can cause hyperinflammation and lead to neurodegeneration. CCL2/CCR2 chemokines are implicated in neurodegenerative diseases exacerbating. Inflicting damage on nerves and central nervous system (CNS) cells is the function of this axis, which recruits and migrates immune cells, including monocytes and macrophages. It has been shown that targeting the CCL2/CCR2 axis may be a therapeutic option for inflammatory diseases. Using the current knowledge about the involvement of the CCL2/CCR2 axis in the immunopathogenesis of AD, this comprehensive review synthesizes existing information. It also explores potential therapeutic options, including modulation of the CCL2/CCR2 axis as a possible strategy in AD.
Collapse
Affiliation(s)
- Reyhaneh Arfaei
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Narges Mikaeili
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Daj
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Armin Boroumand
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Abbas Kheyri
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Pegah Yaraghi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Shirzad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Keshavarz
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamhossein Hassanshahi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Vahid Mohammadi Shahrokhi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
15
|
Ritson M, Wheeler-Jones CPD, Stolp HB. Endothelial dysfunction in neurodegenerative disease: Is endothelial inflammation an overlooked druggable target? J Neuroimmunol 2024; 391:578363. [PMID: 38728929 DOI: 10.1016/j.jneuroim.2024.578363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Neurological diseases with a neurodegenerative component have been associated with alterations in the cerebrovasculature. At the anatomical level, these are centred around changes in cerebral blood flow and vessel organisation. At the molecular level, there is extensive expression of cellular adhesion molecules and increased release of pro-inflammatory mediators. Together, these has been found to negatively impact blood-brain barrier integrity. Systemic inflammation has been found to accelerate and exacerbate endothelial dysfunction, neuroinflammation and degeneration. Here, we review the role of cerebrovasculature dysfunction in neurodegenerative disease and discuss the potential contribution of intermittent pro-inflammatory systemic disease in causing endothelial pathology, highlighting a possible mechanism that may allow broad-spectrum therapeutic targeting in the future.
Collapse
Affiliation(s)
- Megan Ritson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | | | - Helen B Stolp
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK.
| |
Collapse
|
16
|
Klimiec-Moskal E, Koceniak P, Weglarczyk K, Slowik A, Siedlar M, Dziedzic T. Circulating Chemokines and Short- and Long-Term Outcomes After Ischemic Stroke. Mol Neurobiol 2024:10.1007/s12035-024-04279-1. [PMID: 38861234 DOI: 10.1007/s12035-024-04279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Chemokines are vital in post-cerebral ischemia inflammatory reactions. We investigate the possible relationship between plasma chemokines and short-term and long-term outcomes after stroke. This study included 235 patients (median age, 72 years; 49.8% female) suffering from ischemic stroke, or transient ischemic attack admitted to the hospital within 24 h of onset. We evaluated chemokines CCL2, CCL5, CXCL8, CXCL9, and CXCL10 in plasma samples collected upon admission. Further, we assessed functional outcomes at 3- and 12-months, all-cause fatality over 5 years, and episodes of delirium within the first 7 days of admission. Multivariate analysis revealed an association between higher CXCL10 levels and an increased risk of poor functional outcomes at 3 months (OR: 3.02, 95%CI: 1.22-7.46, p = 0.016) and 12 months (OR: 2.32, 95%CI: 1.03-5.26, p = 0.043), as well as an increased death risk (HR: 1.79, 95%CI: 1.04-3.07, p = 0.036). High CXCL8 levels independently predicted poor functional outcomes at 12 months (OR: 2.69, 95%CI: 1.39-6.31, p = 0.005) and a higher 5-year case fatality rate (HR: 1.90, 95%CI: 1.23-2.93, p = 0.004). Elevated CXCL9 levels also predicted unfavourable functional outcomes at 12 months (OR: 2.45, 95%CI: 1.07-5.61, p = 0.034). In univariate analysis, increased levels of CXCL8, CXCL9, and CXCL10 showed an association with delirium, although this link was not evident in the multivariate analysis. Plasma CXCL8 and CXCL10 show potential as prognostic biomarkers for stroke outcomes and as therapeutic targets suitable for reverse translation.
Collapse
Affiliation(s)
- Elzbieta Klimiec-Moskal
- Department of Neurology, Jagiellonian University Medical College, Ul. Botaniczna 3, 31-503, Kraków, Poland
| | - Piotr Koceniak
- Department of Neurology, Jagiellonian University Medical College, Ul. Botaniczna 3, 31-503, Kraków, Poland
| | - Kazimierz Weglarczyk
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Agnieszka Slowik
- Department of Neurology, Jagiellonian University Medical College, Ul. Botaniczna 3, 31-503, Kraków, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Dziedzic
- Department of Neurology, Jagiellonian University Medical College, Ul. Botaniczna 3, 31-503, Kraków, Poland.
| |
Collapse
|
17
|
Chen Y, Wang Y, Tao Q, Lu P, Meng F, Zhuang L, Qiao S, Zhang Y, Luo B, Liu Y, Peng G. Diagnostic value of isolated plasma biomarkers and its combination in neurodegenerative dementias: A multicenter cohort study. Clin Chim Acta 2024; 558:118784. [PMID: 38588788 DOI: 10.1016/j.cca.2024.118784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Plasma amyloid-β (Aβ), phosphorylated tau-181 (p-tau181), neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) potentially aid in the diagnosis of neurodegenerative dementias. We aim to conduct a comprehensive comparison between different biomarkers and their combination, which is lacking, in a multicenter Chinese dementia cohort consisting of Alzheimer's disease (AD), frontotemporal dementia (FTD), and progressive supranuclear palsy (PSP). METHODS We enrolled 92 demented patients [64 AD, 16 FTD, and 12 PSP with dementia] and 20 healthy controls (HC). Their plasma Αβ, p-tau181, NfL, and GFAP were detected by highly sensitive-single molecule immunoassays. Αβ pathology in patients was measured by cerebrospinal fluid or/and amyloid positron emission tomography. RESULTS All plasma biomarkers tested were significantly altered in dementia patients compared with HC, especially Aβ42/Aβ40 and NfL showed significant performance in distinguishing AD from HC. A combination of plasma Aβ42/Aβ40, p-tau181, NfL, and GFAP could discriminate FTD or PSP well from HC and was able to distinguish AD and non-AD (FTD/PSP). CONCLUSIONS Our results confirmed the diagnostic performance of individual plasma biomarkers Aβ42/Aβ40, p-tau181, NfL, and GFAP in Chinese dementia patients and noted that a combination of these biomarkers may be more accurate in identifying FTD/PSP patients and distinguishing AD from non-AD dementia.
Collapse
Affiliation(s)
- Yi Chen
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunyun Wang
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology, Shengzhou People's Hospital, Shaoxing, China
| | - Qingqing Tao
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peilin Lu
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fanxia Meng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liying Zhuang
- Department of Neurology, the Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Song Qiao
- Department of Neurology, the Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Zhang
- Department of Geriatrics, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Benyan Luo
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yang Liu
- Department of Neurology, Saarland University, KirrbergerstraBe Geb., 90D-66421 Homburg/Sarr, German.
| | - Guoping Peng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
18
|
Abbatecola AM, Giuliani A, Biscetti L, Scisciola L, Battista P, Barbieri M, Sabbatinelli J, Olivieri F. Circulating biomarkers of inflammaging and Alzheimer's disease to track age-related trajectories of dementia: Can we develop a clinically relevant composite combination? Ageing Res Rev 2024; 96:102257. [PMID: 38437884 DOI: 10.1016/j.arr.2024.102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Alzheimer's disease (AD) is a rapidly growing global concern due to a consistent rise of the prevalence of dementia which is mainly caused by the aging population worldwide. An early diagnosis of AD remains important as interventions are plausibly more effective when started at the earliest stages. Recent developments in clinical research have focused on the use of blood-based biomarkers for improve diagnosis/prognosis of neurodegenerative diseases, particularly AD. Unlike invasive cerebrospinal fluid tests, circulating biomarkers are less invasive and will become increasingly cheaper and simple to use in larger number of patients with mild symptoms or at risk of dementia. In addition to AD-specific markers, there is growing interest in biomarkers of inflammaging/neuro-inflammaging, an age-related chronic low-grade inflammatory condition increasingly recognized as one of the main risk factor for almost all age-related diseases, including AD. Several inflammatory markers have been associated with cognitive performance and AD development and progression. The presence of senescent cells, a key driver of inflammaging, has also been linked to AD pathogenesis, and senolytic therapy is emerging as a potential treatment strategy. Here, we describe blood-based biomarkers clinically relevant for AD diagnosis/prognosis and biomarkers of inflammaging associated with AD. Through a systematic review approach, we propose that a combination of circulating neurodegeneration and inflammatory biomarkers may contribute to improving early diagnosis and prognosis, as well as providing valuable insights into the trajectory of cognitive decline and dementia in the aging population.
Collapse
Affiliation(s)
- Angela Marie Abbatecola
- Alzheimer's Disease Day Clinic, Azienda Sanitaria Locale, Frosinone, Italy; Univesità degli Studi di Cassino e del Lazio Meridionale, Dipartimento di Scienze Umane, Sociali e della Salute, Cassino, Italy
| | - Angelica Giuliani
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Bari Institute, Italy.
| | | | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Petronilla Battista
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Neuropsychology, Bari Institute, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
19
|
Pochini L, Barone F, Console L, Brunocilla C, Galluccio M, Scalise M, Indiveri C. OCTN1 (SLC22A4) displays two different transport pathways for organic cations or zwitterions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184263. [PMID: 38092232 DOI: 10.1016/j.bbamem.2023.184263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/15/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND OCTN1 belongs to the SLC22 family, which includes transporters for cationic, zwitterionic, and anionic substrates. OCTN1 function and role in cells are still poorly understood. Not only cations, such as TEA, but also zwitterions, such as carnitine and ergothioneine, figure among transported molecules. METHODS In this work, we carried out transport assays measuring [14C]-TEA and [3H]-Carnitine in proteoliposomes reconstituted with the recombinant human OCTN1 in the presence of Na+ or other cations. The homology model of OCTN1 was built using the structure of OCT3 as a template for docking analysis. RESULTS TEA and carnitine did not inhibit each other. Moreover, carnitine uptake was not affected by the presence of Na+ and TEBA, whereas TEA was strongly inhibited by both compounds. Computational data revealed that TEA, Na+, and carnitine can interact with E381 in the OCTN1 substrate site. Differently from TEA, in the presence of Na+, carnitine is still able to interact with the binding site via R469. CONCLUSIONS The lack of mutual inhibition of the two prototype substrates, the different effect of Na+ and TEBA on their transport reaction, together with the computational analysis supports the existence of two transport pathways for cations and zwitterions. GENERAL SIGNIFICANCE The results shed new light on the transport mechanisms of OCTN1, helping to get further insights into the structure/function relationships. The described results correlate well with previous and very recent findings on the polyspecificity of the OCT group of transporters belonging to the same family.
Collapse
Affiliation(s)
- Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), via Amendola 122/O, 70126 Bari, Italy
| | - Francesca Barone
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy
| | - Chiara Brunocilla
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy.
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), via Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|
20
|
Feldman HH, Messer K, Qiu Y, Sabbagh M, Galasko D, Turner RS, Lopez O, Smith A, Durant J, Lupo JL, Revta C, Balasubramanian A, Kuehn-Wache K, Wassmann T, Schell-Mader S, Jacobs DM, Salmon DP, Léger G, DeMarco ML, Weber F. Varoglutamstat: Inhibiting Glutaminyl Cyclase as a Novel Target of Therapy in Early Alzheimer's Disease. J Alzheimers Dis 2024; 101:S79-S93. [PMID: 39422941 PMCID: PMC11494639 DOI: 10.3233/jad-231126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2024] [Indexed: 10/19/2024]
Abstract
Background Varoglutamstat is a first-in-class, small molecule being investigated as a treatment for early Alzheimer's disease (AD). It is an inhibitor of glutaminyl cyclase (QC), the enzyme that post-translationally modifies amyloid-β (Aβ) peptides into a toxic form of pyroglutamate Aβ (pGlu-Aβ) and iso-QC which post-translationally modifies cytokine monocyte chemoattractant protein-1 (CCL2) into neuroinflammatory pGlu-CCL2. Early phase clinical trials identified dose margins for safety and tolerability of varoglutamstat and biomarker data supporting its potential for clinical efficacy in early AD. Objective Present the scientific rationale of varoglutamstat in the treatment of early AD and the methodology of the VIVA-MIND (NCT03919162) trial, which uses a seamless phase 2A-2B design. Our review also includes other pharmacologic approaches to pGlu-Aβ. Methods Phase 2A of the VIVA-MIND trial will determine the highest dose of varoglutamstat that is safe and well tolerated with sufficient plasma exposure and a calculated target occupancy. Continuous safety evaluation using a pre-defined safety stopping boundary will help determine the highest tolerated dose that will carry forward into phase 2B. An interim futility analysis of cognitive function and electroencephalogram changes will be conducted to inform the decision of whether to proceed with phase 2B. Phase 2B will assess the efficacy and longer-term safety of the optimal selected phase 2A dose through 72 weeks of treatment. Conclusions Varoglutamstat provides a unique dual mechanism of action addressing multiple pathogenic contributors to the disease cascade. VIVA-MIND provides a novel and efficient trial design to establish its optimal dosing, safety, tolerability, and efficacy in early AD.
Collapse
Affiliation(s)
- Howard H. Feldman
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
- Shiley-Marcos Alzheimer’s Disease Research Center, La Jolla, CA, USA
| | - Karen Messer
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
| | - Yuqi Qiu
- Department of Statistics, East China Normal University, Shanghai, China
| | - Marwan Sabbagh
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Douglas Galasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
- Shiley-Marcos Alzheimer’s Disease Research Center, La Jolla, CA, USA
| | - R. Scott Turner
- Department of Neurology, Georgetown University, Washington, DC, USA
| | - Oscar Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda Smith
- USF Health Byrd Alzheimer’s Institute, Tampa, FL, USA
| | - January Durant
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
| | - Jody-Lynn Lupo
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
| | - Carolyn Revta
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
| | - Archana Balasubramanian
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
| | | | | | | | - Diane M. Jacobs
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
- Shiley-Marcos Alzheimer’s Disease Research Center, La Jolla, CA, USA
| | - David P. Salmon
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
- Shiley-Marcos Alzheimer’s Disease Research Center, La Jolla, CA, USA
| | - Gabriel Léger
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
| | - Mari L. DeMarco
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - for the ADCS VIVA-MIND Study Group
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
- Shiley-Marcos Alzheimer’s Disease Research Center, La Jolla, CA, USA
- Department of Statistics, East China Normal University, Shanghai, China
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
- Department of Neurology, Georgetown University, Washington, DC, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- USF Health Byrd Alzheimer’s Institute, Tampa, FL, USA
- Vivoryon Therapeutics NV, Halle, Germany
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Tynterova AM, Barantsevich ER. [Indicators of cognitive impairment of varying severity in the acute period of ischemic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:14-20. [PMID: 39166928 DOI: 10.17116/jnevro202412408214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
OBJECTIVE To assess phenotype and identify biomarkers of cognitive impairment (CI) of varying severity in patients in the acute period of ischemic stroke (IS) based on the analysis of clinical and paraclinical indicators. MATERIAL AND METHODS Two hundred and forty patients with diagnosed IS and presence of CI were examined. Depending on the scores on the Montreal Cognitive Assessment Scale, patients were divided into two groups: group 1 (n=182) with mild CI, group 2 (n=58) with dementia. On admission, stroke severity according to the National Institutes of Health Stroke Scale (NIHSS), activities of daily living assessed by the Barthel Scale and patient independence assessed by the modified Rankin Scale (mRS) were determined. Neuropsychological examination was performed on day 14 and included investigation of episodic memory, executive functions, speech, gnosis, praxis, and the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) parameters. Immunological diagnostics included a study of the concentration of cytokines of various groups (interleukin (IL)-1b, IL-6, IL-16, granulocyte-macrophage colony-stimulating factor (GM-CSF), chemokines CXCL10, CXCL11, CXCL9, tumor necrosis factor α (TNFα)). Neuroimaging parameters were assessed using brain MRI data with verification of the STRIVE criteria and the medial temporal lobe atrophy scale (MTA). The standard application software package SPSS Statistics, Pandas and SciPy libraries were used for statistical analysis. RESULTS Patients of group 2 had lower scores in all cognitive domains with the greatest reduction in perception, constructive praxis, semantic information processing and mnestic function. These analyses revealed a higher degree of IQCODE, prevalence of features corresponding to STRIVE/MTA criteria in patients of group 2, while patients of group 1 had higher NIHSS and mRS scores. When serum concentrations of cytokines were assessed, patients of group 1 showed higher concentrations of IL-1b, IL-6, GM-CSF and TNFα, while group 2 patients had higher concentrations of cytokine CXCL10. CONCLUSION The presence of pre-stroke CI, baseline indicators of the patient's functional status, neuroimaging parameters of MTA/STRIVE and age are reflected in the structure and severity of cognitive deficit in the acute period of IS. Investigation of the role of interleukins, GM-CSF, TNFα and CXCL10 in the pathogenesis of IS and their association with the progression of post-stroke CI requires further studies with a larger sample size and longer follow-up period.
Collapse
Affiliation(s)
- A M Tynterova
- Imannuel Kant Baltic Federal University, Kaliningrad, Russia
| | - E R Barantsevich
- Pavlov Federal Saint Petersburg State Medical University, St Petersburg, Russia
| |
Collapse
|
22
|
Kim KY, Shin KY, Chang KA. Potential Inflammatory Biomarkers for Major Depressive Disorder Related to Suicidal Behaviors: A Systematic Review. Int J Mol Sci 2023; 24:13907. [PMID: 37762207 PMCID: PMC10531013 DOI: 10.3390/ijms241813907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric condition affecting an estimated 280 million individuals globally. Despite the occurrence of suicidal behaviors across various psychiatric conditions, MDD is distinctly associated with the highest risk of suicide attempts and death within this population. In this study, we focused on MDD to identify potential inflammatory biomarkers associated with suicidal risk, given the relationship between depressive states and suicidal ideation. Articles published before June 2023 were searched in PubMed, Embase, Web of Science, and the Cochrane Library to identify all relevant studies reporting blood inflammatory biomarkers in patients with MDD with suicide-related behaviors. Of 571 articles, 24 were included in this study. Overall, 43 significant biomarkers associated with MDD and suicide-related behaviors were identified. Our study provided compelling evidence of significant alterations in peripheral inflammatory factors in MDD patients with suicide-related behaviors, demonstrating the potential roles of interleukin (IL)-1β, IL-6, C-reactive protein, C-C motif chemokine ligand 2, and tumor necrosis factor-α as biomarkers. These findings underscore the intricate relationship between the inflammatory processes of these biomarkers and their interactions in MDD with suicidal risk.
Collapse
Affiliation(s)
- Ka Young Kim
- Department of Nursing, College of Nursing, Gachon University, Incheon 21936, Republic of Korea;
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Ki Young Shin
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
23
|
Abramova O, Zorkina Y, Ushakova V, Gryadunov D, Ikonnikova A, Fedoseeva E, Emelyanova M, Ochneva A, Morozova I, Pavlov K, Syunyakov T, Andryushchenko A, Savilov V, Kurmishev M, Andreuyk D, Shport S, Gurina O, Chekhonin V, Kostyuk G, Morozova A. Alteration of Blood Immune Biomarkers in MCI Patients with Different APOE Genotypes after Cognitive Training: A 1 Year Follow-Up Cohort Study. Int J Mol Sci 2023; 24:13395. [PMID: 37686198 PMCID: PMC10488004 DOI: 10.3390/ijms241713395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Many studies aim to detect the early phase of dementia. One of the major ways to achieve this is to identify corresponding biomarkers, particularly immune blood biomarkers. The objective of this study was to identify such biomarkers in patients with mild cognitive impairment (MCI) in an experiment that included cognitive training. A group of patients with MCI diagnoses over the age of 65 participated in the study (n = 136). Measurements of cognitive functions (using the Mini-Mental State Examination scale and Montreal Cognitive Assessment) and determination of 27 serum biomarkers were performed twice: on the first visit and on the second visit, one year after the cognitive training. APOE genotypes were also determined. Concentrations of EGF (F = 17; p = 0.00007), Eotaxin (F = 7.17; p = 0.008), GRO (F = 13.42; p = 0.0004), IL-8 (F = 8.16; p = 0.005), MCP-1 (F = 13.46; p = 0.0001) and MDC (F = 5.93; p = 0.016) increased after the cognitive training in MCI patients. All these parameters except IL-8 demonstrated a weak correlation with other immune parameters and were poorly represented in the principal component analysis. Differences in concentrations of IP-10, FGF-2, TGFa and VEGF in patients with MCI were associated with APOE genotype. Therefore, the study identified several immune blood biomarkers that could potentially be associated with changes in cognitive function.
Collapse
Affiliation(s)
- Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Valeriya Ushakova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- Biological Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Dmitry Gryadunov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna Ikonnikova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Fedoseeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Marina Emelyanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Aleksandra Ochneva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Irina Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
| | - Konstantin Pavlov
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Timur Syunyakov
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- International Centre for Education and Research in Neuropsychiatry (ICERN), Samara State Medical University, 443016 Samara, Russia
| | - Alisa Andryushchenko
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
| | - Victor Savilov
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
| | - Marat Kurmishev
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
| | - Denis Andreuyk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- Biological Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Svetlana Shport
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- Department of Psychiatry, Federal State Budgetary Educational Institution of Higher Education “Moscow State University of Food Production”, Volokolamskoye Highway 11, 125080 Moscow, Russia
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| |
Collapse
|