1
|
Tao X, Croom K, Newman-Tancredi A, Varney M, Razak KA. Acute administration of NLX-101, a Serotonin 1A receptor agonist, improves auditory temporal processing during development in a mouse model of Fragile X Syndrome. J Neurodev Disord 2025; 17:1. [PMID: 39754065 PMCID: PMC11697955 DOI: 10.1186/s11689-024-09587-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/11/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is a leading known genetic cause of intellectual disability and autism spectrum disorders (ASD)-associated behaviors. A consistent and debilitating phenotype of FXS is auditory hypersensitivity that may lead to delayed language and high anxiety. Consistent with findings in FXS human studies, the mouse model of FXS, the Fmr1 knock out (KO) mouse, shows auditory hypersensitivity and temporal processing deficits. In electroencephalograph (EEG) recordings from humans and mice, these deficits manifest as increased N1 amplitudes in event-related potentials (ERP), increased gamma band single trial power (STP) and reduced phase locking to rapid temporal modulations of sound. In our previous study, we found that administration of the selective serotonin-1 A (5-HT1A)receptor biased agonist, NLX-101, protected Fmr1 KO mice from auditory hypersensitivity-associated seizures. Here we tested the hypothesis that NLX-101 will normalize EEG phenotypes in developing Fmr1 KO mice. METHODS To test this hypothesis, we examined the effect of NLX-101 on EEG phenotypes in male and female wildtype (WT) and Fmr1 KO mice. Using epidural electrodes, we recorded auditory event related potentials (ERP) and auditory temporal processing with a gap-in-noise auditory steady state response (ASSR) paradigm at two ages, postnatal (P) 21 and 30 days, from both auditory and frontal cortices of awake, freely moving mice, following NLX-101 (at 1.8 mg/kg i.p.) or saline administration. RESULTS Saline-injected Fmr1 KO mice showed increased N1 amplitudes, increased STP and reduced phase locking to auditory gap-in-noise stimuli versus wild-type mice, reproducing previously published EEG phenotypes. An acute injection of NLX-101 did not alter ERP amplitudes at either P21 or P30, but significantly reduces STP at P30. Inter-trial phase clustering was significantly increased in both age groups with NLX-101, indicating improved temporal processing. The differential effects of serotonin modulation on ERP, background power and temporal processing suggest different developmental mechanisms leading to these phenotypes. CONCLUSIONS These results suggest that NLX-101 could constitute a promising treatment option for targeting post-synaptic 5-HT1A receptors to improve auditory temporal processing, which in turn may improve speech and language function in FXS.
Collapse
Affiliation(s)
- Xin Tao
- Graduate Neuroscience Program, University of California, Riverside, CA, USA
| | - Katilynne Croom
- Graduate Neuroscience Program, University of California, Riverside, CA, USA
| | | | | | - Khaleel A Razak
- Graduate Neuroscience Program, University of California, Riverside, CA, USA.
- Department of Psychology, University of California, 900 University Avenue, Riverside, CA, 92521, USA.
| |
Collapse
|
2
|
Jadhav V, Carreno-Munoz MI, Chehrazi P, Michaud JL, Chattopadhyaya B, Di Cristo G. Developmental Syngap1 Haploinsufficiency in Medial Ganglionic Eminence-Derived Interneurons Impairs Auditory Cortex Activity, Social Behavior, and Extinction of Fear Memory. J Neurosci 2024; 44:e0946242024. [PMID: 39406516 PMCID: PMC11622180 DOI: 10.1523/jneurosci.0946-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 12/06/2024] Open
Abstract
Mutations in SYNGAP1, a protein enriched at glutamatergic synapses, cause intellectual disability associated with epilepsy, autism spectrum disorder, and sensory dysfunctions. Several studies showed that Syngap1 regulates the time course of forebrain glutamatergic synapse maturation; however, the developmental role of Syngap1 in inhibitory GABAergic neurons is less clear. GABAergic neurons can be classified into different subtypes based on their morphology, connectivity, and physiological properties. Whether Syngap1 expression specifically in parvalbumin (PV)-expressing and somatostatin (SST)-expressing interneurons, which are derived from the medial ganglionic eminence (MGE), plays a role in the emergence of distinct brain functions remains largely unknown. We used genetic strategies to generate Syngap1 haploinsufficiency in (1) prenatal interneurons derived from the medial ganglionic eminence, (2) in postnatal PV cells, and (3) in prenatal SST interneurons. We further performed in vivo recordings and behavioral assays to test whether and how these different genetic manipulations alter brain function and behavior in mice of either sex. Mice with prenatal-onset Syngap1 haploinsufficiency restricted to Nkx2.1-expressing neurons show abnormal cortical oscillations and increased entrainment induced by 40 Hz auditory stimulation but lack stimulus-specific adaptation. This latter phenotype was reproduced in mice with Syngap1 haploinsufficiency restricted to PV, but not SST, interneurons. Prenatal-onset Syngap1 haploinsufficiency in Nkx2.1-expressing neurons led to impaired social behavior and inability to extinguish fear memories; however, neither postnatal PV- nor prenatal SST-specific mutant mice show these phenotypes. We speculate that Syngap1 haploinsufficiency in prenatal/perinatal PV interneurons may contribute to cortical activity and cognitive alterations associated with Syngap1 mutations.
Collapse
Affiliation(s)
- Vidya Jadhav
- CHU Sainte-Justine Azrieli Research Centre (CHUSJ), Montréal, Quebec H3T 1C5, Canada
- Department of Neurosciences, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Maria Isabel Carreno-Munoz
- CHU Sainte-Justine Azrieli Research Centre (CHUSJ), Montréal, Quebec H3T 1C5, Canada
- Department of Neurosciences, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Pegah Chehrazi
- CHU Sainte-Justine Azrieli Research Centre (CHUSJ), Montréal, Quebec H3T 1C5, Canada
- Department of Neurosciences, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Jacques L Michaud
- CHU Sainte-Justine Azrieli Research Centre (CHUSJ), Montréal, Quebec H3T 1C5, Canada
- Department of Pediatrics, Université de Montréal, Montréal, Quebec H3T 1C5, Canada
| | | | - Graziella Di Cristo
- CHU Sainte-Justine Azrieli Research Centre (CHUSJ), Montréal, Quebec H3T 1C5, Canada
- Department of Neurosciences, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| |
Collapse
|
3
|
Lachiewicz AM, Stackhouse TM, Burgess K, Burgess D, Andrews HF, Choo TH, Kaufmann WE, Kidd SA. Sensory Symptoms and Signs of Hyperarousal in Individuals with Fragile X Syndrome: Findings from the FORWARD Registry and Database Multisite Study. J Autism Dev Disord 2024; 54:4259-4277. [PMID: 37840096 PMCID: PMC11461590 DOI: 10.1007/s10803-023-06135-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/17/2023]
Abstract
This study was designed to increase our understanding about characteristics and the impact of sensory symptoms (SS) and signs of hyperarousal (HA) in individuals with fragile X syndrome (FXS) from childhood through early adulthood and by gender. Data derived from the Fragile X Online Registry With Accessible Research Database (FORWARD), a natural history study of FXS, were analyzed using descriptive statistics and multivariate linear and logistic regression models to examine SS and signs of HA, their impact on behavioral regulation and limitations on the subject/family. The sample (N = 933) consisted of 720 males and 213 females. More males were affected with SS (87% vs. 68%) and signs of HA (92% vs. 79%). Subjects who were endorsed as having a strong sensory response had more comorbidities, including behavioral problems. The predominant SS was difficulty with eye gaze that increased with age in both genders. As individuals age, there was less use of non-medication therapies, such as occupational therapy (OT)/physical therapy (PT), but there was more use of psychopharmacological medications and investigational drugs for behaviors. Multiple regression models suggested that endorsing SS and signs of HA was associated with statistically significantly increased ABC-C-I subscale scores and limited participation in everyday activities. This study improves our understanding of SS and signs of HA as well as their impact in FXS. It supports the need for more research regarding these clinical symptoms, especially to understand how they contribute to well-known behavioral concerns.
Collapse
Affiliation(s)
- Ave M Lachiewicz
- Department of Pediatrics, Duke University Health System, Durham, NC, USA.
| | | | | | - Debra Burgess
- Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - Howard F Andrews
- Departments of Psychiatry and Biostatistics, Mailman School of Public Health, Columbia University, Irving Medical Center, New York, NY, USA
| | - Tse-Hwei Choo
- Division of Mental Health Data Science, New York State Psychiatric Institute, New York, NY, USA
| | - Walter E Kaufmann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sharon A Kidd
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Reynolds KE, Huang E, Sabbineni M, Wiseman E, Murtaza N, Ahuja D, Napier M, Murphy KM, Singh KK, Scott AL. Purinergic Signalling Mediates Aberrant Excitability of Developing Neuronal Circuits in the Fmr1 Knockout Mouse Model. Mol Neurobiol 2024; 61:9507-9528. [PMID: 38652351 DOI: 10.1007/s12035-024-04181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Neuronal hyperexcitability within developing cortical circuits is a common characteristic of several heritable neurodevelopmental disorders, including Fragile X Syndrome (FXS), intellectual disability and autism spectrum disorders (ASD). While this aberrant circuitry is typically studied from a neuron-centric perspective, glial cells secrete soluble factors that regulate both neurite extension and synaptogenesis during development. The nucleotide-mediated purinergic signalling system is particularly instrumental in facilitating these effects. We recently reported that within a FXS animal model, the Fmr1 KO mouse, the purinergic signalling system is upregulated in cortical astrocytes leading to altered secretion of synaptogenic and plasticity-related proteins. In this study, we examined whether elevated astrocyte purinergic signalling also impacts neuronal morphology and connectivity of Fmr1 KO cortical neurons. Here, we found that conditioned media from primary Fmr1 KO astrocytes was sufficient to enhance neurite extension and complexity of both wildtype and Fmr1 KO neurons to a similar degree as UTP-mediated outgrowth. Significantly enhanced firing was also observed in Fmr1 KO neuron-astrocyte co-cultures grown on microelectrode arrays but was associated with large deficits in firing synchrony. The selective P2Y2 purinergic receptor antagonist AR-C 118925XX effectively normalized much of the aberrant Fmr1 KO activity, designating P2Y2 as a potential therapeutic target in FXS. These results not only demonstrate the importance of astrocyte soluble factors in the development of neural circuitry, but also show that P2Y purinergic receptors play a distinct role in pathological FXS neuronal activity.
Collapse
Affiliation(s)
- Kathryn E Reynolds
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Eileen Huang
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Monica Sabbineni
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Eliza Wiseman
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Nadeem Murtaza
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Desmond Ahuja
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Matt Napier
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Department of Molecular and Cellular Biology, University of Guelph, 488 Gordon St, Guelph, ON, Canada
| | - Kathryn M Murphy
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON, Canada
| | | | - Angela L Scott
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
- Department of Molecular and Cellular Biology, University of Guelph, 488 Gordon St, Guelph, ON, Canada.
| |
Collapse
|
5
|
Lu L, Sarkar AK, Dao L, Liu Y, Ma C, Thwin PH, Chang X, Yoshida G, Li A, Wang C, Westerkamp C, Schmitt L, Chelsey M, Stephanie M, Zhao Y, Liu Y, Wang X, Zhu LQ, Liu D, Tchieu J, Miyakoshi M, Zhu H, Gross C, Pedapati E, Salomonis N, Erickson C, Guo Z. An iPSC model of fragile X syndrome reflects clinical phenotypes and reveals m 6 A-mediated epi-transcriptomic dysregulation underlying synaptic dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618205. [PMID: 39464060 PMCID: PMC11507714 DOI: 10.1101/2024.10.14.618205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Fragile X syndrome (FXS), the leading genetic cause of intellectual disability, arises from FMR1 gene silencing and loss of the FMRP protein. N6-methyladenosine (m 6 A) is a prevalent mRNA modification essential for post-transcriptional regulation. FMRP is known to bind to and regulate the stability of m 6 A-containing transcripts. However, how loss of FMRP impacts on transcriptome-wide m 6 A modifications in FXS patients remains unknown. To answer this question, we generated cortical neurons differentiated from induced pluripotent stem cells (iPSC) derived from healthy subjects and FXS patients. In electrophysiology recordings, we validated that synaptic and neuronal network defects in iPSC-derived FXS neurons corresponded to the clinical EEG data of the patients from which the corresponding iPSC line was derived. In analysis of transcriptome-wide methylation, we show that FMRP deficiency led to increased translation of m 6 A writers, resulting in hypermethylation that primarily affecting synapse-associated transcripts and increased mRNA decay. Conversely, in the presence of an m 6 A writer inhibitor, synaptic defects in FXS neurons were rescued. Taken together, our findings uncover that an FMRP-dependent epi-transcriptomic mechanism contributes to FXS pathogenesis by disrupting m 6 A modifications in FXS, suggesting a promising avenue for m 6 A-targeted therapies.
Collapse
|
6
|
Ethridge LE, Pedapati EV, Schmitt LM, Norris JE, Auger E, De Stefano LA, Sweeney JA, Erickson CA. Validating brain activity measures as reliable indicators of individual diagnostic group and genetically mediated sub-group membership Fragile X Syndrome. Sci Rep 2024; 14:22982. [PMID: 39362936 PMCID: PMC11450163 DOI: 10.1038/s41598-024-72935-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024] Open
Abstract
Recent failures translating preclinical behavioral treatment effects to positive clinical trial results in humans with Fragile X Syndrome (FXS) support refocusing attention on biological pathways and associated measures, such as electroencephalography (EEG), with strong translational potential and small molecule target engagement. This study utilized guided machine learning to test promising translational EEG measures (resting power and auditory chirp oscillatory variables) in a large heterogeneous sample of individuals with FXS to identify best performing EEG variables for reliably separating individuals with FXS, and genetically-mediated subgroups within FXS, from typically developing controls. Best performing variables included resting relative frontal theta power, all combined posterior-head resting power bands, posterior peak alpha frequency (PAF), combined PAF across all measured regions, combined theta, alpha, and gamma power during the chirp, and all combined chirp oscillatory variables. Sub-group analyses for resting EEG best discriminated non-mosaic FXS males via frontal theta resting relative power (AUC = 0.8759), even with data reduced to a 20-channel clinical montage (AUC = 0.9062). In the chirp task, FXS females and non-mosaic males were nearly perfectly discriminated by combined theta, alpha, and gamma power (AUC = 0.9444) and a combination of all variables (AUC = 0.9610), respectively. Results support use of resting and auditory oscillatory tasks to reliably identify neural deficit in FXS, and to identify specific translational targets for genetically-mediated sub-groups, supporting potential points for stratification.
Collapse
Affiliation(s)
- Lauren E Ethridge
- Department of Psychology, University of Oklahoma, 455 W. Lindsey Street, Dale Hall Tower, Room 705, Norman, OK, 73019-2007, USA.
- Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Ernest V Pedapati
- Division of Child Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lauren M Schmitt
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jordan E Norris
- Department of Psychology, University of Oklahoma, 455 W. Lindsey Street, Dale Hall Tower, Room 705, Norman, OK, 73019-2007, USA
| | - Emma Auger
- Department of Psychology, University of Oklahoma, 455 W. Lindsey Street, Dale Hall Tower, Room 705, Norman, OK, 73019-2007, USA
| | - Lisa A De Stefano
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
7
|
Croom K, Rumschlag JA, Molinaro G, Erickson MA, Binder DK, Huber KM, Razak KA. Developmental trajectory and sex differences in auditory processing in a PTEN-deletion model of autism spectrum disorders. Neurobiol Dis 2024; 200:106628. [PMID: 39111703 DOI: 10.1016/j.nbd.2024.106628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Autism Spectrum Disorders (ASD) encompass a wide array of debilitating symptoms, including severe sensory deficits and abnormal language development. Sensory deficits early in development may lead to broader symptomatology in adolescents and adults. The mechanistic links between ASD risk genes, sensory processing and language impairment are unclear. There is also a sex bias in ASD diagnosis and symptomatology. The current study aims to identify the developmental trajectory and genotype- and sex-dependent differences in auditory sensitivity and temporal processing in a Pten-deletion (phosphatase and tensin homolog missing on chromosome 10) mouse model of ASD. Auditory temporal processing is crucial for speech recognition and language development and deficits will cause language impairments. However, very little is known about the development of temporal processing in ASD animal models, and if there are sex differences. To address this major gap, we recorded epidural electroencephalography (EEG) signals from the frontal (FC) and auditory (AC) cortex in developing and adult Nse-cre PTEN mice, in which Pten is deleted in specific cortical layers (layers III-V) (PTEN conditional knock-out (cKO). We quantified resting EEG spectral power distribution, auditory event related potentials (ERP) and temporal processing from awake and freely moving male and female mice. Temporal processing is measured using a gap-in-noise-ASSR (auditory steady state response) stimulus paradigm. The experimental manipulation of gap duration and modulation depth allows us to measure cortical entrainment to rapid gaps in sounds. Temporal processing was quantified using inter-trial phase clustering (ITPC) values that account for phase consistency across trials. The results show genotype differences in resting power distribution in PTEN cKO mice throughout development. Male and female cKO mice have significantly increased beta power but decreased high frequency oscillations in the AC and FC. Both male and female PTEN cKO mice show diminished ITPC in their gap-ASSR responses in the AC and FC compared to control mice. Overall, deficits become more prominent in adult (p60) mice, with cKO mice having significantly increased sound evoked power and decreased ITPC compared to controls. While both male and female cKO mice demonstrated severe temporal processing deficits across development, female cKO mice showed increased hypersensitivity compared to males, reflected as increased N1 and P2 amplitudes. These data identify a number of novel sensory processing deficits in a PTEN-ASD mouse model that are present from an early age. Abnormal temporal processing and hypersensitive responses may contribute to abnormal development of language function in ASD.
Collapse
Affiliation(s)
- Katilynne Croom
- Graduate Neuroscience Program, University of California, Riverside, United States of America
| | - Jeffrey A Rumschlag
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, United States of America
| | - Gemma Molinaro
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Michael A Erickson
- Psychology Department, University of California, Riverside, United States of America
| | - Devin K Binder
- Graduate Neuroscience Program, University of California, Riverside, United States of America; Biomedical Sciences, School of Medicine, University of California, Riverside, United States of America
| | - Kimberly M Huber
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Khaleel A Razak
- Graduate Neuroscience Program, University of California, Riverside, United States of America; Psychology Department, University of California, Riverside, United States of America.
| |
Collapse
|
8
|
Erickson CA, Perez-Cano L, Pedapati EV, Painbeni E, Bonfils G, Schmitt LM, Sachs H, Nelson M, De Stefano L, Westerkamp G, de Souza ALS, Pohl O, Laufer O, Issachar G, Blaettler T, Hyvelin JM, Durham LA. Safety, Tolerability, and EEG-Based Target Engagement of STP1 (PDE3,4 Inhibitor and NKCC1 Antagonist) in a Randomized Clinical Trial in a Subgroup of Patients with ASD. Biomedicines 2024; 12:1430. [PMID: 39062003 PMCID: PMC11274259 DOI: 10.3390/biomedicines12071430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to evaluate the safety and tolerability of STP1, a combination of ibudilast and bumetanide, tailored for the treatment of a clinically and biologically defined subgroup of patients with Autism Spectrum Disorder (ASD), namely ASD Phenotype 1 (ASD-Phen1). We conducted a randomized, double-blind, placebo-controlled, parallel-group phase 1b study with two 14-day treatment phases (registered at clinicaltrials.gov as NCT04644003). Nine ASD-Phen1 patients were administered STP1, while three received a placebo. We assessed safety and tolerability, along with electrophysiological markers, such as EEG, Auditory Habituation, and Auditory Chirp Synchronization, to better understand STP1's mechanism of action. Additionally, we used several clinical scales to measure treatment outcomes. The results showed that STP1 was well-tolerated, with electrophysiological markers indicating a significant and dose-related reduction of gamma power in the whole brain and in brain areas associated with executive function and memory. Treatment with STP1 also increased alpha 2 power in frontal and occipital regions and improved habituation and neural synchronization to auditory chirps. Although numerical improvements were observed in several clinical scales, they did not reach statistical significance. Overall, this study suggests that STP1 is well-tolerated in ASD-Phen1 patients and shows indirect target engagement in ASD brain regions of interest.
Collapse
Affiliation(s)
- Craig A. Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Laura Perez-Cano
- Discovery and Data Science (DDS) Unit, STALICLA SL, Moll de Barcelona, s/n, Edif Este, 08039 Barcelona, Spain
| | - Ernest V. Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45229, USA
- Division of Child Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Eric Painbeni
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| | - Gregory Bonfils
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| | - Lauren M. Schmitt
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Hannah Sachs
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Meredith Nelson
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lisa De Stefano
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Grace Westerkamp
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Adriano L. S. de Souza
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| | - Oliver Pohl
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| | | | | | - Thomas Blaettler
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| | - Jean-Marc Hyvelin
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| | - Lynn A. Durham
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| |
Collapse
|
9
|
Westmark PR, Swietlik TJ, Runde E, Corsiga B, Nissan R, Boeck B, Granger R, Jennings E, Nebbia M, Thauwald A, Lyon G, Maganti RK, Westmark CJ. Adult Inception of Ketogenic Diet Therapy Increases Sleep during the Dark Cycle in C57BL/6J Wild Type and Fragile X Mice. Int J Mol Sci 2024; 25:6679. [PMID: 38928388 PMCID: PMC11203515 DOI: 10.3390/ijms25126679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Sleep problems are a significant phenotype in children with fragile X syndrome. Our prior work assessed sleep-wake cycles in Fmr1KO male mice and wild type (WT) littermate controls in response to ketogenic diet therapy where mice were treated from weaning (postnatal day 18) through study completion (5-6 months of age). A potentially confounding issue with commencing treatment during an active period of growth is the significant reduction in weight gain in response to the ketogenic diet. The aim here was to employ sleep electroencephalography (EEG) to assess sleep-wake cycles in mice in response to the Fmr1 genotype and a ketogenic diet, with treatment starting at postnatal day 95. EEG results were compared with prior sleep outcomes to determine if the later intervention was efficacious, as well as with published rest-activity patterns to determine if actigraphy is a viable surrogate for sleep EEG. The data replicated findings that Fmr1KO mice exhibit sleep-wake patterns similar to wild type littermates during the dark cycle when maintained on a control purified-ingredient diet but revealed a genotype-specific difference during hours 4-6 of the light cycle of the increased wake (decreased sleep and NREM) state in Fmr1KO mice. Treatment with a high-fat, low-carbohydrate ketogenic diet increased the percentage of NREM sleep in both wild type and Fmr1KO mice during the dark cycle. Differences in sleep microstructure (length of wake bouts) supported the altered sleep states in response to ketogenic diet. Commencing ketogenic diet treatment in adulthood resulted in a 15% (WT) and 8.6% (Fmr1KO) decrease in body weight after 28 days of treatment, but not the severe reduction in body weight associated with starting treatment at weaning. We conclude that the lack of evidence for improved sleep during the light cycle (mouse sleep time) in Fmr1KO mice in response to ketogenic diet therapy in two studies suggests that ketogenic diet may not be beneficial in treating sleep problems associated with fragile X and that actigraphy is not a reliable surrogate for sleep EEG in mice.
Collapse
Affiliation(s)
- Pamela R. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Timothy J. Swietlik
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Ethan Runde
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Brian Corsiga
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Rachel Nissan
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Brynne Boeck
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Ricky Granger
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Erica Jennings
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Maya Nebbia
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Andrew Thauwald
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Greg Lyon
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Rama K. Maganti
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
- Molecular Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
10
|
Pedapati EV, Ethridge LE, Liu Y, Liu R, Sweeney JA, DeStefano LA, Miyakoshi M, Razak K, Schmitt LM, Moore DR, Gilbert DL, Wu SW, Smith E, Shaffer RC, Dominick KC, Horn PS, Binder D, Erickson CA. Frontal Cortex Hyperactivation and Gamma Desynchrony in Fragile X Syndrome: Correlates of Auditory Hypersensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598957. [PMID: 38915683 PMCID: PMC11195233 DOI: 10.1101/2024.06.13.598957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Fragile X syndrome (FXS) is an X-linked disorder that often leads to intellectual disability, anxiety, and sensory hypersensitivity. While sound sensitivity (hyperacusis) is a distressing symptom in FXS, its neural basis is not well understood. It is postulated that hyperacusis may stem from temporal lobe hyperexcitability or dysregulation in top-down modulation. Studying the neural mechanisms underlying sound sensitivity in FXS using scalp electroencephalography (EEG) is challenging because the temporal and frontal regions have overlapping neural projections that are difficult to differentiate. To overcome this challenge, we conducted EEG source analysis on a group of 36 individuals with FXS and 39 matched healthy controls. Our goal was to characterize the spatial and temporal properties of the response to an auditory chirp stimulus. Our results showed that males with FXS exhibit excessive activation in the frontal cortex in response to the stimulus onset, which may reflect changes in top-down modulation of auditory processing. Additionally, during the chirp stimulus, individuals with FXS demonstrated a reduction in typical gamma phase synchrony, along with an increase in asynchronous gamma power, across multiple regions, most strongly in temporal cortex. Consistent with these findings, we observed a decrease in the signal-to-noise ratio, estimated by the ratio of synchronous to asynchronous gamma activity, in individuals with FXS. Furthermore, this ratio was highly correlated with performance in an auditory attention task. Compared to controls, males with FXS demonstrated elevated bidirectional frontotemporal information flow at chirp onset. The evidence indicates that both temporal lobe hyperexcitability and disruptions in top-down regulation play a role in auditory sensitivity disturbances in FXS. These findings have the potential to guide the development of therapeutic targets and back-translation strategies.
Collapse
Affiliation(s)
- Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lauren E Ethridge
- Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Psychology, University of Oklahoma, Norman, OK, United States
| | - Yanchen Liu
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Rui Liu
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - John A Sweeney
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lisa A DeStefano
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Makoto Miyakoshi
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Khaleel Razak
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Lauren M Schmitt
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David R Moore
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, UK
| | - Donald L Gilbert
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Steve W Wu
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Elizabeth Smith
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rebecca C Shaffer
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kelli C Dominick
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Paul S Horn
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Devin Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
11
|
Jonak CR, Assad SA, Garcia TA, Sandhu MS, Rumschlag JA, Razak KA, Binder DK. Phenotypic analysis of multielectrode array EEG biomarkers in developing and adult male Fmr1 KO mice. Neurobiol Dis 2024; 195:106496. [PMID: 38582333 DOI: 10.1016/j.nbd.2024.106496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
Fragile X Syndrome (FXS) is a leading known genetic cause of intellectual disability with symptoms that include increased anxiety and social and sensory processing deficits. Recent electroencephalographic (EEG) studies in humans with FXS have identified neural oscillation deficits that include increased resting state gamma power, increased amplitude of auditory evoked potentials, and reduced phase locking of sound-evoked gamma oscillations. Similar EEG phenotypes are present in mouse models of FXS, but very little is known about the development of such abnormal responses. In the current study, we employed a 30-channel mouse multielectrode array (MEA) system to record and analyze resting and stimulus-evoked EEG signals in male P21 and P91 WT and Fmr1 KO mice. This led to several novel findings. First, P91, but not P21, Fmr1 KO mice have significantly increased resting EEG power in the low- and high-gamma frequency bands. Second, both P21 and P91 Fmr1 KO mice have markedly attenuated inter-trial phase coherence (ITPC) to spectrotemporally dynamic auditory stimuli as well as to 40 Hz and 80 Hz auditory steady-state response (ASSR) stimuli. This suggests abnormal temporal processing from early development that may lead to abnormal speech and language function in FXS. Third, we found hemispheric asymmetry of fast temporal processing in the mouse auditory cortex in WT but not Fmr1 KO mice. Together, these findings define a set of EEG phenotypes in young and adult mice that can serve as translational targets for genetic and pharmacological manipulation in phenotypic rescue studies.
Collapse
Affiliation(s)
- Carrie R Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America
| | - Samantha A Assad
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America
| | - Terese A Garcia
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America
| | - Manbir S Sandhu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America
| | - Jeffrey A Rumschlag
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, United States of America
| | - Khaleel A Razak
- Neuroscience Graduate Program, University of California, Riverside, CA, United States of America; Department of Psychology, University of California, Riverside, CA, United States of America
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America; Neuroscience Graduate Program, University of California, Riverside, CA, United States of America.
| |
Collapse
|
12
|
Wadle SL, Ritter TC, Wadle TTX, Hirtz JJ. Topography and Ensemble Activity in the Auditory Cortex of a Mouse Model of Fragile X Syndrome. eNeuro 2024; 11:ENEURO.0396-23.2024. [PMID: 38627066 PMCID: PMC11097631 DOI: 10.1523/eneuro.0396-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/11/2024] [Accepted: 04/01/2024] [Indexed: 05/18/2024] Open
Abstract
Autism spectrum disorder (ASD) is often associated with social communication impairments and specific sound processing deficits, for example, problems in following speech in noisy environments. To investigate underlying neuronal processing defects located in the auditory cortex (AC), we performed two-photon Ca2+ imaging in FMR1 (fragile X messenger ribonucleoprotein 1) knock-out (KO) mice, a model for fragile X syndrome (FXS), the most common cause of hereditary ASD in humans. For primary AC (A1) and the anterior auditory field (AAF), topographic frequency representation was less ordered compared with control animals. We additionally analyzed ensemble AC activity in response to various sounds and found subfield-specific differences. In A1, ensemble correlations were lower in general, while in secondary AC (A2), correlations were higher in response to complex sounds, but not to pure tones. Furthermore, sound specificity of ensemble activity was decreased in AAF. Repeating these experiments 1 week later revealed no major differences regarding representational drift. Nevertheless, we found subfield- and genotype-specific changes in ensemble correlation values between the two times points, hinting at alterations in network stability in FMR1 KO mice. These detailed insights into AC network activity and topography in FMR1 KO mice add to the understanding of auditory processing defects in FXS.
Collapse
Affiliation(s)
- Simon L Wadle
- Physiology of Neuronal Networks, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| | - Tamara C Ritter
- Physiology of Neuronal Networks, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| | - Tatjana T X Wadle
- Physiology of Neuronal Networks, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| | - Jan J Hirtz
- Physiology of Neuronal Networks, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| |
Collapse
|
13
|
Takarae Y, Zanesco A, Erickson CA, Pedapati EV. EEG Microstates as Markers for Cognitive Impairments in Fragile X Syndrome. Brain Topogr 2024; 37:432-446. [PMID: 37751055 DOI: 10.1007/s10548-023-01009-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
Fragile X syndrome (FXS) is one of the most common inherited causes of intellectual disabilities. While there is currently no cure for FXS, EEG is considered an important method to investigate the pathophysiology and evaluate behavioral and cognitive treatments. We conducted EEG microstate analysis to investigate resting brain dynamics in FXS participants. Resting-state recordings from 70 FXS participants and 71 chronological age-matched typically developing control (TDC) participants were used to derive microstates via modified k-means clustering. The occurrence, mean global field power (GFP), and global explained variance (GEV) of microstate C were significantly higher in the FXS group compared to the TDC group. The mean GFP was significantly negatively correlated with non-verbal IQ (NVIQ) in the FXS group, where lower NVIQ scores were associated with greater GFP. In addition, the occurrence, mean duration, mean GFP, and GEV of microstate D were significantly greater in the FXS group than the TDC group. The mean GFP and occurrence of microstate D were also correlated with individual alpha frequencies in the FXS group, where lower IAF frequencies accompanied greater microstate GFP and occurrence. Alterations in microstates C and D may be related to the two well-established cognitive characteristics of FXS, intellectual disabilities and attention impairments, suggesting that microstate parameters could serve as markers to study cognitive impairments and evaluate treatment outcomes in this population. Slowing of the alpha peak frequency and its correlation to microstate D parameters may suggest changes in thalamocortical dynamics in FXS, which could be specifically related to attention control. (250 words).
Collapse
Affiliation(s)
- Yukari Takarae
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, USA.
- M.I.N.D. Institute, University of California, Davis, Sacramento, CA, USA.
| | - Anthony Zanesco
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
14
|
Stamenkovic V, Lautz JD, Harsh FM, Smith SEP. SRC family kinase inhibition rescues molecular and behavioral phenotypes, but not protein interaction network dynamics, in a mouse model of Fragile X syndrome. Mol Psychiatry 2024; 29:1392-1405. [PMID: 38297084 PMCID: PMC11524049 DOI: 10.1038/s41380-024-02418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
Glutamatergic synapses encode information from extracellular inputs using dynamic protein interaction networks (PINs) that undergo widespread reorganization following synaptic activity, allowing cells to distinguish between signaling inputs and generate coordinated cellular responses. Here, we investigate how Fragile X Messenger Ribonucleoprotein (FMRP) deficiency disrupts signal transduction through a glutamatergic synapse PIN downstream of NMDA receptor or metabotropic glutamate receptor (mGluR) stimulation. In cultured cortical neurons or acute cortical slices from P7, P17 and P60 FMR1-/y mice, the unstimulated protein interaction network state resembled that of wildtype littermates stimulated with mGluR agonists, demonstrating resting state pre-activation of mGluR signaling networks. In contrast, interactions downstream of NMDAR stimulation were similar to WT. We identified the Src family kinase (SFK) Fyn as a network hub, because many interactions involving Fyn were pre-activated in FMR1-/y animals. We tested whether targeting SFKs in FMR1-/y mice could modify disease phenotypes, and found that Saracatinib (SCB), an SFK inhibitor, normalized elevated basal protein synthesis, novel object recognition memory and social behavior in FMR1-/y mice. However, SCB treatment did not normalize the PIN to a wild-type-like state in vitro or in vivo, but rather induced extensive changes to protein complexes containing Shank3, NMDARs and Fyn. We conclude that targeting abnormal nodes of a PIN can identify potential disease-modifying drugs, but behavioral rescue does not correlate with PIN normalization.
Collapse
Affiliation(s)
- Vera Stamenkovic
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jonathan D Lautz
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Felicia M Harsh
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
| |
Collapse
|
15
|
Ethridge LE, Pedapati EV, Schmitt LM, Norris JE, Auger E, De Stefano LA, Sweeney JA, Erickson CA. Validating brain activity measures as reliable indicators of individual diagnostic group and genetically mediated sub-group membership Fragile X Syndrome. RESEARCH SQUARE 2024:rs.3.rs-3849272. [PMID: 38313274 PMCID: PMC10836101 DOI: 10.21203/rs.3.rs-3849272/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Recent failures translating preclinical behavioral treatment effects to positive clinical trial results in humans with Fragile X Syndrome (FXS) support refocusing attention on biological pathways and associated measures, such as electroencephalography (EEG), with strong translational potential and small molecule target engagement. This study utilized guided machine learning to test promising translational EEG measures (resting power and auditory chirp oscillatory variables) in a large heterogeneous sample of individuals with FXS to identify best performing EEG variables for reliably separating individuals with FXS, and genetically-mediated subgroups within FXS, from typically developing controls. Best performing variables included resting relative frontal theta power, all combined whole-head resting power bands, posterior peak alpha frequency (PAF), combined PAF across all measured regions, combined theta, alpha, and gamma power during the chirp, and all combined chirp oscillatory variables. Sub-group analyses best discriminated non-mosaic FXS males via whole-head resting relative power (AUC = .9250), even with data reduced to a 20-channel clinical montage. FXS females were nearly perfectly discriminated by combined theta, alpha, and gamma power during the chirp (AUC = .9522). Results support use of resting and auditory oscillatory tasks to reliably identify neural deficit in FXS, and to identify specific translational targets for genetically-mediated sub-groups, supporting potential points for stratification.
Collapse
|
16
|
Richards JE, Guy MW, Hogan AL, Roberts JE. Neural correlates of face processing among preschoolers with fragile X syndrome, autism spectrum disorder, autism siblings, and typical development. Autism Res 2024; 17:89-108. [PMID: 37916532 DOI: 10.1002/aur.3045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
The current study examined patterns of event-related potential (ERP) responses during a face processing task in groups of preschoolers uniquely impacted by autism spectrum disorder (ASD), including (1) children with ASD; (2) children with fragile X syndrome (FXS); (3) children with familial risk for ASD, but without a diagnosis (i.e., ASIBs); and (4) a low-risk control (LRC) group. Children with FXS have a high incidence of ASD diagnoses, but there have been no studies of the ERP response to faces in children with FXS and little work focused on children with ASD who have cognitive impairment. The current study examined children's ERP responses to faces and houses in four groups: LRC (N = 28, age = 5.2 years), ASIB (N = 23, age = 5.5 years), FXS (N = 19, age = 5.82 years), and ASD (N = 23, age = 5.5 years). The FXS and ASD groups were characterized by the presence of cognitive impairment. Pictures of upright and inverted faces and houses were presented while recording EEG with a 128-channel system. The N170 occurred at about 200 ms post stimulus onset, was largest on the posterior-lateral electrodes, and was larger for faces than houses. The P1 and N170 ERP components were larger for the FXS group than for the other three groups. The N170 ERP amplitude for the ASD and ASIB groups was smaller than both the LRC and FXS groups, and the LRC and FXS groups had the largest N170 responses on the right side. No difference was found in N170 latency between groups. The similarity of the ASD and ASIB responses suggest a common genetic or environmental origin of the reduced response. Although children with FXS have a high incidence of ASD outcomes, they differed from ASD and ASIB children in this study. Specifically, the children with FXS were hyperresponsive to all stimulus types while the ASD and ASIB groups showed attenuated responses for specific stimuli.
Collapse
Affiliation(s)
- John E Richards
- Department of Psychology, University of South Carolina, Columbia, South Carolina, USA
| | - Maggie W Guy
- Department of Psychology, Loyola University Chicago, Chicago, Illinois, USA
| | - Abigail L Hogan
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, South Carolina, USA
| | - Jane E Roberts
- Department of Psychology, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
17
|
Liu R, Pedapati EV, Schmitt LM, Shaffer RC, Smith EG, Dominick KC, DeStefano LA, Westerkamp G, Horn P, Sweeney JA, Erickson CA. Reliability of resting-state electrophysiology in fragile X syndrome. Biomark Neuropsychiatry 2023; 9:100070. [PMID: 38817342 PMCID: PMC11138258 DOI: 10.1016/j.bionps.2023.100070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Objective Fragile X Syndrome (FXS) is the leading monogenic cause of intellectual disability and autism spectrum disorder. Currently, there are no established biomarkers for predicting and monitoring drug effects in FXS, and no approved therapies are available. Previous studies have shown electrophysiological changes in the brain using electroencephalography (EEG) in individuals with FXS and animal models. These changes may be influenced by drug therapies. In this study, we aimed to assess the reliability of resting-state EEG measures in individuals with FXS, which could potentially serve as a biomarker for drug discovery. Methods We collected resting-state EEG data from 35 individuals with FXS participating in placebo-controlled clinical trials (23 males, 12 females; visit age mean+/-std 25.6 +/-8.3). The data were analyzed for various spectral features using intraclass correlation analysis to evaluate test-retest reliability. The intervals between EEG recordings ranged from same-day measurements to up to six weeks apart. Results Our results showed high reliability for most spectral features, with same-day reliability exceeding 0.8. Features of interest demonstrated ICC values of 0.60 or above at longer intervals. Among the features, alpha band relative power exhibited the highest reliability. Conclusion These findings indicate that resting-state EEG can provide consistent and reproducible measures of brain activity in individuals with FXS. This supports the potential use of EEG as an objective biomarker for evaluating the effects of new drugs in FXS. Significance The reliable measurements obtained from power spectrum-based resting-state EEG make it a promising tool for assessing the impact of small molecule drugs in FXS.
Collapse
Affiliation(s)
- Rui Liu
- Cincinnati Children’s Hospital Medical Center, United States
| | - Ernest V. Pedapati
- Cincinnati Children’s Hospital Medical Center, United States
- University of Cincinnati, United States
| | - Lauren M. Schmitt
- Cincinnati Children’s Hospital Medical Center, United States
- University of Cincinnati, United States
| | - Rebecca C. Shaffer
- Cincinnati Children’s Hospital Medical Center, United States
- University of Cincinnati, United States
| | - Elizabeth G. Smith
- Cincinnati Children’s Hospital Medical Center, United States
- University of Cincinnati, United States
| | - Kelli C. Dominick
- Cincinnati Children’s Hospital Medical Center, United States
- University of Cincinnati, United States
| | | | | | - Paul Horn
- Cincinnati Children’s Hospital Medical Center, United States
- University of Cincinnati, United States
| | | | - Craig A. Erickson
- Cincinnati Children’s Hospital Medical Center, United States
- University of Cincinnati, United States
| |
Collapse
|
18
|
Westmark PR, Gholston AK, Swietlik TJ, Maganti RK, Westmark CJ. Ketogenic Diet Affects Sleep Architecture in C57BL/6J Wild Type and Fragile X Mice. Int J Mol Sci 2023; 24:14460. [PMID: 37833907 PMCID: PMC10572443 DOI: 10.3390/ijms241914460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Nearly half of children with fragile X syndrome experience sleep problems including trouble falling asleep and frequent nighttime awakenings. The goals here were to assess sleep-wake cycles in mice in response to Fmr1 genotype and a dietary intervention that reduces hyperactivity. Electroencephalography (EEG) results were compared with published rest-activity patterns to determine if actigraphy is a viable surrogate for sleep EEG. Specifically, sleep-wake patterns in adult wild type and Fmr1KO littermate mice were recorded after EEG electrode implantation and the recordings manually scored for vigilance states. The data indicated that Fmr1KO mice exhibited sleep-wake patterns similar to wild type littermates when maintained on a control purified ingredient diet. Treatment with a high-fat, low-carbohydrate ketogenic diet increased the percentage of non-rapid eye movement (NREM) sleep in both wild type and Fmr1KO mice during the dark cycle, which corresponded to decreased activity levels. Treatment with a ketogenic diet flattened diurnal sleep periodicity in both wild type and Fmr1KO mice. Differences in several sleep microstructure outcomes (number and length of sleep and wake bouts) supported the altered sleep states in response to a ketogenic diet and were correlated with altered rest-activity cycles. While actigraphy may be a less expensive, reduced labor surrogate for sleep EEG during the dark cycle, daytime resting in mice did not correlate with EEG sleep states.
Collapse
Affiliation(s)
- Pamela R. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (A.K.G.); (T.J.S.); (R.K.M.)
| | - Aaron K. Gholston
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (A.K.G.); (T.J.S.); (R.K.M.)
- Molecular Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
| | - Timothy J. Swietlik
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (A.K.G.); (T.J.S.); (R.K.M.)
| | - Rama K. Maganti
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (A.K.G.); (T.J.S.); (R.K.M.)
| | - Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (A.K.G.); (T.J.S.); (R.K.M.)
- Molecular Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
19
|
Monday HR, Wang HC, Feldman DE. Circuit-level theories for sensory dysfunction in autism: convergence across mouse models. Front Neurol 2023; 14:1254297. [PMID: 37745660 PMCID: PMC10513044 DOI: 10.3389/fneur.2023.1254297] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Individuals with autism spectrum disorder (ASD) exhibit a diverse range of behavioral features and genetic backgrounds, but whether different genetic forms of autism involve convergent pathophysiology of brain function is unknown. Here, we analyze evidence for convergent deficits in neural circuit function across multiple transgenic mouse models of ASD. We focus on sensory areas of neocortex, where circuit differences may underlie atypical sensory processing, a central feature of autism. Many distinct circuit-level theories for ASD have been proposed, including increased excitation-inhibition (E-I) ratio and hyperexcitability, hypofunction of parvalbumin (PV) interneuron circuits, impaired homeostatic plasticity, degraded sensory coding, and others. We review these theories and assess the degree of convergence across ASD mouse models for each. Behaviorally, our analysis reveals that innate sensory detection behavior is heightened and sensory discrimination behavior is impaired across many ASD models. Neurophysiologically, PV hypofunction and increased E-I ratio are prevalent but only rarely generate hyperexcitability and excess spiking. Instead, sensory tuning and other aspects of neural coding are commonly degraded and may explain impaired discrimination behavior. Two distinct phenotypic clusters with opposing neural circuit signatures are evident across mouse models. Such clustering could suggest physiological subtypes of autism, which may facilitate the development of tailored therapeutic approaches.
Collapse
Affiliation(s)
- Hannah R. Monday
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | | | - Daniel E. Feldman
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
20
|
Croom K, Rumschlag JA, Erickson MA, Binder DK, Razak KA. Developmental delays in cortical auditory temporal processing in a mouse model of Fragile X syndrome. J Neurodev Disord 2023; 15:23. [PMID: 37516865 PMCID: PMC10386252 DOI: 10.1186/s11689-023-09496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Autism spectrum disorders (ASD) encompass a wide array of debilitating symptoms, including sensory dysfunction and delayed language development. Auditory temporal processing is crucial for speech perception and language development. Abnormal development of temporal processing may account for the language impairments associated with ASD. Very little is known about the development of temporal processing in any animal model of ASD. METHODS In the current study, we quantify auditory temporal processing throughout development in the Fmr1 knock-out (KO) mouse model of Fragile X Syndrome (FXS), a leading genetic cause of intellectual disability and ASD-associated behaviors. Using epidural electrodes in awake and freely moving wildtype (WT) and KO mice, we recorded auditory event related potentials (ERP) and auditory temporal processing with a gap-in-noise auditory steady state response (gap-ASSR) paradigm. Mice were recorded at three different ages in a cross sectional design: postnatal (p)21, p30 and p60. Recordings were obtained from both auditory and frontal cortices. The gap-ASSR requires underlying neural generators to synchronize responses to gaps of different widths embedded in noise, providing an objective measure of temporal processing across genotypes and age groups. RESULTS We present evidence that the frontal, but not auditory, cortex shows significant temporal processing deficits at p21 and p30, with poor ability to phase lock to rapid gaps in noise. Temporal processing was similar in both genotypes in adult mice. ERP amplitudes were larger in Fmr1 KO mice in both auditory and frontal cortex, consistent with ERP data in humans with FXS. CONCLUSIONS These data indicate cortical region-specific delays in temporal processing development in Fmr1 KO mice. Developmental delays in the ability of frontal cortex to follow rapid changes in sounds may shape language delays in FXS, and more broadly in ASD.
Collapse
Affiliation(s)
- Katilynne Croom
- Graduate Neuroscience Program, University of California, Riverside, USA
| | - Jeffrey A Rumschlag
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, USA
| | | | - Devin K Binder
- Graduate Neuroscience Program, University of California, Riverside, USA
- Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Khaleel A Razak
- Graduate Neuroscience Program, University of California, Riverside, USA.
- Department of Psychology, University of California, Riverside, USA.
| |
Collapse
|
21
|
Oprisan SA, Clementsmith X, Tompa T, Lavin A. Empirical mode decomposition of local field potential data from optogenetic experiments. Front Comput Neurosci 2023; 17:1223879. [PMID: 37476356 PMCID: PMC10354259 DOI: 10.3389/fncom.2023.1223879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction This study investigated the effects of cocaine administration and parvalbumin-type interneuron stimulation on local field potentials (LFPs) recorded in vivo from the medial prefrontal cortex (mPFC) of six mice using optogenetic tools. Methods The local network was subject to a brief 10 ms laser pulse, and the response was recorded for 2 s over 100 trials for each of the six subjects who showed stable coupling between the mPFC and the optrode. Due to the strong non-stationary and nonlinearity of the LFP, we used the adaptive, data-driven, Empirical Mode Decomposition (EMD) method to decompose the signal into orthogonal Intrinsic Mode Functions (IMFs). Results Through trial and error, we found that seven is the optimum number of orthogonal IMFs that overlaps with known frequency bands of brain activity. We found that the Index of Orthogonality (IO) of IMF amplitudes was close to zero. The Index of Energy Conservation (IEC) for each decomposition was close to unity, as expected for orthogonal decompositions. We found that the power density distribution vs. frequency follows a power law with an average scaling exponent of ~1.4 over the entire range of IMF frequencies 2-2,000 Hz. Discussion The scaling exponent is slightly smaller for cocaine than the control, suggesting that neural activity avalanches under cocaine have longer life spans and sizes.
Collapse
Affiliation(s)
- Sorinel A. Oprisan
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States
| | - Xandre Clementsmith
- Department of Computer Science, College of Charleston, Charleston, SC, United States
| | - Tamas Tompa
- Faculty of Healthcare, Department of Preventive Medicine, University of Miskolc, Miskolc, Hungary
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Antonieta Lavin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
22
|
Schmitt LM, Smith EG, Pedapati EV, Horn PS, Will M, Lamy M, Barber L, Trebley J, Meyer K, Heiman M, West KHJ, Hughes P, Ahuja S, Erickson CA. Results of a phase Ib study of SB-121, an investigational probiotic formulation, a randomized controlled trial in participants with autism spectrum disorder. Sci Rep 2023; 13:5192. [PMID: 36997569 PMCID: PMC10061375 DOI: 10.1038/s41598-023-30909-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/03/2023] [Indexed: 04/01/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by core impairments in social communication as well as restricted, repetitive patterns of behavior and/or interests. Individuals with ASD, which includes about 2% of the US population, have challenges with activities of daily living and suffer from comorbid medical and mental health concerns. There are no drugs indicated for the core impairments of ASD. As such, there is a significant need for the development of new medication strategies for individuals with ASD. This first-in-human placebo-controlled, double-blind, crossover study investigated the safety (primary objective) and efficacy of oral SB-121, a combination of L. reuteri, Sephadex® (dextran microparticles), and maltose administered once daily for 28 days in 15 autistic participants. SB-121 was safe and well tolerated. SB-121-associated directional improvements in adaptive behavior measured by Vineland-3 and social preference as measured with eye tracking were noted. These results provide support for further clinical evaluation of SB-121 as a treatment in autistic patients. To evaluate the safety and tolerability of multiple doses of SB-121 in subjects with autism spectrum disorder. Single-center, randomized, placebo-controlled, double-blind, crossover trial. 15 patients with autism spectrum disorder were randomized and analyzed. Daily dosing of SB-121 or placebo for 28 days, followed by approximately a 14 day washout, then 28 days of dosing with other treatment. Incidence and severity of adverse events, presence of Limosilactobacillus reuteri and Sephadex® in stool, and incidence of bacteremia with positive L. reuteri identification. Additional outcomes include changes from baseline on cognitive and behavior tests as well as biomarker levels. Adverse event rates were similar between SB-121 and placebo, with most reported as mild. There were no severe or serious adverse events. No participants had features of suspected bacteremia or notable changes in vital signs, safety laboratory, or ECG parameters from baseline. There was a statistically significant increase from baseline in the Vineland-3 Adaptive Behavior Composite score (p = 0.03) during SB-121 treatment. There was a trend for increased social/geometric viewing ratio following SB-121 treatment compared to placebo. SB-121 was safe and well tolerated. SB-121-associated directional improvements in adaptive behavior measured by Vineland-3 and social preference as measured with eye tracking were noted.Trial registration: clinicaltrials.gov Identifier: NCT04944901.
Collapse
Affiliation(s)
- Lauren M Schmitt
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Elizabeth G Smith
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul S Horn
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Meredith Will
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Martine Lamy
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lillian Barber
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joe Trebley
- Scioto Biosciences, Inc., Indianapolis, IN, USA
| | - Kevin Meyer
- Scioto Biosciences, Inc., Indianapolis, IN, USA
| | - Mark Heiman
- Scioto Biosciences, Inc., Indianapolis, IN, USA
| | | | | | | | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
23
|
Not Mismatch Negativity, but Modulation of Sensory N1 is Measured - Comment to Chen-Engerer et al. Neuroscience 2023; 512:133-134. [PMID: 36549604 DOI: 10.1016/j.neuroscience.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
|
24
|
Louros SR, Seo SS, Maio B, Martinez-Gonzalez C, Gonzalez-Lozano MA, Muscas M, Verity NC, Wills JC, Li KW, Nolan MF, Osterweil EK. Excessive proteostasis contributes to pathology in fragile X syndrome. Neuron 2023; 111:508-525.e7. [PMID: 36495869 DOI: 10.1016/j.neuron.2022.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/06/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022]
Abstract
In fragile X syndrome (FX), the leading monogenic cause of autism, excessive neuronal protein synthesis is a core pathophysiology; however, an overall increase in protein expression is not observed. Here, we tested whether excessive protein synthesis drives a compensatory rise in protein degradation that is protective for FX mouse model (Fmr1-/y) neurons. Surprisingly, although we find a significant increase in protein degradation through ubiquitin proteasome system (UPS), this contributes to pathological changes. Normalizing proteasome activity with bortezomib corrects excessive hippocampal protein synthesis and hyperactivation of neurons in the inferior colliculus (IC) in response to auditory stimulation. Moreover, systemic administration of bortezomib significantly reduces the incidence and severity of audiogenic seizures (AGS) in the Fmr1-/y mouse, as does genetic reduction of proteasome, specifically in the IC. Together, these results identify excessive activation of the UPS pathway in Fmr1-/y neurons as a contributor to multiple phenotypes that can be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Susana R Louros
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Sang S Seo
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Beatriz Maio
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Cristina Martinez-Gonzalez
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Miguel A Gonzalez-Lozano
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Melania Muscas
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Nick C Verity
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Jimi C Wills
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Matthew F Nolan
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Emily K Osterweil
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| |
Collapse
|
25
|
Norris JE, Schmitt LM, De Stefano LA, Pedapati EV, Erickson CA, Sweeney JA, Ethridge LE. Neuropsychiatric feature-based subgrouping reveals neural sensory processing spectrum in female FMR1 premutation carriers: A pilot study. Front Integr Neurosci 2023; 17:898215. [PMID: 36816716 PMCID: PMC9936150 DOI: 10.3389/fnint.2023.898215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Fragile X Syndrome (FXS) is rare genetic condition characterized by a repeat expansion (CGG) in the Fragile X messenger ribonucleoprotein 1 (FMR1) gene where individuals with greater than 200 repeats are defined as full mutation. FXS clinical presentation often includes intellectual disability, and autism-like symptoms, including anxiety and sensory hypersensitivities. Individuals with 55 to <200 CGG repeats are said to have the FMR1 premutation, which is not associated with primary characteristics of the full mutation, but with an increased risk for anxiety, depression, and other affective conditions, as well as and impaired cognitive processing differences that vary in severity. Defining subgroups of premutation carriers based on distinct biological features may identify subgroups with varying levels of psychiatric, cognitive, and behavioral alterations. Methods The current pilot study utilized 3 cluster subgroupings defined by previous k means cluster analysis on neuropsychiatric, cognitive, and resting EEG variables in order to examine basic sensory auditory chirp task-based EEG parameters from 33 females with the FMR1 premutation (ages 17-78). Results Based on the predefined, neuropsychiatric three-cluster solution, premutation carriers with increased neuropsychiatric features and higher CGG repeat counts (cluster 1) showed decreased stimulus onset response, similar to previous ERP findings across a number of psychiatric disorders but opposite to findings in individuals with full mutation FXS. Premutation carriers with increased executive dysfunction and resting gamma power (cluster 2) exhibited decreased gamma phase locking to a chirp stimulus, similar to individuals with full mutation FXS. Cluster 3 members, who were relatively unaffected by psychiatric or cognitive symptoms, showed the most normative task-based EEG metrics. Discussion Our findings suggest a spectrum of sensory processing characteristics present in subgroups of premutation carriers that have been previously understudied due to lack of overall group differences. Our findings also further validate the pre-defined clinical subgroups by supporting links between disturbances in well-defined neural pathways and behavioral alterations that may be informative for identifying the mechanisms supporting specific risk factors and divergent therapeutic needs in individuals with the FMR1 premutation.
Collapse
Affiliation(s)
- Jordan E. Norris
- Department of Psychology, The University of Oklahoma, Norman, OK, United States
| | - Lauren M. Schmitt
- Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Lisa A. De Stefano
- Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Ernest V. Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Division of Child Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| | - Craig A. Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| | - John A. Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| | - Lauren E. Ethridge
- Department of Psychology, The University of Oklahoma, Norman, OK, United States,Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,*Correspondence: Lauren E. Ethridge,
| |
Collapse
|
26
|
Fmr1-KO mice failure to detect object novelty associates with a post-test decrease of structural and synaptic plasticity upstream of the hippocampus. Sci Rep 2023; 13:755. [PMID: 36641518 PMCID: PMC9840621 DOI: 10.1038/s41598-023-27991-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Mice with deletion of the FMR1 gene show episodic memory impairments and exhibit dendritic spines and synaptic plasticity defects prevalently identified in non-training conditions. Based on evidence that synaptic changes associated with normal or abnormal memory emerge when mice are cognitively challenged, here we examine whether, and how, fragile entorhinal and hippocampal synapses are remodeled when mice succeed or fail to learn. We trained Fmr1 knockout (KO) and wild-type C57BL/6J (WT) mice in the novel object recognition (NOR) paradigm with 1 h or 24 h training-to-test intervals and then assessed whether varying the time between the presentation of similar and different objects modulates NOR performance and plasticity along the entorhinal cortex-hippocampus axis. At the 1 h-interval, KO mice failed to discriminate the novel object, showed a collapse of spines in the lateral entorhinal cortex (LEC), and of long-term potentiation (LTP) in the lateral perforant path (LPP), but a normal increase in hippocampal spines. At the 24 h, they exhibited intact NOR performance, typical LEC and hippocampal spines, and exaggerated LPP-LTP. Our findings reveal that the inability of mice to detect object novelty primarily stands in their impediment to elaborate, and convey to the hippocampus, sensory/perceptive object representations.
Collapse
|
27
|
Neurophysiological assessment of cortical activity in DEPDC5- and NPRL3-related epileptic mTORopathies. Orphanet J Rare Dis 2023; 18:11. [PMID: 36639812 PMCID: PMC9840333 DOI: 10.1186/s13023-022-02600-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Mutations in the GATOR1 complex genes, DEPDC5 and NPRL3, play a major role in the development of lesional and non-lesional focal epilepsy through increased mTORC1 signalling. We aimed to assess the effects of mTORC1 hyperactivation on GABAergic inhibitory circuits, in 3 and 5 individuals carrying DEPDC5 and NPRL3 mutations respectively using a multimodal approach including transcranial magnetic stimulation (TMS), magnetic resonance spectroscopy (MRS), and electroencephalography (EEG). RESULTS Inhibitory functions probed by TMS and MRS showed no effect of mutations on cortical GABAergic receptor-mediated inhibition and GABA concentration, in both cortical and subcortical regions. However, stronger EEG theta oscillations and stronger and more synchronous gamma oscillations were observed in DEPDC5 and NPRL3 mutations carriers. CONCLUSIONS These results suggest that DEPDC5 and NPRL3-related epileptic mTORopathies may not directly modulate GABAergic functions but are nonetheless characterized by a stronger neural entrainment that may be reflective of a cortical hyperexcitability mediated by increased mTORC1 signaling.
Collapse
|
28
|
Tempio A, Boulksibat A, Bardoni B, Delhaye S. Fragile X Syndrome as an interneuronopathy: a lesson for future studies and treatments. Front Neurosci 2023; 17:1171895. [PMID: 37188005 PMCID: PMC10176609 DOI: 10.3389/fnins.2023.1171895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability (ID) and a primary genetic cause of autism spectrum disorder (ASD). FXS arises from the silencing of the FMR1 gene causing the lack of translation of its encoded protein, the Fragile X Messenger RibonucleoProtein (FMRP), an RNA-binding protein involved in translational control and in RNA transport along dendrites. Although a large effort during the last 20 years has been made to investigate the cellular roles of FMRP, no effective and specific therapeutic intervention is available to treat FXS. Many studies revealed a role for FMRP in shaping sensory circuits during developmental critical periods to affect proper neurodevelopment. Dendritic spine stability, branching and density abnormalities are part of the developmental delay observed in various FXS brain areas. In particular, cortical neuronal networks in FXS are hyper-responsive and hyperexcitable, making these circuits highly synchronous. Overall, these data suggest that the excitatory/inhibitory (E/I) balance in FXS neuronal circuitry is altered. However, not much is known about how interneuron populations contribute to the unbalanced E/I ratio in FXS even if their abnormal functioning has an impact on the behavioral deficits of patients and animal models affected by neurodevelopmental disorders. We revise here the key literature concerning the role of interneurons in FXS not only with the purpose to better understand the pathophysiology of this disorder, but also to explore new possible therapeutic applications to treat FXS and other forms of ASD or ID. Indeed, for instance, the re-introduction of functional interneurons in the diseased brains has been proposed as a promising therapeutic approach for neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Alessandra Tempio
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- Alessandra Tempio,
| | - Asma Boulksibat
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Barbara Bardoni
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- Inserm, Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- *Correspondence: Barbara Bardoni,
| | - Sébastien Delhaye
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| |
Collapse
|
29
|
Schmitt LM, Li J, Liu R, Horn PS, Sweeney JA, Erickson CA, Pedapati EV. Altered frontal connectivity as a mechanism for executive function deficits in fragile X syndrome. Mol Autism 2022; 13:47. [PMID: 36494861 PMCID: PMC9733336 DOI: 10.1186/s13229-022-00527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is the leading inherited monogenic cause of intellectual disability and autism spectrum disorder. Executive function (EF), necessary for adaptive goal-oriented behavior and dependent on frontal lobe function, is impaired in individuals with FXS. Yet, little is known how alterations in frontal lobe neural activity is related to EF deficits in FXS. METHODS Sixty-one participants with FXS (54% males) and 71 age- and sex-matched typically-developing controls (TDC; 58% males) completed a five-minute resting state electroencephalography (EEG) protocol and a computerized battery of tests of EF, the Test of Attentional Performance for Children (KiTAP). Following source localization (minimum-norm estimate), we computed debiased weighted phase lag index (dWPLI), a phase connectivity value, for pairings between 18 nodes in frontal regions for gamma (30-55 Hz) and alpha (10.5-12.5 Hz) bands. Linear models were generated with fixed factors of group, sex, frequency, and connection. Relationships between frontal connectivity and EF variables also were examined. RESULTS Individuals with FXS demonstrated increased gamma band and reduced alpha band connectivity across all frontal regions and across hemispheres compared to TDC. After controlling for nonverbal IQ, increased error rates on EF tasks were associated with increased gamma band and reduced alpha band connectivity. LIMITATIONS Frontal connectivity findings are limited to intrinsic brain activity during rest and may not generalize to frontal connectivity during EF tasks or everyday function. CONCLUSIONS We report gamma hyper-connectivity and alpha hypo-connectivity within source-localized frontal brain regions in FXS compared to TDC during resting-state EEG. For the first time in FXS, we report significant associations between EF and altered frontal connectivity, with increased error rate relating to increased gamma band connectivity and reduced alpha band connectivity. These findings suggest increased phase connectivity within gamma band may impair EF performance, whereas greater alpha band connectivity may provide compensatory support for EF. Together, these findings provide important insight into neurophysiological mechanisms of EF deficits in FXS and provide novel targets for treatment development.
Collapse
Affiliation(s)
- Lauren M. Schmitt
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Joy Li
- grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Rui Liu
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA
| | - Paul S. Horn
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - John A. Sweeney
- grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Craig A. Erickson
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Ernest V. Pedapati
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|
30
|
Norris JE, DeStefano LA, Schmitt LM, Pedapati EV, Erickson CA, Sweeney JA, Ethridge LE. Hemispheric Utilization of Alpha Oscillatory Dynamics as a Unique Biomarker of Neural Compensation in Females with Fragile X Syndrome. ACS Chem Neurosci 2022; 13:3389-3402. [PMID: 36411085 DOI: 10.1021/acschemneuro.2c00404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a trinucleotide expansion on the FMR1 gene and characterized by intellectual disability, sensory hypersensitivity, executive function difficulties, and social anxiety. Recently, efforts to define neural biomarkers for FXS have highlighted disruptions to power in the alpha frequency band; however the dynamic mechanisms supporting these findings are poorly understood. The current study aimed to explore the temporal and hemispheric dynamics supporting alpha phenotypes in FXS and their relationship with neural phenotypes related to auditory processing using electroencephalography during an auditory evoked task. Adolescents and adults (N = 36) with FXS and age/sex matched typically developing controls (N = 40) completed an auditory chirp task. Frontal alpha power in the prestimulus period was decomposed into "bursts" using percentile thresholding, then assessed for number of bursts per second (burst count) and burst length. Data were compared across left and right hemispheres to assess lateralization of neural activity. Individuals with FXS showed more differences in alpha power compared to TDC primarily in the right hemisphere. Notably, alpha hemisphere outcomes in males with FXS were driven by the number of times they entered a dynamically relevant period of alpha (burst count) rather than length of time spent in alpha. Females with FXS showed reduced burst counts but remained in sustained high alpha states for longer periods of time. Length of time spent in alpha may reflect a modulatory or compensatory mechanism capable of recovering sensory processing abilities in females with FXS resulting in a less severe clinical presentation. Right hemisphere abnormalities may impact sensory processing differences between males and females with FXS. The relationship between alpha burst length, count, sex, and hemisphere may shed light on underlying mechanisms for previously observed alpha power abnormalities in FXS and their variation by sex.
Collapse
Affiliation(s)
- Jordan E Norris
- Department of Psychology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Lisa A DeStefano
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States
| | - Lauren M Schmitt
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States.,Division of Child Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Lauren E Ethridge
- Department of Psychology, University of Oklahoma, Norman, Oklahoma 73019, United States.,Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
31
|
Talvio K, Minkeviciene R, Townsley KG, Achuta VS, Huckins LM, Corcoran P, Brennand KJ, Castrén ML. Reduced LYNX1 expression in transcriptome of human iPSC-derived neural progenitors modeling fragile X syndrome. Front Cell Dev Biol 2022; 10:1034679. [PMID: 36506088 PMCID: PMC9731341 DOI: 10.3389/fcell.2022.1034679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Lack of FMR1 protein results in fragile X syndrome (FXS), which is the most common inherited intellectual disability syndrome and serves as an excellent model disease to study molecular mechanisms resulting in neuropsychiatric comorbidities. We compared the transcriptomes of human neural progenitors (NPCs) generated from patient-derived induced pluripotent stem cells (iPSCs) of three FXS and three control male donors. Altered expression of RAD51C, PPIL3, GUCY1A2, MYD88, TRAPPC4, LYNX1, and GTF2A1L in FXS NPCs suggested changes related to triplet repeat instability, RNA splicing, testes development, and pathways previously shown to be affected in FXS. LYNX1 is a cholinergic brake of tissue plasminogen activator (tPA)-dependent plasticity, and its reduced expression was consistent with augmented tPA-dependent radial glial process growth in NPCs derived from FXS iPSC lines. There was evidence of human iPSC line donor-dependent variation reflecting potentially phenotypic variation. NPCs derived from an FXS male with concomitant epilepsy expressed differently several epilepsy-related genes, including genes shown to cause the auditory epilepsy phenotype in the murine model of FXS. Functional enrichment analysis highlighted regulation of insulin-like growth factor pathway in NPCs modeling FXS with epilepsy. Our results demonstrated potential of human iPSCs in disease modeling for discovery and development of therapeutic interventions by showing early gene expression changes in FXS iPSC-derived NPCs consistent with the known pathophysiological changes in FXS and by revealing disturbed FXS progenitor growth linked to reduced expression of LYNX1, suggesting dysregulated cholinergic system.
Collapse
Affiliation(s)
- Karo Talvio
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rimante Minkeviciene
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kayla G. Townsley
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Laura M. Huckins
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Padraic Corcoran
- Array and Analysis Facility, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Kristen J. Brennand
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven, CT, United States,Department of Genetics, Yale University, New Haven, CT, United States
| | - Maija L. Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland,*Correspondence: Maija L. Castrén,
| |
Collapse
|
32
|
Kat R, Kas MJH. Largely unaffected auditory and visual sensory processing phenotypes in the evoked potentials of Fmr1 KO2 mice. Eur J Neurosci 2022; 56:5260-5273. [PMID: 36017614 PMCID: PMC9826194 DOI: 10.1111/ejn.15808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/11/2023]
Abstract
Sensory sensitivity symptoms are common in autism spectrum disorders and fragile X syndrome. Mainly in the auditory modality, disturbed processing has been found in both fragile X patients and the corresponding genetic mouse model, the Fmr1 knockout mouse. Here, we tried to replicate the auditory deficits and assess whether also visual processing is affected, using electroencephalography readouts under freely behaving conditions in the second-generation Fmr1 knockout mice. No differences between wild-type and knockout animals were found in single auditory and visual evoked potentials in response to pure sine tones and full-field light flashes. Visual sensory gating was enhanced in the early but not the late components of the evoked potentials, but no changes were found in auditory sensory gating. The higher harmonics of the synchronisation response to flickering visual stimuli seemed to be reduced with 10, but not 20 or 40 Hz, stimulation. However, this effect was not reproduced in an independent second cohort of animals. No synchronisation differences were found in response to a chirp stimulus, of which the frequency steadily increased. Taken together, this study could not reproduce earlier reported increased amplitudes in auditory responses, nor could it convincingly show that synchronisation deficits found to be present in the auditory modality also existed in the visual modality. The discrepancies within this study as well as between various studies assessing sensory processing in the Fmr1 KO raise questions about the external validity of these phenotypes and warrant careful interpretation of these phenotypes.
Collapse
Affiliation(s)
- Renate Kat
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
| | - Martien J. H. Kas
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
| |
Collapse
|
33
|
Jonak CR, Pedapati EV, Schmitt LM, Assad SA, Sandhu MS, DeStefano L, Ethridge L, Razak KA, Sweeney JA, Binder DK, Erickson CA. Baclofen-associated neurophysiologic target engagement across species in fragile X syndrome. J Neurodev Disord 2022; 14:52. [PMID: 36167501 PMCID: PMC9513876 DOI: 10.1186/s11689-022-09455-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 08/03/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is the most common inherited form of neurodevelopmental disability. It is often characterized, especially in males, by intellectual disability, anxiety, repetitive behavior, social communication deficits, delayed language development, and abnormal sensory processing. Recently, we identified electroencephalographic (EEG) biomarkers that are conserved between the mouse model of FXS (Fmr1 KO mice) and humans with FXS. METHODS In this report, we evaluate small molecule target engagement utilizing multielectrode array electrophysiology in the Fmr1 KO mouse and in humans with FXS. Neurophysiologic target engagement was evaluated using single doses of the GABAB selective agonist racemic baclofen (RBAC). RESULTS In Fmr1 KO mice and in humans with FXS, baclofen use was associated with suppression of elevated gamma power and increase in low-frequency power at rest. In the Fmr1 KO mice, a baclofen-associated improvement in auditory chirp synchronization was also noted. CONCLUSIONS Overall, we noted synchronized target engagement of RBAC on resting state electrophysiology, in particular the reduction of aberrant high frequency gamma activity, across species in FXS. This finding holds promise for translational medicine approaches to drug development for FXS, synchronizing treatment study across species using well-established EEG biological markers in this field. TRIAL REGISTRATION The human experiments are registered under NCT02998151.
Collapse
Affiliation(s)
- Carrie R. Jonak
- grid.266097.c0000 0001 2222 1582Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Ernest V. Pedapati
- grid.239573.90000 0000 9025 8099Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.239573.90000 0000 9025 8099Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Lauren M. Schmitt
- grid.239573.90000 0000 9025 8099Division of Developmental and Behavioral Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Samantha A. Assad
- grid.266097.c0000 0001 2222 1582Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Manbir S. Sandhu
- grid.266097.c0000 0001 2222 1582Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Lisa DeStefano
- grid.239573.90000 0000 9025 8099Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.266900.b0000 0004 0447 0018Department of Psychology, University of Oklahoma, Norman, OK USA
| | - Lauren Ethridge
- grid.266900.b0000 0004 0447 0018Department of Psychology, University of Oklahoma, Norman, OK USA ,grid.266902.90000 0001 2179 3618Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Khaleel A. Razak
- grid.266097.c0000 0001 2222 1582Neuroscience Graduate Program, University of California, Riverside, USA ,grid.266097.c0000 0001 2222 1582Psychology Graduate Program, University of California, Riverside, USA
| | - John A. Sweeney
- grid.24827.3b0000 0001 2179 9593Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Devin K. Binder
- grid.266097.c0000 0001 2222 1582Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA ,grid.266097.c0000 0001 2222 1582Neuroscience Graduate Program, University of California, Riverside, USA
| | - Craig A. Erickson
- grid.239573.90000 0000 9025 8099Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|
34
|
Wilde M, Constantin L, Thorne PR, Montgomery JM, Scott EK, Cheyne JE. Auditory processing in rodent models of autism: a systematic review. J Neurodev Disord 2022; 14:48. [PMID: 36042393 PMCID: PMC9429780 DOI: 10.1186/s11689-022-09458-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/07/2022] [Indexed: 11/19/2022] Open
Abstract
Autism is a complex condition with many traits, including differences in auditory sensitivity. Studies in human autism are plagued by the difficulty of controlling for aetiology, whereas studies in individual rodent models cannot represent the full spectrum of human autism. This systematic review compares results in auditory studies across a wide range of established rodent models of autism to mimic the wide range of aetiologies in the human population. A search was conducted in the PubMed and Web of Science databases to find primary research articles in mouse or rat models of autism which investigate central auditory processing. A total of 88 studies were included. These used non-invasive measures of auditory function, such as auditory brainstem response recordings, cortical event-related potentials, electroencephalography, and behavioural tests, which are translatable to human studies. They also included invasive measures, such as electrophysiology and histology, which shed insight on the origins of the phenotypes found in the non-invasive studies. The most consistent results across these studies were increased latency of the N1 peak of event-related potentials, decreased power and coherence of gamma activity in the auditory cortex, and increased auditory startle responses to high sound levels. Invasive studies indicated loss of subcortical inhibitory neurons, hyperactivity in the lateral superior olive and auditory thalamus, and reduced specificity of responses in the auditory cortex. This review compares the auditory phenotypes across rodent models and highlights those that mimic findings in human studies, providing a framework and avenues for future studies to inform understanding of the auditory system in autism.
Collapse
Affiliation(s)
- Maya Wilde
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lena Constantin
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peter R Thorne
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Section of Audiology, School of Population Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Ethan K Scott
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.,Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Juliette E Cheyne
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
35
|
Bülow P, Segal M, Bassell GJ. Mechanisms Driving the Emergence of Neuronal Hyperexcitability in Fragile X Syndrome. Int J Mol Sci 2022; 23:ijms23116315. [PMID: 35682993 PMCID: PMC9181819 DOI: 10.3390/ijms23116315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperexcitability is a shared neurophysiological phenotype across various genetic neurodevelopmental disorders, including Fragile X syndrome (FXS). Several patient symptoms are associated with hyperexcitability, but a puzzling feature is that their onset is often delayed until their second and third year of life. It remains unclear how and why hyperexcitability emerges in neurodevelopmental disorders. FXS is caused by the loss of FMRP, an RNA-binding protein which has many critical roles including protein synthesis-dependent and independent regulation of ion channels and receptors, as well as global regulation of protein synthesis. Here, we discussed recent literature uncovering novel mechanisms that may drive the progressive onset of hyperexcitability in the FXS brain. We discussed in detail how recent publications have highlighted defects in homeostatic plasticity, providing new insight on the FXS brain and suggest pharmacotherapeutic strategies in FXS and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Pernille Bülow
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: (P.B.); (G.J.B.)
| | - Menahem Segal
- Department of Brain Science, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: (P.B.); (G.J.B.)
| |
Collapse
|
36
|
Liang S, Mody M. Abnormal Brain Oscillations in Developmental Disorders: Application of Resting State EEG and MEG in Autism Spectrum Disorder and Fragile X Syndrome. FRONTIERS IN NEUROIMAGING 2022; 1:903191. [PMID: 37555160 PMCID: PMC10406242 DOI: 10.3389/fnimg.2022.903191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/29/2022] [Indexed: 08/10/2023]
Abstract
Autism Spectrum Disorder (ASD) and Fragile X Syndrome (FXS) are neurodevelopmental disorders with similar clinical and behavior symptoms and partially overlapping and yet distinct neurobiological origins. It is therefore important to distinguish these disorders from each other as well as from typical development. Examining disruptions in functional connectivity often characteristic of neurodevelopment disorders may be one approach to doing so. This review focuses on EEG and MEG studies of resting state in ASD and FXS, a neuroimaging paradigm frequently used with difficult-to-test populations. It compares the brain regions and frequency bands that appear to be impacted, either in power or connectivity, in each disorder; as well as how these abnormalities may result in the observed symptoms. It argues that the findings in these studies are inconsistent and do not fit neatly into existing models of ASD and FXS, then highlights the gaps in the literature and recommends future avenues of inquiry.
Collapse
Affiliation(s)
- Sophia Liang
- College of Arts and Sciences, Harvard University, Cambridge, MA, United States
| | - Maria Mody
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
37
|
Holley A, Shedd A, Boggs A, Lovelace J, Erickson C, Gross C, Jankovic M, Razak K, Huber K, Gibson JR. A sound-driven cortical phase-locking change in the Fmr1 KO mouse requires Fmr1 deletion in a subpopulation of brainstem neurons. Neurobiol Dis 2022; 170:105767. [PMID: 35588990 PMCID: PMC9273231 DOI: 10.1016/j.nbd.2022.105767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Sensory impairments commonly occur in patients with autism or intellectual disability. Fragile X syndrome (FXS) is one form of intellectual disability that is often comorbid with autism. In electroencephalographic (EEG) recordings obtained from humans with FXS, the ability of cortical regions to consistently synchronize, or “phase-lock”, to modulated auditory stimuli is reduced compared to that of typically developing individuals. At the same time, less time-locked, “non-phase-locked” power induced by sounds is higher. The same changes occur in the Fmr1 knockout (KO) mouse – an animal model of FXS. We determined if Fmr1 deletion in a subset of brainstem auditory neurons plays any role in these EEG changes in the mouse. Methods: We reinstated FMRP expression in a subpopulation of brainstem auditory neurons in an otherwise Fmr1 KO control (conditional on; cON Fmr1) mouse and used EEG recordings to determine if reinstatement normalized, or “rescued”, the phase-locking phenotype observed in the cON Fmr1 mouse. In determining rescue, this also meant that Fmr1 deletion in the same neuron population was necessary for the phenotype to occur. Results: We find that Fmr1 reinstatement in a subset of brainstem neurons rescues certain aspects of the phase-locking phenotype but does not rescue the increase in non-phase-locked power. Unexpectedly, not all electrophysiological phenotypes observed in the Fmr1 KO were observed in the cON Fmr1 mouse used for the reinstatement experiments, and this was likely due to residual expression of FMRP in these Fmr1 KO controls. Conclusions: Fmr1 deletion in brainstem neurons is necessary for certain aspects of the decreased phase-locking phenotype in the Fmr1 KO, but not necessary for the increase in non-phase-locked power induced by a sound. The most likely brainstem structure underlying these results is the inferior colliculus. We also demonstrate that low levels of FMRP can rescue some EEG phenotypes but not others. This latter finding provides a foundation for how symptoms in FXS individuals may vary due to FMRP levels and that reinstatement of low FMRP levels may be sufficient to alleviate particular symptoms.
Collapse
Affiliation(s)
- AndrewJ Holley
- University of Texas Southwestern Medical Center at Dallas, Department of Neuroscience, Dallas, TX 75390-9111, USA
| | - Aleya Shedd
- University of Texas Southwestern Medical Center at Dallas, Department of Neuroscience, Dallas, TX 75390-9111, USA
| | - Anna Boggs
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jonathan Lovelace
- Department of Psychology, University of California, Riverside, CA 92521, USA
| | - Craig Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Miranda Jankovic
- University of Texas Southwestern Medical Center at Dallas, Department of Neuroscience, Dallas, TX 75390-9111, USA
| | - Khaleel Razak
- Department of Psychology, University of California, Riverside, CA 92521, USA
| | - Kimberly Huber
- University of Texas Southwestern Medical Center at Dallas, Department of Neuroscience, Dallas, TX 75390-9111, USA
| | - Jay R Gibson
- University of Texas Southwestern Medical Center at Dallas, Department of Neuroscience, Dallas, TX 75390-9111, USA.
| |
Collapse
|
38
|
Pedapati EV, Schmitt LM, Ethridge LE, Miyakoshi M, Sweeney JA, Liu R, Smith E, Shaffer RC, Dominick KC, Gilbert DL, Wu SW, Horn PS, Binder DK, Lamy M, Axford M, Erickson CA. Neocortical localization and thalamocortical modulation of neuronal hyperexcitability contribute to Fragile X Syndrome. Commun Biol 2022; 5:442. [PMID: 35546357 PMCID: PMC9095835 DOI: 10.1038/s42003-022-03395-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/22/2022] [Indexed: 12/13/2022] Open
Abstract
Fragile X Syndrome (FXS) is a monogenetic form of intellectual disability and autism in which well-established knockout (KO) animal models point to neuronal hyperexcitability and abnormal gamma-frequency physiology as a basis for key disorder features. Translating these findings into patients may identify tractable treatment targets. Using source modeling of resting-state electroencephalography data, we report findings in FXS, including 1) increases in localized gamma activity, 2) pervasive changes of theta/alpha activity, indicative of disrupted thalamocortical modulation coupled with elevated gamma power, 3) stepwise moderation of low and high-frequency abnormalities based on female sex, and 4) relationship of this physiology to intellectual disability and neuropsychiatric symptoms. Our observations extend findings in Fmr1-/- KO mice to patients with FXS and raise a key role for disrupted thalamocortical modulation in local hyperexcitability. This systems-level mechanism has received limited preclinical attention but has implications for understanding fundamental disease mechanisms.
Collapse
Affiliation(s)
- Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Lauren M Schmitt
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lauren E Ethridge
- Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Psychology, University of Oklahoma, Norman, OK, USA
| | - Makoto Miyakoshi
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| | - John A Sweeney
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rui Liu
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Elizabeth Smith
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rebecca C Shaffer
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kelli C Dominick
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Donald L Gilbert
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Steve W Wu
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul S Horn
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Martine Lamy
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Megan Axford
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
39
|
Armstrong JL, Saraf TS, Bhatavdekar O, Canal CE. Spontaneous seizures in adult Fmr1 knockout mice: FVB.129P2-Pde6b+ Tyr Fmr1/J. Epilepsy Res 2022; 182:106891. [PMID: 35290907 PMCID: PMC9050957 DOI: 10.1016/j.eplepsyres.2022.106891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 01/26/2023]
Abstract
The prevalence of seizures in individuals with fragile X syndrome (FXS) is ~25%; however, there are no reports of spontaneous seizures in the Fmr1 knockout mouse model of FXS. Herein, we report that 48% of adult (median age P96), Fmr1 knockout mice from our colony were found expired in their home cages. We observed and recorded adult Fmr1 knockout mice having spontaneous convulsions in their home cages. In addition, we captured by electroencephalography an adult Fmr1 knockout mouse having a spontaneous seizure-during preictal, ictal, and postictal phases-which confirmed the presence of a generalized seizure. We did not observe this phenotype in control conspecifics or in juvenile (age <P35) Fmr1 knockout mice. We hypothesized that chronic, random, noise perturbations during development caused the phenotype. We recorded decibels (dB) in our vivarium. The average was 61 dB, but operating the automatic door to the vivarium caused spikes to 95 dB. We modified the door to eliminate noise spikes, which reduced unexpected deaths to 33% in Fmr1 knockout mice raised from birth in this environment (P = 0.07). As the modifications did not eliminate unexpected deaths, we further hypothesized that building vibrations may also be a contributing factor. After installing anti-vibration pads underneath housing carts, unexpected deaths of Fmr1 knockout mice born and raised in this environment decreased to 29% (P < 0.01 compared to the original environment). We also observed significant sex effects, for example, after interventions to reduce sound and vibration, significantly fewer male, but not female, Fmr1 knockout mice died unexpectedly (P < 0.001). The spontaneous seizure phenotype in our Fmr1 knockout mice could serve as a model of seizures observed in individuals with FXS, potentially offering a new translationally-valid phenotype for FXS research. Finally, these observations, although anomalous, serve as a reminder to consider gene-environment interactions when interpreting data derived from Fmr1 knockout mice.
Collapse
Affiliation(s)
- Jessica L Armstrong
- Mercer University, College of Pharmacy, Department of Pharmaceutical Sciences, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| | - Tanishka S Saraf
- Mercer University, College of Pharmacy, Department of Pharmaceutical Sciences, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| | - Omkar Bhatavdekar
- Johns Hopkins University, Department of Chemical and Biomolecular Engineering, 3400 North Charles Street, Croft Hall B27, Baltimore, MD 21218, USA
| | - Clinton E Canal
- Mercer University, College of Pharmacy, Department of Pharmaceutical Sciences, 3001 Mercer University Drive, Atlanta, GA 30341, USA.
| |
Collapse
|
40
|
Auger E, Berry-Kravis EM, Ethridge LE. Independent evaluation of the harvard automated processing pipeline for Electroencephalography 1.0 using multi-site EEG data from children with Fragile X Syndrome. J Neurosci Methods 2022; 371:109501. [PMID: 35182604 PMCID: PMC8962770 DOI: 10.1016/j.jneumeth.2022.109501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND The Harvard Automatic Processing Pipeline for Electroencephalography (HAPPE) is a computerized EEG data processing pipeline designed for multiple site analysis of populations with neurodevelopmental disorders. This pipeline has been validated in-house by the developers but external testing using real-world datasets remains to be done. NEW METHOD Resting and auditory event-related EEG data from 29 children ages 3-6 years with Fragile X Syndrome as well as simulated EEG data was used to evaluate HAPPE's noise reduction techniques, data standardization features, and data integration compared to traditional manualized processing. RESULTS For the real EEG data, HAPPE pipeline showed greater trials retained, greater variance retained through independent component analysis (ICA) component removal, and smaller kurtosis than the manual pipeline; the manual pipeline had a significantly larger signal-to-noise ratio (SNR). For simulated EEG data, correlation between the pure signal and processed data was significantly higher for manually-processed data compared to HAPPE-processed data. Hierarchical linear modeling showed greater signal recovery in the manual pipeline with the exception of the gamma band signal which showed mixed results. COMPARISON WITH EXISTING METHODS SNR and simulated signal retention was significantly greater in the manually-processed data than the HAPPE-processed data. Signal reduction may negatively affect outcome measures. CONCLUSIONS The HAPPE pipeline benefits from less active processing time and artifact reduction without removing segments. However, HAPPE may bias toward elimination of noise at the cost of signal. Recommended implementation of the HAPPE pipeline for neurodevelopmental populations depends on the goals and priorities of the research.
Collapse
Affiliation(s)
- Emma Auger
- Department of Psychology, University of Oklahoma, Norman, OK 73019-2007, USA
| | - Elizabeth M Berry-Kravis
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lauren E Ethridge
- Department of Psychology, University of Oklahoma, Norman, OK 73019-2007, USA; Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
41
|
Norris JE, Kimball SH, Nemri DC, Ethridge LE. Toward a Multidimensional Understanding of Misophonia Using Cluster-Based Phenotyping. Front Neurosci 2022; 16:832516. [PMID: 35418830 PMCID: PMC8995706 DOI: 10.3389/fnins.2022.832516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/03/2022] [Indexed: 12/18/2022] Open
Abstract
Misophonia is a condition characterized by hypersensitivity and strong emotional reactivity to specific auditory stimuli. Misophonia clinical presentations are relatively complex and reflect individualized experiences across clinical populations. Like some overlapping neurodevelopmental and neuropsychiatric disorders, misophonia is potentially syndromic where symptom patterns rather than any one symptom contribute to diagnosis. The current study conducted an exploratory k-means cluster analysis to evaluate symptom presentation in a non-clinical sample of young adult undergraduate students (N = 343). Individuals participated in a self-report spectrum characteristics survey indexing misophonia, tinnitus severity, sensory hypersensitivity, and social and psychiatric symptoms. Results supported a three-cluster solution that split participants on symptom presentation: cluster 1 presented with more severe misophonia symptoms but few overlapping formally diagnosed psychiatric co-occurring conditions; cluster 3 was characterized by a more nuanced clinical presentation of misophonia with broad-band sensory hypersensitivities, tinnitus, and increased incidence of social processing and psychiatric symptoms, and cluster 2 was relatively unaffected by misophonia or other sensitivities. Clustering results illustrate the spectrum characteristics of misophonia where symptom patterns range from more “pure” form misophonia to presentations that involve more broad-range sensory-related and psychiatric symptoms. Subgroups of individuals with misophonia may characterize differential neuropsychiatric risk patterns and stem from potentially different causative factors, highlighting the importance of exploring misophonia as a multidimensional condition of complex etiology.
Collapse
Affiliation(s)
- Jordan E. Norris
- Department of Psychology, University of Oklahoma, Norman, OK, United States
| | - Suzanne H. Kimball
- Department of Communication Sciences and Disorders, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Danna C. Nemri
- Department of Psychology, University of Oklahoma, Norman, OK, United States
| | - Lauren E. Ethridge
- Department of Psychology, University of Oklahoma, Norman, OK, United States
- Section on Developmental and Behavioral Pediatrics, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- *Correspondence: Lauren E. Ethridge,
| |
Collapse
|
42
|
Abstract
SUMMARY The field of clinical EEG has had an uneasy relationship with the use of this technology for clinical cognitive applications and often for good reason. However, apart from its clinical use, EEG has had a tradition as a major tool in cognitive psychology and cognitive neuroscience dating back at least to the 1960s. Based on accumulated knowledge from its research application, EEG-based biomarkers are beginning to see applications in clinical trials and may eventually enter clinical care. We address concerns surrounding quality control, the treatment of artifact, and normal variants and how developments in engineering, biomarker validation, and implementation science rigorously applied to these tools can lead to well-justified approaches.
Collapse
Affiliation(s)
- Joshua B. Ewen
- Kennedy Krieger Institute, Baltimore, MD
- Johns Hopkins University, Baltimore, MD
| | - April R. Levin
- Harvard Medical School, Boston, MA
- Boston Children’s Hospital, Boston, MA
| |
Collapse
|
43
|
Kenny A, Wright D, Stanfield AC. EEG as a translational biomarker and outcome measure in fragile X syndrome. Transl Psychiatry 2022; 12:34. [PMID: 35075104 PMCID: PMC8786970 DOI: 10.1038/s41398-022-01796-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/01/2021] [Accepted: 01/12/2022] [Indexed: 01/08/2023] Open
Abstract
Targeted treatments for fragile X syndrome (FXS) have frequently failed to show efficacy in clinical testing, despite success at the preclinical stages. This has highlighted the need for more effective translational outcome measures. EEG differences observed in FXS, including exaggerated N1 ERP amplitudes, increased resting gamma power and reduced gamma phase-locking in the sensory cortices, have been suggested as potential biomarkers of the syndrome. These abnormalities are thought to reflect cortical hyper excitability resulting from an excitatory (glutamate) and inhibitory (GABAergic) imbalance in FXS, which has been the target of several pharmaceutical remediation studies. EEG differences observed in humans also show similarities to those seen in laboratory models of FXS, which may allow for greater translational equivalence and better predict clinical success of putative therapeutics. There is some evidence from clinical trials showing that treatment related changes in EEG may be associated with clinical improvements, but these require replication and extension to other medications. Although the use of EEG characteristics as biomarkers is still in the early phases, and further research is needed to establish its utility in clinical trials, the current research is promising and signals the emergence of an effective translational biomarker.
Collapse
Affiliation(s)
- Aisling Kenny
- Patrick Wild Centre, Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, University of Edinburgh, EH10 5HF, Edinburgh, UK.
| | - Damien Wright
- grid.4305.20000 0004 1936 7988Patrick Wild Centre, Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, University of Edinburgh, EH10 5HF Edinburgh, UK
| | - Andrew C. Stanfield
- grid.4305.20000 0004 1936 7988Patrick Wild Centre, Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, University of Edinburgh, EH10 5HF Edinburgh, UK
| |
Collapse
|
44
|
Chawla A, McCullagh EA. Auditory Brain Stem Responses in the C57BL/6J Fragile X Syndrome-Knockout Mouse Model. Front Integr Neurosci 2022; 15:803483. [PMID: 35111002 PMCID: PMC8802689 DOI: 10.3389/fnint.2021.803483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023] Open
Abstract
Sensory hypersensitivity, especially in the auditory system, is a common symptom in Fragile X syndrome (FXS), the most common monogenic form of intellectual disability. However, linking phenotypes across genetic background strains of mouse models has been a challenge and could underly some of the issues with translatability of drug studies to the human condition. This study is the first to characterize the auditory brain stem response (ABR), a minimally invasive physiological readout of early auditory processing that is also used in humans, in a commonly used mouse background strain model of FXS, C57BL/6J. We measured morphological features of pinna and head and used ABR to measure the hearing range, and monaural and binaural auditory responses in hemizygous males, homozygous females, and heterozygous females compared with those in wild-type mice. Consistent with previous study, we showed no difference in morphological parameters across genotypes or sexes. There was no significant difference in hearing range between the sexes or genotypes, however there was a trend towards high frequency hearing loss in male FXS mice. In contrast, female mice with homozygous FXS had a decreased amplitude of wave IV of the monaural ABR, while there was no difference in males for amplitudes and no change in latency of ABR waveforms across sexes and genotypes. Finally, males with FXS had an increased latency of the binaural interaction component (BIC) at 0 interaural timing difference compared with that in wild-type males. These findings further clarify auditory brain stem processing in FXS by adding more information across genetic background strains allowing for a better understanding of shared phenotypes.
Collapse
Affiliation(s)
| | - Elizabeth A. McCullagh
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
45
|
Liu X, Kumar V, Tsai NP, Auerbach BD. Hyperexcitability and Homeostasis in Fragile X Syndrome. Front Mol Neurosci 2022; 14:805929. [PMID: 35069112 PMCID: PMC8770333 DOI: 10.3389/fnmol.2021.805929] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023] Open
Abstract
Fragile X Syndrome (FXS) is a leading inherited cause of autism and intellectual disability, resulting from a mutation in the FMR1 gene and subsequent loss of its protein product FMRP. Despite this simple genetic origin, FXS is a phenotypically complex disorder with a range of physical and neurocognitive disruptions. While numerous molecular and cellular pathways are affected by FMRP loss, there is growing evidence that circuit hyperexcitability may be a common convergence point that can account for many of the wide-ranging phenotypes seen in FXS. The mechanisms for hyperexcitability in FXS include alterations to excitatory synaptic function and connectivity, reduced inhibitory neuron activity, as well as changes to ion channel expression and conductance. However, understanding the impact of FMR1 mutation on circuit function is complicated by the inherent plasticity in neural circuits, which display an array of homeostatic mechanisms to maintain activity near set levels. FMRP is also an important regulator of activity-dependent plasticity in the brain, meaning that dysregulated plasticity can be both a cause and consequence of hyperexcitable networks in FXS. This makes it difficult to separate the direct effects of FMR1 mutation from the myriad and pleiotropic compensatory changes associated with it, both of which are likely to contribute to FXS pathophysiology. Here we will: (1) review evidence for hyperexcitability and homeostatic plasticity phenotypes in FXS models, focusing on similarities/differences across brain regions, cell-types, and developmental time points; (2) examine how excitability and plasticity disruptions interact with each other to ultimately contribute to circuit dysfunction in FXS; and (3) discuss how these synaptic and circuit deficits contribute to disease-relevant behavioral phenotypes like epilepsy and sensory hypersensitivity. Through this discussion of where the current field stands, we aim to introduce perspectives moving forward in FXS research.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Vipendra Kumar
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Nien-Pei Tsai
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Benjamin D. Auerbach
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Benjamin D. Auerbach
| |
Collapse
|
46
|
Schmitt LM, Dominick KC, Liu R, Pedapati EV, Ethridge LE, Smith E, Sweeney JA, Erickson CA. Evidence for Three Subgroups of Female FMR1 Premutation Carriers Defined by Distinct Neuropsychiatric Features: A Pilot Study. Front Integr Neurosci 2022; 15:797546. [PMID: 35046780 PMCID: PMC8763356 DOI: 10.3389/fnint.2021.797546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 01/06/2023] Open
Abstract
Over 200 Cytosine-guanine-guanine (CGG) trinucleotide repeats in the 5' untranslated region of the Fragile X mental retardation 1 (FMR1) gene results in a "full mutation," clinically Fragile X Syndrome (FXS), whereas 55 - 200 repeats result in a "premutation." FMR1 premutation carriers (PMC) are at an increased risk for a range of psychiatric, neurocognitive, and physical conditions. Few studies have examined the variable expression of neuropsychiatric features in female PMCs, and whether heterogeneous presentation among female PMCs may reflect differential presentation of features in unique subgroups. In the current pilot study, we examined 41 female PMCs (ages 17-78 years) and 15 age-, sex-, and IQ-matched typically developing controls (TDC) across a battery of self-report, eye tracking, expressive language, neurocognitive, and resting state EEG measures to determine the feasibility of identifying discrete clusters. Secondly, we sought to identify the key features that distinguished these clusters of female PMCs. We found a three cluster solution using k-means clustering. Cluster 1 represented a psychiatric feature group (27% of our sample); cluster 2 represented a group with executive dysfunction and elevated high frequency neural oscillatory activity (32%); and cluster 3 represented a relatively unaffected group (41%). Our findings indicate the feasibility of using a data-driven approach to identify naturally occurring clusters in female PMCs using a multi-method assessment battery. CGG repeat count and its association with neuropsychiatric features differ across clusters. Together, our findings provide important insight into potential diverging pathophysiological mechanisms and risk factors for each female PMC cluster, which may ultimately help provide novel and individualized targets for treatment options.
Collapse
Affiliation(s)
- Lauren M. Schmitt
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Kelli C. Dominick
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Rui Liu
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Ernest V. Pedapati
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Lauren E. Ethridge
- Department of Psychology, University of Oklahoma, Norman, OK, United States
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Elizabeth Smith
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - John A. Sweeney
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Craig A. Erickson
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
47
|
Rais M, Lovelace JW, Shuai XS, Woodard W, Bishay S, Estrada L, Sharma AR, Nguy A, Kulinich A, Pirbhoy PS, Palacios AR, Nelson DL, Razak KA, Ethell IM. Functional consequences of postnatal interventions in a mouse model of Fragile X syndrome. Neurobiol Dis 2022; 162:105577. [PMID: 34871737 DOI: 10.1016/j.nbd.2021.105577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/22/2021] [Accepted: 12/02/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is a leading genetic cause of autism and intellectual disability with cortical hyperexcitability and sensory hypersensitivity attributed to loss and hypofunction of inhibitory parvalbumin-expressing (PV) cells. Our studies provide novel insights into the role of excitatory neurons in abnormal development of PV cells during a postnatal period of inhibitory circuit refinement. METHODS To achieve Fragile X mental retardation gene (Fmr1) deletion and re-expression in excitatory neurons during the postnatal day (P)14-P21 period, we generated CreCaMKIIa/Fmr1Flox/y (cOFF) and CreCaMKIIa/Fmr1FloxNeo/y (cON) mice, respectively. Cortical phenotypes were evaluated in adult mice using biochemical, cellular, clinically relevant electroencephalogram (EEG) and behavioral tests. RESULTS We found that similar to global Fmr1 KO mice, the density of PV-expressing cells, their activation, and sound-evoked gamma synchronization were impaired in cOFF mice, but the phenotypes were improved in cON mice. cOFF mice also showed enhanced cortical gelatinase activity and baseline EEG gamma power, which were reduced in cON mice. In addition, TrkB phosphorylation and PV levels were lower in cOFF mice, which also showed increased locomotor activity and anxiety-like behaviors. Remarkably, when FMRP levels were restored in only excitatory neurons during the P14-P21 period, TrkB phosphorylation and mouse behaviors were also improved. CONCLUSIONS These results indicate that postnatal deletion or re-expression of FMRP in excitatory neurons is sufficient to elicit or ameliorate structural and functional cortical deficits, and abnormal behaviors in mice, informing future studies about appropriate treatment windows and providing fundamental insights into the cellular mechanisms of cortical circuit dysfunction in FXS.
Collapse
Affiliation(s)
- Maham Rais
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Jonathan W Lovelace
- Department of Psychology, University of California Riverside, Riverside, CA 92521, USA
| | - Xinghao S Shuai
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Walker Woodard
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Steven Bishay
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Leo Estrada
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Ashwin R Sharma
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Austin Nguy
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Anna Kulinich
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Patricia S Pirbhoy
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Arnold R Palacios
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | | | - Khaleel A Razak
- Department of Psychology, University of California Riverside, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Iryna M Ethell
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
48
|
Contractor A, Ethell IM, Portera-Cailliau C. Cortical interneurons in autism. Nat Neurosci 2021; 24:1648-1659. [PMID: 34848882 PMCID: PMC9798607 DOI: 10.1038/s41593-021-00967-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 09/21/2021] [Indexed: 01/01/2023]
Abstract
The mechanistic underpinnings of autism remain a subject of debate and controversy. Why do individuals with autism share an overlapping set of atypical behaviors and symptoms, despite having different genetic and environmental risk factors? A major challenge in developing new therapies for autism has been the inability to identify convergent neural phenotypes that could explain the common set of symptoms that result in the diagnosis. Although no striking macroscopic neuropathological changes have been identified in autism, there is growing evidence that inhibitory interneurons (INs) play an important role in its neural basis. In this Review, we evaluate and interpret this evidence, focusing on recent findings showing reduced density and activity of the parvalbumin class of INs. We discuss the need for additional studies that investigate how genes and the environment interact to change the developmental trajectory of INs, permanently altering their numbers, connectivity and circuit engagement.
Collapse
Affiliation(s)
- Anis Contractor
- Department of Neuroscience Feinberg School of Medicine, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA
| | - Iryna M Ethell
- Division of Biomedical Sciences, UC Riverside School of Medicine, Riverside, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
49
|
Carreño-Muñoz MI, Chattopadhyaya B, Agbogba K, Côté V, Wang S, Lévesque M, Avoli M, Michaud JL, Lippé S, Di Cristo G. Sensory processing dysregulations as reliable translational biomarkers in SYNGAP1 haploinsufficiency. Brain 2021; 145:754-769. [PMID: 34791091 DOI: 10.1093/brain/awab329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Amongst the numerous genes associated with intellectual disability, SYNGAP1 stands out for its frequency and penetrance of loss-of-function variants found in patients, as well as the wide range of co-morbid disorders associated with its mutation. Most studies exploring the pathophysiological alterations caused by Syngap1 haploinsufficiency in mouse models have focused on cognitive problems and epilepsy, however whether and to what extent sensory perception and processing are altered by Syngap1 haploinsufficiency is less clear. By performing EEG recordings in awake mice, we identified specific alterations in multiple aspects of auditory and visual processing, including increased baseline gamma oscillation power, increased theta/gamma phase amplitude coupling following stimulus presentation and abnormal neural entrainment in response to different sensory modality-specific frequencies. We also report lack of habituation to repetitive auditory stimuli and abnormal deviant sound detection. Interestingly, we found that most of these alterations are present in human patients as well, thus making them strong candidates as translational biomarkers of sensory-processing alterations associated with SYNGAP1/Syngap1 haploinsufficiency.
Collapse
Affiliation(s)
- Maria Isabel Carreño-Muñoz
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montreal, Quebec, Canada.,Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | | | - Kristian Agbogba
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montreal, Quebec, Canada
| | - Valérie Côté
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montreal, Quebec, Canada.,Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Siyan Wang
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Maxime Lévesque
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Massimo Avoli
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Jacques L Michaud
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montreal, Quebec, Canada.,Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada.,Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada
| | - Sarah Lippé
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montreal, Quebec, Canada.,Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Graziella Di Cristo
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montreal, Quebec, Canada.,Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada.,Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
50
|
Pirbhoy PS, Jonak CR, Syed R, Argueta DA, Perez PA, Wiley MB, Hessamian K, Lovelace JW, Razak KA, DiPatrizio NV, Ethell IM, Binder DK. Increased 2-arachidonoyl-sn-glycerol levels normalize cortical responses to sound and improve behaviors in Fmr1 KO mice. J Neurodev Disord 2021; 13:47. [PMID: 34645383 PMCID: PMC8513313 DOI: 10.1186/s11689-021-09394-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/20/2021] [Indexed: 01/08/2023] Open
Abstract
Background Individuals with Fragile X syndrome (FXS) and autism spectrum disorder (ASD) exhibit an array of symptoms, including sociability deficits, increased anxiety, hyperactivity, and sensory hyperexcitability. It is unclear how endocannabinoid (eCB) modulation can be targeted to alleviate neurophysiological abnormalities in FXS as behavioral research reveals benefits to inhibiting cannabinoid (CB) receptor activation and increasing endocannabinoid ligand levels. Here, we hypothesize that enhancement of 2-arachidonoyl-sn-glycerol (2-AG) in Fragile X mental retardation 1 gene knock-out (Fmr1 KO) mice may reduce cortical hyperexcitability and behavioral abnormalities observed in FXS. Methods To test whether an increase in 2-AG levels normalized cortical responses in a mouse model of FXS, animals were subjected to electroencephalography (EEG) recording and behavioral assessment following treatment with JZL-184, an irreversible inhibitor of monoacylglycerol lipase (MAGL). Assessment of 2-AG was performed using lipidomic analysis in conjunction with various doses and time points post-administration of JZL-184. Baseline electrocortical activity and evoked responses to sound stimuli were measured using a 30-channel multielectrode array (MEA) in adult male mice before, 4 h, and 1 day post-intraperitoneal injection of JZL-184 or vehicle. Behavior assessment was done using the open field and elevated plus maze 4 h post-treatment. Results Lipidomic analysis showed that 8 mg/kg JZL-184 significantly increased the levels of 2-AG in the auditory cortex of both Fmr1 KO and WT mice 4 h post-treatment compared to vehicle controls. EEG recordings revealed a reduction in the abnormally enhanced baseline gamma-band power in Fmr1 KO mice and significantly improved evoked synchronization to auditory stimuli in the gamma-band range post-JZL-184 treatment. JZL-184 treatment also ameliorated anxiety-like and hyperactivity phenotypes in Fmr1 KO mice. Conclusions Overall, these results indicate that increasing 2-AG levels may serve as a potential therapeutic approach to normalize cortical responses and improve behavioral outcomes in FXS and possibly other ASDs. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-021-09394-x.
Collapse
Affiliation(s)
- Patricia S Pirbhoy
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Carrie R Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Rashid Syed
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Donovan A Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Pedro A Perez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Mark B Wiley
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Keon Hessamian
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Jonathan W Lovelace
- Department of Psychology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Khaleel A Razak
- Department of Psychology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Iryna M Ethell
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|