1
|
Chen Y, Yang C, Gao B, Chen K, Jao Keehn RJ, Müller RA, Yuan LX, You Y. Altered functional connectivity of unimodal sensory and multisensory integration networks is related to symptom severity in autism spectrum disorders. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00313-6. [PMID: 39491786 DOI: 10.1016/j.bpsc.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Atypical sensory processing is a prevalent feature in autism spectrum disorders (ASD) and constitutes a core diagnostic criterion in the Diagnostic and Statistical Manual of Mental of Disorders, 5th edition (DSM-5). However, neurocognitive underpinnings of atypical unimodal and multimodal sensory processing and their relationships with autism symptoms remain unclear. METHODS This study examined intrinsic functional connectivity (FC) patterns among five unimodal sensory and multisensory integration (MSI) networks in ASD with a large multi-site dataset (n = 646), and investigated the relationships among altered FC, atypical sensory processing, social communicative deficits, and overall autism symptoms with correlation and mediation analyses. RESULTS Relative to typically developing (TD) controls, the ASD group demonstrated increased FC of the olfactory network, decreased FC within the MSI network, and decreased FC of the MSI-unimodal-sensory networks. Furthermore, altered FC was positively associated with autism symptom severity, and such associations were completely mediated by atypical sensory processing and social communicative deficits. CONCLUSIONS ASD-specific olfactory overconnectivity and MSI-unimodal-sensory underconnectivity lend support to the Intense World Theory and Weak Central Coherence Theory, suggesting olfactory hypersensitivity at the expense of multisensory integration as potential neural mechanisms underlying atypical sensory processing in ASD. These atypical FC patterns further suggest potential targets for psychological and neuromodulatory interventions.
Collapse
Affiliation(s)
- Yahui Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Chen Yang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Bicheng Gao
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Kehui Chen
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - R Joanne Jao Keehn
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Ralph-Axel Müller
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Li-Xia Yuan
- School of Physics, Zhejiang University, Hangzhou, China.
| | - Yuqi You
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Sakaguchi K, Tawata S. Giftedness and atypical sexual differentiation: enhanced perceptual functioning through estrogen deficiency instead of androgen excess. Front Endocrinol (Lausanne) 2024; 15:1343759. [PMID: 38752176 PMCID: PMC11094242 DOI: 10.3389/fendo.2024.1343759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Syndromic autism spectrum conditions (ASC), such as Klinefelter syndrome, also manifest hypogonadism. Compared to the popular Extreme Male Brain theory, the Enhanced Perceptual Functioning model explains the connection between ASC, savant traits, and giftedness more seamlessly, and their co-emergence with atypical sexual differentiation. Overexcitability of primary sensory inputs generates a relative enhancement of local to global processing of stimuli, hindering the abstraction of communication signals, in contrast to the extraordinary local information processing skills in some individuals. Weaker inhibitory function through gamma-aminobutyric acid type A (GABAA) receptors and the atypicality of synapse formation lead to this difference, and the formation of unique neural circuits that process external information. Additionally, deficiency in monitoring inner sensory information leads to alexithymia (inability to distinguish one's own emotions), which can be caused by hypoactivity of estrogen and oxytocin in the interoceptive neural circuits, comprising the anterior insular and cingulate gyri. These areas are also part of the Salience Network, which switches between the Central Executive Network for external tasks and the Default Mode Network for self-referential mind wandering. Exploring the possibility that estrogen deficiency since early development interrupts GABA shift, causing sensory processing atypicality, it helps to evaluate the co-occurrence of ASC with attention deficit hyperactivity disorder, dyslexia, and schizophrenia based on phenotypic and physiological bases. It also provides clues for understanding the common underpinnings of these neurodevelopmental disorders and gifted populations.
Collapse
Affiliation(s)
- Kikue Sakaguchi
- Research Department, National Institution for Academic Degrees and Quality Enhancement of Higher Education (NIAD-QE), Kodaira-shi, Tokyo, Japan
| | - Shintaro Tawata
- Graduate School of Human Sciences, Sophia University, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
3
|
Jayashankar A, Aziz-Zadeh L. Disgust Processing and Potential Relationships with Behaviors in Autism. Curr Psychiatry Rep 2023; 25:465-478. [PMID: 37672122 PMCID: PMC10627949 DOI: 10.1007/s11920-023-01445-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/07/2023]
Abstract
PURPOSE OF REVIEW While there are reports of differences in emotion processing in autism, it is less understood whether the emotion of disgust, in particular, plays a significant role in these effects. Here, we review literature on potential disgust processing differences in autism and its possible associations with autistic traits. RECENT FINDINGS In autism, there is evidence for differences in physical disgust processing, pica behaviors, attention away from other's disgust facial expressions, and differences in neural activity related to disgust processing. In typically developing individuals, disgust processing is related to moral processing, but modulated by individual differences in interoception and alexithymia. Autistic individuals may experience atypical disgust, which may lead to difficulty avoiding contaminants and affect socio-emotional processing. In autism, such outcomes may lead to increased occurrences of illness, contribute to gastrointestinal issues, diminish vicarious learning of disgust expression and behaviors, and potentially contribute to differences in processes related to moral reasoning, though further research is needed.
Collapse
Affiliation(s)
- Aditya Jayashankar
- USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, 90089, USA.
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Lisa Aziz-Zadeh
- USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, 90089, USA
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
4
|
Robust odor identification in novel olfactory environments in mice. Nat Commun 2023; 14:673. [PMID: 36781878 PMCID: PMC9925783 DOI: 10.1038/s41467-023-36346-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
Relevant odors signaling food, mates, or predators can be masked by unpredictable mixtures of less relevant background odors. Here, we developed a mouse behavioral paradigm to test the role played by the novelty of the background odors. During the task, mice identified target odors in previously learned background odors and were challenged by catch trials with novel background odors, a task similar to visual CAPTCHA. Female wild-type (WT) mice could accurately identify known targets in novel background odors. WT mice performance was higher than linear classifiers and the nearest neighbor classifier trained using olfactory bulb glomerular activation patterns. Performance was more consistent with an odor deconvolution method. We also used our task to investigate the performance of female Cntnap2-/- mice, which show some autism-like behaviors. Cntnap2-/- mice had glomerular activation patterns similar to WT mice and matched WT mice target detection for known background odors. However, Cntnap2-/- mice performance fell almost to chance levels in the presence of novel backgrounds. Our findings suggest that mice use a robust algorithm for detecting odors in novel environments and this computation is impaired in Cntnap2-/- mice.
Collapse
|
5
|
Osada K, Kujirai R, Hosono A, Tsuda M, Ohata M, Ohta T, Nishimori K. Repeated exposure to kairomone-containing coffee odor improves abnormal olfactory behaviors in heterozygous oxytocin receptor knock-in mice. Front Behav Neurosci 2023; 16:983421. [PMID: 36817409 PMCID: PMC9930907 DOI: 10.3389/fnbeh.2022.983421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/16/2022] [Indexed: 02/04/2023] Open
Abstract
The oxytocin receptor (OXTR) knockout mouse is a model of autism spectrum disorder, characterized by abnormalities in social and olfactory behaviors and learning. Previously, we demonstrated that OXTR plays a crucial role in regulating aversive olfactory behavior to butyric acid odor. In this study, we attempted to determine whether coffee aroma affects the abnormal olfactory behavior of OXTR-Venus knock-in heterozygous mice [heterozygous OXTR (±) mice] using a set of behavioral and molecular experiments. Four-week repeated exposures of heterozygous OXTR (±) mice to coffee odor, containing three kairomone alkylpyrazines, rescued the abnormal olfactory behaviors compared with non-exposed wild-type or heterozygous OXTR (±) mice. Increased Oxtr mRNA expression in the olfactory bulb and amygdala coincided with the rescue of abnormal olfactory behaviors. In addition, despite containing the kairomone compounds, both the wild-type and heterozygous OXTR (±) mice exhibited a preference for the coffee odor and exhibited no stress-like increase in the corticotropin-releasing hormone, instead of a kairomone-associated avoidance response. The repeated exposures to the coffee odor did not change oxytocin and estrogen synthetase/receptors as a regulator of the gonadotropic hormone. These data suggest that the rescue of abnormal olfactory behaviors in heterozygous OXTR (±) mice is due to the coffee odor exposure-induced OXTR expression.
Collapse
Affiliation(s)
- Kazumi Osada
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan,*Correspondence: Kazumi Osada,
| | - Riyuki Kujirai
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Akira Hosono
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Masato Tsuda
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Motoko Ohata
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Tohru Ohta
- The Research Institute of Health Science, Health Sciences University of Hokkaido, Tobetsu, Japan
| | - Katsuhiko Nishimori
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
6
|
Lin TL, Lu CC, Chen TW, Huang CW, Lu JJ, Lai WF, Wu TS, Lai CH, Lai HC, Chen YL. Amelioration of Maternal Immune Activation-Induced Autism Relevant Behaviors by Gut Commensal Parabacteroides goldsteinii. Int J Mol Sci 2022; 23:13070. [PMID: 36361859 PMCID: PMC9657948 DOI: 10.3390/ijms232113070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by cognitive inflexibility and social deficits. Probiotics have been demonstrated to play a promising role in managing the severity of ASD. However, there are no effective probiotics for clinical use. Identifying new probiotic strains for ameliorating ASD is therefore essential. Using the maternal immune activation (MIA)-based offspring ASD-like mouse model, a probiotic-based intervention strategy was examined in female mice. The gut commensal microbe Parabacteroides goldsteinii MTS01, which was previously demonstrated to exert multiple beneficial effects on chronic inflammation-related-diseases, was evaluated. Prenatal lipopolysaccharide (LPS) exposure induced leaky gut-related inflammatory phenotypes in the colon, increased LPS activity in sera, and induced autistic-like behaviors in offspring mice. By contrast, P. goldsteinii MTS01 treatment significantly reduced intestinal and systemic inflammation and ameliorated disease development. Transcriptomic analyses of MIA offspring indicated that in the intestine, P. goldsteinii MTS01 enhanced neuropeptide-related signaling and suppressed aberrant cell proliferation and inflammatory responses. In the hippocampus, P. goldsteinii MTS01 increased ribosomal/mitochondrial and antioxidant activities and decreased glutamate receptor signaling. Together, significant ameliorative effects of P. goldsteinii MTS01 on ASD relevant behaviors in MIA offspring were identified. Therefore, P. goldsteinii MTS01 could be developed as a next-generation probiotic for ameliorating ASD.
Collapse
Affiliation(s)
- Tzu-Lung Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Cha-Chen Lu
- Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Chest Medicine, Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chih-Wei Huang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine and Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Wei-Fan Lai
- Department of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ting-Shu Wu
- Department of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Pediatrics, Molecular Infectious Disease Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Microbiology, School of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Nursing, Asia University, Taichung 41354, Taiwan
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Laboratory Medicine and Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Medical Research Center, Xiamen Chang Gung Hospital, Xiamen 361028, China
| | - Ya-Lei Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung 82446, Taiwan
| |
Collapse
|
7
|
Juvenile handling rescues autism-related effects of prenatal exposure to valproic acid. Sci Rep 2022; 12:7174. [PMID: 35504947 PMCID: PMC9065111 DOI: 10.1038/s41598-022-11269-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/13/2022] [Indexed: 11/12/2022] Open
Abstract
Environmental factors acting on young animals affect neurodevelopmental trajectories and impact adult brain function and behavior. Psychiatric disorders may be caused or worsen by environmental factors, but early interventions can improve performance. Understanding the possible mechanisms acting upon the developing brain could help identify etiological factors of psychiatric disorders and enable advancement of effective therapies. Research has focused on the long-lasting effects of environmental factors acting during the perinatal period, therefore little is known about the impact of these factors at later ages when neurodevelopmental pathologies such as autism spectrum disorder (ASD) are usually diagnosed. Here we show that handling mice during the juvenile period can rescue a range of behavioral and cellular effects of prenatal valproic acid (VPA) exposure. VPA-exposed animals show reduced sociability and increased repetitive behaviors, along with other autism-related endophenotypes such as increased immobility in the forced swim test and increased neuronal activity in the piriform cortex (Pir). Our results demonstrate that briefly handling mice every other day between postnatal days 22 and 34 can largely rescue these phenotypes. This effect can also be observed when animals are analyzed across tests using an “autism” factor, which also discriminates between animals with high and low Pir neuron activity. Thus, we identified a juvenile developmental window when environmental factors can determine adult autism-related behavior. In addition, our results have broader implications on behavioral neuroscience, as they highlight the importance of adequate experimental design and control of behavioral experiments involving treating or testing young animals.
Collapse
|
8
|
Huang G, Qiu Y, Tan S, Ma Q, Zou L. Impaired odor identification ability and olfactory hedonic capacity in children with elevated autistic traits. J SENS STUD 2022. [DOI: 10.1111/joss.12746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gao‐jie Huang
- Chemical Senses and Mental Health Laboratory, Department of Psychology School of Public Health, Southern Medical University Guangzhou Guangdong China
| | - Yi‐qi Qiu
- Chemical Senses and Mental Health Laboratory, Department of Psychology School of Public Health, Southern Medical University Guangzhou Guangdong China
| | - Shao‐zhen Tan
- Guangzhou Social Welfare Institute Guangzhou Guangdong China
| | - Qian‐wen Ma
- Chemical Senses and Mental Health Laboratory, Department of Psychology School of Public Health, Southern Medical University Guangzhou Guangdong China
- Guangzhou Social Welfare Institute Guangzhou Guangdong China
| | - Lai‐quan Zou
- Chemical Senses and Mental Health Laboratory, Department of Psychology School of Public Health, Southern Medical University Guangzhou Guangdong China
- Department of Psychiatry Zhujiang Hospital, Southern Medical University Guangzhou Guangdong China
| |
Collapse
|
9
|
Kotajima-Murakami H, Hagihara H, Sato A, Hagino Y, Tanaka M, Katoh Y, Nishito Y, Takamatsu Y, Uchino S, Miyakawa T, Ikeda K. Exposure to GABA A Receptor Antagonist Picrotoxin in Pregnant Mice Causes Autism-Like Behaviors and Aberrant Gene Expression in Offspring. Front Psychiatry 2022; 13:821354. [PMID: 35185658 PMCID: PMC8850354 DOI: 10.3389/fpsyt.2022.821354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is characterized by impairments in social interaction and restricted/repetitive behaviors. The neurotransmitter γ-aminobutyric acid (GABA) through GABAA receptor signaling in the immature brain plays a key role in the development of neuronal circuits. Excitatory/inhibitory imbalance in the mature brain has been investigated as a pathophysiological mechanism of ASD. However, whether and how disturbances of GABA signaling in embryos that are caused by GABAA receptor inhibitors cause ASD-like pathophysiology are poorly understood. The present study examined whether exposure to the GABAA receptor antagonist picrotoxin causes ASD-like pathophysiology in offspring by conducting behavioral tests from the juvenile period to adulthood and performing gene expression analyses in mature mouse brains. Here, we found that male mice that were prenatally exposed to picrotoxin exhibited a reduction of active interaction time in the social interaction test in both adolescence and adulthood. The gene expression analyses showed that picrotoxin-exposed male mice exhibited a significant increase in the gene expression of odorant receptors. Weighted gene co-expression network analysis showed a strong correlation between social interaction and enrichment of the "odorant binding" pathway gene module. Our findings suggest that exposure to a GABAA receptor inhibitor during the embryonic period induces ASD-like behavior, and impairments in odorant function may contribute to social deficits in offspring.
Collapse
Affiliation(s)
- Hiroko Kotajima-Murakami
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Japan
- Department of Biosciences, School of Science and Engineering, Teikyo University, Utsunomiya-Shi, Japan
| | - Hideo Hagihara
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake-Shi, Japan
| | - Atsushi Sato
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Japan
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Japan
| | - Yoko Hagino
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Japan
| | - Miho Tanaka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Japan
- Department of Psychiatry, The University of Tokyo Hospital, Bunkyo-Ku, Japan
| | - Yoshihisa Katoh
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Japan
| | - Yukio Takamatsu
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Japan
| | - Shigeo Uchino
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Japan
- Department of Biosciences, School of Science and Engineering, Teikyo University, Utsunomiya-Shi, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake-Shi, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Japan
| |
Collapse
|
10
|
Singh A, Seo H. Atypical sensory functions and eating behaviors among adults on the autism spectrum: One‐on‐one interviews. J SENS STUD 2021. [DOI: 10.1111/joss.12724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Asmita Singh
- Department of Food Science University of Arkansas Fayetteville Arkansas USA
| | - Han‐Seok Seo
- Department of Food Science University of Arkansas Fayetteville Arkansas USA
| |
Collapse
|
11
|
The Olfactory System as Marker of Neurodegeneration in Aging, Neurological and Neuropsychiatric Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136976. [PMID: 34209997 PMCID: PMC8297221 DOI: 10.3390/ijerph18136976] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022]
Abstract
Research studies that focus on understanding the onset of neurodegenerative pathology and therapeutic interventions to inhibit its causative factors, have shown a crucial role of olfactory bulb neurons as they transmit and propagate nerve impulses to higher cortical and limbic structures. In rodent models, removal of the olfactory bulb results in pathology of the frontal cortex that shows striking similarity with frontal cortex features of patients diagnosed with neurodegenerative disorders. Widely different approaches involving behavioral symptom analysis, histopathological and molecular alterations, genetic and environmental influences, along with age-related alterations in cellular pathways, indicate a strong correlation of olfactory dysfunction and neurodegeneration. Indeed, declining olfactory acuity and olfactory deficits emerge either as the very first symptoms or as prodromal symptoms of progressing neurodegeneration of classical conditions. Olfactory dysfunction has been associated with most neurodegenerative, neuropsychiatric, and communication disorders. Evidence revealing the dual molecular function of the olfactory receptor neurons at dendritic and axonal ends indicates the significance of olfactory processing pathways that come under environmental pressure right from the onset. Here, we review findings that olfactory bulb neuronal processing serves as a marker of neuropsychiatric and neurodegenerative disorders.
Collapse
|
12
|
Heinbockel T, Bhatia-Dey N, Shields VDC. Endocannabinoid-mediated neuromodulation in the main olfactory bulb at the interface of environmental stimuli and central neural processing. Eur J Neurosci 2021; 55:1002-1014. [PMID: 33724578 DOI: 10.1111/ejn.15186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/10/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022]
Abstract
The olfactory system has become an important functional gateway to understand and analyze neuromodulation since olfactory dysfunction and deficits have emerged as prodromal and, at other times, as first symptoms of many of neurodegenerative, neuropsychiatric and communication disorders. Considering olfactory dysfunction as outcome of altered, damaged and/or inefficient olfactory processing, in the current review, we analyze how olfactory processing interacts with the endocannabinoid signaling system. In the human body, endocannabinoid synthesis is a natural and on-demand response to a wide range of physiological and environmental stimuli. Our current understanding of the response dynamics of the endocannabinoid system is based in large part on research advances in limbic system areas, such as the hippocampus and the amygdala. Functional interactions of this signaling system with olfactory processing and associated pathways are just emerging but appear to grow rapidly with multidimensional approaches. Recent work analyzing the crystal structure of endocannabinoid receptors bound to their agonists in a signaling complex has opened avenues for developing specific therapeutic drugs that could help with neuroinflammation, neurodegeneration, and alleviation/reduction of pain. We discuss the role of endocannabinoids as signaling molecules in the olfactory system and the relevance of the endocannabinoid system for synaptic plasticity.
Collapse
Affiliation(s)
- Thomas Heinbockel
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Naina Bhatia-Dey
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Vonnie D C Shields
- Biological Sciences Department, Fisher College of Science and Mathematics, Towson University, Towson, MD, USA
| |
Collapse
|
13
|
Exploring Social Biomarkers in High-Functioning Adults with Autism and Asperger's Versus Healthy Controls: A Cross-Sectional Analysis. J Autism Dev Disord 2021; 50:4412-4430. [PMID: 32279223 PMCID: PMC7677266 DOI: 10.1007/s10803-020-04493-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biomarkers for autism spectrum disorder (ASD) are lacking but would facilitate drug development for the core deficits of the disorder. We evaluated markers proposed for characterization of differences in social communication and interaction in adults with ASD versus healthy controls (HC) for utility as biomarkers. Data pooled from an observational study and baseline data from a placebo-controlled study were analyzed. Between-group differences were observed in eye-tracking tasks for activity monitoring, biomotion, human activity preference, composite score (p = 0.0001-0.037) and pupillometry (various tasks, p = 0.017-0.05). Impaired olfaction was more common in the ASD sample versus HC (p = 0.018). Our preliminary results suggest the potential use for stratification and response sub-analyses outcome-prediction of specific eye-tracking tasks, pupillometry and olfaction tests in ASD trials.
Collapse
|
14
|
Xu M, Minagawa Y, Kumazaki H, Okada KI, Naoi N. Prefrontal Responses to Odors in Individuals With Autism Spectrum Disorders: Functional NIRS Measurement Combined With a Fragrance Pulse Ejection System. Front Hum Neurosci 2020; 14:523456. [PMID: 33132871 PMCID: PMC7579723 DOI: 10.3389/fnhum.2020.523456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 09/16/2020] [Indexed: 12/27/2022] Open
Abstract
Individuals with autism spectrum disorders (ASD) are impaired not only in social competencies but also in sensory perception, particularly olfaction. The olfactory ability of individuals with ASD has been examined in several psychophysical studies, but the results have been highly variable, which might be primarily due to methodological difficulties in the control of odor stimuli (e.g., the problem of lingering scents). In addition, the neural correlates of olfactory specificities in individuals with ASD remain largely unknown. To date, only one study has investigated this issue using functional magnetic resonance imaging (fMRI). The present study utilized a sophisticated method-a pulse ejection system-to present well-controlled odor stimuli to participants with ASD using an ASD-friendly application. With this advantageous system, we examined their odor detection, identification, and evaluation abilities and measured their brain activity evoked by odors using functional near-infrared spectroscopy (fNIRS). As the odor detection threshold (DT) of participants with ASD was highly variable, these participants were divided into two groups according to their DT: an ASD-Low DT group and an ASD-High DT group. Behavioral results showed that the ASD-High DT group had a significantly higher DT than the typically developing (control) group and the ASD-Low DT group, indicating their insensitivity to the tested odors. In addition, while there was no significant difference in the odor identification ability between groups, there was some discrepancy between the groups' evaluations of odor pleasantness. The brain data identified, for the first time, that neural activity in the right dorsolateral prefrontal cortex (DLPFC) was significantly weaker in the ASD-High DT group than in the control group. Moreover, the strength of activity in the right DLPFC was negatively correlated with the DT. These findings suggest that participants with ASD have impairments in the higher-order function of olfactory processing, such as olfactory working memory and/or attention.
Collapse
Affiliation(s)
- Mingdi Xu
- Faculty of Letters, Keio University, Tokyo, Japan.,Center of Life-Span Development of Communication Skills, Keio University, Yokohama, Japan
| | - Yasuyo Minagawa
- Faculty of Letters, Keio University, Tokyo, Japan.,Center of Life-Span Development of Communication Skills, Keio University, Yokohama, Japan.,Global Centre for Advanced Research on Logic and Sensibility, Keio University, Tokyo, Japan
| | | | - Ken-Ichi Okada
- Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Nozomi Naoi
- Global Centre for Advanced Research on Logic and Sensibility, Keio University, Tokyo, Japan.,Division of Arts and Sciences, College of Liberal Arts, International Christian University, Tokyo, Japan
| |
Collapse
|
15
|
Barros F, Figueiredo C, Costa A, Soares SC. Sensory Processing in the Autism Spectrum: The Role of Attention to Detail and Somatic Trait Anxiety in the Olfactory Perception of the General Population. J Autism Dev Disord 2020; 51:2338-2353. [PMID: 32964357 DOI: 10.1007/s10803-020-04711-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Autism Spectrum Disorders, as well as autism traits (AT), have been associated with altered sensory processing. However, the role of AT in olfactory processing is still unclear. We analyzed the impact of AT and trait anxiety (TANX), relevant in the context of autism and olfactory perception, in the olfactory abilities of a nonclinical adult sample. Participants (N = 116) completed the Autism-Spectrum Quotient (AQ), the State-Trait Inventory for Cognitive and Somatic Anxiety (STICSA) and the Sniffin' Sticks Extended Test to measure AT, TANX and olfactory abilities, respectively. A hierarchical multiple regression analysis suggested that women and higher scores on the Attention to Detail subscale of AQ were associated with better odor discrimination, and higher somatic TANX was related to poorer odor discrimination.
Collapse
Affiliation(s)
- Filipa Barros
- William James Center for Research (WJCR), Department of Education and Psychology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Center for Health Technology and Services Research (CINTESIS), Department of Education and Psychology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Cláudia Figueiredo
- Research Unit on Governance, Competitiveness and Public Policies (GOVCOPP), University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Adriana Costa
- Institute of Health Sciences, Universidade Católica Portuguesa, Campus Palma de Cima, Palma de Cima, 1649-023, Lisboa, Portugal
| | - Sandra C Soares
- William James Center for Research (WJCR), Department of Education and Psychology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Center for Health Technology and Services Research (CINTESIS), Department of Education and Psychology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
16
|
Barros F, Soares SC. Giving meaning to the social world in autism spectrum disorders: Olfaction as a missing piece of the puzzle? Neurosci Biobehav Rev 2020; 116:239-250. [PMID: 32562688 DOI: 10.1016/j.neubiorev.2020.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/09/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Altered social cognition is a core feature of Autism Spectrum Disorders (ASD). These impairments have been explained as the consequence of compromised social motivational mechanisms that limit social interest and activate a cascade of social deficits. Following this rational, we argue that approaches capable of surpassing ASD usual restraints (e.g., deficits in verbal abilities), and able to assign social meaning, could be more effective at responding to these difficulties. In this framework, we propose that olfaction, as well as cross-modal integration strategies involving both visual and olfactory domains, may have such potential. In fact, most of socioemotional processing deficits in ASD have been shown in an uni-modal perspective, mainly with visual stimuli. However, the social environment involves other modalities and is typically multisensorial. Given the potential of olfaction as a gateway for socioemotional information in ASD, we argue in favor of studying olfactory perception, as well as visuo-olfactory integration, given the potential of these approaches to drive effective interventions and give the access to a meaningful social world in ASD.
Collapse
Affiliation(s)
- Filipa Barros
- Center for Health Technology and Services Research (CINTESIS), Department of Education and Psychology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; William James Center for Research (WJCR), Department of Education and Psychology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sandra C Soares
- Center for Health Technology and Services Research (CINTESIS), Department of Education and Psychology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; William James Center for Research (WJCR), Department of Education and Psychology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, Nobels väg 9, 171 77 Stockholm, Sweden.
| |
Collapse
|
17
|
Characterizing Olfactory Function in Children with Autism Spectrum Disorder and Children with Sensory Processing Dysfunction. Brain Sci 2020; 10:brainsci10060362. [PMID: 32531995 PMCID: PMC7348741 DOI: 10.3390/brainsci10060362] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 11/16/2022] Open
Abstract
Abnormalities in olfactory function have been identified in a number of neurological and psychiatric disorders, including Parkinson's disease and schizophrenia. However, little is known about olfactory function in autism spectrum disorder (ASD). The present study aims to assess the olfactory profiles of children with ASD, compared to an age- and sex-matched comparison group of typically developing children and a second clinical control group consisting of non-ASD children with sensory processing dysfunction (SPD). Participants completed a battery of sensory and behavioral assessments including olfactory tasks (Sniffin' Sticks Threshold Test and self-reported valence ratings for two target odorants (phenylethyl alcohol and vanillin) and the University of Pennsylvania Smell Identification Test), and an autism evaluation (Autism Diagnostic Observation Schedule-2). Children with ASD showed intact odor detection with reduced odor identification ability. Poor odor identification was significantly correlated with autism symptom severity. Children with SPD demonstrated reduced odor detection and identification ability. These findings provide evidence for differential patterns of smell processing among ASD and non-ASD neurodevelopmental disorders. Future studies are needed to determine whether the association of impaired olfaction and increased autism symptoms is due to shared etiology.
Collapse
|
18
|
Walker SC, Williams K, Moore DJ. Superior Identification of Component Odors in a Mixture Is Linked to Autistic Traits in Children and Adults. Chem Senses 2020; 45:391-399. [PMID: 32249289 DOI: 10.1093/chemse/bjaa026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Most familiar odors are complex mixtures of volatile molecules, which the olfactory system automatically synthesizes into a perceptual whole. However, odors are rarely encountered in isolation; thus, the brain must also separate distinct odor objects from complex and variable backgrounds. In vision, autistic traits are associated with superior performance in tasks that require focus on the local features of a perceptual scene. The aim of the present study was to determine whether the same advantage was observed in the analysis of olfactory scenes. To do this, we compared the ability of 1) 40 young adults (aged 16-35) with high (n = 20) and low levels of autistic traits and 2) 20 children (aged 7-11), with (n = 10) and without an autism spectrum disorder diagnosis, to identify individual odor objects presented within odor mixtures. First, we used a 4-alternative forced choice task to confirm that both adults and children were able to reliably identify 8 blended fragrances, representing food-related odors, when presented individually. We then used the same forced choice format to test participants' ability to identify the odors when they were combined in either binary or ternary mixtures. Adults with high levels of autistic traits showed superior performance on binary but not ternary mixture trials, whereas children with an autism spectrum disorder diagnosis outperformed age-matched neurotypical peers, irrespective of mixture complexity. These findings indicate that the local processing advantages associated with high levels of autistic traits in visual tasks are also apparent in a task requiring analytical processing of odor mixtures.
Collapse
Affiliation(s)
- Susannah C Walker
- Research Centre for Brain and Behaviour, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK
| | | | - David J Moore
- Research Centre for Brain and Behaviour, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
19
|
Okumura T, Kumazaki H, Singh AK, Touhara K, Okamoto M. Individuals With Autism Spectrum Disorder Show Altered Event-Related Potentials in the Late Stages of Olfactory Processing. Chem Senses 2020; 45:37-44. [PMID: 31711116 DOI: 10.1093/chemse/bjz070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Atypical sensory reactivities are pervasive among people with autism spectrum disorder (ASD). With respect to olfaction, most previous studies have used psychophysical or questionnaire-based methodologies; thus, the neural basis of olfactory processing in ASD remains unclear. This study aimed to determine the stages of olfactory processing that are altered in ASD. Fourteen young adults with high-functioning ASD (mean age, 21 years; 3 females) were compared with 19 age-matched typically developing (TD) controls (mean age, 21 years; 4 females). Olfactory event-related potentials (OERPs) for 2-phenylethyl alcohol-a rose-like odor-were measured with 64 scalp electrodes while participants performed a simple odor detection task. Significant group differences in OERPs were found in 3 time windows 542 ms after the stimulus onset. The cortical source activities in these time windows, estimated using standardized low-resolution brain electromagnetic tomography, were significantly higher in ASD than in TD in and around the posterior cingulate cortex, which is known to play a crucial role in modality-general cognitive processing. Supplemental Bayesian analysis provided substantial evidence for an alteration in the later stages of olfactory processing, whereas conclusive evidence was not provided for the earlier stages. These results suggest that olfactory processing in ASD is altered at least at the later, modality-general processing stage.
Collapse
Affiliation(s)
- Toshiki Okumura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Hirokazu Kumazaki
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Archana K Singh
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan.,ERATO Touhara Chemosensory Signal Project, JST, University of Tokyo, Tokyo, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan.,ERATO Touhara Chemosensory Signal Project, JST, University of Tokyo, Tokyo, Japan.,WPI International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study, Tokyo, Japan
| | - Masako Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan.,ERATO Touhara Chemosensory Signal Project, JST, University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Stickel S, Weismann P, Kellermann T, Regenbogen C, Habel U, Freiherr J, Chechko N. Audio-visual and olfactory-visual integration in healthy participants and subjects with autism spectrum disorder. Hum Brain Mapp 2019; 40:4470-4486. [PMID: 31301203 PMCID: PMC6865810 DOI: 10.1002/hbm.24715] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/23/2019] [Accepted: 07/01/2019] [Indexed: 01/22/2023] Open
Abstract
The human capacity to integrate sensory signals has been investigated with respect to different sensory modalities. A common denominator of the neural network underlying the integration of sensory clues has yet to be identified. Additionally, brain imaging data from patients with autism spectrum disorder (ASD) do not cover disparities in neuronal sensory processing. In this fMRI study, we compared the underlying neural networks of both olfactory-visual and auditory-visual integration in patients with ASD and a group of matched healthy participants. The aim was to disentangle sensory-specific networks so as to derive a potential (amodal) common source of multisensory integration (MSI) and to investigate differences in brain networks with sensory processing in individuals with ASD. In both groups, similar neural networks were found to be involved in the olfactory-visual and auditory-visual integration processes, including the primary visual cortex, the inferior parietal sulcus (IPS), and the medial and inferior frontal cortices. Amygdala activation was observed specifically during olfactory-visual integration, with superior temporal activation having been seen during auditory-visual integration. A dynamic causal modeling analysis revealed a nonlinear top-down IPS modulation of the connection between the respective primary sensory regions in both experimental conditions and in both groups. Thus, we demonstrate that MSI has shared neural sources across olfactory-visual and audio-visual stimulation in patients and controls. The enhanced recruitment of the IPS to modulate changes between areas is relevant to sensory perception. Our results also indicate that, with respect to MSI processing, adults with ASD do not significantly differ from their healthy counterparts.
Collapse
Affiliation(s)
- Susanne Stickel
- Department of Psychiatry, Psychotherapy and PsychosomaticsFaculty of Medicine, RWTH AachenAachenGermany
- Institute of Neuroscience and Medicine: JARA‐Institute Brain Structure Function Relationship (INM 10)Research Center JülichJülichGermany
| | - Pauline Weismann
- Department of Psychiatry and PsychotherapyFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Thilo Kellermann
- Department of Psychiatry, Psychotherapy and PsychosomaticsFaculty of Medicine, RWTH AachenAachenGermany
- Institute of Neuroscience and Medicine: JARA‐Institute Brain Structure Function Relationship (INM 10)Research Center JülichJülichGermany
| | - Christina Regenbogen
- Department of Psychiatry, Psychotherapy and PsychosomaticsFaculty of Medicine, RWTH AachenAachenGermany
- Institute of Neuroscience and Medicine: JARA‐Institute Brain Structure Function Relationship (INM 10)Research Center JülichJülichGermany
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and PsychosomaticsFaculty of Medicine, RWTH AachenAachenGermany
- Institute of Neuroscience and Medicine: JARA‐Institute Brain Structure Function Relationship (INM 10)Research Center JülichJülichGermany
| | - Jessica Freiherr
- Department of Psychiatry and PsychotherapyFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
- Sensory AnalyticsFraunhofer Institute for Process Engineering and Packaging IVVFreisingGermany
| | - Natalya Chechko
- Department of Psychiatry, Psychotherapy and PsychosomaticsFaculty of Medicine, RWTH AachenAachenGermany
- Institute of Neuroscience and Medicine: JARA‐Institute Brain Structure Function Relationship (INM 10)Research Center JülichJülichGermany
| |
Collapse
|
21
|
Zhao JB, Wang YL, Ma QW, Zhao JB, Zhang XY, Zou LQ. The Chemosensory Pleasure Scale: A New Assessment for Measuring Hedonic Smell and Taste Capacities. Chem Senses 2019; 44:457-464. [PMID: 31201424 DOI: 10.1093/chemse/bjz040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Anhedonia, or the inability to experience pleasure, is a key clinical feature of many mental disorders such as depression and schizophrenia. Although various valid measurements of anhedonia and pleasure experience exist, no scales exist that quantify smell and taste pleasure experiences. The Chemosensory Pleasure Scale (CPS) was therefore designed to assess the hedonic capacity for smell and taste pleasure. We examined the reliability and validity of the CPS in our study. First, we conducted exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) to identify and examine the structure of the CPS. Second, the CPS's validity and test-retest stability were investigated. The CPS was correlated with other measurements of anhedonia and pleasure experience. Furthermore, the empirical validity of CPS was also examined in our study. The results indicated that the CPS is a reliable and valid measure for assessing an individual's hedonic capacity for smell and taste pleasure in nonclinical samples. Further application of the CPS for various populations is also discussed herein, especially for patients with mental disorders such as depression, schizophrenia, and autism.
Collapse
Affiliation(s)
- Jiu-Bo Zhao
- Department of Psychology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China.,Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi-Le Wang
- Department of Psychology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China
| | - Qian-Wen Ma
- Department of Psychology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China
| | - Jing-Bo Zhao
- Department of Psychology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China.,Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao-Yuan Zhang
- Department of Psychology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China.,Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lai-Quan Zou
- Department of Psychology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China.,Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Bergamot Aromatherapy for Medical Office-Induced Anxiety Among Children With an Autism Spectrum Disorder: A Randomized, Controlled, Blinded Clinical Trial. Holist Nurs Pract 2019; 33:285-294. [PMID: 31415008 DOI: 10.1097/hnp.0000000000000341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This randomized, blinded clinical trial evaluated the effects of aromatherapy on medical office-induced anxiety in children with an autism spectrum disorder. Patients awaiting office visits were randomized into an aromatherapy group and a control group. After adjusting for baseline scores, there was no significant difference between the 2 groups.
Collapse
|
23
|
Koehler L, Fournel A, Albertowski K, Roessner V, Gerber J, Hummel C, Hummel T, Bensafi M. Impaired Odor Perception in Autism Spectrum Disorder Is Associated with Decreased Activity in Olfactory Cortex. Chem Senses 2019; 43:627-634. [PMID: 30219913 DOI: 10.1093/chemse/bjy051] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Autism Spectrum Disorders (ASDs) are characterized by atypical sensory functioning in the visual, tactile, and auditory systems. Although less explored, olfactory changes have been reported in ASD patients. To explore these changes on a neural level, 18 adults with ASD and 18 healthy neurotypical controls were examined in a 2-phase study. Participants were first tested for odor threshold and odor identification. Then, (i) structural magnetic resonance (MR) images of the olfactory bulb were acquired, and (ii) a functional MR imaging olfaction study was conducted. ASD patients exhibited decreased function for odor thresholds and odor identification; this was accompanied by a relatively decreased activation in the piriform cortex. In conclusion, these findings suggest, that the known alterations in olfaction in ASD are rooted in the primary olfactory cortex.
Collapse
Affiliation(s)
- L Koehler
- Smell & Taste Clinic, Department of Otorhinolaryngology, "Technische Universität Dresden," Fetscherstraße, Dresden, Germany
| | - A Fournel
- CNRS, UMR5292, Lyon Neuroscience Research Center, University Lyon, France
| | - K Albertowski
- Department of Child and Adolescent Psychiatry and Psychotherapy, "Technische Universität Dresden," Fetscherstraße, Dresden, Germany
| | - V Roessner
- Department of Child and Adolescent Psychiatry and Psychotherapy, "Technische Universität Dresden," Fetscherstraße, Dresden, Germany
| | - J Gerber
- Department of Neuroradiology, "Technische Universität Dresden," Fetscherstraße, Dresden, Germany
| | - C Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, "Technische Universität Dresden," Fetscherstraße, Dresden, Germany
| | - T Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, "Technische Universität Dresden," Fetscherstraße, Dresden, Germany
| | - M Bensafi
- CNRS, UMR5292, Lyon Neuroscience Research Center, University Lyon, France
| |
Collapse
|
24
|
Huang TN, Yen TL, Qiu LR, Chuang HC, Lerch JP, Hsueh YP. Haploinsufficiency of autism causative gene Tbr1 impairs olfactory discrimination and neuronal activation of the olfactory system in mice. Mol Autism 2019; 10:5. [PMID: 30792833 PMCID: PMC6371489 DOI: 10.1186/s13229-019-0257-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/25/2019] [Indexed: 12/21/2022] Open
Abstract
Background Autism spectrum disorders (ASD) exhibit two clusters of core symptoms, i.e., social and communication impairment, and repetitive behaviors and sensory abnormalities. Our previous study demonstrated that TBR1, a causative gene of ASD, controls axonal projection and neuronal activation of amygdala and regulates social interaction and vocal communication in a mouse model. Behavioral defects caused by Tbr1 haploinsufficiency can be ameliorated by increasing neural activity via D-cycloserine treatment, an N-methyl-D-aspartate receptor (NMDAR) coagonist. In this report, we investigate the role of TBR1 in regulating olfaction and test whether D-cycloserine can also improve olfactory defects in Tbr1 mutant mice. Methods We used Tbr1+/− mice as a model to investigate the function of TBR1 in olfactory sensation and discrimination of non-social odors. We employed a behavioral assay to characterize the olfactory defects of Tbr1+/− mice. Magnetic resonance imaging (MRI) and histological analysis were applied to characterize anatomical features. Immunostaining was performed to further analyze differences in expression of TBR1 subfamily members (namely TBR1, TBR2, and TBX21), interneuron populations, and dendritic abnormalities in olfactory bulbs. Finally, C-FOS staining was used to monitor neuronal activation of the olfactory system upon odor stimulation. Results Tbr1+/− mice exhibited smaller olfactory bulbs and anterior commissures, reduced interneuron populations, and an abnormal dendritic morphology of mitral cells in the olfactory bulbs. Tbr1 haploinsufficiency specifically impaired olfactory discrimination but not olfactory sensation. Neuronal activation upon odorant stimulation was reduced in the glomerular layer of Tbr1+/− olfactory bulbs. Furthermore, although the sizes of piriform and perirhinal cortices were not affected by Tbr1 deficiency, neuronal activation was reduced in these two cortical regions in response to odorant stimulation. These results suggest an impairment of neuronal activation in olfactory bulbs and defective connectivity from olfactory bulbs to the upper olfactory system in Tbr1+/− mice. Systemic administration of D-cycloserine, an NMDAR co-agonist, ameliorated olfactory discrimination in Tbr1+/− mice, suggesting that increased neuronal activity has a beneficial effect on Tbr1 deficiency. Conclusions Tbr1 regulates neural circuits and activity in the olfactory system to control olfaction. Tbr1+/− mice can serve as a suitable model for revealing how an autism causative gene controls neuronal circuits, neural activity, and autism-related behaviors. Electronic supplementary material The online version of this article (10.1186/s13229-019-0257-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tzyy-Nan Huang
- 1Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529 Taiwan
| | - Tzu-Li Yen
- 1Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529 Taiwan
| | - Lily R Qiu
- 2Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
| | - Hsiu-Chun Chuang
- 1Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529 Taiwan.,4Present address: Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Jason P Lerch
- 2Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada.,3Department of Medical Biophysics, The University of Toronto, Toronto, Canada
| | - Yi-Ping Hsueh
- 1Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529 Taiwan
| |
Collapse
|
25
|
Luisier AC, Petitpierre G, Clerc Bérod A, Garcia-Burgos D, Bensafi M. Effects of familiarization on odor hedonic responses and food choices in children with autism spectrum disorders. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2018; 23:1460-1471. [PMID: 30523698 DOI: 10.1177/1362361318815252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This study assessed whether olfactory familiarization can render food odors more pleasant, and consequently food more attractive, to children with autism spectrum disorder. Participants were first presented with a series of food odors (session 1). Then, they were familiarized on four occasions (time window: 5 weeks) with one of the two most neutral odors (the other neutral odor was used as control) (session 2). In session 3, participants smelled the entire series of odors again. Both verbal and facial responses were compared from session 1 to session 3. After session 3, the children were presented with two identical foods (one containing the familiarized odor and one the control odor) and were asked to choose between these foods. Results revealed (1) a specific increase in positive emotions for the familiarized odor and (2) that 68% of the children chose the food associated with the "familiarized odor" (children who chose the "familiarized odor" food exhibited significantly more sensory particularities). These findings suggest that it is possible to modulate olfactory emotions and expand the dietary repertoire of children with autism spectrum disorder. Application of this paradigm may enable innovative prospects for food education in autism.
Collapse
Affiliation(s)
- Anne-Claude Luisier
- 1 Claude Bernard University Lyon 1, France.,2 University of Fribourg, Switzerland.,3 Brocoli Factory, Switzerland
| | | | | | | | | |
Collapse
|
26
|
Osada K, Ohta T, Takai R, Miyazono S, Kashiwayanagi M, Hidema S, Nishimori K. Oxytocin receptor signaling contributes to olfactory avoidance behavior induced by an unpleasant odorant. Biol Open 2018; 7:bio.029140. [PMID: 29945877 PMCID: PMC6176940 DOI: 10.1242/bio.029140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oxytocin (OXT) and its receptor (OXTR) regulate reproductive physiology (i.e. parturition and lactation), sociosexual behavior, learned patterns of behavior and olfactory behavior in social contexts. To characterize the function of OXTR in basic olfactory behavior, the present study compared the behavioral responses of homozygous, heterozygous and wild-type mice when these mice were confronted with an unpleasant odorant (butyric acid) in a custom-made Y-maze in the absence of a social context. Wild-type mice avoided the first encounter with the butyric acid odorant, whereas homozygous and heterozygous mice did not. However, both heterozygous and wild-type mice habituated when confronted with the butyric odorant again on the following 2 days. By contrast, homozygous mice failed to habituate and instead avoided the location of the odorant for at least 3 days. These data suggest that homozygous and heterozygous mice display abnormal olfactory responses to the presentation of an unpleasant odorant. Our studies demonstrate that OXTR plays a critical role in regulating olfactory behavior in the absence of a social context. Summary: Homozygous mice exhibited abnormal olfactory behaviors, namely failure in the acute avoidance of butyric acid and in habituation behavior, in the absence of a social context.
Collapse
Affiliation(s)
- Kazumi Osada
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Tohru Ohta
- The Research Institute of Health Science, Health Science University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Rie Takai
- The Research Institute of Health Science, Health Science University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Sadaharu Miyazono
- Department of Sensory Physiology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Makoto Kashiwayanagi
- Department of Sensory Physiology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Shizu Hidema
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Katsuhiko Nishimori
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| |
Collapse
|
27
|
Muratori F, Tonacci A, Billeci L, Catalucci T, Igliozzi R, Calderoni S, Narzisi A. Olfactory Processing in Male Children with Autism: Atypical Odor Threshold and Identification. J Autism Dev Disord 2018; 47:3243-3251. [PMID: 28744761 DOI: 10.1007/s10803-017-3250-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sensory issues are of great interest in ASD diagnosis. However, their investigation is mainly based on external observation (parent reports), with methodological limitations. Unobtrusive olfactory assessment allows studying autism neurosensoriality. Here, 20 male children with high-functioning ASD and 20 matched controls were administered a complete olfactory test battery, assessing olfactory threshold, identification and discrimination. ASD children show lower sensitivity (p = 0.041), lower identification (p = 0.014), and intact odor discrimination (p = 0.199) than controls. Comparing olfactory and clinical scores, a significant correlation was found in ASD between olfactory threshold and the CBCL social problems (p = 0.011) and aggressive behavior (p = 0.012) sub-scales. The pattern featuring peripheral hyposensitivity, high-order difficulties in odor identification and regular subcortical odor discrimination is discussed in light of hypo-priors hypothesis for autism.
Collapse
Affiliation(s)
- Filippo Muratori
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- IRCCS Stella Maris Foundation, Pisa, Italy
| | - Alessandro Tonacci
- National Research Council of Italy, Institute of Clinical Physiology, IFC-CNR, Via Moruzzi 1, 56124, Pisa, Italy.
| | | | | | | | - Sara Calderoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- IRCCS Stella Maris Foundation, Pisa, Italy
| | | |
Collapse
|
28
|
The Glasgow Sensory Questionnaire: Validation of a French Language Version and Refinement of Sensory Profiles of People with High Autism-Spectrum Quotient. J Autism Dev Disord 2017; 48:1549-1565. [DOI: 10.1007/s10803-017-3422-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
29
|
Fadda R, Piras F, Doneddu G, Saba L, Masala C. Olfactory Function Assessment in Italian Subjects with Autism Spectrum Disorder. CHEMOSENS PERCEPT 2017. [DOI: 10.1007/s12078-017-9234-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
30
|
DuBois D, Lymer E, Gibson BE, Desarkar P, Nalder E. Assessing Sensory Processing Dysfunction in Adults and Adolescents with Autism Spectrum Disorder: A Scoping Review. Brain Sci 2017; 7:brainsci7080108. [PMID: 28825635 PMCID: PMC5575628 DOI: 10.3390/brainsci7080108] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/04/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022] Open
Abstract
Sensory reactivity is a diagnostic criterion for Autism Spectrum Disorder (ASD), and has been associated with poorer functional outcomes, behavioral difficulties, and autism severity across the lifespan. Yet, there is little consensus on best practice approaches to assessing sensory processing dysfunction in adolescents and adults with ASD. Despite growing evidence that sensory symptoms persist into adolescence and adulthood, there is a lack of norms for older age groups, and pediatric assessments may not target appropriate functional outcomes or environments. This review identified approaches used to measure sensory processing in the scientific literature, and to describe and compare these approaches to current best practice guidelines that can be incorporated into evidence-based practice. Method and Analysis: A search of scientific databases and grey literature (professional association and ASD society websites), from January 1987–May 2017, uncovered 4769 articles and 12 clinical guidelines. Study and sample characteristics were extracted, charted, and categorized according to assessment approach. Results: There were 66 articles included after article screening. Five categories of assessment approaches were identified: Self- and Proxy-Report Questionnaires, Psychophysical Assessment, Direct Behavioral Observation, Qualitative Interview Techniques, and Neuroimaging/EEG. Sensory research to date has focused on individuals with high-functioning ASD, most commonly through the use of self-report questionnaires. The Adolescent and Adult Sensory Profile (AASP) is the most widely used assessment measure (n = 22), however, a number of other assessment approaches may demonstrate strengths specific to the ASD population. Multi-method approaches to assessment (e.g., combining psychophysical or observation with questionnaires) may have clinical applicability to interdisciplinary clinical teams serving adolescents and adults with ASD. Contribution: A comprehensive knowledge of approaches is critical in the clinical assessment of a population characterized by symptomatic heterogeneity and wide-ranging cognitive profiles. This review should inform future development of international interdisciplinary clinical guidelines on sensory processing assessment in ASD across the lifespan.
Collapse
Affiliation(s)
- Denise DuBois
- Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada.
- Adult Neurodevelopmental Service, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada.
- Department of Occupational Science and Occupational Therapy, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada.
| | - Erin Lymer
- Adult Neurodevelopmental Service, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada.
| | - Barbara E Gibson
- Department of Physical Therapy, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada.
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada.
| | - Pushpal Desarkar
- Adult Neurodevelopmental Service, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada.
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada.
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health; Toronto, ON M6J 1H4, Canada.
| | - Emily Nalder
- Adult Neurodevelopmental Service, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada.
- March of Dimes Canada, Toronto, ON M4H 1A4, Canada.
| |
Collapse
|
31
|
A Single Dose, Randomized, Controlled Proof-Of-Mechanism Study of a Novel Vasopressin 1a Receptor Antagonist (RG7713) in High-Functioning Adults with Autism Spectrum Disorder. Neuropsychopharmacology 2017; 42:1914-1923. [PMID: 27711048 PMCID: PMC5520775 DOI: 10.1038/npp.2016.232] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/12/2016] [Accepted: 09/17/2016] [Indexed: 12/27/2022]
Abstract
The core symptoms of autism spectrum disorder (ASD) include impaired social communication, repetitive behaviors, and restricted interests. No effective pharmacotherapy for these core deficits exists. Within the domain of social communication, the vasopressin system is implicated in social cognition and social signaling deficits of ASD, and represents a potential therapeutic target. We assessed the effects of a single 20 mg intravenous dose of the arginine vasopressin receptor 1A (V1a) antagonist, RG7713, on exploratory biomarkers (eye tracking), behavioral and clinical measures of social cognition and communication (affective speech recognition (ASR), reading the mind in the eyes, olfactory identification, scripted interaction), and safety and tolerability in a multicenter, randomized, double-blind, placebo-controlled, cross-over study of 19 high-functioning adult male subjects with DSM-IV Autistic Disorder (age 18-45 years; full scale IQ >70; ABC-Irritability subscale ⩽13). Eye-tracking showed an increase in biological motion orienting preference with RG7713 (ES=0.8, p=0.047) and a non-significant improvement in the composite score (ES=0.2, p=0.29). RG7713 reduced ability to detect lust (ES=-0.8, p=0.03) and fear (ES=-0.7, p=0.07) in ASR. However, when all eight individual emotion subscales were combined into an overall ASR performance score, the reduction was non-significant (ES=-0.1, p=0.59). Thirteen adverse events were reported in 10 subjects; all were of mild (11/13) or moderate (2/13) severity. Although interpretation should be cautious due to multiple comparisons and small sample size, these results provide preliminary evidence from experimental and behavioral biomarkers, that blockade of the V1a receptor may improve social communication in adults with high-functioning ASD. ClinicalTrials.gov identifier: NCT01474278 A Study of RO5028442 in Adult Male High-Functioning Autistic Patients. Available at: https://clinicaltrials.gov/ct2/show/NCT01474278.
Collapse
|
32
|
Larsson M, Tirado C, Wiens S. A Meta-Analysis of Odor Thresholds and Odor Identification in Autism Spectrum Disorders. Front Psychol 2017; 8:679. [PMID: 28553238 PMCID: PMC5425471 DOI: 10.3389/fpsyg.2017.00679] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/19/2017] [Indexed: 01/01/2023] Open
Abstract
Autism Spectrum Disorders (ASD) are often accompanied by atypical visual, auditory, and tactile sensory behavior. Evidence also suggests alterations of the olfactory system, but the pattern of findings appears mixed. To quantify this pattern systematically, we conducted a meta-analysis. Studies were included if they examined olfactory function (i.e., odor threshold, or odor identification) in ASD compared with healthy age-matched control groups. We also coded for the potential moderators gender, age, and IQ. Articles were identified through computerized literature search using Web of Science, PubMed, and Scopus databases. A total of 11 articles compared odor threshold and/or odor identification between cases and controls (for threshold, n = 143 ASD and 148 controls; and for identification, n = 132 ASD and 139 controls). Effects sizes showed a substantial heterogeneity. As a result, the 95% prediction intervals were wide and ranged between a large negative and a large positive effect size for odor threshold, [-1.86, 2.05], and for odor identification, [-1.51, 2.52]. Exploratory analyses suggested that age and IQ may be potential moderators. To conclude, the large heterogeneity is consistent with the notion of both hyposensitivity and hypersensitivity in individuals with ASD. However, future research needs to predict and test the specific direction of the effect to provide convincing evidence for atypical olfactory functions in ASD.
Collapse
Affiliation(s)
- Maria Larsson
- Gösta Ekman Laboratory, Department of Psychology, Stockholm UniversityStockholm, Sweden
| | | | | |
Collapse
|
33
|
Abstract
Olfaction is often viewed as difficult, yet the empirical evidence suggests a different picture. A closer look shows people around the world differ in their ability to detect, discriminate, and name odors. This gives rise to the question of what influences our ability to smell. Instead of focusing on olfactory deficiencies, this review presents a positive perspective by focusing on factors that make someone a better smeller. We consider three driving forces in improving olfactory ability: one’s biological makeup, one’s experience, and the environment. For each factor, we consider aspects proposed to improve odor perception and critically examine the evidence; as well as introducing lesser discussed areas. In terms of biology, there are cases of neurodiversity, such as olfactory synesthesia, that serve to enhance olfactory ability. Our lifetime experience, be it typical development or unique training experience, can also modify the trajectory of olfaction. Finally, our odor environment, in terms of ambient odor or culinary traditions, can influence odor perception too. Rather than highlighting the weaknesses of olfaction, we emphasize routes to harnessing our olfactory potential.
Collapse
Affiliation(s)
- Asifa Majid
- Centre for Language Studies, Radboud University, Nijmegen, The Netherlands; Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Laura Speed
- Centre for Language Studies, Radboud University, Nijmegen, The Netherlands
| | - Ilja Croijmans
- Centre for Language Studies, Radboud University, Nijmegen, The Netherlands; International Max Planck Research School for Language Sciences, Nijmegen, The Netherlands
| | - Artin Arshamian
- Centre for Language Studies, Radboud University, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
34
|
Addo RN, Wiens S, Nord M, Larsson M. Olfactory Functions in Adults With Autism Spectrum Disorders. Perception 2017; 46:530-537. [PMID: 28056659 DOI: 10.1177/0301006616686100] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Autism spectrum disorders (ASD) are often characterized by atypical sensory behavior (hyper- or hyporeactivity) although evidence is scarce regarding olfactory abilities in ASD; 16 adults with high-functioning ASD (mean age: 38.2, SD: 9.7) and 14 healthy control subjects (mean age: 42.0 years, SD: 12.5) were assessed in odor threshold, free and cued odor identification, and perceived pleasantness, intensity, and edibility of everyday odors. Although results showed no differences between groups, the Bayes Factors (close to 1) suggested that the evidence for no group differences on the threshold and identification tests was inconclusive. In contrast, there was some evidence for no group differences on perceived edibility (BF01 = 2.69) and perceived intensity (BF01 = 2.80). These results do not provide conclusive evidence for or against differences between ASD and healthy controls on olfactory abilities. However, they suggest that there are no apparent group differences in subjective ratings of odors.
Collapse
Affiliation(s)
- Rebecka N Addo
- Centre for Clinical Research Västmanland, Västmanland County Hospital, Uppsala University, Västerås, Sweden; Department of Neurosciences, Uppsala University, Sweden; Gösta Ekman Laboratory, Department of Psychology, Stockholm University, Sweden
| | - Stefan Wiens
- Gösta Ekman Laboratory, Department of Psychology, Stockholm University, Sweden
| | - Marie Nord
- Gösta Ekman Laboratory, Department of Psychology, Stockholm University, Sweden
| | - Maria Larsson
- Gösta Ekman Laboratory, Department of Psychology, Stockholm University, Sweden
| |
Collapse
|
35
|
Menassa DA, Sloan C, Chance SA. Primary olfactory cortex in autism and epilepsy: increased glial cells in autism. Brain Pathol 2016; 27:437-448. [PMID: 27409070 DOI: 10.1111/bpa.12415] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/12/2016] [Indexed: 01/06/2023] Open
Abstract
Autism Spectrum Disorder is characterized by sensory anomalies including impaired olfactory identification. Between 5 and 46 percent of individuals with autism have a clinical diagnosis of epilepsy. Primary olfactory cortex (piriform cortex) is central to olfactory identification and is an epileptogenic structure. Cytoarchitectural changes in olfactory cortex may underlie olfactory differences seen in autism. Primary olfactory cortex was sampled from 17 post-mortem autism cases with and without epilepsy, 11 epilepsy cases without autism and 11 typically developed cases. Stereological and neuropathological methods were used to quantify glial, pyramidal and non-pyramidal cell densities in layers of the piriform as well as identify pathological differences in this area and its neighbouring region, the olfactory tubercle. We found increased layer II glial cell densities in autism with and without epilepsy, which were negatively correlated with age and positively correlated with levels of corpora amylacea in layer I. These changes were also associated with greater symptom severity and did not extend to the olfactory tubercle. Glial cell organization may follow an altered trajectory of development with age in autism. The findings are consistent with other studies implicating increased glial cells in the autism brain. Altered cytoarchitecture may contribute to sensory deficits observed in affected individuals. This study provides evidence that autism is linked to alterations in the cytoarchitectural structure that underlies primary sensory processes and is not restricted to heteromodal ("higher") cognitive centers.
Collapse
Affiliation(s)
- David A Menassa
- Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Carolyn Sloan
- Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Steven A Chance
- Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|