1
|
Alberro A, Bravo-Miana RDC, Gs Iñiguez S, Iribarren-López A, Arroyo-Izaga M, Matheu A, Muñoz-Culla M, Otaegui D. Age-Related sncRNAs in Human Hippocampal Tissue Samples: Focusing on Deregulated miRNAs. Int J Mol Sci 2024; 25:12872. [PMID: 39684581 DOI: 10.3390/ijms252312872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Small non-coding RNAs (sncRNAs), particularly microRNAs (miRNAs), play an important role in transcriptome regulation by binding to mRNAs and post-transcriptionally inhibiting protein production. This regulation occurs in both physiological and pathological conditions, where the expression of many miRNAs is altered. Previous reports by our group and others have demonstrated that miRNA expression is also altered during aging. However, most studies have analyzed human peripheral blood samples or brain samples from animal models, leaving a gap in knowledge regarding miRNA expression in the human brain. In this work, we analyzed the expression of sncRNAs from coronal sections of human hippocampal samples, a tissue with a high vulnerability to deleterious conditions such as aging. Samples from young (n = 5, 27-49 years old), old (n = 8, 58-88 years old), and centenarian (n = 3, 97, 99, and 100 years old) individuals were included. Our results reveal that sncRNAs, particularly miRNAs, are differentially expressed (DE) in the human hippocampus with aging. Besides, miRNA-mediated regulatory networks revealed significant interactions with mRNAs deregulated in the same hippocampal samples. Surprisingly, 80% of DE mRNA in the centenarian vs. old comparison are regulated by hsa-miR-192-5p and hsa-miR-3135b. Additionally, validated hsa-miR-6826-5p, hsa-let-7b-3p, hsa-miR-7846, and hsa-miR-451a emerged as promising miRNAs that are deregulated with aging and should be further investigated.
Collapse
Affiliation(s)
- Ainhoa Alberro
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Neurodegenerative Diseases Research Area of CIBER (CIBERNED), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Rocío Del Carmen Bravo-Miana
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Neurodegenerative Diseases Research Area of CIBER (CIBERNED), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Saioa Gs Iñiguez
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
| | - Andrea Iribarren-López
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Neurodegenerative Diseases Research Area of CIBER (CIBERNED), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Marta Arroyo-Izaga
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country (UPV/EHU), Bioaraba, 01006 Vitoria-Gasteiz, Spain
| | - Ander Matheu
- Cellular Oncology Group, Oncology Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Frailty and Healthy Ageing Research Area of CIBER (CIBERfes), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Maider Muñoz-Culla
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Neurodegenerative Diseases Research Area of CIBER (CIBERNED), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- Department of Basic Psychological Processes and Their Development, University of the Basque Country (UPV/EHU), 20018 San Sebastián, Spain
| | - David Otaegui
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Neurodegenerative Diseases Research Area of CIBER (CIBERNED), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
2
|
Horecka-Lewitowicz A, Lewitowicz W, Wawszczak-Kasza M, Lim H, Lewitowicz P. Autism Spectrum Disorder Pathogenesis-A Cross-Sectional Literature Review Emphasizing Molecular Aspects. Int J Mol Sci 2024; 25:11283. [PMID: 39457068 PMCID: PMC11508848 DOI: 10.3390/ijms252011283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The etiology of autism spectrum disorder (ASD) has not yet been completely elucidated. Through time, multiple attempts have been made to uncover the causes of ASD. Different theories have been proposed, such as being caused by alterations in the gut-brain axis with an emphasis on gut dysbiosis, post-vaccine complications, and genetic or even autoimmune causes. In this review, we present data covering the main streams that focus on ASD etiology. Data collection occurred in many countries covering ethnically diverse subjects. Moreover, we aimed to show how the progress in genetic techniques influences the explanation of medical White Papers in the ASD area. There is no single evidence-based pathway that results in symptoms of ASD. Patient management has constantly only been symptomatic, and there is no ASD screening apart from symptom-based diagnosis and parent-mediated interventions. Multigene sequencing or epigenetic alterations hold promise in solving the disjointed molecular puzzle. Further research is needed, especially in the field of biogenetics and metabolomic aspects, because young children constitute the patient group most affected by ASD. In summary, to date, molecular research has confirmed multigene dysfunction as the causative factor of ASD, the multigene model with metabolomic influence would explain the heterogeneity in ASD, and it is proposed that ion channel dysfunction could play a core role in ASD pathogenesis.
Collapse
Affiliation(s)
- Agata Horecka-Lewitowicz
- Institute of Medical Sciences, Jan Kochanowski University, Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland
| | - Wojciech Lewitowicz
- Student Scientific Society at Collegium Medicum, Jan Kochanowski University, Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland; (W.L.); (H.L.)
| | - Monika Wawszczak-Kasza
- Institute of Health Sciences, Jan Kochanowski University, Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland
| | - Hyebin Lim
- Student Scientific Society at Collegium Medicum, Jan Kochanowski University, Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland; (W.L.); (H.L.)
| | - Piotr Lewitowicz
- Institute of Medical Sciences, Jan Kochanowski University, Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland
| |
Collapse
|
3
|
Garrido-Torres N, Guzmán-Torres K, García-Cerro S, Pinilla Bermúdez G, Cruz-Baquero C, Ochoa H, García-González D, Canal-Rivero M, Crespo-Facorro B, Ruiz-Veguilla M. miRNAs as biomarkers of autism spectrum disorder: a systematic review and meta-analysis. Eur Child Adolesc Psychiatry 2024; 33:2957-2990. [PMID: 36735095 PMCID: PMC11424746 DOI: 10.1007/s00787-023-02138-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/05/2023] [Indexed: 02/04/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with complex clinical manifestations that arise between 18 and 36 months of age. Social interaction deficiencies, a restricted range of interests, and repetitive stereotyped behaviors are characteristics which are sometimes difficult to detect early. Several studies show that microRNAs (miRs/miRNAs) are strongly implicated in the development of the disorder and affect the expression of genes related to different neurological pathways involved in ASD. The present systematic review and meta-analysis addresses the current status of miRNA studies in different body fluids and the most frequently dysregulated miRNAs in patients with ASD. We used a combined approach to summarize miRNA fold changes in different studies using the mean values. In addition, we summarized p values for differential miRNA expression using the Fisher method. Our literature search yielded a total of 133 relevant articles, 27 of which were selected for qualitative analysis based on the inclusion and exclusion criteria, and 16 studies evaluating miRNAs whose data were completely reported were ultimately included in the meta-analysis. The most frequently dysregulated miRNAs across the analyzed studies were miR-451a, miR-144-3p, miR-23b, miR-106b, miR150-5p, miR320a, miR92a-2-5p, and miR486-3p. Among the most dysregulated miRNAs in individuals with ASD, miR-451a is the most relevant to clinical practice and is associated with impaired social interaction. Other miRNAs, including miR19a-3p, miR-494, miR-142-3p, miR-3687, and miR-27a-3p, are differentially expressed in various tissues and body fluids of patients with ASD. Therefore, all these miRNAs can be considered candidates for ASD biomarkers. Saliva may be the optimal biological fluid for miRNA measurements, because it is easy to collect from children compared to other biological fluids.
Collapse
Affiliation(s)
- Nathalia Garrido-Torres
- Hospital Universitario Virgen Del Rocio, IBIS-CSIC, Department of Psychiatry, University of Sevilla, Avda Manuel Siurot S/N, 41013, Seville, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Seville, Spain
| | | | - Susana García-Cerro
- Hospital Universitario Virgen Del Rocio, IBIS-CSIC, Department of Psychiatry, University of Sevilla, Avda Manuel Siurot S/N, 41013, Seville, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Seville, Spain
| | | | | | - Hansel Ochoa
- Epidemiology Research Group (EpiAndes), Los Andes University, Bogotá, Colombia
| | - Diego García-González
- Hospital Universitario Virgen Del Rocio, IBIS-CSIC, Department of Psychiatry, University of Sevilla, Avda Manuel Siurot S/N, 41013, Seville, Spain
| | - Manuel Canal-Rivero
- Hospital Universitario Virgen Del Rocio, IBIS-CSIC, Department of Psychiatry, University of Sevilla, Avda Manuel Siurot S/N, 41013, Seville, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Seville, Spain
| | - Benedicto Crespo-Facorro
- Hospital Universitario Virgen Del Rocio, IBIS-CSIC, Department of Psychiatry, University of Sevilla, Avda Manuel Siurot S/N, 41013, Seville, Spain.
- Spanish Network for Research in Mental Health (CIBERSAM), Seville, Spain.
| | - Miguel Ruiz-Veguilla
- Hospital Universitario Virgen Del Rocio, IBIS-CSIC, Department of Psychiatry, University of Sevilla, Avda Manuel Siurot S/N, 41013, Seville, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Seville, Spain
| |
Collapse
|
4
|
Martin P, Szkop KJ, Robert F, Bhattacharyya S, Beauchamp RL, Brenner J, Redmond NE, Huang S, Erdin S, Larsson O, Ramesh V. TSC2 loss in neural progenitor cells suppresses translation of ASD/NDD-associated transcripts in an mTORC1- and MNK1/2-reversible fashion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597393. [PMID: 38895292 PMCID: PMC11185676 DOI: 10.1101/2024.06.04.597393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Tuberous sclerosis complex (TSC) is an inherited neurodevelopmental disorder (NDD) with frequent manifestations of epilepsy and autism spectrum disorder (ASD). TSC is caused by inactivating mutations in TSC1 or TSC2 tumor suppressor genes, with encoded proteins hamartin (TSC1) and tuberin (TSC2) forming a functional complex inhibiting mechanistic target of rapamycin complex 1 (mTORC1) signaling. This has led to treatment with allosteric mTORC1 inhibitor rapamycin analogs ("rapalogs") for TSC tumors; however, rapalogs are ineffective for treating neurodevelopmental manifestations. mTORC1 signaling controls protein synthesis by regulating formation of the eIF4F complex, with further modulation by MNK1/2 kinases via phosphorylation of the eIF4F subunit eIF4E. While both these pathways modulate translation, comparing their impact on transcriptome-wide mRNA translation, as well as effects of inhibiting these pathways in TSC has not been explored. Here, employing CRISPR-modified, isogenic TSC2 patient-derived neural progenitor cells (NPCs), we have examined transcriptome-wide changes in mRNA translation upon TSC2 loss. Our results reveal dysregulated translation in TSC2 -Null NPCs, which significantly overlaps with the translatome from TSC1 -Null NPCs. Interestingly, numerous non-monogenic ASD-, NDD-and epilepsy-associated genes identified in patients harboring putative loss-of-function mutations, were translationally suppressed in TSC2 -Null NPCs. Importantly, translation of these ASD- and NDD-associated genes was reversed upon inhibition of either mTORC1 or MNK1/2 signaling using RMC-6272 or eFT-508, respectively. This study establishes the importance of mTORC1-eIF4F- and MNK-eIF4E-sensitive mRNA translation in TSC, ASD and other neurodevelopmental disorders laying the groundwork for evaluating drugs in clinical development that target these pathways as a treatment strategy for these disorders.
Collapse
|
5
|
Leow KQ, Tonta MA, Lu J, Coleman HA, Parkington HC. Towards understanding sex differences in autism spectrum disorders. Brain Res 2024; 1833:148877. [PMID: 38513995 DOI: 10.1016/j.brainres.2024.148877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by social deficits, repetitive behaviours and lack of empathy. Its significant genetic heritability and potential comorbidities often lead to diagnostic and therapeutic challenges. This review addresses the biological basis of ASD, focusing on the sex differences in gene expression and hormonal influences. ASD is more commonly diagnosed in males at a ratio of 4:1, indicating a potential oversight in female-specific ASD research and a risk of underdiagnosis in females. We consider how ASD manifests differently across sexes by exploring differential gene expression in female and male brains and consider how variations in steroid hormones influence ASD characteristics. Synaptic function, including excitation/inhibition ratio imbalance, is influenced by gene mutations and this is explored as a key factor in the cognitive and behavioural manifestations of ASD. We also discuss the role of micro RNAs (miRNAs) and highlight a novel mutation in miRNA-873, which affects a suite of key synaptic genes, neurexin, neuroligin, SHANK and post-synaptic density proteins, implicated in the pathology of ASD. Our review suggests that genetic predisposition, sex differences in brain gene expression, and hormonal factors significantly contribute to the presentation, identification and severity of ASD, necessitating sex-specific considerations in diagnosis and treatments. These findings advocate for personalized interventions to improve the outcomes for individuals with ASD.
Collapse
Affiliation(s)
- Karen Q Leow
- Department of Physiology, Biomedical Discovery Institute, Monash University, Victoria, Australia
| | - Mary A Tonta
- Department of Physiology, Biomedical Discovery Institute, Monash University, Victoria, Australia
| | - Jing Lu
- Tianjin Institute of Infectious Disease, Second Hospital of Tianjin Medical University, China
| | - Harold A Coleman
- Department of Physiology, Biomedical Discovery Institute, Monash University, Victoria, Australia
| | - Helena C Parkington
- Department of Physiology, Biomedical Discovery Institute, Monash University, Victoria, Australia.
| |
Collapse
|
6
|
Alsegehy S, Southey BR, Hernandez AG, Rund LA, Antonson AM, Nowak RA, Johnson RW, Rodriguez-Zas SL. Epigenetic disruptions in the offspring hypothalamus in response to maternal infection. Gene 2024; 910:148329. [PMID: 38431234 DOI: 10.1016/j.gene.2024.148329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
DNA methylation is an epigenetic modification that can alter gene expression, and the incidence can vary across developmental stages, inflammatory conditions, and sexes. The effects of viral maternal viral infection and sex on the DNA methylation patterns were studied in the hypothalamus of a pig model of immune activation during development. DNA methylation at single-base resolution in regions of high CpG density was measured on 24 individual hypothalamus samples using reduced representation bisulfite sequencing. Differential over- and under-methylated sites were identified and annotated to proximal genes and corresponding biological processes. A total of 120 sites were differentially methylated (FDR-adjusted p-value < 0.05) between maternal infection or sex groups. Among the 66 sites differentially methylated between groups exposed to inflammatory signals and control, most sites were over-methylated in the challenged group and included sites in the promoter regions of genes SIRT3 and NRBP1. Among the 54 differentially methylated sites between females and males, most sites were over-methylated in females and included sites in the promoter region of genes TNC and EIF4G1. The analysis of the genes proximal to the differentially methylated sites suggested that biological processes potentially impacted include immune response, neuron migration and ensheathment, peptide signaling, adaptive thermogenesis, and tissue development. These results suggest that translational studies should consider that the prolonged effect of maternal infection during gestation may be enacted through epigenetic regulatory mechanisms that may differ between sexes.
Collapse
Affiliation(s)
- Samah Alsegehy
- Informatics Program, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Alvaro G Hernandez
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lauretta A Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Adrienne M Antonson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Romana A Nowak
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rodney W Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sandra L Rodriguez-Zas
- Informatics Program, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA.
| |
Collapse
|
7
|
DelaCuesta-Barrutia J, Hidema S, Caldwell HK, Nishimori K, Erdozain AM, Peñagarikano O. In need of a specific antibody against the oxytocin receptor for neuropsychiatric research: A KO validation study. J Psychiatr Res 2024; 173:260-270. [PMID: 38554622 DOI: 10.1016/j.jpsychires.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/22/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Antibodies are one of the most utilized tools in biomedical research. However, few of them are rigorously evaluated, as there are no accepted guidelines or standardized methods for determining their validity before commercialization. Often, an antibody is considered validated if it detects a band by Western blot of the expected molecular weight and, in some cases, if blocking peptides result in loss of staining. Neither of these approaches are unquestionable proof of target specificity. Since the oxytocin receptor has recently become a popular target in neuropsychiatric research, the need for specific antibodies to be used in brain has arisen. In this work, we have tested the specificity of six commercially available oxytocin receptor antibodies, indicated by the manufacturers to be suitable for Western blot and with an available image showing the correct size band (45-55 KDa). Antibodies were first tested by Western blot in brain lysates of wild-type and oxytocin receptor knockout mice. Uterus tissue was also tested as control for putative differential tissue specificity. In brain, the six tested antibodies lacked target specificity, as both wild-type and receptor knockout samples resulted in a similar staining pattern, including the expected 45-55 KDa band. Five of the six antibodies detected a selective band in uterus (which disappeared in knockout tissue). These five specific antibodies were also tested for immunohistochemistry in uterus, where only one was specific. However, when the uterine-specific antibody was tested in brain tissue, it lacked specificity. In conclusion, none of the six tested commercial antibodies are suitable to detect oxytocin receptor in brain by either Western blot or immunohistochemistry, although some do specifically detect it in uterus. The present work highlights the need to develop standardized antibody validation methods, including a proper negative control, in order to grant quality and reproducibility of the generated data.
Collapse
Affiliation(s)
- Jon DelaCuesta-Barrutia
- Department of Pharmacology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain
| | - Shizu Hidema
- Department of Obesity and Inflammation, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Heather K Caldwell
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Ohio, 44242, USA
| | - Katsuhiko Nishimori
- Department of Obesity and Inflammation, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Amaia M Erdozain
- Department of Pharmacology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Leioa, 48940, Spain
| | - Olga Peñagarikano
- Department of Pharmacology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Leioa, 48940, Spain.
| |
Collapse
|
8
|
García-Cerro S, Gómez-Garrido A, Garcia G, Crespo-Facorro B, Brites D. Exploratory Analysis of MicroRNA Alterations in a Neurodevelopmental Mouse Model for Autism Spectrum Disorder and Schizophrenia. Int J Mol Sci 2024; 25:2786. [PMID: 38474035 DOI: 10.3390/ijms25052786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
MicroRNAs (miRNAs) play a crucial role in the regulation of gene expression levels and have been implicated in the pathogenesis of autism spectrum disorder (ASD) and schizophrenia (SCZ). In this study, we examined the adult expression profiles of specific miRNAs in the prefrontal cortex (PFC) of a neurodevelopmental mouse model for ASD and SCZ that mimics perinatal pathology, such as NMDA receptor hypofunction, and exhibits behavioral and neurophysiological phenotypes related to these disorders during adulthood. To model the early neuropathogenesis of the disorders, mouse pups were administered subcutaneously with ketamine (30 mg/Kg) at postnatal days 7, 9, and 11. We focused on a set of miRNAs most frequently altered in ASD (miR-451a and miR-486-3p) and in SCZ (miR-132-3p and miR-137-3p) according to human studies. Additionally, we explored miRNAs whose alterations have been identified in both disorders (miR-21-5p, miR-92a-2-5p, miR-144-3p, and miR-146a-5p). We placed particular emphasis on studying the sexual dimorphism in the dynamics of these miRNAs. Our findings revealed significant alterations in the PFC of this ASD- and SCZ-like mouse model. Specifically, we observed upregulated miR-451a and downregulated miR-137-3p. Furthermore, we identified sexual dimorphism in the expression of miR-132-3p, miR-137-3p, and miR-92a-2-5p. From a translational perspective, our results emphasize the potential involvement of miR-92a-2-5p, miR-132-3p, miR-137-3p, and miR-451a in the pathophysiology of ASD and SCZ and strengthen their potential as biomarkers and therapeutic targets of such disorders.
Collapse
Affiliation(s)
- Susana García-Cerro
- Translational Psychiatry Group, Ibis-Biomedicine Institute of Sevilla-CSIC, Manuel Siurot AV, 41013 Seville, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Monforte de Lemos AV, 3-5, 28029 Madrid, Spain
| | - Ana Gómez-Garrido
- Translational Psychiatry Group, Ibis-Biomedicine Institute of Sevilla-CSIC, Manuel Siurot AV, 41013 Seville, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Monforte de Lemos AV, 3-5, 28029 Madrid, Spain
| | - Gonçalo Garcia
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Benedicto Crespo-Facorro
- Translational Psychiatry Group, Ibis-Biomedicine Institute of Sevilla-CSIC, Manuel Siurot AV, 41013 Seville, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Monforte de Lemos AV, 3-5, 28029 Madrid, Spain
- Mental Health Unit, Virgen del Rocio University Hospital, Manuel Siurot AV, 41013 Seville, Spain
- Department of Psychiatry, Faculty of Medicine, University of Seville, Sánchez Pizjuán AV, 41013 Seville, Spain
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
9
|
Guiducci L, Cabiati M, Santocchi E, Prosperi M, Morales MA, Muratori F, Randazzo E, Federico G, Calderoni S, Del Ry S. Expression of miRNAs in Pre-Schoolers with Autism Spectrum Disorders Compared with Typically Developing Peers and Its Effects after Probiotic Supplementation. J Clin Med 2023; 12:7162. [PMID: 38002774 PMCID: PMC10672692 DOI: 10.3390/jcm12227162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Alteration of the microbiota-gut-brain axis has been recently recognized as a possible contributor to the physiopathology of autism spectrum disorder (ASD). In this context, microRNA (miRNAs) dysfunction, implicated both in several neuropathological conditions including ASD and in different gastrointestinal disorders (GIDs), could represent an important modulating factor. In this contextual framework, we studied the transcriptional profile of specific circulating miRNAs associated with both ASD (miR-197-5p, miR-424-5p, miR-500a-5p, miR-664a-5p) and GID (miR-21-5p, miR-320a-5p, miR-31-5p, miR-223-5p) in a group of pre-schoolers with ASD and in typically developing (TD) peers. In the ASD group, we also assessed the same miRNAs after a 6-month supplementation with probiotics and their correlation with plasma levels of zonulin and lactoferrin. At baseline, the expression of miRNAs involved in ASD were significantly reduced in ASD pre-schoolers vs. TD controls. Regarding the miRNAs involved in GID, the expression levels of miR-320-5p, miR-31-5p, and miR-223-5p were significantly higher in ASD than in TD subjects, whereas miR-21-5p showed significantly reduced expression in the ASD group vs. TD group. Supplementation with probiotics did not significantly change the expression of miRNAs in the ASD population. We found a significative negative correlation between zonulin and miR-197-5p and miR-21-5p at baseline, as well as between lactoferrin and miR-223-5p after 6 months of probiotic supplementation. Our study confirms the presence of an altered profile of the miRNAs investigated in ASD versus TD peers that was not modified by supplementation with probiotics.
Collapse
Affiliation(s)
- Letizia Guiducci
- CNR, Institute of Clinical Physiology, 56124 Pisa, Italy; (L.G.); (M.C.); (M.A.M.); (S.D.R.)
| | - Manuela Cabiati
- CNR, Institute of Clinical Physiology, 56124 Pisa, Italy; (L.G.); (M.C.); (M.A.M.); (S.D.R.)
| | - Elisa Santocchi
- UFSMIA Zona Valle del Serchio, Azienda USL Toscana Nord Ovest, 55032 Castelnuovo di Garfagnana, Italy;
| | - Margherita Prosperi
- UFSMIA Valdera-Alta Val di Cecina, Azienda USL Toscana Nord Ovest, 56128 Pisa, Italy;
| | - Maria Aurora Morales
- CNR, Institute of Clinical Physiology, 56124 Pisa, Italy; (L.G.); (M.C.); (M.A.M.); (S.D.R.)
| | - Filippo Muratori
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
| | - Emioli Randazzo
- Unit of Pediatric Endocrinology and Diabetes, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (E.R.); (G.F.)
| | - Giovanni Federico
- Unit of Pediatric Endocrinology and Diabetes, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (E.R.); (G.F.)
| | - Sara Calderoni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Silvia Del Ry
- CNR, Institute of Clinical Physiology, 56124 Pisa, Italy; (L.G.); (M.C.); (M.A.M.); (S.D.R.)
| |
Collapse
|
10
|
Herrera K, Maldonado-Ruiz R, Camacho-Morales A, de la Garza AL, Castro H. Maternal methyl donor supplementation regulates the effects of cafeteria diet on behavioral changes and nutritional status in male offspring. Food Nutr Res 2023; 67:9828. [PMID: 37920679 PMCID: PMC10619398 DOI: 10.29219/fnr.v67.9828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 11/04/2023] Open
Abstract
Background Nutritional status and maternal feeding during the perinatal and postnatal periods can program the offspring to develop long-term health alterations. Epidemiologic studies have demonstrated an association between maternal obesity and intellectual disability/cognitive deficits like autism spectrum disorders (ASDs) in offspring. Experimental findings have consistently been indicating that maternal supplementation with methyl donors, attenuated the social alterations and repetitive behavior in offspring. Objective This study aims to analyze the effect of maternal cafeteria diet and methyl donor-supplemented diets on social, anxiety-like, and repetitive behavior in male offspring, besides evaluating weight gain and food intake in both dams and male offspring. Design C57BL/6 female mice were randomized into four dietary formulas: control Chow (CT), cafeteria (CAF), control + methyl donor (CT+M), and cafeteria + methyl donor (CAF+M) during the pre-gestational, gestational, and lactation period. Behavioral phenotyping in the offspring was performed by 2-month-old using Three-Chamber Test, Open Field Test, and Marble Burying Test. Results We found that offspring prenatally exposed to CAF diet displayed less social interaction index when compared with subjects exposed to Chow diet (CT group). Notably, offspring exposed to CAF+M diet recovered social interaction when compared to the CAF group. Discussion These findings suggest that maternal CAF diet is efficient in promoting reduced social interaction in murine models. In our study, we hypothesized that a maternal methyl donor supplementation could improve the behavioral alterations expected in maternal CAF diet offspring. Conclusions The CAF diet also contributed to a social deficit and anxiety-like behavior in the offspring. On the other hand, a maternal methyl donor-supplemented CAF diet normalized the social interaction in the offspring although it led to an increase in anxiety-like behaviors. These findings suggest that a methyl donor supplementation could protect against aberrant social behavior probably targeting key genes related to neurotransmitter pathways.
Collapse
Affiliation(s)
- Katya Herrera
- Universidad Autonoma de Nuevo León, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública. Monterrey, Nuevo León, México
| | - Roger Maldonado-Ruiz
- Universidad Autonoma de Nuevo Leon, Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México
| | - Alberto Camacho-Morales
- Universidad Autonoma de Nuevo Leon, Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México
- Universidad Autonoma de Nuevo Leon, Facultad de Medicina, Departamento de Bioquímica. Monterrey, Nuevo León, México
| | - Ana Laura de la Garza
- Universidad Autonoma de Nuevo Leon, Unidad de Nutrición, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México
| | - Heriberto Castro
- Universidad Autonoma de Nuevo León, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública. Monterrey, Nuevo León, México
- Universidad Autonoma de Nuevo Leon, Unidad de Nutrición, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México
| |
Collapse
|
11
|
Jiang M, Chen G. Investigation of LncRNA PVT1 and MiR-21-5p Expression as Promising Novel Biomarkers for Autism Spectrum Disorder. J Mol Neurosci 2023; 73:865-873. [PMID: 37828403 DOI: 10.1007/s12031-023-02161-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
The characteristics of ncRNA in children with autism spectrum disorder (ASD) were observed to disclose a theoretical basis for further research on molecular markers for early warning of ASD. Children with ASD and normal control children were recruited to collect peripheral blood RNA samples. The concentration of PVT1 and miR-21-5p was quantitatively analyzed by qRT-PCR. Pearson correlation coefficient method was used to evaluate the link between PVT1 level and miR-21-5p level of the children. Receiver operating characteristic (ROC) curves were applied to reckon the predictive value of PVT1, miR-21-5p, and their combination in ASD. The interconnection of PVT1 with miR-21-5p was represented by luciferase reporter assay. The targeted genes of miR-21-5p were predicted. The enrichment and protein interaction analysis of these genes was carried out to find the important core genes and analyze their value in ASD. In the disease group, the level of PVT1 was downregulated, while the content of miR-21-5p was upregulated. The expression level of serum miR-21-5p was negatively correlated with the level of PVT1. Luciferase reporter gene assay documented that PVT1 directly targeted miR-21-5p. ROC curve showed that PVT1, miR-21-5p, and their combination showed clinical value for disease diagnosis. The functional enrichment analysis showed that the targets of miR-21-5p participated in ASD by regulating related functions and pathways. Reduced expression of PVT1 and raised miR-21-5p were good diagnostic markers for ASD, which would provide a basis for effective prevention, early diagnosis, and early intervention of ASD.
Collapse
Affiliation(s)
- Mingjun Jiang
- Shenzhen Polytechnic University, No.7098 Liuxian Avenue, Nanshan District, Shenzhen, 518055, Guangdong, China.
| | - Guanwen Chen
- Guangdong Nantian Institute of Forensic Science, No.5003 Binhe Road, Futian District, Shenzhen, 518033, Guangdong, China.
| |
Collapse
|
12
|
Sokol DK, Lahiri DK. APPlications of amyloid-β precursor protein metabolites in macrocephaly and autism spectrum disorder. Front Mol Neurosci 2023; 16:1201744. [PMID: 37799731 PMCID: PMC10548831 DOI: 10.3389/fnmol.2023.1201744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/17/2023] [Indexed: 10/07/2023] Open
Abstract
Metabolites of the Amyloid-β precursor protein (APP) proteolysis may underlie brain overgrowth in Autism Spectrum Disorder (ASD). We have found elevated APP metabolites (total APP, secreted (s) APPα, and α-secretase adamalysins in the plasma and brain tissue of children with ASD). In this review, we highlight several lines of evidence supporting APP metabolites' potential contribution to macrocephaly in ASD. First, APP appears early in corticogenesis, placing APP in a prime position to accelerate growth in neurons and glia. APP metabolites are upregulated in neuroinflammation, another potential contributor to excessive brain growth in ASD. APP metabolites appear to directly affect translational signaling pathways, which have been linked to single gene forms of syndromic ASD (Fragile X Syndrome, PTEN, Tuberous Sclerosis Complex). Finally, APP metabolites, and microRNA, which regulates APP expression, may contribute to ASD brain overgrowth, particularly increased white matter, through ERK receptor activation on the PI3K/Akt/mTOR/Rho GTPase pathway, favoring myelination.
Collapse
Affiliation(s)
- Deborah K. Sokol
- Department of Neurology, Section of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Debomoy K. Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Alzheimer Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
13
|
Dominguez-Alonso S, Carracedo A, Rodriguez-Fontenla C. The non-coding genome in Autism Spectrum Disorders. Eur J Med Genet 2023; 66:104752. [PMID: 37023975 DOI: 10.1016/j.ejmg.2023.104752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 04/08/2023]
Abstract
Autism Spectrum Disorders (ASD) are a group of neurodevelopmental disorders (NDDs) characterized by difficulties in social interaction and communication, repetitive behavior, and restricted interests. While ASD have been proven to have a strong genetic component, current research largely focuses on coding regions of the genome. However, non-coding DNA, which makes up for ∼99% of the human genome, has recently been recognized as an important contributor to the high heritability of ASD, and novel sequencing technologies have been a milestone in opening up new directions for the study of the gene regulatory networks embedded within the non-coding regions. Here, we summarize current progress on the contribution of non-coding alterations to the pathogenesis of ASD and provide an overview of existing methods allowing for the study of their functional relevance, discussing potential ways of unraveling ASD's "missing heritability".
Collapse
Affiliation(s)
- S Dominguez-Alonso
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - A Carracedo
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - C Rodriguez-Fontenla
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
14
|
Kim JY, Kim W, Lee KH. The role of microRNAs in the molecular link between circadian rhythm and autism spectrum disorder. Anim Cells Syst (Seoul) 2023; 27:38-52. [PMID: 36860270 PMCID: PMC9970207 DOI: 10.1080/19768354.2023.2180535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Circadian rhythm regulates physiological cycles of awareness and sleepiness. Melatonin production is primarily regulated by circadian regulation of gene expression and is involved in sleep homeostasis. If the circadian rhythm is abnormal, sleep disorders, such as insomnia and several other diseases, can occur. The term 'autism spectrum disorder (ASD)' is used to characterize people who exhibit a certain set of repetitive behaviors, severely constrained interests, social deficits, and/or sensory behaviors that start very early in life. Because many patients with ASD suffer from sleep disorders, sleep disorders and melatonin dysregulation are attracting attention for their potential roles in ASD. ASD is caused by abnormalities during the neurodevelopmental processes owing to various genetic or environmental factors. Recently, the role of microRNAs (miRNAs) in circadian rhythm and ASD have gained attraction. We hypothesized that the relationship between circadian rhythm and ASD could be explained by miRNAs that can regulate or be regulated by either or both. In this study, we introduced a possible molecular link between circadian rhythm and ASD. We performed a thorough literature review to understand their complexity.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Wanil Kim
- Department of Biochemistry, College of Medicine, Gyeongsang National University, Jinju-si, Republic of Korea, Wanil Kim Department of Biochemistry, College of Medicine, Gyeongsang National University, Jinju-si, Gyeongsangnam-do52727, Republic of Korea; Kyung-Ha Lee Department of Molecular Biology, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan46241, Republic of Korea
| | - Kyung-Ha Lee
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea, Wanil Kim Department of Biochemistry, College of Medicine, Gyeongsang National University, Jinju-si, Gyeongsangnam-do52727, Republic of Korea; Kyung-Ha Lee Department of Molecular Biology, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan46241, Republic of Korea
| |
Collapse
|
15
|
Rastegari M, Salehi N, Zare-Mirakabad F. Biomarker prediction in autism spectrum disorder using a network-based approach. BMC Med Genomics 2023; 16:12. [PMID: 36691005 PMCID: PMC9869547 DOI: 10.1186/s12920-023-01439-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Autism is a neurodevelopmental disorder that is usually diagnosed in early childhood. Timely diagnosis and early initiation of treatments such as behavioral therapy are important in autistic people. Discovering critical genes and regulators in this disorder can lead to early diagnosis. Since the contribution of miRNAs along their targets can lead us to a better understanding of autism, we propose a framework containing two steps for gene and miRNA discovery. METHODS The first step, called the FA_gene algorithm, finds a small set of genes involved in autism. This algorithm uses the WGCNA package to construct a co-expression network for control samples and seek modules of genes that are not reproducible in the corresponding co-expression network for autistic samples. Then, the protein-protein interaction network is constructed for genes in the non-reproducible modules and a small set of genes that may have potential roles in autism is selected based on this network. The second step, named the DMN_miRNA algorithm, detects the minimum number of miRNAs related to autism. To do this, DMN_miRNA defines an extended Set Cover algorithm over the mRNA-miRNA network, consisting of the selected genes and corresponding miRNA regulators. RESULTS In the first step of the framework, the FA_gene algorithm finds a set of important genes; TP53, TNF, MAPK3, ACTB, TLR7, LCK, RAC2, EEF2, CAT, ZAP70, CD19, RPLP0, CDKN1A, CCL2, CDK4, CCL5, CTSD, CD4, RACK1, CD74; using co-expression and protein-protein interaction networks. In the second step, the DMN_miRNA algorithm extracts critical miRNAs, hsa-mir-155-5p, hsa-mir-17-5p, hsa-mir-181a-5p, hsa-mir-18a-5p, and hsa-mir-92a-1-5p, as signature regulators for autism using important genes and mRNA-miRNA network. The importance of these key genes and miRNAs is confirmed by previous studies and enrichment analysis. CONCLUSION This study suggests FA_gene and DMN_miRNA algorithms for biomarker discovery, which lead us to a list of important players in ASD with potential roles in the nervous system or neurological disorders that can be experimentally investigated as candidates for ASD diagnostic tests.
Collapse
Affiliation(s)
- Maryam Rastegari
- Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran, Polytechnic), 424, Hafez Ave, P.O. Box: 15875-4413, Tehran, Iran
| | - Najmeh Salehi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Fatemeh Zare-Mirakabad
- Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran, Polytechnic), 424, Hafez Ave, P.O. Box: 15875-4413, Tehran, Iran.
| |
Collapse
|
16
|
Putting the "mi" in omics: discovering miRNA biomarkers for pediatric precision care. Pediatr Res 2023; 93:316-323. [PMID: 35906312 PMCID: PMC9884316 DOI: 10.1038/s41390-022-02206-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/27/2022] [Indexed: 01/31/2023]
Abstract
In the past decade, growing interest in micro-ribonucleic acids (miRNAs) has catapulted these small, non-coding nucleic acids to the forefront of biomarker research. Advances in scientific knowledge have made it clear that miRNAs play a vital role in regulating cellular physiology throughout the human body. Perturbations in miRNA signaling have also been described in a variety of pediatric conditions-from cancer, to renal failure, to traumatic brain injury. Likewise, the number of studies across pediatric disciplines that pair patient miRNA-omics with longitudinal clinical data are growing. Analyses of these voluminous, multivariate data sets require understanding of pediatric phenotypic data, data science, and genomics. Use of machine learning techniques to aid in biomarker detection have helped decipher background noise from biologically meaningful changes in the data. Further, emerging research suggests that miRNAs may have potential as therapeutic targets for pediatric precision care. Here, we review current miRNA biomarkers of pediatric diseases and studies that have combined machine learning techniques, miRNA-omics, and patient health data to identify novel biomarkers and potential therapeutics for pediatric diseases. IMPACT: In the following review article, we summarized how recent developments in microRNA research may be coupled with machine learning techniques to advance pediatric precision care.
Collapse
|
17
|
Li J, Xu X, Liu J, Zhang S, Tan X, Li Z, Zhang J, Wang Z. Decoding microRNAs in autism spectrum disorder. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:535-546. [PMID: 36457702 PMCID: PMC9685394 DOI: 10.1016/j.omtn.2022.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autism spectrum disorder (ASD)-a congenital mental disorder accompanied by social dysfunction and stereotyped behaviors-has attracted a great deal of attention worldwide. A combination of genetic and environmental factors may determine the pathogenesis of ASD. Recent research of multiple ASD models indicates that microRNAs (miRNAs) play a central role at the onset and progression of ASD by repressing the translation of key mRNAs in neural development and functions. As such, miRNAs show great potential to serve as biomarkers for ASD diagnosis or prognosis and therapeutic targets for the treatment of ASD. In this review, we discuss the regulatory mechanisms by which miRNAs influence ASD phenotypes through various in vivo and in vitro models, including necropsy specimens, animal models, cellular models, and, in particular, induced pluripotent stem cells derived from patients with ASD. We then discuss the potential of miRNA-based therapeutic strategies for ASD currently being evaluated in preclinical studies.
Collapse
Affiliation(s)
- Jinyu Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Xiaohui Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Jiane Liu
- Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Sudan Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Xiaohua Tan
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Zhiqiang Li
- The Affiliated Hospital of Qingdao University & the Biomedical Sciences Institute of Qingdao University, Qingdao Branch of SJTU Bio-X Institutes, Qingdao University, Qingdao, Shandong 266003, China
| | - Jian Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zheng Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
- Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| |
Collapse
|
18
|
Wang Y, Meng W, Liu Z, An Q, Hu X. Cognitive impairment in psychiatric diseases: Biomarkers of diagnosis, treatment, and prevention. Front Cell Neurosci 2022; 16:1046692. [DOI: 10.3389/fncel.2022.1046692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Psychiatric diseases, such as schizophrenia, bipolar disorder, autism spectrum disorder, and major depressive disorder, place a huge health burden on society. Cognitive impairment is one of the core characteristics of psychiatric disorders and a vital determinant of social function and disease recurrence in patients. This review thus aims to explore the underlying molecular mechanisms of cognitive impairment in major psychiatric disorders and identify valuable biomarkers for diagnosis, treatment and prevention of patients.
Collapse
|
19
|
Saghazadeh A, Rezaei N. MicroRNA expression profiles of peripheral blood and mononuclear cells in myasthenia gravis: A systematic review. Int Immunopharmacol 2022; 112:109205. [PMID: 36087508 DOI: 10.1016/j.intimp.2022.109205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/21/2022] [Accepted: 08/26/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Studies have described the role of microRNAs (miRNAs) in thymic function, along with directly observing the altered expression of miRNAs in thymuses of myasthenia gravis (MG) patients; so, miRNAs became a core component in the pathophysiology of MG. However, because the miRNA analysis results are contradictory, the identification of MG-related miRNAs is daunting. OBJECTIVE We did a systematic review of studies analyzing the miRNA expression profile of peripheral blood and mononuclear cells for patients with MG. METHODS We ran a database search in PubMed, Scopus, and Web of Science on August 17, 2021. Original articles that analyzed miRNA profiles in peripheral blood (serum, plasma, and whole blood) and peripheral blood mononuclear cells (PBMCs) for patients with MG in comparison with a non-MG or healthy control (HC) group were eligible. The quality of studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). RESULTS 26 studies were included. The quality of studies was fair (median score, 5). Among 226 different miRNAs that were deregulated in at least one study (range, 1-87), ten miRNAs were significantly deregulated in three or more studies. Five miRNAs (50%) showed the same deregulation: miR-106b-3p and miR-21-5p were consistently upregulated, and miR-20b, miR-15b, and miR-16 were consistently downregulated. Also, there were five miRNAs that were mostly upregulated, miR-150-5p, miR-146a, miR-30e-5p, and miR-338-3p, or downregulated, miR-324-3p, across studies. CONCLUSION These miRNAs contribute to different pathways, importantly neural apoptosis and autophagy, inflammation, T regulatory cell development, and T helper cell balance. Prior to being used for diagnostic and therapeutic purposes, it is required to pursue molecular mechanisms these consistently and mostly dysregulated miRNAs specifically use in the context of MG.
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
20
|
Li K, Zeng Q, Luo X, Qi S, Xu X, Fu Z, Hong L, Liu X, Li Z, Fu Y, Chen Y, Liu Z, Calhoun VD, Huang P, Zhang M. Neuropsychiatric symptoms associated multimodal brain networks in Alzheimer's disease. Hum Brain Mapp 2022; 44:119-130. [PMID: 35993678 PMCID: PMC9783460 DOI: 10.1002/hbm.26051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/11/2022] [Accepted: 07/30/2022] [Indexed: 02/05/2023] Open
Abstract
Concomitant neuropsychiatric symptoms (NPS) are associated with accelerated Alzheimer's disease (AD) progression. Identifying multimodal brain imaging patterns associated with NPS may help understand pathophysiology correlates AD. Based on the AD continuum, a supervised learning strategy was used to guide four-way multimodal neuroimaging fusion (Amyloid, Tau, gray matter volume, brain function) by using NPS total score as the reference. Loadings of the identified multimodal patterns were compared across the AD continuum. Then, regression analyses were performed to investigate its predictability of longitudinal cognition performance. Furthermore, the fusion analysis was repeated in the four NPS subsyndromes. Here, an NPS-associated pathological-structural-functional covaried pattern was observed in the frontal-subcortical limbic circuit, occipital, and sensor-motor region. Loading of this multimodal pattern showed a progressive increase with the development of AD. The pattern significantly correlates with multiple cognitive domains and could also predict longitudinal cognitive decline. Notably, repeated fusion analysis using subsyndromes as references identified similar patterns with some unique variations associated with different syndromes. Conclusively, NPS was associated with a multimodal imaging pattern involving complex neuropathologies, which could effectively predict longitudinal cognitive decline. These results highlight the possible neural substrate of NPS in AD, which may provide guidance for clinical management.
Collapse
Affiliation(s)
- Kaicheng Li
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina,Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| | - Qingze Zeng
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Xiao Luo
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Shile Qi
- Department of Computer Science and EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
| | - Xiaopei Xu
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Zening Fu
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| | - Luwei Hong
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Xiaocao Liu
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Zheyu Li
- Department of NeurologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Yanv Fu
- Department of NeurologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Yanxing Chen
- Department of NeurologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Zhirong Liu
- Department of NeurologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Vince D. Calhoun
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA,Department of Psychology, Computer Science, Neuroscience Institute, and PhysicsGeorgia State UniversityAtlantaGeorgiaUSA,Department of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Peiyu Huang
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Minming Zhang
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| |
Collapse
|
21
|
Svoboda LK, Perera BPU, Morgan RK, Polemi KM, Pan J, Dolinoy DC. Toxicoepigenetics and Environmental Health: Challenges and Opportunities. Chem Res Toxicol 2022; 35:1293-1311. [PMID: 35876266 PMCID: PMC9812000 DOI: 10.1021/acs.chemrestox.1c00445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The rapidly growing field of toxicoepigenetics seeks to understand how toxicant exposures interact with the epigenome to influence disease risk. Toxicoepigenetics is a promising field of environmental health research, as integrating epigenetics into the field of toxicology will enable a more thorough evaluation of toxicant-induced disease mechanisms as well as the elucidation of the role of the epigenome as a biomarker of exposure and disease and possible mediator of exposure effects. Likewise, toxicoepigenetics will enhance our knowledge of how environmental exposures, lifestyle factors, and diet interact to influence health. Ultimately, an understanding of how the environment impacts the epigenome to cause disease may inform risk assessment, permit noninvasive biomonitoring, and provide potential opportunities for therapeutic intervention. However, the translation of research from this exciting field into benefits for human and animal health presents several challenges and opportunities. Here, we describe four significant areas in which we see opportunity to transform the field and improve human health by reducing the disease burden caused by environmental exposures. These include (1) research into the mechanistic role for epigenetic change in environment-induced disease, (2) understanding key factors influencing vulnerability to the adverse effects of environmental exposures, (3) identifying appropriate biomarkers of environmental exposures and their associated diseases, and (4) determining whether the adverse effects of environment on the epigenome and human health are reversible through pharmacologic, dietary, or behavioral interventions. We then highlight several initiatives currently underway to address these challenges.
Collapse
Affiliation(s)
- Laurie K Svoboda
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bambarendage P U Perera
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rachel K Morgan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katelyn M Polemi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Junru Pan
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
22
|
Marazziti D, Diep PT, Carter S, Carbone MG. Oxytocin: An Old Hormone, A Novel Psychotropic Drug And Possible Use In Treating Psychiatric Disorders. Curr Med Chem 2022; 29:5615-5687. [PMID: 35894453 DOI: 10.2174/0929867329666220727120646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oxytocin is a nonapeptide synthesized in the paraventricular and supraoptic nuclei of the hypothalamus. Historically, this molecule has been involved as a key factor in the formation of infant attachment, maternal behavior and pair bonding and, more generally, in linking social signals with cognition, behaviors and reward. In the last decades, the whole oxytocin system has gained a growing interest as it was proposed to be implicated in etiopathogenesis of several neurodevelopmental and neuropsychiatric disorders. METHODS With the main goal of an in-depth understanding of the oxytocin role in the regulation of different functions and complex behaviors as well as its intriguing implications in different neuropsychiatric disorders, we performed a critical review of the current state of art. We carried out this work through PubMed database up to June 2021 with the search terms: 1) "oxytocin and neuropsychiatric disorders"; 2) "oxytocin and neurodevelopmental disorders"; 3) "oxytocin and anorexia"; 4) "oxytocin and eating disorders"; 5) "oxytocin and obsessive-compulsive disorder"; 6) "oxytocin and schizophrenia"; 7) "oxytocin and depression"; 8) "oxytocin and bipolar disorder"; 9) "oxytocin and psychosis"; 10) "oxytocin and anxiety"; 11) "oxytocin and personality disorder"; 12) "oxytocin and PTSD". RESULTS Biological, genetic, and epigenetic studies highlighted quality and quantity modifications in the expression of oxytocin peptide or in oxytocin receptor isoforms. These alterations would seem to be correlated with a higher risk of presenting several neuropsychiatric disorders belonging to different psychopathological spectra. Collaterally, the exogenous oxytocin administration has shown to ameliorate many neuropsychiatric clinical conditions. CONCLUSION Finally, we briefly analyzed the potential pharmacological use of oxytocin in patient with severe symptomatic SARS-CoV-2 infection due to its anti-inflammatory, anti-oxidative and immunoregulatory properties.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy.,Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Phuoc-Tan Diep
- Department of Histopathology, Royal Lancaster Infirmary, University Hospitals of Morecambe Bay NHS Foundation Trust, Lancaster, United Kingdom
| | - Sue Carter
- Director Kinsey Institute, Indiana University, Bloomington, IN, USA
| | - Manuel G Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
23
|
Zhuang W, Liu H, He Z, Ju J, Gao Q, Shan Z, Lei L. miR-92a-2-5p Regulates the Proliferation and Differentiation of ASD-Derived Neural Progenitor Cells. Curr Issues Mol Biol 2022; 44:2431-2442. [PMID: 35735607 PMCID: PMC9222067 DOI: 10.3390/cimb44060166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex neurodevelopmental disorders with abnormal behavior. However, the pathogenesis of ASD remains to be clarified. It has been demonstrated that miRNAs are essential regulators of ASD. However, it is still unclear how miR-92a-2-5p acts on the developing brain and the cell types directly. In this study, we used neural progenitor cells (NPCs) derived from ASD-hiPSCs as well as from neurotypical controls to examine the effects of miR-92a-2-5p on ASD-NPCs proliferation and neuronal differentiation, and whether miR-92a-2-5p could interact with genetic risk factor, DLG3 for ASD. We observed that miR-92a-2-5p upregulated in ASD-NPCs results in decreased proliferation and neuronal differentiation. Inhibition of miR-92a-2-5p could promote proliferation and neuronal differentiation of ASD-NPCs. DLG3 was negatively regulated by miR-92a-2-5p in NPCs. Our results suggest that miR-92a-2-5p is a strong risk factor for ASD and potentially contributes to neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lei Lei
- Correspondence: (Z.S.); (L.L.)
| |
Collapse
|
24
|
Identification of Peripheral Blood miRNA Biomarkers in First-Episode Drug-Free Schizophrenia Patients Using Bioinformatics Strategy. Mol Neurobiol 2022; 59:4730-4746. [DOI: 10.1007/s12035-022-02878-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/12/2022] [Indexed: 11/26/2022]
|
25
|
Wang Z, Lu T, Li X, Jiang M, Jia M, Liu J, Zhang D, Li J, Wang L. Altered Expression of Brain-specific Autism-Associated miRNAs in the Han Chinese Population. Front Genet 2022; 13:865881. [PMID: 35342389 PMCID: PMC8942769 DOI: 10.3389/fgene.2022.865881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
Autism is a complex neurodevelopmental disorder. However, its etiology is still unknown. MicroRNAs (miRNAs) are key post-transcriptional regulators. They play an important role in neurodevelopment and brain functions and may be involved in the pathogenesis of autism. Previous studies indicated altered expression of miRNAs in patients with autism. However, the findings were not consistent, and further explorations were needed. This study aimed to investigate whether miRNAs were dysregulated in autism. We examined the expression of 30 brain-specific autism-associated miRNAs in 110 patients with autism and 113 controls in the Han Chinese population using quantitative reverse transcription–polymerase chain reaction. The results demonstrated that 10 miRNAs (hsa-miR-191-5p, hsa-miR-151a-3p, hsa-miR-139-5p, hsa-miR-181a-5p, hsa-miR-432-5p, hsa-miR-181b-5p, hsa-miR-195-5p, hsa-miR-328-3p, hsa-miR-106a-5p, and hsa-miR-484) were significantly differentially expressed (false discovery rate <0.05). All of them were up-regulated in patients with autism compared with controls. The targets of these miRNAs were enriched for genes and pathways related to neurodevelopment, brain functions and autism. These findings suggested the participation of these 10 miRNAs in the pathogenesis of autism in the Han Chinese population.
Collapse
Affiliation(s)
- Ziqi Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Tianlan Lu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Xianjing Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Miaomiao Jiang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Meixiang Jia
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Jing Liu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Dai Zhang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou, China
| | - Jun Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Lifang Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| |
Collapse
|
26
|
Granata LE, Valentine A, Hirsch JL, Brenhouse HC. Infant ultrasonic vocalizations predict adolescent social behavior in rats: Effects of early life adversity. Dev Psychobiol 2022; 64:e22260. [PMID: 35312059 PMCID: PMC9340574 DOI: 10.1002/dev.22260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/16/2022]
Abstract
Early life adversity (ELA) increases risk for psychopathologies that often manifest during adolescence and involve disrupted social functioning. ELA affects development of the prefrontal cortex (PFC), which plays a role in social behavior. PFC oxytocin and vasopressin are important regulators of, first, mother-infant attachment, and, later, social behavior, and are implicated in psychiatric disorders. Here, we tested whether infant social communication is predictive of PFC development and adolescent social behavior. We used the limited bedding (LB) ELA model in rats during postnatal days (P)2-14, and measured isolation-induced ultrasonic vocalizations (USVs) at P10 to characterize differences in an early social response. Rats were tested for dyadic social interaction in adolescence (P34). Adolescent oxytocin receptor (Oxtr) and arginine-vasopressin receptor 1a mRNA were measured in the PFC. Relationships between infant USVs, adolescent behavior, and gene expression were assessed. LB-reared rats exhibited fewer USVs at P10. While social behaviors were not robustly affected by rearing, fewer total and complex-type infant USVs predicted fewer interactions in adolescence. LB increased Oxtr in both sexes but Oxtr was not directly predicted by USVs. Findings support the use of USVs as indicators of differential early life experience in rodents, toward further characterization of early factors associated with vulnerability.
Collapse
Affiliation(s)
| | | | - Jason L. Hirsch
- Department of Psychology Northeastern University Boston MA USA
| | | |
Collapse
|
27
|
Ghafouri-Fard S, Noroozi R, Brand S, Hussen BM, Eghtedarian R, Taheri M, Ebrahimzadeh K. Emerging Role of Non-coding RNAs in Autism Spectrum Disorder. J Mol Neurosci 2021; 72:201-216. [PMID: 34767189 DOI: 10.1007/s12031-021-01934-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/18/2021] [Indexed: 01/22/2023]
Abstract
Autism spectrum disorders (ASD) embrace a diverse set of neurodevelopmental diseases with a multifaceted genetic basis. Non-coding RNAs (ncRNAs) are among putative loci with critical participation in the development of ASD. Expression of some lncRNAs, namely RP11-466P24.2, SYP-AS1, STXBP5-AS1, and IFNG-AS1 has been decreased in ASD, while AK128569, CTD-2516F10.2, MSNP1AS, RPS10P2-AS1, LINC00693, LINC00689, NEAT1, TUG1, and Shank2-AS lncRNAs have been over-expressed in ASD. Expression of several miRNAs which are implicated in the immunological developmental, immune responses, and protein synthesis as well as those participating in the regulation of PI3K/Akt/mTOR and EGFR signaling pathways is dysregulated in the context of ASD. In the present article, we describe investigations which appraised the role of lncRNAs, miRNAs, and circRNAs in the pathobiology of ASD.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rezvan Noroozi
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Serge Brand
- Psychiatric Clinics, Center for Affective, Stress and Sleep Disorders, University of Basel, Basel, Switzerland
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Reyhane Eghtedarian
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany.
| | - Kaveh Ebrahimzadeh
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Kaysheva AL, Isaeva AI, Pleshakova TO, Shumov ID, Valueva AA, Ershova MO, Ivanova IA, Ziborov VS, Iourov IY, Vorsanova SG, Ryabtsev SV, Archakov AI, Ivanov YD. Detection of Circulating Serum microRNA/Protein Complexes in ASD Using Functionalized Chips for an Atomic Force Microscope. Molecules 2021; 26:5979. [PMID: 34641523 PMCID: PMC8512613 DOI: 10.3390/molecules26195979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs, which circulate in blood, are characterized by high diagnostic value; in biomedical research, they can be considered as candidate markers of various diseases. Mature microRNAs of glial cells and neurons can cross the blood-brain barrier and can be detected in the serum of patients with autism spectrum disorders (ASD) as components of macrovesicles, macromolecular protein and low-density lipoprotein particles. In our present study, we have proposed an approach, in which microRNAs in protein complexes can be concentrated on the surface of AFM chips with oligonucleotide molecular probes, specific against the target microRNAs. MicroRNAs, associated with the development of ASD in children, were selected as targets. The chips with immobilized molecular probes were incubated in serum samples of ASD patients and healthy volunteers. By atomic force microscopy (AFM), objects on the AFM chip surface have been revealed after incubation in the serum samples. The height of these objects amounted to 10 nm and 6 nm in the case of samples of ASD patients and healthy volunteers, respectively. MALDI-TOF-MS analysis of protein components on the chip surface allowed us to identify several cell proteins. These proteins are involved in the binding of nucleic acids (GBG10, RT24, RALYL), in the organization of proteasomes and nucleosomes (PSA4, NP1L4), and participate in the functioning of the channel of active potassium transport (KCNE5, KCNV2).
Collapse
Affiliation(s)
- Anna L. Kaysheva
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Arina I. Isaeva
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Tatyana O. Pleshakova
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Ivan D. Shumov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Anastasia A. Valueva
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Maria O. Ershova
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Irina A. Ivanova
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Vadim S. Ziborov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
- Laboratory of Shock Wave Impacts, Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya St. 13 Bd.2, 125412 Moscow, Russia
| | | | - Svetlana G. Vorsanova
- Veltischev Research and Clinical Institute for Pediatrics, Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Taldomskaya St. 2, 125412 Moscow, Russia;
| | | | - Alexander I. Archakov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Yuri D. Ivanov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| |
Collapse
|
29
|
Dhawan A. Extracellular miRNA biomarkers in neurologic disease: is cerebrospinal fluid helpful? Biomark Med 2021; 15:1377-1388. [PMID: 34514843 DOI: 10.2217/bmm-2021-0092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: The aim of our work is to aggregate data from publications of cerebrospinal fluid extracellular miRNA to identify candidate diagnostic biomarkers, and those warranting further study. Materials & methods: Data were pooled from nine studies, encompassing 864 patients across 16 diseases. Unsupervised clustering grouped patients by a broad category of diseases. Results & conclusion: Compared with healthy controls, in patients with Alzheimer's disease, hsa-miR-767-5p was overexpressed (p < 0.001) and in patients with Huntington's disease, hsa-miR-361-3p was underexpressed (p < 10-4). We also define a subset of extracellular miRNA as candidate biomarkers that are robustly detected across patients, studies and diseases; thereby, warranting further study.
Collapse
Affiliation(s)
- Andrew Dhawan
- Department of Neurology, Neurological Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| |
Collapse
|
30
|
Gawlińska K, Gawliński D, Kowal-Wiśniewska E, Jarmuż-Szymczak M, Filip M. Alteration of the Early Development Environment by Maternal Diet and the Occurrence of Autistic-like Phenotypes in Rat Offspring. Int J Mol Sci 2021; 22:ijms22189662. [PMID: 34575826 PMCID: PMC8472469 DOI: 10.3390/ijms22189662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Epidemiological and preclinical studies suggest that maternal obesity increases the risk of autism spectrum disorder (ASD) in offspring. Here, we assessed the effects of exposure to modified maternal diets limited to pregnancy and lactation on brain development and behavior in rat offspring of both sexes. Among the studied diets, a maternal high-fat diet (HFD) disturbed the expression of ASD-related genes (Cacna1d, Nlgn3, and Shank1) and proteins (SHANK1 and TAOK2) in the prefrontal cortex of male offspring during adolescence. In addition, a maternal high-fat diet induced epigenetic changes by increasing cortical global DNA methylation and the expression of miR-423 and miR-494. As well as the molecular changes, behavioral studies have shown male-specific disturbances in social interaction and an increase in repetitive behavior during adolescence. Most of the observed changes disappeared in adulthood. In conclusion, we demonstrated the contribution of a maternal HFD to the predisposition to an ASD-like phenotype in male adolescent offspring, while a protective effect occurred in females.
Collapse
Affiliation(s)
- Kinga Gawlińska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (D.G.); (M.F.)
- Correspondence:
| | - Dawid Gawliński
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (D.G.); (M.F.)
| | - Ewelina Kowal-Wiśniewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (E.K.-W.); (M.J.-S.)
| | - Małgorzata Jarmuż-Szymczak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (E.K.-W.); (M.J.-S.)
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (D.G.); (M.F.)
| |
Collapse
|
31
|
Gill PS, Clothier JL, Veerapandiyan A, Dweep H, Porter-Gill PA, Schaefer GB. Molecular Dysregulation in Autism Spectrum Disorder. J Pers Med 2021; 11:848. [PMID: 34575625 PMCID: PMC8466026 DOI: 10.3390/jpm11090848] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Autism Spectrum Disorder (ASD) comprises a heterogeneous group of neurodevelopmental disorders with a strong heritable genetic component. At present, ASD is diagnosed solely by behavioral criteria. Advances in genomic analysis have contributed to numerous candidate genes for the risk of ASD, where rare mutations and s common variants contribute to its susceptibility. Moreover, studies show rare de novo variants, copy number variation and single nucleotide polymorphisms (SNPs) also impact neurodevelopment signaling. Exploration of rare and common variants involved in common dysregulated pathways can provide new diagnostic and therapeutic strategies for ASD. Contributions of current innovative molecular strategies to understand etiology of ASD will be explored which are focused on whole exome sequencing (WES), whole genome sequencing (WGS), microRNA, long non-coding RNAs and CRISPR/Cas9 models. Some promising areas of pharmacogenomic and endophenotype directed therapies as novel personalized treatment and prevention will be discussed.
Collapse
Affiliation(s)
- Pritmohinder S. Gill
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
- Arkansas Children’s Research Institute, 13 Children’s Way, Little Rock, AR 72202, USA;
| | - Jeffery L. Clothier
- Psychiatric Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Aravindhan Veerapandiyan
- Pediatric Neurology, Arkansas Children’s Hospital, 1 Children’s Way, Little Rock, AR 72202, USA;
| | - Harsh Dweep
- The Wistar Institute, 3601 Spruce St., Philadelphia, PA 19104, USA;
| | | | - G. Bradley Schaefer
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
- Genetics and Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
- Arkansas Children’s Hospital NW, Springdale, AR 72762, USA
| |
Collapse
|
32
|
Stanton JE, Malijauskaite S, McGourty K, Grabrucker AM. The Metallome as a Link Between the "Omes" in Autism Spectrum Disorders. Front Mol Neurosci 2021; 14:695873. [PMID: 34290588 PMCID: PMC8289253 DOI: 10.3389/fnmol.2021.695873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022] Open
Abstract
Metal dyshomeostasis plays a significant role in various neurological diseases such as Alzheimer's disease, Parkinson's disease, Autism Spectrum Disorders (ASD), and many more. Like studies investigating the proteome, transcriptome, epigenome, microbiome, etc., for years, metallomics studies have focused on data from their domain, i.e., trace metal composition, only. Still, few have considered the links between other "omes," which may together result in an individual's specific pathologies. In particular, ASD have been reported to have multitudes of possible causal effects. Metallomics data focusing on metal deficiencies and dyshomeostasis can be linked to functions of metalloenzymes, metal transporters, and transcription factors, thus affecting the proteome and transcriptome. Furthermore, recent studies in ASD have emphasized the gut-brain axis, with alterations in the microbiome being linked to changes in the metabolome and inflammatory processes. However, the microbiome and other "omes" are heavily influenced by the metallome. Thus, here, we will summarize the known implications of a changed metallome for other "omes" in the body in the context of "omics" studies in ASD. We will highlight possible connections and propose a model that may explain the so far independently reported pathologies in ASD.
Collapse
Affiliation(s)
- Janelle E Stanton
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland
| | - Sigita Malijauskaite
- Bernal Institute, University of Limerick, Limerick, Ireland.,Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Kieran McGourty
- Bernal Institute, University of Limerick, Limerick, Ireland.,Department of Chemical Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Andreas M Grabrucker
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
33
|
Baptista T, de Azeredo LA, Zaparte A, Viola TW, Coral SC, Nagai MA, Mangone FR, Pavanelli AC, Schuch JB, Mardini V, Szobot CM, Grassi-Oliveira R. Oxytocin Receptor Exon III Methylation in the Umbilical Cord Blood of Newborns With Prenatal Exposure to Crack Cocaine. Front Cell Dev Biol 2021; 9:639287. [PMID: 34178979 PMCID: PMC8220805 DOI: 10.3389/fcell.2021.639287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/11/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Prenatal cocaine exposure (PCE) is associated with behavioral, cognitive, and social consequences in children that might persist into later development. However, there are still few data concerning epigenetic mechanisms associated with the effects of gestational cocaine exposure, particularly in human newborns. AIMS We investigated the effects of PCE on DNA methylation patterns of the Oxytocin Receptor (OXTR) gene in the umbilical cord blood (UCB). The relationship between UCB DNA methylation levels and the severity of the mother's cocaine use during pregnancy was also evaluated. METHODS In this cross-sectional study, 28 UCB samples of newborns with a history of crack cocaine exposure in utero and 30 UCB samples of non-exposed newborns (NEC) were compared for DNA methylation levels at two genomic loci located in exon III of the OXTR gene (OXTR1 and OXTR2) through pyrosequencing. Maternal psychopathology was investigated using the Mini International Neuropsychiatric Interview, and substance use characteristics and addiction severity were assessed using the Smoking and Substance Involvement Screening Test (ASSIST). RESULTS No differences between newborns with a history of PCE and NEC were observed in OXTR1 or OXTR2 DNA methylation levels. However, regression analyses showed that maternal addiction severity for crack cocaine use predicted OXTR1 DNA methylation in newborns. CONCLUSION These data suggest that OXTR methylation levels in the UCB of children are affected by the severity of maternal crack cocaine usage. Larger studies are likely to detect specific changes in DNA methylation relevant to the consequences of PCE.
Collapse
Affiliation(s)
- Talita Baptista
- Developmental Cognitive Neuroscience Lab, School of Medicine, Brain Institute of the Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Lucas Araújo de Azeredo
- Developmental Cognitive Neuroscience Lab, School of Medicine, Brain Institute of the Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Aline Zaparte
- Developmental Cognitive Neuroscience Lab, School of Medicine, Brain Institute of the Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Thiago Wendt Viola
- Developmental Cognitive Neuroscience Lab, School of Medicine, Brain Institute of the Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Sayra Catalina Coral
- Developmental Cognitive Neuroscience Lab, School of Medicine, Brain Institute of the Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Maria Aparecida Nagai
- Discipline of Oncology, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo, São Paulo, Brazil
| | - Flávia Rotea Mangone
- Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo, São Paulo, Brazil
| | - Ana Carolina Pavanelli
- Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo, São Paulo, Brazil
| | - Jaqueline B. Schuch
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Victor Mardini
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Child and Adolescent Psychiatry Service (SPIA), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Claudia M. Szobot
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Child and Adolescent Psychiatry Service (SPIA), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab, School of Medicine, Brain Institute of the Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
34
|
Correction to: The Potential Role of miRNAs as Predictive Biomarkers in Neurodevelopmental Disorders. J Mol Neurosci 2021; 71:1356. [PMID: 33993453 DOI: 10.1007/s12031-021-01854-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Juvale IIA, Che Has AT. The Potential Role of miRNAs as Predictive Biomarkers in Neurodevelopmental Disorders. J Mol Neurosci 2021; 71:1338-1355. [PMID: 33774758 DOI: 10.1007/s12031-021-01825-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022]
Abstract
Neurodevelopmental disorders are defined as a set of abnormal brain developmental conditions marked by the early childhood onset of cognitive, behavioral, and functional deficits leading to memory and learning problems, emotional instability, and impulsivity. Autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, fragile X syndrome, and Down's syndrome are a few known examples of neurodevelopmental disorders. Although they are relatively common in both developed and developing countries, very little is currently known about their underlying molecular mechanisms. Both genetic and environmental factors are known to increase the risk of neurodevelopmental disorders. Current diagnostic and screening tests for neurodevelopmental disorders are not reliable; hence, individuals with neurodevelopmental disorders are often diagnosed in the later stages. This negatively affects their prognosis and quality of life, prompting the need for a better diagnostic biomarker. Recent studies on microRNAs and their altered regulation in diseases have shed some light on the possible role they could play in the development of the central nervous system. This review attempts to elucidate our current understanding of the role that microRNAs play in neurodevelopmental disorders with the hope of utilizing them as potential biomarkers in the future.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
36
|
Wang J, Yang Z, Chen C, Xu Y, Wang H, Liu B, Zhang W, Jiang Y. Comprehensive circRNA Expression Profile and Construction of circRNAs-Related ceRNA Network in a Mouse Model of Autism. Front Genet 2021; 11:623584. [PMID: 33679870 PMCID: PMC7928284 DOI: 10.3389/fgene.2020.623584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/23/2020] [Indexed: 12/27/2022] Open
Abstract
Autism is a common disease that seriously affects the quality of life. The role of circular RNAs (circRNAs) in autism remains largely unexplored. We aimed to detect the circRNA expression profile and construct a circRNA-based competing endogenous RNA (ceRNA) network in autism. Valproate acid was used to establish an in vivo model of autism in mice. A total of 1,059 differentially expressed circRNAs (477 upregulated and 582 downregulated) in autism group was identified by RNA sequencing. The expression of novel_circ_015779 and novel_circ_035247 were detected by real-time PCR. A ceRNA network based on altered circRNAs was established, with 9,715 nodes and 150,408 edges. Module analysis was conducted followed by GO and KEGG pathway enrichment analysis. The top three modules were all correlated with autism-related pathways involving “TGF-beta signaling pathway,” “Notch signaling pathway,” “MAPK signaling pathway,” “long term depression,” “thyroid hormone signaling pathway,” etc. The present study reveals a novel circRNA involved mechanisms in the pathogenesis of autism.
Collapse
Affiliation(s)
- Ji Wang
- Yangzhou Maternal and Child Health Hospital, Yangzhou, China.,Harbin Children's Hospital, Harbin, China
| | - Zhongxiu Yang
- Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, China
| | - Canming Chen
- Yangzhou Maternal and Child Health Hospital, Yangzhou, China
| | - Yang Xu
- Yangzhou Maternal and Child Health Hospital, Yangzhou, China
| | - Hongguang Wang
- School of Civil Engineering, Northeast Forestry University, Harbin, China
| | - Bing Liu
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Wei Zhang
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yanan Jiang
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
37
|
Kaur S, Kinkade JA, Green MT, Martin RE, Willemse TE, Bivens NJ, Schenk AK, Helferich WG, Trainor BC, Fass J, Settles M, Mao J, Rosenfeld CS. Disruption of global hypothalamic microRNA (miR) profiles and associated behavioral changes in California mice (Peromyscus californicus) developmentally exposed to endocrine disrupting chemicals. Horm Behav 2021; 128:104890. [PMID: 33221288 PMCID: PMC7897400 DOI: 10.1016/j.yhbeh.2020.104890] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022]
Abstract
Developmental exposure to endocrine disrupting chemicals (EDCs), e.g., bisphenol A (BPA) or genistein (GEN), causes longstanding epigenome effects. MicroRNAs (miRs) regulate which mRNAs will be translated to proteins and thereby serve as the final checkpoint in epigenetic control. Scant amount is known, however, whether EDCs affect neural miRNA (miR) patterns. We aimed to test the hypothesis that developmental exposure of California mice (Peromyscus californicus) to GEN, BPA, or both chemicals influences hypothalamic miR/small RNA profiles and ascertain the extent such biomolecular alterations correlate with behavioral and metabolic changes. California mice were developmentally exposed to GEN (250 mg/kg feed weight, FW), GEN (250 mg/kg FW)+BPA (5 mg/kg FW), low dose (LD) BPA (5 mg/kg FW), or upper dose (UD) BPA (50 mg/kg FW). Adult offspring were tested in a battery of behavioral and metabolic tests; whereupon, mice were euthanized, brains were collected and frozen, small RNAs were isolated from hypothalamic punches, and subsequently sequenced. California mice exposed to one or both EDCs engaged in one or more repetitive behaviors. GEN, LD BPA, and UD BPA altered aspects of ultrasonic and audible vocalizations. Each EDC exposure led to sex-dependent differences in differentially expressed miR/small RNAs with miR7-2, miR146, and miR148a being increased in all female and male EDC exposed groups. Current findings reveal that developmental exposure to GEN and/or BPA affects hypothalamic miR/small RNA expression patterns, and such changes correlate with EDC-induced behavioral and metabolic alterations. miR146 is likely an important mediator and biomarker of EDC exposure in mammals, including humans.
Collapse
Affiliation(s)
- Sarabjit Kaur
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jessica A Kinkade
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Madison T Green
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Rachel E Martin
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Tess E Willemse
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Nathan J Bivens
- DNA Core Facility, University of Missouri, Columbia, MO 65211, USA
| | | | - William G Helferich
- Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA 95616, USA
| | - Joseph Fass
- Bioinformatics Core, UC Davis Genome Center, Davis, CA 95616, USA
| | - Matthew Settles
- Bioinformatics Core, UC Davis Genome Center, Davis, CA 95616, USA
| | - Jiude Mao
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Cheryl S Rosenfeld
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Informatics Institute, University of Missouri, Columbia, MO 65211, USA; Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211, USA; Genetics Area Program, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
38
|
Mirabella F, Gulisano M, Capelli M, Lauretta G, Cirnigliaro M, Palmucci S, Stella M, Barbagallo D, Di Pietro C, Purrello M, Ragusa M, Rizzo R. Enrichment and Correlation Analysis of Serum miRNAs in Comorbidity Between Arnold-Chiari and Tourette Syndrome Contribute to Clarify Their Molecular Bases. Front Mol Neurosci 2021; 13:608355. [PMID: 33469418 PMCID: PMC7813987 DOI: 10.3389/fnmol.2020.608355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/04/2020] [Indexed: 12/27/2022] Open
Abstract
Due to its rarity, coupled to a multifactorial and very heterogeneous nature, the molecular etiology of Arnold-Chiari (AC) syndrome remains almost totally unknown. Its relationship with other neuropsychiatric disorders such as Tourette syndrome (TS) is also undetermined. The rare comorbid status between both disorders (ACTS) complicates the framework of diagnosis and negatively affects the patients' quality of life. In this exploratory study, we aimed to identify serum microRNA expression profiles as molecular fingerprints for AC, TS, and ACTS, by using a high-throughput approach. For this aim, 10 AC patients, 11 ACTS patients, 6 TS patients, and 8 unaffected controls (NC) were recruited. Nine miRNAs resulted significantly differentially expressed (DE): let-7b-5p (upregulated in ACTS vs. TS); miR-21-5p (upregulated in ACTS vs. AC; downregulated in AC vs. TS); miR-23a-3p (upregulated in TS vs. NCs; downregulated in AC vs. TS); miR-25-3p (upregulated in AC vs. TS and NCs; downregulated in ACTS vs. AC); miR-93-5p (upregulated in AC vs. TS); miR-130a-3p (downregulated in ACTS and TS vs. NCs); miR-144-3p (downregulated in ACTS vs. AC; upregulated in AC vs. TS); miR-222-3p (upregulated in ACTS vs. NCs); miR-451a (upregulated in AC vs. TS and NCs; in ACTS vs. NCs). Altered expression of miRNAs was statistically correlated to neuroimaging and neuropsychological anomalies. Furthermore, computational analyses indicated that DE miRNAs are involved in AC and TS pathomechanisms. Finally, we propose the dysregulation of the miRNA set as a potential molecular tool for supporting the current diagnosis of AC, TS, and ACTS by using liquid biopsies, in an unbiased and non-invasive way.
Collapse
Affiliation(s)
- Federica Mirabella
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Mariangela Gulisano
- Section of Child and Adolescent Psychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Mara Capelli
- Section of Child and Adolescent Psychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giovanni Lauretta
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Matilde Cirnigliaro
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stefano Palmucci
- Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies, University Hospital “Policlinico-Vittorio Emanuele”, University of Catania, Catania, Italy
| | - Michele Stella
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Davide Barbagallo
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cinzia Di Pietro
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Michele Purrello
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marco Ragusa
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Oasi Research Institute–IRCCS, Troina, Italy
| | - Renata Rizzo
- Section of Child and Adolescent Psychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
39
|
Huang ZX, Chen Y, Guo HR, Chen GF. Systematic Review and Bioinformatic Analysis of microRNA Expression in Autism Spectrum Disorder Identifies Pathways Associated With Cancer, Metabolism, Cell Signaling, and Cell Adhesion. Front Psychiatry 2021; 12:630876. [PMID: 34744804 PMCID: PMC8566729 DOI: 10.3389/fpsyt.2021.630876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Previous studies have identified differentially expressed microRNAs in autism spectrum disorder (ASD), however, results are discrepant. We aimed to systematically review this topic and perform bioinformatic analysis to identify genes and pathways associated with ASD miRNAs. Methods: Following the Preferred Reporting Items for Systematic reviews and Meta-Analyses, we searched the Web of Science, PubMed, Embase, Scopus, and OVID databases to identify all studies comparing microRNA expressions between ASD persons and non-ASD controls on May 11, 2020. We obtained ASD miRNA targets validated by experimental assays from miRTarBase and performed pathway enrichment analysis using Metascape and DIANA-miRPath v3. 0. Results: Thirty-four studies were included in the systematic review. Among 285 altered miRNAs reported in these studies, 15 were consistently upregulated, 14 were consistently downregulated, and 39 were inconsistently dysregulated. The most frequently altered miRNAs including miR-23a-3p, miR-106b-5p, miR-146a-5p, miR-7-5p, miR-27a-3p, miR-181b-5p, miR-486-3p, and miR-451a. Subgroup analysis of tissues showed that miR-146a-5p, miR-155-5p, miR-1277-3p, miR-21-3p, miR-106b-5p, and miR-451a were consistently upregulated in brain tissues, while miR-4742-3p was consistently downregulated; miR-23b-3p, miR-483-5p, and miR-23a-3p were consistently upregulated in blood samples, while miR-15a-5p, miR-193a-5p, miR-20a-5p, miR-574-3p, miR-92a-3p, miR-3135a, and miR-103a-3p were consistently downregulated; miR-7-5p was consistently upregulated in saliva, miR-23a-3p and miR-32-5p were consistently downregulated. The altered ASD miRNAs identified in at least two independent studies were validated to target many autism risk genes. TNRC6B, PTEN, AGO1, SKI, and SMAD4 were the most frequent targets, and miR-92a-3p had the most target autism risk genes. Pathway enrichment analysis showed that ASD miRNAs are significantly involved in pathways associated with cancer, metabolism (notably Steroid biosynthesis, Fatty acid metabolism, Fatty acid biosynthesis, Lysine degradation, Biotin metabolism), cell cycle, cell signaling (especially Hippo, FoxO, TGF-beta, p53, Thyroid hormone, and Estrogen signaling pathway), adherens junction, extracellular matrix-receptor interaction, and Prion diseases. Conclusions: Altered miRNAs in ASD target autism risk genes and are involved in various ASD-related pathways, some of which are understudied and require further investigation.
Collapse
Affiliation(s)
- Zhi-Xiong Huang
- Department of Pediatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yanhui Chen
- Department of Pediatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hong-Ru Guo
- Department of Pediatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Guo-Feng Chen
- Department of Pediatrics, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
40
|
Narayanan R, Schratt G. miRNA regulation of social and anxiety-related behaviour. Cell Mol Life Sci 2020; 77:4347-4364. [PMID: 32409861 PMCID: PMC11104968 DOI: 10.1007/s00018-020-03542-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/31/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Abstract
Neuropsychiatric disorders, including autism spectrum disorders (ASD) and anxiety disorders are characterized by a complex range of symptoms, including social behaviour and cognitive deficits, depression and repetitive behaviours. Although the mechanisms driving pathophysiology are complex and remain largely unknown, advances in the understanding of gene association and gene networks are providing significant clues to their aetiology. In recent years, small noncoding RNA molecules known as microRNA (miRNA) have emerged as a new gene regulatory layer in the pathophysiology of mental illness. These small RNAs can bind to the 3'-UTR of mRNA thereby negatively regulating gene expression at the post-transcriptional level. Their ability to regulate hundreds of target mRNAs simultaneously predestines them to control the activity of entire cellular pathways, with obvious implications for the regulation of complex processes such as animal behaviour. There is growing evidence to suggest that numerous miRNAs are dysregulated in pathophysiology of neuropsychiatric disorders, and there is strong genetic support for the association of miRNA genes and their targets with several of these conditions. This review attempts to cover the most relevant microRNAs for which an important contribution to the control of social and anxiety-related behaviour has been demonstrated by functional studies in animal models. In addition, it provides an overview of recent expression profiling and genetic association studies in human patient-derived samples in an attempt to highlight the most promising candidates for biomarker discovery and therapeutic intervention.
Collapse
Affiliation(s)
- Ramanathan Narayanan
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Gerhard Schratt
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland.
| |
Collapse
|
41
|
Li T, Mao C, Wang X, Shi Y, Tao Y. Epigenetic crosstalk between hypoxia and tumor driven by HIF regulation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:224. [PMID: 33109235 PMCID: PMC7592369 DOI: 10.1186/s13046-020-01733-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Hypoxia is the major influence factor in physiological and pathological courses which are mainly mediated by hypoxia-inducible factors (HIFs) in response to low oxygen tensions within solid tumors. Under normoxia, HIF signaling pathway is inhibited due to HIF-α subunits degradation. However, in hypoxic conditions, HIF-α is activated and stabilized, and HIF target genes are successively activated, resulting in a series of tumour-specific activities. The activation of HIFs, including HIF-1α, HIF-2α and HIF-3α, subsequently induce downstream target genes which leads to series of responses, the resulting abnormal processes or metabolites in turn affect HIFs stability. Given its functions in tumors progression, HIFs have been regarded as therapeutic targets for improved treatment efficacy. Epigenetics refers to alterations in gene expression that are stable between cell divisions, and sometimes between generations, but do not involve changes in the underlying DNA sequence of the organism. And with the development of research, epigenetic regulation has been found to play an important role in the development of tumors, which providing accumulating basic or clinical evidences for tumor treatments. Here, given how little has been reported about the overall association between hypoxic tumors and epigenetics, we made a more systematic review from epigenetic perspective in hope of helping others better understand hypoxia or HIF pathway, and providing more established and potential therapeutic strategies in tumors to facilitate epigenetic studies of tumors.
Collapse
Affiliation(s)
- Tiansheng Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chao Mao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiang Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ying Shi
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| | - Yongguang Tao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
42
|
Ragusa M, Santagati M, Mirabella F, Lauretta G, Cirnigliaro M, Brex D, Barbagallo C, Domini CN, Gulisano M, Barone R, Trovato L, Oliveri S, Mongelli G, Spitale A, Barbagallo D, Di Pietro C, Stefani S, Rizzo R, Purrello M. Potential Associations Among Alteration of Salivary miRNAs, Saliva Microbiome Structure, and Cognitive Impairments in Autistic Children. Int J Mol Sci 2020; 21:ijms21176203. [PMID: 32867322 PMCID: PMC7504581 DOI: 10.3390/ijms21176203] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/16/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022] Open
Abstract
Recent evidence has demonstrated that salivary molecules, as well as bacterial populations, can be perturbed by several pathological conditions, including neuro-psychiatric diseases. This relationship between brain functionality and saliva composition could be exploited to unveil new pathological mechanisms of elusive diseases, such as Autistic Spectrum Disorder (ASD). We performed a combined approach of miRNA expression profiling by NanoString technology, followed by validation experiments in qPCR, and 16S rRNA microbiome analysis on saliva from 53 ASD and 27 neurologically unaffected control (NUC) children. MiR-29a-3p and miR-141-3p were upregulated, while miR-16-5p, let-7b-5p, and miR-451a were downregulated in ASD compared to NUCs. Microbiome analysis on the same subjects revealed that Rothia, Filifactor, Actinobacillus, Weeksellaceae, Ralstonia, Pasteurellaceae, and Aggregatibacter increased their abundance in ASD patients, while Tannerella, Moryella and TM7-3 decreased. Variations of both miRNAs and microbes were statistically associated to different neuropsychological scores related to anomalies in social interaction and communication. Among miRNA/bacteria associations, the most relevant was the negative correlation between salivary miR-141-3p expression and Tannerella abundance. MiRNA and microbiome dysregulations found in the saliva of ASD children are potentially associated with cognitive impairments of the subjects. Furthermore, a potential cross-talking between circulating miRNAs and resident bacteria could occur in saliva of ASD.
Collapse
Affiliation(s)
- Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Maria Santagati
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy; (M.S.); (L.T.); (S.O.); (G.M.); (A.S.); (S.S.)
| | - Federica Mirabella
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
| | - Giovanni Lauretta
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
| | - Matilde Cirnigliaro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
| | - Duilia Brex
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
| | - Carla Noemi Domini
- Department of Clinical and Experimental Medicine, Section of Child and Adolescent Psychiatry, University of Catania, 95123 Catania, Italy; (C.N.D.); (M.G.); (R.B.); (R.R.)
| | - Mariangela Gulisano
- Department of Clinical and Experimental Medicine, Section of Child and Adolescent Psychiatry, University of Catania, 95123 Catania, Italy; (C.N.D.); (M.G.); (R.B.); (R.R.)
| | - Rita Barone
- Department of Clinical and Experimental Medicine, Section of Child and Adolescent Psychiatry, University of Catania, 95123 Catania, Italy; (C.N.D.); (M.G.); (R.B.); (R.R.)
| | - Laura Trovato
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy; (M.S.); (L.T.); (S.O.); (G.M.); (A.S.); (S.S.)
| | - Salvatore Oliveri
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy; (M.S.); (L.T.); (S.O.); (G.M.); (A.S.); (S.S.)
| | - Gino Mongelli
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy; (M.S.); (L.T.); (S.O.); (G.M.); (A.S.); (S.S.)
- Bio-nanotech Research and Innovation Tower (BRIT), University of Catania, 95123 Catania, Italy
| | - Ambra Spitale
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy; (M.S.); (L.T.); (S.O.); (G.M.); (A.S.); (S.S.)
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy; (M.S.); (L.T.); (S.O.); (G.M.); (A.S.); (S.S.)
| | - Renata Rizzo
- Department of Clinical and Experimental Medicine, Section of Child and Adolescent Psychiatry, University of Catania, 95123 Catania, Italy; (C.N.D.); (M.G.); (R.B.); (R.R.)
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
- Correspondence:
| |
Collapse
|
43
|
Wu X, Li W, Zheng Y. Recent Progress on Relevant microRNAs in Autism Spectrum Disorders. Int J Mol Sci 2020; 21:ijms21165904. [PMID: 32824515 PMCID: PMC7460584 DOI: 10.3390/ijms21165904] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 01/10/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose pathogenesis is unclear and is affected by both genetic and environmental factors. The microRNAs (miRNAs) are a kind of single-stranded non-coding RNA with 20-22 nucleotides, which normally inhibit their target mRNAs at a post-transcriptional level. miRNAs are involved in almost all biological processes and are closely related to ASD and many other diseases. In this review, we summarize relevant miRNAs in ASD, and analyze dysregulated miRNAs in brain tissues and body fluids of ASD patients, which may contribute to the pathogenesis and diagnosis of ASD.
Collapse
|
44
|
Maes M, Anderson G, Betancort Medina SR, Seo M, Ojala JO. Integrating Autism Spectrum Disorder Pathophysiology: Mitochondria, Vitamin A, CD38, Oxytocin, Serotonin and Melatonergic Alterations in the Placenta and Gut. Curr Pharm Des 2020; 25:4405-4420. [PMID: 31682209 DOI: 10.2174/1381612825666191102165459] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND A diverse array of data has been associated with autism spectrum disorder (ASD), reflecting the complexity of its pathophysiology as well as its heterogeneity. Two important hubs have emerged, the placenta/prenatal period and the postnatal gut, with alterations in mitochondria functioning crucial in both. METHODS Factors acting to regulate mitochondria functioning in ASD across development are reviewed in this article. RESULTS Decreased vitamin A, and its retinoic acid metabolites, lead to a decrease in CD38 and associated changes that underpin a wide array of data on the biological underpinnings of ASD, including decreased oxytocin, with relevance both prenatally and in the gut. Decreased sirtuins, poly-ADP ribose polymerase-driven decreases in nicotinamide adenine dinucleotide (NAD+), hyperserotonemia, decreased monoamine oxidase, alterations in 14-3-3 proteins, microRNA alterations, dysregulated aryl hydrocarbon receptor activity, suboptimal mitochondria functioning, and decreases in the melatonergic pathways are intimately linked to this. Many of the above processes may be modulating, or mediated by, alterations in mitochondria functioning. Other bodies of data associated with ASD may also be incorporated within these basic processes, including how ASD risk factors such as maternal obesity and preeclampsia, as well as more general prenatal stressors, modulate the likelihood of offspring ASD. CONCLUSION Such a mitochondria-focussed integrated model of the pathophysiology of ASD has important preventative and treatment implications.
Collapse
Affiliation(s)
- Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - George Anderson
- CRC Scotland & London, Eccleston Square, London, United Kingdom
| | | | - Moonsang Seo
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Johanna O Ojala
- Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
45
|
Vasu MM, Sumitha PS, Rahna P, Thanseem I, Anitha A. microRNAs in Autism Spectrum Disorders. Curr Pharm Des 2020; 25:4368-4378. [PMID: 31692427 DOI: 10.2174/1381612825666191105120901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Efforts to unravel the extensive impact of the non-coding elements of the human genome on cell homeostasis and pathological processes have gained momentum over the last couple of decades. miRNAs refer to short, often 18-25 nucleotides long, non-coding RNA molecules which can regulate gene expression. Each miRNA can regulate several mRNAs. METHODS This article reviews the literature on the roles of miRNAs in autism. RESULTS Considering the fact that ~ 1% of the human DNA encodes different families of miRNAs, their overall impact as critical regulators of gene expression in the mammalian brain should be immense. Though the autism spectrum disorders (ASDs) are predominantly genetic in nature and several candidate genes are already identified, the highly heterogeneous and multifactorial nature of the disorder makes it difficult to identify common genetic risk factors. Several studies have suggested that the environmental factors may interact with the genetic factors to increase the risk. miRNAs could possibly be one of those factors which explain this link between genetics and the environment. CONCLUSION In the present review, we have summarized our current knowledge on miRNAs and their complex roles in ASD, and also on their therapeutic applications.
Collapse
Affiliation(s)
- Mahesh Mundalil Vasu
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Kavalappara, Shoranur, Palakkad - 679 523, Kerala, India
| | - Puthiripadath S Sumitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Kavalappara, Shoranur, Palakkad - 679 523, Kerala, India
| | - Parakkal Rahna
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Kavalappara, Shoranur, Palakkad - 679 523, Kerala, India
| | - Ismail Thanseem
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Kavalappara, Shoranur, Palakkad - 679 523, Kerala, India
| | - Ayyappan Anitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Kavalappara, Shoranur, Palakkad - 679 523, Kerala, India
| |
Collapse
|
46
|
Lu J, Tan T, Zhu L, Dong H, Xian R. Hypomethylation Causes MIR21 Overexpression in Tumors. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:47-57. [PMID: 32637580 PMCID: PMC7321816 DOI: 10.1016/j.omto.2020.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
Abstract
miR-21 is an oncogenic microRNA (miRNA) that is upregulated in many solid tumors. However, the effect of MIR21 hypomethylation on miR-21 expression in tumors and the mechanism of miR-21 DNA demethylation remain unclear. In this study, we confirmed that the expression of miR-21 was significantly increased in multiple tumors. We analyzed eight types of cancer, including breast cancer (BRCA), lung adenocarcinoma (LUAD), renal and renal clear cell carcinoma (KIRC), bladder urothelial carcinoma (BLCA), hepatocellular carcinoma (LIHC), lung squamous cell cancer (LUSC), renal papillary cell carcinoma (KIRP), and pancreatic adenocarcinoma (PAAD). MIR21 DNA methylation levels were elevated in these cancers. CpG loci located approximately 200 bp upstream of the transcription initiation site strongly affect MIR21 expression. We also confirmed MIR21 hypomethylation by pyrosequencing of fresh clear cell renal cell carcinoma (ccRCC) samples. Demethylating agent was proved to increase hsa-miR-21-5p level in HEK293T cells, while knockdown of DNA demethylases TET3 and TDG decreased MIR21 expression. In addition, we showed that the cg02515217 CpG locus in MIR21 promoter was a conserved binding site of transcription factors CEBPB, MEIS3, and TEAD4, which were co-expressed with miR-21 in tumors. These observations identified that gene hypomethylation regulated the expression of MIR21 in tumors.
Collapse
Affiliation(s)
- Jun Lu
- Fuzhou General Clinical College, Fujian Medical University, Fuzhou, China.,900 Hospital of the Joint Logistics Team, Fuzhou, China.,Fujian Provincial Key Laboratory of Transplant Biology, Dongfang Hospital (900 Hospital of the Joint Logistics Team), Xiamen University, Fuzhou, China
| | - Ting Tan
- Fuzhou General Clinical College, Fujian Medical University, Fuzhou, China.,900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Ling Zhu
- Fuzhou General Clinical College, Fujian Medical University, Fuzhou, China.,900 Hospital of the Joint Logistics Team, Fuzhou, China.,Fujian Provincial Key Laboratory of Transplant Biology, Dongfang Hospital (900 Hospital of the Joint Logistics Team), Xiamen University, Fuzhou, China
| | - Huiyue Dong
- Fuzhou General Clinical College, Fujian Medical University, Fuzhou, China.,900 Hospital of the Joint Logistics Team, Fuzhou, China.,Fujian Provincial Key Laboratory of Transplant Biology, Dongfang Hospital (900 Hospital of the Joint Logistics Team), Xiamen University, Fuzhou, China
| | - Ronghua Xian
- Fuzhou General Clinical College, Fujian Medical University, Fuzhou, China.,900 Hospital of the Joint Logistics Team, Fuzhou, China
| |
Collapse
|
47
|
Sehovic E, Spahic L, Smajlovic-Skenderagic L, Pistoljevic N, Dzanko E, Hajdarpasic A. Identification of developmental disorders including autism spectrum disorder using salivary miRNAs in children from Bosnia and Herzegovina. PLoS One 2020; 15:e0232351. [PMID: 32353026 PMCID: PMC7192422 DOI: 10.1371/journal.pone.0232351] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by major social, communication and behavioural challenges. The cause of ASD is still unclear and it is assumed that environmental, genetic and epigenetic factors influence the risk of ASD occurrence. MicroRNAs (miRNAs) are short 21-25 nucleotide long RNA molecules which post-transcriptionally regulate gene expression. MiRNAs play an important role in central nervous system development; therefore, dysregulation of miRNAs is connected to changes in behaviour and cognition observed in many disorders including ASD. Based on previously published work, on diagnosing ASD using miRNAs, we hypothesized that miRNAs can be used as biomarkers in children with suspected developmental disorders (DD) including ASD within Bosnian-Herzegovinian (B&H) population. 14 selected miRNAs were tested on saliva of children with suspected developmental disorders including ASD. The method of choice was qRT-PCR as a relatively cheap method available in most diagnostic laboratories in low to mid-income countries (LMIC). Out of 14 analysed miRNAs, 6 were differentially expressed between typically developing children and children with some type of developmental disorder including autism spectrum disorder. Using the most optimal logistic regression, we were able to distinguish between ASD and typically developing (TD) children. We have found 5 miRNAs as potential biomarkers. From those, 3 were differentially expressed within the ASD cohort. All 5 miRNAs had shown good chi-square statistics within the logistic regression performed on all 14 analysed miRNAs. The accuracy of 5-miRNAs model training set was 90.2%, while the validation set had a 90% accuracy. This study has shown that miRNAs may be considered as biomarkers for ASD detection and may be used to identify children with ASD along with standard developmental screening tests. By combining these methods we may be able to reach a reliable and accessible diagnostic model for children with ASD in LMIC such as B&H.
Collapse
Affiliation(s)
- Emir Sehovic
- Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina
| | - Lemana Spahic
- Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina
| | | | | | - Eldin Dzanko
- Education for All (EDUS), Sarajevo, Bosnia and Herzegovina
| | - Aida Hajdarpasic
- Department of Medical Biology, Sarajevo Medical School, Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
- * E-mail:
| |
Collapse
|
48
|
Yoon SH, Choi J, Lee WJ, Do JT. Genetic and Epigenetic Etiology Underlying Autism Spectrum Disorder. J Clin Med 2020; 9:E966. [PMID: 32244359 PMCID: PMC7230567 DOI: 10.3390/jcm9040966] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 12/19/2022] Open
Abstract
Autism spectrum disorder (ASD) is a pervasive neurodevelopmental disorder characterized by difficulties in social interaction, language development delays, repeated body movements, and markedly deteriorated activities and interests. Environmental factors, such as viral infection, parental age, and zinc deficiency, can be plausible contributors to ASD susceptibility. As ASD is highly heritable, genetic risk factors involved in neurodevelopment, neural communication, and social interaction provide important clues in explaining the etiology of ASD. Accumulated evidence also shows an important role of epigenetic factors, such as DNA methylation, histone modification, and noncoding RNA, in ASD etiology. In this review, we compiled the research published to date and described the genetic and epigenetic epidemiology together with environmental risk factors underlying the etiology of the different phenotypes of ASD.
Collapse
Affiliation(s)
| | | | | | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Technology, Konkuk University, Seoul 05029, Korea; (S.H.Y.); (J.C.); (W.J.L.)
| |
Collapse
|
49
|
Fregeac J, Moriceau S, Poli A, Nguyen LS, Oury F, Colleaux L. Loss of the neurodevelopmental disease-associated gene miR-146a impairs neural progenitor differentiation and causes learning and memory deficits. Mol Autism 2020; 11:22. [PMID: 32228681 PMCID: PMC7106595 DOI: 10.1186/s13229-020-00328-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/12/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Formation and maintenance of appropriate neural networks require tight regulation of neural stem cell proliferation, differentiation, and neurogenesis. microRNAs (miRNAs) play an important role in brain development and plasticity, and dysregulated miRNA profiles have been linked to neurodevelopmental disorders including autism, schizophrenia, or intellectual disability. Yet, the functional role of miRNAs in neural development and postnatal brain functions remains unclear. METHODS Using a combination of cell biology techniques as well as behavioral studies and brain imaging, we characterize mouse models with either constitutive inactivation or selectively hippocampal knockdown of the neurodevelopmental disease-associated gene Mir146a, the most commonly deregulated miRNA in developmental brain disorders (DBD). RESULTS We first show that during development, loss of miR-146a impairs the differentiation of radial glial cells, neurogenesis process, and neurite extension. In the mouse adult brain, loss of miR-146a correlates with an increased hippocampal asymmetry coupled with defects in spatial learning and memory performances. Moreover, selective hippocampal downregulation of miR-146a in adult mice causes severe hippocampal-dependent memory impairments indicating for the first time a role for this miRNA in postnatal brain functions. CONCLUSION Our results show that miR-146a expression is critical for correct differentiation of neural stem cell during brain development and provide for the first time a strong argument for a postnatal role of miR-146a in regulating hippocampal-dependent memory. Furthermore, the demonstration that the Mir146a-/- mouse recapitulates several aspects reported in DBD patients, including impaired neurogenesis, abnormal brain anatomy, and working and spatial memories deficits, provides convincing evidence that the dysregulation of miR146a contributes to the pathogenesis of DBDs.
Collapse
Affiliation(s)
- Julien Fregeac
- Developmental Brain Disorder Laboratory, INSERM UMR 1163, Imagine Institute, Paris, France
- Paris Descartes–Sorbonne Paris Cité University, Paris, France
| | - Stéphanie Moriceau
- Paris Descartes–Sorbonne Paris Cité University, Paris, France
- Institut Necker Enfants Malades (INEM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, 75015 Paris, France
| | - Antoine Poli
- Developmental Brain Disorder Laboratory, INSERM UMR 1163, Imagine Institute, Paris, France
- Paris Descartes–Sorbonne Paris Cité University, Paris, France
| | - Lam Son Nguyen
- Developmental Brain Disorder Laboratory, INSERM UMR 1163, Imagine Institute, Paris, France
- Paris Descartes–Sorbonne Paris Cité University, Paris, France
| | - Franck Oury
- Paris Descartes–Sorbonne Paris Cité University, Paris, France
- Institut Necker Enfants Malades (INEM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, 75015 Paris, France
| | - Laurence Colleaux
- Developmental Brain Disorder Laboratory, INSERM UMR 1163, Imagine Institute, Paris, France
- Paris Descartes–Sorbonne Paris Cité University, Paris, France
| |
Collapse
|
50
|
Wang M, He J, Zhou Y, Lv N, Zhao M, Wei H, Li R. Integrated analysis of miRNA and mRNA expression profiles in the brains of BTBR mice. Int J Dev Neurosci 2020; 80:221-233. [PMID: 32086829 DOI: 10.1002/jdn.10019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/30/2020] [Accepted: 02/18/2020] [Indexed: 01/02/2023] Open
Abstract
The BTBR T+ Itpr3tf (BTBR) mouse has developmental disorders in brain and many aberrant neuroanatomical structures and brain dysfunction. However, identification of the pathological mechanisms underlying abnormal brain development in the brains of BTBR mice is still lacking. Increasingly evidence showed that epigenetics plays an important role in the processes of brain development. In this study, we analyzed microRNA (miRNA) and mRNA expression profiles in the cortical brain tissue from BTBR mice, using RNA sequencing. As compared to C57BL/6J (B6) mice, 1,271 differentially expressed genes (DEGs) and 36 known differentially expressed miRNAs (DEMs) were found in the brain from BTBR mice. The functional annotation and categories of DEGs and DEMs were analyzed. Integration analysis identified 103 known miRNA-mRNA interaction pairs. We further verified selected several genes and miRNAs which may be associated with brain development using quantitative RT-PCR (qRT-PCR). Finally, we speculate that reduced myelin-associated oligodendrocytic basic protein and transmembrane proteins 260 may be linked with abnormal brain development in BTBR mice.
Collapse
Affiliation(s)
- Min Wang
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Jing He
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, China
| | - Yun Zhou
- Nephrology Division, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Na Lv
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Min Zhao
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Hongen Wei
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Rongshan Li
- Nephrology Division, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| |
Collapse
|