1
|
Hashemi M, Finklea FB, Hammons H, Tian Y, Young N, Kim E, Halloin C, Triebert W, Zweigerdt R, Mitra AK, Lipke EA. Hydrogel microsphere stem cell encapsulation enhances cardiomyocyte differentiation and functionality in scalable suspension system. Bioact Mater 2025; 43:423-440. [PMID: 39399838 PMCID: PMC11471139 DOI: 10.1016/j.bioactmat.2024.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 10/15/2024] Open
Abstract
A reliable suspension-based platform for scaling engineered cardiac tissue (ECT) production from human induced pluripotent stem cells (hiPSCs) is crucial for regenerative therapies. Here, we compared the production and functionality of ECTs formed using our scaffold-based, engineered tissue microsphere differentiation approach with those formed using the prevalent scaffold-free aggregate platform. We utilized a microfluidic system for the rapid (1 million cells/min), high density (30, 40, 60 million cells/ml) encapsulation of hiPSCs within PEG-fibrinogen hydrogel microspheres. HiPSC-laden microspheres and aggregates underwent suspension-based cardiac differentiation in chemically defined media. In comparison to aggregates, microspheres maintained consistent size and shape initially, over time, and within and between batches. Initial size and shape coefficients of variation for microspheres were eight and three times lower, respectively, compared to aggregates. On day 10, microsphere cardiomyocyte (CM) content was 27 % higher and the number of CMs per initial hiPSC was 250 % higher than in aggregates. Contraction and relaxation velocities of microspheres were four and nine times higher than those of aggregates, respectively. Microsphere contractile functionality also improved with culture time, whereas aggregate functionality remained unchanged. Additionally, microspheres displayed improved β-adrenergic signaling responsiveness and uniform calcium transient propagation. Transcriptomic analysis revealed that while both microspheres and aggregates demonstrated similar gene regulation patterns associated with cardiomyocyte differentiation, heart development, cardiac muscle contraction, and sarcomere organization, the microspheres exhibited more pronounced transcriptional changes over time. Taken together, these results highlight the capability of the microsphere platform for scaling up biomanufacturing of ECTs in a suspension-based culture platform.
Collapse
Affiliation(s)
| | - Ferdous B. Finklea
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Hanna Hammons
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Yuan Tian
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Nathan Young
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Emma Kim
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Caroline Halloin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Wiebke Triebert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Amit Kumar Mitra
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, United States
| | - Elizabeth A. Lipke
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| |
Collapse
|
2
|
Finklea FB, Hashemi M, Tian Y, Hammons H, Halloin C, Triebert W, Zweigerdt R, Lipke EA. Chemically defined production of engineered cardiac tissue microspheres from hydrogel-encapsulated pluripotent stem cells. Biotechnol Bioeng 2024; 121:3614-3628. [PMID: 39104025 DOI: 10.1002/bit.28818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Chemically defined, suspension culture conditions are a key requirement in realizing clinical translation of engineered cardiac tissues (ECTs). Building on our previous work producing functional ECT microspheres through differentiation of biomaterial encapsulated human induced pluripotent stem cells (hiPSCs), here we establish the ability to use chemically defined culture conditions, including stem cell media (E8) and cardiac differentiation media (chemically defined differentiation media with three components, CDM3). A custom microfluidic cell encapsulation system was used to encapsulate hiPSCs at a range of initial cell concentrations and diameters in the hybrid biomaterial, poly(ethylene glycol)-fibrinogen (PF), for the formation of highly spherical and uniform ECT microspheres for subsequent cardiac differentiation. Initial microsphere diameter could be tightly controlled, and microspheres could be produced with an initial diameter between 400 and 800 µm. Three days after encapsulation, cardiac differentiation was initiated through small molecule modulation of Wnt signaling in CDM3. Cardiac differentiation occurred resulting in in situ ECT formation; results showed that this differentiation protocol could be used to achieve cardiomyocyte (CM) contents greater than 90%, although there was relatively high variability in CM content and yield between differentiation batches. Spontaneous contraction of ECT microspheres initiated between Days 7 and 10 of differentiation and ECT microspheres responded to electrical pacing up to 1.5 Hz. Resulting CMs had well-defined sarcomeres and the gap junction protein, connexin 43, and had appropriate temporal changes in gene expression. In summary, this study demonstrated the proof-of-concept to produce functional ECT microspheres with chemically defined media in suspension culture in combination with biomaterial support of microsphere encapsulated hiPSCs.
Collapse
Affiliation(s)
- Ferdous B Finklea
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| | | | - Yuan Tian
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| | - Hanna Hammons
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| | - Caroline Halloin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Wiebke Triebert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Elizabeth A Lipke
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
3
|
Nakashima Y, Tsukahara M. Atelocollagen supports three-dimensional culture of human induced pluripotent stem cells. Mol Ther Methods Clin Dev 2024; 32:101302. [PMID: 39185274 PMCID: PMC11342089 DOI: 10.1016/j.omtm.2024.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
As autologous induced pluripotent stem cell (iPSC) therapy requires a custom-made small-lot cell production line, and the cell production method differs significantly from the existing processes for producing allogeneic iPSC stocks for clinical use. Specifically, mass culture to produce stock is no longer necessary; instead, a series of operations from iPSC production to induction of differentiation of therapeutic cells must be performed continuously. A three-dimensional (3D) culture method using small, closed-cell manufacturing devices is suitable for autologous iPSC therapy. The use of such devices avoids the need to handle many patient-derived specimens in a single clean room; handling of cell cultures in an open system in a cell processing facility increases the risk of infection. In this study, atelocollagen beads were evaluated as a 3D biomaterial to assist 3D culture in the establishment, expansion culture, and induction of differentiation of iPSCs. It was found that iPSCs can be handled in a closed-cell device with the same ease as use of a two-dimensional (2D) culture when laminin-511 is added to the medium. In conclusion, atelocollagen beads enable 3D culture of iPSCs, and the quality of the obtained cells is at the same level as those derived from 2D culture.
Collapse
Affiliation(s)
- Yoshiki Nakashima
- CiRA Foundation, Research and Development Center, Nakanoshima Qross, Osaka 530-005, Japan
| | - Masayoshi Tsukahara
- CiRA Foundation, Research and Development Center, Nakanoshima Qross, Osaka 530-005, Japan
| |
Collapse
|
4
|
Bettini A, Camelliti P, Stuckey DJ, Day RM. Injectable biodegradable microcarriers for iPSC expansion and cardiomyocyte differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404355. [PMID: 38900068 PMCID: PMC11348074 DOI: 10.1002/advs.202404355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Cell therapy is a potential novel treatment for cardiac regeneration and numerous studies have attempted to transplant cells to regenerate the myocardium lost during myocardial infarction. To date, only minimal improvements to cardiac function have been reported. This is likely to be the result of low cell retention and survival following transplantation. This study aimed to improve the delivery and engraftment of viable cells by using an injectable microcarrier that provides an implantable, biodegradable substrate for attachment and growth of cardiomyocytes derived from induced pluripotent stem cells (iPSC). We describe the fabrication and characterisation of Thermally Induced Phase Separation (TIPS) microcarriers and their surface modification to enable iPSC-derived cardiomyocyte attachment in xeno-free conditions is described. The selected formulation resulted in iPSC attachment, expansion, and retention of pluripotent phenotype. Differentiation of iPSC into cardiomyocytes on the microcarriers is investigated in comparison with culture on 2D tissue culture plastic surfaces. Microcarrier culture is shown to support culture of a mature cardiomyocyte phenotype, be compatible with injectable delivery, and reduce anoikis. The findings from this study demonstrate that TIPS microcarriers provide a supporting matrix for culturing iPSC and iPSC-derived cardiomyocytes in vitro and are suitable as an injectable cell-substrate for cardiac regeneration.
Collapse
Affiliation(s)
- Annalisa Bettini
- Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonWC1E 6DDUK
- Centre for Precision Healthcare, Division of MedicineUniversity College LondonLondonWC1E 6JFUK
| | - Patrizia Camelliti
- School of Biosciences and MedicineUniversity of SurreyGuildfordSurreyGU2 7XHUK
| | - Daniel J. Stuckey
- Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonWC1E 6DDUK
| | - Richard M. Day
- Centre for Precision Healthcare, Division of MedicineUniversity College LondonLondonWC1E 6JFUK
| |
Collapse
|
5
|
Kriedemann N, Manstein F, Hernandez-Bautista CA, Ullmann K, Triebert W, Franke A, Mertens M, Stein ICAP, Leffler A, Witte M, Askurava T, Fricke V, Gruh I, Piep B, Kowalski K, Kraft T, Zweigerdt R. Protein-free media for cardiac differentiation of hPSCs in 2000 mL suspension culture. Stem Cell Res Ther 2024; 15:213. [PMID: 39020441 PMCID: PMC11256493 DOI: 10.1186/s13287-024-03826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/01/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Commonly used media for the differentiation of human pluripotent stem cells into cardiomyocytes (hPSC-CMs) contain high concentrations of proteins, in particular albumin, which is prone to quality variations and presents a substantial cost factor, hampering the clinical translation of in vitro-generated cardiomyocytes for heart repair. To overcome these limitations, we have developed chemically defined, entirely protein-free media based on RPMI, supplemented with L-ascorbic acid 2-phosphate (AA-2P) and either the non-ionic surfactant Pluronic F-68 or a specific polyvinyl alcohol (PVA). METHODS AND RESULTS Both media compositions enable the efficient, directed differentiation of embryonic and induced hPSCs, matching the cell yields and cardiomyocyte purity ranging from 85 to 99% achieved with the widely used protein-based CDM3 medium. The protein-free differentiation approach was readily up-scaled to a 2000 mL process scale in a fully controlled stirred tank bioreactor in suspension culture, producing > 1.3 × 109 cardiomyocytes in a single process run. Transcriptome analysis, flow cytometry, electrophysiology, and contractile force measurements revealed that the mass-produced cardiomyocytes differentiated in protein-free medium exhibit the expected ventricular-like properties equivalent to the well-established characteristics of CDM3-control cells. CONCLUSIONS This study promotes the robustness and upscaling of the cardiomyogenic differentiation process, substantially reduces media costs, and provides an important step toward the clinical translation of hPSC-CMs for heart regeneration.
Collapse
Affiliation(s)
- Nils Kriedemann
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Felix Manstein
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
- Evotec SE, Hamburg, Germany
| | - Carlos A Hernandez-Bautista
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Kevin Ullmann
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Wiebke Triebert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
- Evotec SE, Hamburg, Germany
| | - Annika Franke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Mira Mertens
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | | | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School (MHH), Hannover, Germany
| | - Merlin Witte
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Tamari Askurava
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Veronika Fricke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Ina Gruh
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Birgit Piep
- Institute of Molecular and Cell Physiology, Hannover Medical School (MHH), Hannover, Germany
| | - Kathrin Kowalski
- Institute of Molecular and Cell Physiology, Hannover Medical School (MHH), Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School (MHH), Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
6
|
Bravo-Olín J, Martínez-Carreón SA, Francisco-Solano E, Lara AR, Beltran-Vargas NE. Analysis of the role of perfusion, mechanical, and electrical stimulation in bioreactors for cardiac tissue engineering. Bioprocess Biosyst Eng 2024; 47:767-839. [PMID: 38643271 DOI: 10.1007/s00449-024-03004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/13/2024] [Indexed: 04/22/2024]
Abstract
Since cardiovascular diseases (CVDs) are globally one of the leading causes of death, of which myocardial infarction (MI) can cause irreversible damage and decrease survivors' quality of life, novel therapeutics are needed. Current approaches such as organ transplantation do not fully restore cardiac function or are limited. As a valuable strategy, tissue engineering seeks to obtain constructs that resemble myocardial tissue, vessels, and heart valves using cells, biomaterials as scaffolds, biochemical and physical stimuli. The latter can be induced using a bioreactor mimicking the heart's physiological environment. An extensive review of bioreactors providing perfusion, mechanical and electrical stimulation, as well as the combination of them is provided. An analysis of the stimulations' mechanisms and modes that best suit cardiac construct culture is developed. Finally, we provide insights into bioreactor configuration and culture assessment properties that need to be elucidated for its clinical translation.
Collapse
Affiliation(s)
- Jorge Bravo-Olín
- Biological Engineering Undergraduate Program, Division of Natural Science and Engineering, Universidad Autonoma Metropolitana-Cuajimalpa, Ciudad de Mexico C.P. 05348, México
| | - Sabina A Martínez-Carreón
- Biological Engineering Undergraduate Program, Division of Natural Science and Engineering, Universidad Autonoma Metropolitana-Cuajimalpa, Ciudad de Mexico C.P. 05348, México
| | - Emmanuel Francisco-Solano
- Natural Science and Engineering Graduate Program, Universidad Autonoma Metropolitana-Cuajimalpa, Ciudad de Mexico C.P. 05348, México
| | - Alvaro R Lara
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Nohra E Beltran-Vargas
- Process and Technology Department, Division of Natural Science and Engineering, Universidad Autonoma Metropolitana-Cuajimalpa, Ciudad de Mexico C.P. 05348, México.
| |
Collapse
|
7
|
Chen X, Fan K, Lu J, Zhang S, Dong J, Qin J, Fan W, Wang Y, Zhang Y, Peng H, Zhang Z, Sun Z, Yu C, Xiong Y, Song Y, Ye Q, Mai S, Wang Y, Wang Q, Zhang F, Wen X, Zhou T, Han L, Long M, Pan G, Burke JF, Zhang X. Selecting Monoclonal Cell Lineages from Somatic Reprogramming Using Robotic-Based Spatial-Restricting Structured Flow. RESEARCH (WASHINGTON, D.C.) 2024; 7:0338. [PMID: 38464498 PMCID: PMC10923610 DOI: 10.34133/research.0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Somatic cell reprogramming generates induced pluripotent stem cells (iPSCs), which serve as a crucial source of seed cells for personalized disease modeling and treatment in regenerative medicine. However, the process of reprogramming often causes substantial lineage manipulations, thereby increasing cellular heterogeneity. As a consequence, the process of harvesting monoclonal iPSCs is labor-intensive and leads to decreased reproducibility. Here, we report the first in-house developed robotic platform that uses a pin-tip-based micro-structure to manipulate radial shear flow for automated monoclonal iPSC colony selection (~1 s) in a non-invasive and label-free manner, which includes tasks for somatic cell reprogramming culturing, medium changes; time-lapse-based high-content imaging; and iPSCs monoclonal colony detection, selection, and expansion. Throughput-wise, this automated robotic system can perform approximately 24 somatic cell reprogramming tasks within 50 days in parallel via a scheduling program. Moreover, thanks to a dual flow-based iPSC selection process, the purity of iPSCs was enhanced, while simultaneously eliminating the need for single-cell subcloning. These iPSCs generated via the dual processing robotic approach demonstrated a purity 3.7 times greater than that of the conventional manual methods. In addition, the automatically produced human iPSCs exhibited typical pluripotent transcriptional profiles, differentiation potential, and karyotypes. In conclusion, this robotic method could offer a promising solution for the automated isolation or purification of lineage-specific cells derived from iPSCs, thereby accelerating the development of personalized medicines.
Collapse
Affiliation(s)
- Xueping Chen
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Ke Fan
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Jun Lu
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
- School of Light Industry and Engineering,
South China University of Technology, Guangzhou 510641, People’s Republic of China
| | - Sheng Zhang
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Jianhua Dong
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Jisheng Qin
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Weihua Fan
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Yan Wang
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Yiyuan Zhang
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Huo Peng
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Zhizhong Zhang
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Zhiyong Sun
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Chunlai Yu
- University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
| | - Yucui Xiong
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Yan Song
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Qingqing Ye
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Shiwen Mai
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Yuanhua Wang
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Qizheng Wang
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Fengxiang Zhang
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Xiaohui Wen
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Tiancheng Zhou
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Li Han
- Institute of Electrical Engineering,
Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Mian Long
- Institute of Mechanics,
Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Guangjin Pan
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Julian F. Burke
- Biological Sciences,
University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Xiao Zhang
- Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China;
Guangzhou Medical University, Guangzhou 511436, People’s Republic of China
| |
Collapse
|
8
|
Abstract
Anthracycline-induced cardiotoxicity (AIC) is a serious and common side effect of anthracycline therapy. Identification of genes and genetic variants associated with AIC risk has clinical potential as a cardiotoxicity predictive tool and to allow the development of personalized therapies. In this review, we provide an overview of the function of known AIC genes identified by association studies and categorize them based on their mechanistic implication in AIC. We also discuss the importance of functional validation of AIC-associated variants in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to advance the implementation of genetic predictive biomarkers. Finally, we review how patient-specific hiPSC-CMs can be used to identify novel patient-relevant functional targets and for the discovery of cardioprotectant drugs to prevent AIC. Implementation of functional validation and use of hiPSC-CMs for drug discovery will identify the next generation of highly effective and personalized cardioprotectants and accelerate the inclusion of approved AIC biomarkers into clinical practice.
Collapse
Affiliation(s)
- Romina B Cejas
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA;
| | - Kateryna Petrykey
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yadav Sapkota
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Paul W Burridge
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA;
| |
Collapse
|
9
|
Maas RGC, van den Dolder FW, Yuan Q, van der Velden J, Wu SM, Sluijter JPG, Buikema JW. Harnessing developmental cues for cardiomyocyte production. Development 2023; 150:dev201483. [PMID: 37560977 PMCID: PMC10445742 DOI: 10.1242/dev.201483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Developmental research has attempted to untangle the exact signals that control heart growth and size, with knockout studies in mice identifying pivotal roles for Wnt and Hippo signaling during embryonic and fetal heart growth. Despite this improved understanding, no clinically relevant therapies are yet available to compensate for the loss of functional adult myocardium and the absence of mature cardiomyocyte renewal that underlies cardiomyopathies of multiple origins. It remains of great interest to understand which mechanisms are responsible for the decline in proliferation in adult hearts and to elucidate new strategies for the stimulation of cardiac regeneration. Multiple signaling pathways have been identified that regulate the proliferation of cardiomyocytes in the embryonic heart and appear to be upregulated in postnatal injured hearts. In this Review, we highlight the interaction of signaling pathways in heart development and discuss how this knowledge has been translated into current technologies for cardiomyocyte production.
Collapse
Affiliation(s)
- Renee G. C. Maas
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - Floor W. van den Dolder
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Qianliang Yuan
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Sean M. Wu
- Department of Medicine, Division of Cardiovascular Medicine,Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joost P. G. Sluijter
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - Jan W. Buikema
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
- Department of Cardiology, Amsterdam Heart Center, Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
10
|
Gerardo‐Nava JL, Jansen J, Günther D, Klasen L, Thiebes AL, Niessing B, Bergerbit C, Meyer AA, Linkhorst J, Barth M, Akhyari P, Stingl J, Nagel S, Stiehl T, Lampert A, Leube R, Wessling M, Santoro F, Ingebrandt S, Jockenhoevel S, Herrmann A, Fischer H, Wagner W, Schmitt RH, Kiessling F, Kramann R, De Laporte L. Transformative Materials to Create 3D Functional Human Tissue Models In Vitro in a Reproducible Manner. Adv Healthc Mater 2023; 12:e2301030. [PMID: 37311209 PMCID: PMC11468549 DOI: 10.1002/adhm.202301030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/21/2023] [Indexed: 06/15/2023]
Abstract
Recreating human tissues and organs in the petri dish to establish models as tools in biomedical sciences has gained momentum. These models can provide insight into mechanisms of human physiology, disease onset, and progression, and improve drug target validation, as well as the development of new medical therapeutics. Transformative materials play an important role in this evolution, as they can be programmed to direct cell behavior and fate by controlling the activity of bioactive molecules and material properties. Using nature as an inspiration, scientists are creating materials that incorporate specific biological processes observed during human organogenesis and tissue regeneration. This article presents the reader with state-of-the-art developments in the field of in vitro tissue engineering and the challenges related to the design, production, and translation of these transformative materials. Advances regarding (stem) cell sources, expansion, and differentiation, and how novel responsive materials, automated and large-scale fabrication processes, culture conditions, in situ monitoring systems, and computer simulations are required to create functional human tissue models that are relevant and efficient for drug discovery, are described. This paper illustrates how these different technologies need to converge to generate in vitro life-like human tissue models that provide a platform to answer health-based scientific questions.
Collapse
|
11
|
Tabata Y, Joanna I, Higuchi A. Stem cell culture and differentiation in 3-D scaffolds. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:109-127. [PMID: 37678968 DOI: 10.1016/bs.pmbts.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Conventional two-dimensional (2-D) cultivation are easy to utilize for human pluripotent stem (hPS) cell cultivation in standard techniques and are important for analysis or development of the signal pathways to keep pluripotent state of hPS cells cultivated on 2-D cell culture materials. However, the most efficient protocol to prepare hPS cells is the cell culture in a three dimensional (3-D) cultivation unit because huge numbers of hPS cells should be utilized in clinical treatment. Some 3-D cultivation strategies for hPS cells are considered: (a) microencapsulated cell cultivation in suspended hydrogels, (b) cell cultivation on microcarriers (MCs), (c) cell cultivation on self-aggregated spheroid [cell aggregates; embryoid bodies (EBs) and organoids], (d) cell cultivation on microfibers or nanofibers, and (e) cell cultivation in macroporous scaffolds. These cultivation ways are described in this chapter.
Collapse
Affiliation(s)
- Yasuhiko Tabata
- Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kawara-cho, Shogoin, Sakyo-ku, Kyoto, Japan.
| | - Idaszek Joanna
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska Street, Warsaw, Poland
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China.
| |
Collapse
|
12
|
Teale MA, Schneider S, Eibl D, van den Bos C, Neubauer P, Eibl R. Mesenchymal and induced pluripotent stem cell-based therapeutics: a comparison. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12583-4. [PMID: 37246986 DOI: 10.1007/s00253-023-12583-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
Stem cell-based cell therapeutics and especially those based on human mesenchymal stem cells (hMSCs) and induced pluripotent stem cells (hiPSCs) are said to have enormous developmental potential in the coming years. Their applications range from the treatment of orthopedic disorders and cardiovascular diseases to autoimmune diseases and even cancer. However, while more than 27 hMSC-derived therapeutics are currently commercially available, hiPSC-based therapeutics have yet to complete the regulatory approval process. Based on a review of the current commercially available hMSC-derived therapeutic products and upcoming hiPSC-derived products in phase 2 and 3, this paper compares the cell therapy manufacturing process between these two cell types. Moreover, the similarities as well as differences are highlighted and the resulting impact on the production process discussed. Here, emphasis is placed on (i) hMSC and hiPSC characteristics, safety, and ethical aspects, (ii) their morphology and process requirements, as well as (iii) their 2- and 3-dimensional cultivations in dependence of the applied culture medium and process mode. In doing so, also downstream processing aspects are covered and the role of single-use technology is discussed. KEY POINTS: • Mesenchymal and induced pluripotent stem cells exhibit distinct behaviors during cultivation • Single-use stirred bioreactor systems are preferred for the cultivation of both cell types • Future research should adapt and modify downstream processes to available single-use devices.
Collapse
Affiliation(s)
- Misha A Teale
- Centre for Biochemical Engineering and Cell Cultivation Techniques, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland.
| | - Samuel Schneider
- Centre for Biochemical Engineering and Cell Cultivation Techniques, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| | - Dieter Eibl
- Centre for Biochemical Engineering and Cell Cultivation Techniques, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| | | | - Peter Neubauer
- Institute of Biotechnology, Chair of Bioprocess Engineering, Technical University of Berlin, ACK24, Ackerstraße 76, 13355, Berlin, Germany
| | - Regine Eibl
- Centre for Biochemical Engineering and Cell Cultivation Techniques, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| |
Collapse
|
13
|
Kwek XY, Hall AR, Lim WW, Katwadi K, Soong PL, Grishina E, Lin KH, Crespo-Avilan G, Yap EP, Ismail NI, Chinda K, Chung YY, Wei H, Shim W, Montaigne D, Tinker A, Ong SB, Hausenloy DJ. Role of cardiac mitofusins in cardiac conduction following simulated ischemia-reperfusion. Sci Rep 2022; 12:21049. [PMID: 36473917 PMCID: PMC9727036 DOI: 10.1038/s41598-022-25625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction induced by acute cardiac ischemia-reperfusion (IR), may increase susceptibility to arrhythmias by perturbing energetics, oxidative stress production and calcium homeostasis. Although changes in mitochondrial morphology are known to impact on mitochondrial function, their role in cardiac arrhythmogenesis is not known. To assess action potential duration (APD) in cardiomyocytes from the Mitofusins-1/2 (Mfn1/Mfn2)-double-knockout (Mfn-DKO) compared to wild-type (WT) mice, optical-electrophysiology was conducted. To measure conduction velocity (CV) in atrial and ventricular tissue from the Mfn-DKO and WT mice, at both baseline and following simulated acute IR, multi-electrode array (MEA) was employed. Intracellular localization of connexin-43 (Cx43) at baseline was evaluated by immunohistochemistry, while Cx-43 phosphorylation was assessed by Western-blotting. Mfn-DKO cardiomyocytes demonstrated an increased APD. At baseline, CV was significantly lower in the left ventricle of the Mfn-DKO mice. CV decreased with simulated-ischemia and returned to baseline levels during simulated-reperfusion in WT but not in atria of Mfn-DKO mice. Mfn-DKO hearts displayed increased Cx43 lateralization, although phosphorylation of Cx43 at Ser-368 did not differ. In summary, Mfn-DKO mice have increased APD and reduced CV at baseline and impaired alterations in CV following cardiac IR. These findings were associated with increased Cx43 lateralization, suggesting that the mitofusins may impact on post-MI cardiac-arrhythmogenesis.
Collapse
Affiliation(s)
- Xiu-Yi Kwek
- grid.419385.20000 0004 0620 9905National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
| | - Andrew R. Hall
- grid.83440.3b0000000121901201The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK
| | - Wei-Wen Lim
- grid.419385.20000 0004 0620 9905National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore ,grid.428397.30000 0004 0385 0924Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Khairunnisa Katwadi
- grid.428397.30000 0004 0385 0924Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Poh Loong Soong
- grid.4280.e0000 0001 2180 6431Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Cardiovascular Translational Program, Cardiovascular Research Institute (CVRI), National University of Singapore, Singapore, Singapore ,grid.412106.00000 0004 0621 9599Department of Medicine, National University Hospital of Singapore (NUHS), Singapore, Singapore ,Ternion Biosciences, Singapore, Singapore
| | | | | | - Gustavo Crespo-Avilan
- grid.419385.20000 0004 0620 9905National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore ,grid.428397.30000 0004 0385 0924Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore ,grid.8664.c0000 0001 2165 8627Department of Biochemistry, Medical Faculty, Justus Liebig-University, Giessen, Germany
| | - En Ping Yap
- grid.419385.20000 0004 0620 9905National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
| | - Nur Izzah Ismail
- grid.10784.3a0000 0004 1937 0482Centre for Cardiovascular Genomics and Medicine (CCGM), Lui Che Woo Institute of Innovative Medicine, Chinese University of Hong Kong (CUHK), Hong Kong, SAR China ,grid.10784.3a0000 0004 1937 0482Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong (CUHK), Hong Kong, SAR China ,Hong Kong Hub of Paediatric Excellence (HK HOPE), Hong Kong Children’s Hospital (HKCH), Kowloon Bay, Hong Kong, SAR China
| | - Kroekkiat Chinda
- grid.412029.c0000 0000 9211 2704Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand ,grid.412029.c0000 0000 9211 2704Integrative Cardiovascular Research Unit, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Ying Ying Chung
- grid.428397.30000 0004 0385 0924Centre for Vision Research, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Heming Wei
- grid.414963.d0000 0000 8958 3388Research Laboratory, KK Women’s & Children’s Hospital, Singapore, Singapore
| | - Winston Shim
- grid.486188.b0000 0004 1790 4399Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - David Montaigne
- grid.503422.20000 0001 2242 6780Inserm, CHU Lille, Institut Pasteur Lille, U1011-European Genomic Institute for Diabetes (EGID), University of Lille, 59000 Lille, France
| | - Andrew Tinker
- grid.4868.20000 0001 2171 1133Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | - Sang-Bing Ong
- grid.10784.3a0000 0004 1937 0482Centre for Cardiovascular Genomics and Medicine (CCGM), Lui Che Woo Institute of Innovative Medicine, Chinese University of Hong Kong (CUHK), Hong Kong, SAR China ,grid.10784.3a0000 0004 1937 0482Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong (CUHK), Hong Kong, SAR China ,Hong Kong Hub of Paediatric Excellence (HK HOPE), Hong Kong Children’s Hospital (HKCH), Kowloon Bay, Hong Kong, SAR China ,grid.9227.e0000000119573309Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology-The Chinese University of Hong Kong (KIZ-CUHK), Chinese Academy of Sciences, Kunming, Yunnan China ,grid.10784.3a0000 0004 1937 0482Shenzhen Research Institute (SZRI), Chinese University of Hong Kong (CUHK), Shenzhen, China
| | - Derek J. Hausenloy
- grid.419385.20000 0004 0620 9905National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore ,grid.83440.3b0000000121901201The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK ,grid.428397.30000 0004 0385 0924Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Lyra-Leite DM, Gutiérrez-Gutiérrez Ó, Wang M, Zhou Y, Cyganek L, Burridge PW. A review of protocols for human iPSC culture, cardiac differentiation, subtype-specification, maturation, and direct reprogramming. STAR Protoc 2022; 3:101560. [PMID: 36035804 PMCID: PMC9405110 DOI: 10.1016/j.xpro.2022.101560] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The methods for the culture and cardiomyocyte differentiation of human embryonic stem cells, and later human induced pluripotent stem cells (hiPSC), have moved from a complex and uncontrolled systems to simplified and relatively robust protocols, using the knowledge and cues gathered at each step. HiPSC-derived cardiomyocytes have proven to be a useful tool in human disease modelling, drug discovery, developmental biology, and regenerative medicine. In this protocol review, we will highlight the evolution of protocols associated with hPSC culture, cardiomyocyte differentiation, sub-type specification, and cardiomyocyte maturation. We also discuss protocols for somatic cell direct reprogramming to cardiomyocyte-like cells.
Collapse
Affiliation(s)
- Davi M Lyra-Leite
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Óscar Gutiérrez-Gutiérrez
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Meimei Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
15
|
Lam ATL, Ho V, Vassilev S, Reuveny S, Oh SKW. An allied reprogramming, selection, expansion and differentiation platform for creating hiPSC on microcarriers. Cell Prolif 2022; 55:e13256. [PMID: 36574589 PMCID: PMC9357361 DOI: 10.1111/cpr.13256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Induced pluripotent stem cells (iPSCs) generated by monolayer cultures is plagued by low efficiencies, high levels of manipulation and operator unpredictability. We have developed a platform, reprogramming, expansion, and differentiation on Microcarriers, to solve these challenges. MATERIALS AND METHODS Five sources of human somatic cells were reprogrammed, selected, expanded and differentiated in microcarriers suspension cultures. RESULTS Improvement of transduction efficiencies up to 2 times was observed. Accelerated reprogramming in microcarrier cultures was 7 days faster than monolayer, providing between 30 and 50-fold more clones to choose from fibroblasts, peripheral blood mononuclear cells, T cells and CD34+ stem cells. This was observed to be due to an earlier induction of genes (β-catenin, E-cadherin and EpCAM) on day 4 versus monolayer cultures which occurred on days 14 or later. Following that, faster induction and earlier stabilization of pluripotency genes occurred during the maturation phase of reprogramming. Integrated expansion without trypsinization and efficient differentiation, without embryoid bodies formation, to the three germ-layers, cardiomyocytes and haematopoietic stem cells were further demonstrated. CONCLUSIONS Our method can solve the inherent problems of conventional monolayer cultures. It is highly efficient, cell dissociation free, can be operated with lower labor, and allows testing of differentiation efficiency without trypsinization and generation of embryoid bodies. It is also amenable to automation for processing more samples in a small footprint, alleviating many challenges of manual monolayer selection.
Collapse
Affiliation(s)
- Alan Tin Lun Lam
- Stem Cell Bioprocessing, Bioprocessing Technology InstituteAgency for Science, Technology and ResearchSingaporeRepublic of Singapore
| | - Valerie Ho
- Stem Cell Bioprocessing, Bioprocessing Technology InstituteAgency for Science, Technology and ResearchSingaporeRepublic of Singapore
| | - Svetlan Vassilev
- Stem Cell Bioprocessing, Bioprocessing Technology InstituteAgency for Science, Technology and ResearchSingaporeRepublic of Singapore
| | - Shaul Reuveny
- Stem Cell Bioprocessing, Bioprocessing Technology InstituteAgency for Science, Technology and ResearchSingaporeRepublic of Singapore
| | - Steve Kah Weng Oh
- Stem Cell Bioprocessing, Bioprocessing Technology InstituteAgency for Science, Technology and ResearchSingaporeRepublic of Singapore
| |
Collapse
|
16
|
Ladeira BMF, Gomes MC, Custódio CA, Mano JF. High-Throughput Production of Microsponges from Platelet Lysate for Tissue Engineering Applications. Tissue Eng Part C Methods 2022; 28:325-334. [PMID: 35343236 DOI: 10.1089/ten.tec.2022.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cell-based therapies require a large number of cells, as well as appropriate methods to deliver the cells to damaged tissue. Microcarriers provide an optimal platform for large-scale cell culture while also improving cell retention during cell delivery. However, this technology still presents significant challenges due to low-throughput fabrication methods and an inability of the microcarriers to recreate the properties of human tissue. This work proposes, for the first time, the use of methacryloyl platelet lysates (PLMA), a photocrosslinkable material derived from human platelet lysates, to produce porous microcarriers. Initially, high quantities of PLMA/alginate core-shell microcapsules are produced using coaxial electrospray. Subsequently, the microcapsules are collected, irradiated with ultraviolet light, washed, and freeze dried yielding PLMA microsponges. These microsponges are able to support the adhesion and proliferation of human adipose-derived stem cells, while also displaying potential in the assembly of autologous microtissues. Cell-laden microsponges were shown to self-organize into aggregates, suggesting possible applications in bottom-up tissue engineering applications. Impact Statement Microcarriers have increasingly been used as delivery platforms in cell therapy. Herein, the encapsulation of human-derived proteins in alginate microcapsules is proposed as a method to produce microcarriers from photopolymerizable materials. The capsules function as a template structure, which is then processed into spherical microparticles, which can be used in cell culture, cell delivery, and bottom-up assembly. As a proof of concept, this method was combined with lyophilization to process methacryloyl platelet lysates into injectable microsponges for cell delivery.
Collapse
Affiliation(s)
- Bruno M F Ladeira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Maria C Gomes
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Catarina A Custódio
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
17
|
Morita Y, Kishino Y, Fukuda K, Tohyama S. Scalable manufacturing of clinical-grade differentiated cardiomyocytes derived from human-induced pluripotent stem cells for regenerative therapy. Cell Prolif 2022; 55:e13248. [PMID: 35534945 PMCID: PMC9357358 DOI: 10.1111/cpr.13248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Basic research on human pluripotent stem cell (hPSC)‐derived cardiomyocytes (CMs) for cardiac regenerative therapy is one of the most active and complex fields to achieve this alternative to heart transplantation and requires the integration of medicine, science, and engineering. Mortality in patients with heart failure remains high worldwide. Although heart transplantation is the sole strategy for treating severe heart failure, the number of donors is limited. Therefore, hPSC‐derived CM (hPSC‐CM) transplantation is expected to replace heart transplantation. To achieve this goal, for basic research, various issues should be considered, including how to induce hPSC proliferation efficiently for cardiac differentiation, induce hPSC‐CMs, eliminate residual undifferentiated hPSCs and non‐CMs, and assess for the presence of residual undifferentiated hPSCs in vitro and in vivo. In this review, we discuss the current stage of resolving these issues and future directions for realizing hPSC‐based cardiac regenerative therapy.
Collapse
Affiliation(s)
- Yuika Morita
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Varzideh F, Mone P, Santulli G. Bioengineering Strategies to Create 3D Cardiac Constructs from Human Induced Pluripotent Stem Cells. Bioengineering (Basel) 2022; 9:168. [PMID: 35447728 PMCID: PMC9028595 DOI: 10.3390/bioengineering9040168] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) can be used to generate various cell types in the human body. Hence, hiPSC-derived cardiomyocytes (hiPSC-CMs) represent a significant cell source for disease modeling, drug testing, and regenerative medicine. The immaturity of hiPSC-CMs in two-dimensional (2D) culture limit their applications. Cardiac tissue engineering provides a new promise for both basic and clinical research. Advanced bioengineered cardiac in vitro models can create contractile structures that serve as exquisite in vitro heart microtissues for drug testing and disease modeling, thereby promoting the identification of better treatments for cardiovascular disorders. In this review, we will introduce recent advances of bioengineering technologies to produce in vitro cardiac tissues derived from hiPSCs.
Collapse
Affiliation(s)
- Fahimeh Varzideh
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Pasquale Mone
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Gaetano Santulli
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
19
|
Thomas D, Cunningham NJ, Shenoy S, Wu JC. Human-induced pluripotent stem cells in cardiovascular research: current approaches in cardiac differentiation, maturation strategies, and scalable production. Cardiovasc Res 2022; 118:20-36. [PMID: 33757124 PMCID: PMC8932155 DOI: 10.1093/cvr/cvab115] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Manifestations of cardiovascular diseases (CVDs) in a patient or a population differ based on inherent biological makeup, lifestyle, and exposure to environmental risk factors. These variables mean that therapeutic interventions may not provide the same benefit to every patient. In the context of CVDs, human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) offer an opportunity to model CVDs in a patient-specific manner. From a pharmacological perspective, iPSC-CM models can serve as go/no-go tests to evaluate drug safety. To develop personalized therapies for early diagnosis and treatment, human-relevant disease models are essential. Hence, to implement and leverage the utility of iPSC-CMs for large-scale treatment or drug discovery, it is critical to (i) carefully evaluate the relevant limitations of iPSC-CM differentiations, (ii) establish quality standards for defining the state of cell maturity, and (iii) employ techniques that allow scalability and throughput with minimal batch-to-batch variability. In this review, we briefly describe progress made with iPSC-CMs in disease modelling and pharmacological testing, as well as current iPSC-CM maturation techniques. Finally, we discuss current platforms for large-scale manufacturing of iPSC-CMs that will enable high-throughput drug screening applications.
Collapse
Affiliation(s)
- Dilip Thomas
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
| | - Nathan J Cunningham
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
| | - Sushma Shenoy
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
| |
Collapse
|
20
|
Lee SJ, Kim HA, Kim SJ, Lee HA. Improving Generation of Cardiac Organoids from Human Pluripotent Stem Cells Using the Aurora Kinase Inhibitor ZM447439. Biomedicines 2021; 9:biomedicines9121952. [PMID: 34944767 PMCID: PMC8698385 DOI: 10.3390/biomedicines9121952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 01/21/2023] Open
Abstract
Drug-induced cardiotoxicity reduces the success rates of drug development. Thus, the limitations of current evaluation methods must be addressed. Human cardiac organoids (hCOs) derived from induced pluripotent stem cells (hiPSCs) are useful as an advanced drug-testing model; they demonstrate similar electrophysiological functionality and drug reactivity as the heart. How-ever, similar to other organoid models, they have immature characteristics compared to adult hearts, and exhibit batch-to-batch variation. As the cell cycle is important for the mesodermal differentiation of stem cells, we examined the effect of ZM447439, an aurora kinase inhibitor that regulates the cell cycle, on cardiogenic differentiation. We determined the optimal concentration and timing of ZM447439 for the differentiation of hCOs from hiPSCs and developed a novel protocol for efficiently and reproducibly generating beating hCOs with improved electrophysiological functionality, contractility, and yield. We validated their maturity through electro-physiological- and image-based functional assays and gene profiling with next-generation sequencing, and then applied these cells to multi-electrode array platforms to monitor the cardio-toxicity of drugs related to cardiac arrhythmia; the results confirmed the drug reactivity of hCOs. These findings may enable determination of the regulatory mechanism of cell cycles underlying the generation of iPSC-derived hCOs, providing a valuable drug testing platform.
Collapse
Affiliation(s)
- Su-Jin Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon 34114, Korea; (S.-J.L.); (H.-A.K.)
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyeon-A Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon 34114, Korea; (S.-J.L.); (H.-A.K.)
| | - Sung-Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence: (S.-J.K.); (H.-A.L.); Tel.: +82-2-740-8230 (S.-J.K.); +82-42-610-8093 (H.-A.L.)
| | - Hyang-Ae Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon 34114, Korea; (S.-J.L.); (H.-A.K.)
- Correspondence: (S.-J.K.); (H.-A.L.); Tel.: +82-2-740-8230 (S.-J.K.); +82-42-610-8093 (H.-A.L.)
| |
Collapse
|
21
|
Guan Y, Yang B, Xu W, Li D, Wang S, Ren Z, Zhang J, Zhang T, Liu XZ, Li J, Li C, Meng F, Han F, Wu T, Wang Y, Peng J. Cell-derived extracellular matrix materials for tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1007-1021. [PMID: 34641714 DOI: 10.1089/ten.teb.2021.0147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The involvement of cell-derived extracellular matrix (CDM) in assembling tissue engineering scaffolds has yielded significant results. CDM possesses excellent characteristics, such as ideal cellular microenvironment mimicry and good biocompatibility, which make it a popular research direction in the field of bionanomaterials. CDM has significant advantages as an expansion culture substrate for stem cells, including stabilization of phenotype, reversal of senescence, and guidance of specific differentiation. In addition, the applications of CDM-assembled tissue engineering scaffolds for disease simulation and tissue organ repair are comprehensively summarized; the focus is mainly on bone and cartilage repair, skin defect or wound healing, engineered blood vessels, peripheral nerves, and periodontal tissue repair. We consider CDM a highly promising bionic biomaterial for tissue engineering applications and propose a vision for its comprehensive development.
Collapse
Affiliation(s)
- Yanjun Guan
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Boyao Yang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Wenjing Xu
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Dongdong Li
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Sidong Wang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Zhiqi Ren
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Jian Zhang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Tieyuan Zhang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Xiu-Zhi Liu
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Junyang Li
- Nankai University School of Medicine, 481107, Tianjin, Tianjin, China.,Chinese PLA General Hospital, 104607, Beijing, Beijing, China;
| | - Chaochao Li
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Fanqi Meng
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China.,Peking University People's Hospital, 71185, Department of spine surgery, Beijing, China;
| | - Feng Han
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Tong Wu
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Yu Wang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China.,Nantong University, 66479, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China;
| | - Jiang Peng
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China.,Nantong University, 66479, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China;
| |
Collapse
|
22
|
Ho V, Tong G, Lam A, Reuveny S, Oh S. Integrating Human-Induced Pluripotent Stem Cell Expansion Capability and Cardiomyocyte Differentiation Potential in a Microcarrier Suspension Culture. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2436:67-81. [PMID: 34519977 DOI: 10.1007/7651_2021_423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human-induced pluripotent stem cells are known for their high proliferation capacity as well as their ability to differentiate to different lineages (Ban et al., Theranostics 7(7):2067-2077, 2017; Chen et al., Stem Cell Res 15(2):365-375, 2015; Serra et al., Trends Biotechnol 30(6):350-359, 2012). For stem-cell-derived cardiomyocytes to evolve into a scalable therapeutic source, a large quantity of highly pure cardiomyocytes is needed. Thus, lies the challenge of defining an efficient cardiomyocyte differentiation process. This chapter describes a method to evaluate multiple human-induced pluripotent stem cell lines for their cardiac differentiation potentials before evaluating their integrated proliferation and differentiation abilities in microcarrier cultures in a spinner culture format.
Collapse
Affiliation(s)
- Valerie Ho
- Bioprocessing Technology Institute, A*STAR Research Entities, Singapore, Singapore
| | - Gerine Tong
- Bioprocessing Technology Institute, A*STAR Research Entities, Singapore, Singapore
| | - Alan Lam
- Bioprocessing Technology Institute, A*STAR Research Entities, Singapore, Singapore
| | - Shaul Reuveny
- Bioprocessing Technology Institute, A*STAR Research Entities, Singapore, Singapore
| | - Steve Oh
- Bioprocessing Technology Institute, A*STAR Research Entities, Singapore, Singapore.
| |
Collapse
|
23
|
Kahn-Krell A, Pretorius D, Ou J, Fast VG, Litovsky S, Berry J, Liu X(M, Zhang J. Bioreactor Suspension Culture: Differentiation and Production of Cardiomyocyte Spheroids From Human Induced Pluripotent Stem Cells. Front Bioeng Biotechnol 2021; 9:674260. [PMID: 34178964 PMCID: PMC8226172 DOI: 10.3389/fbioe.2021.674260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/18/2021] [Indexed: 02/02/2023] Open
Abstract
Human induced-pluripotent stem cells (hiPSCs) can be efficiently differentiated into cardiomyocytes (hiPSC-CMs) via the GiWi method, which uses small-molecule inhibitors of glycogen synthase kinase (GSK) and tankyrase to first activate and then suppress Wnt signaling. However, this method is typically conducted in 6-well culture plates with two-dimensional (2D) cell sheets, and consequently, cannot be easily scaled to produce the large numbers of hiPSC-CMs needed for clinical applications. Cell suspensions are more suitable than 2D systems for commercial biomanufacturing, and suspended hiPSCs form free-floating aggregates (i.e., spheroids) that can also be differentiated into hiPSC-CMs. Here, we introduce a protocol for differentiating suspensions of hiPSC spheroids into cardiomyocytes that is based on the GiWi method. After optimization based on cardiac troponin T staining, the purity of hiPSC-CMs differentiated via our novel protocol exceeded 98% with yields of about 1.5 million hiPSC-CMs/mL and less between-batch purity variability than hiPSC-CMs produced in 2D cultures; furthermore, the culture volume could be increased ∼10-fold to 30 mL with no need for re-optimization, which suggests that this method can serve as a framework for large-scale hiPSC-CM production.
Collapse
Affiliation(s)
- Asher Kahn-Krell
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Danielle Pretorius
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianfa Ou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vladimir G. Fast
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Silvio Litovsky
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joel Berry
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xiaoguang (Margaret) Liu
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine/Cardiovascular Diseases, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
24
|
Cell surface markers for immunophenotyping human pluripotent stem cell-derived cardiomyocytes. Pflugers Arch 2021; 473:1023-1039. [PMID: 33928456 DOI: 10.1007/s00424-021-02549-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/09/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023]
Abstract
Human pluripotent stem cells (hPSC) self-renew and represent a potentially unlimited source for the production of cardiomyocytes (CMs) suitable for studies of human cardiac development, drug discovery, cardiotoxicity testing, and disease modelling and for cell-based therapies. However, most cardiac differentiation protocols yield mixed cultures of atrial-, ventricular-, and pacemaker-like cells at various stages of development, as well as non-CMs. The proportions and maturation states of these cell types result from disparities among differentiation protocols and time of cultivation, as well as hPSC reprogramming inconsistencies and genetic background variations. The reproducible use of hPSC-CMs for research and therapy is therefore limited by issues of cell population heterogeneity and functional states of maturation. A validated method that overcomes issues of cell heterogeneity is immunophenotyping coupled with live cell sorting, an approach that relies on accessible surface markers restricted to the desired cell type(s). Here we review current progress in unravelling heterogeneity in hPSC-cardiac cultures and in the identification of surface markers suitable for defining cardiac identity, subtype specificity, and maturation states.
Collapse
|
25
|
Ornelas-González A, González-González M, Rito-Palomares M. Microcarrier-based stem cell bioprocessing: GMP-grade culture challenges and future trends for regenerative medicine. Crit Rev Biotechnol 2021; 41:1081-1095. [PMID: 33730936 DOI: 10.1080/07388551.2021.1898328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recently, stem cell-based therapies have been proposed as an alternative for the treatment of many diseases. Stem cells (SCs) are well known for their capacity to preserve themselves, proliferate, and differentiate into multiple lineages. These characteristics allow stem cells to be a viable option for the treatment of diverse diseases. Traditional methodologies based on 2-dimensional culture techniques (T-flasks and Petri dishes) are simple and well standardized; however, they present disadvantages that limit the production of the cell yield required for regenerative medicine applications. Lately, microcarrier (MC)-based culture techniques have emerged as an attractive platform for expanding stem cells in suspension systems. Although the use of stem cell expansion on MCs has recently shown significant increase, their implementation for medical purposes is been hampered by bottlenecks in upstream and downstream processing. Therefore, there is an urgent need in the development of bioprocesses that simplify stem cell cultures under xeno-free conditions and detachment from MCs without diminishing their pluripotency and viability. A critical analysis of the factors that impact the up and downstream bioprocessing on MC-based stem cell cultures is presented in this review. This analysis aims to raise the awareness of the current drawbacks that limit MC-based stem cell bioprocessing in regenerative medicine and propose alternatives to overcome them.
Collapse
Affiliation(s)
| | | | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| |
Collapse
|
26
|
Chang YC, Mirhaidari G, Kelly J, Breuer C. Current Challenges and Solutions to Tissue Engineering of Large-scale Cardiac Constructs. Curr Cardiol Rep 2021; 23:47. [PMID: 33733317 DOI: 10.1007/s11886-021-01474-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Large-scale tissue engineering of cardiac constructs is a rapidly advancing field; however, there are several barriers still associated with the creation and clinical application of large-scale engineered cardiac tissues. We provide an overview of the current challenges and recently (within the last 5 years) described promising solutions to overcoming said challenges. RECENT FINDINGS The five major criteria yet to be met for clinical application of engineered cardiac tissues are successful electrochemical/mechanical cell coupling, efficient maturation of cardiomyocytes, functional vascularization of large tissues, balancing appropriate immune response, and large-scale generation of constructs. Promising solutions include the use of carbon/graphene in conjunction with existing scaffold designs, utilization of biological hormones, 3D bioprinting, and gene editing. While some of the described barriers to generation of large-scale cardiac tissue have seen encouraging advancements, there is no solution that yet achieves all 5 described criteria. It is vital then to consider a combination of techniques to achieve the optimal construct. Critically, following the demonstration of a viable construct, there remain important considerations to address associated with good manufacturing practices and establishing a standard for clinical trials.
Collapse
Affiliation(s)
- Yu-Chun Chang
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Research Building III, Columbus, OH, 43215, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Gabriel Mirhaidari
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Research Building III, Columbus, OH, 43215, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | - John Kelly
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Research Building III, Columbus, OH, 43215, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Christopher Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Research Building III, Columbus, OH, 43215, USA. .,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA. .,Department of Surgery, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
27
|
A Concise Review on Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Personalized Regenerative Medicine. Stem Cell Rev Rep 2020; 17:748-776. [PMID: 33098306 DOI: 10.1007/s12015-020-10061-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
The induced pluripotent stem cells (iPSCs) are derived from somatic cells by using reprogramming factors such as Oct4, Sox2, Klf4, and c-Myc (OSKM) or Oct4, Sox2, Nanog and Lin28 (OSNL). They resemble embryonic stem cells (ESCs) and have the ability to differentiate into cell lineage of all three germ-layer, including cardiomyocytes (CMs). The CMs can be generated from iPSCs by inducing embryoid bodies (EBs) formation and treatment with activin A, bone morphogenic protein 4 (BMP4), and inhibitors of Wnt signaling. However, these iPSC-derived CMs are a heterogeneous population of cells and require purification and maturation to mimic the in vivo CMs. The matured CMs can be used for various therapeutic purposes in regenerative medicine by cardiomyoplasty or through the development of tissue-engineered cardiac patches. In recent years, significant advancements have been made in the isolation of iPSC and their differentiation, purification, and maturation into clinically usable CMs. Newer small molecules have also been identified to substitute the reprogramming factors for iPSC generation as well as for direct differentiation of somatic cells into CMs without an intermediary pluripotent state. This review provides a concise update on the generation of iPSC-derived CMs and their application in personalized cardiac regenerative medicine. It also discusses the current limitations and challenges in the application of iPSC-derived CMs. Graphical abstract.
Collapse
|
28
|
Parrotta EI, Lucchino V, Scaramuzzino L, Scalise S, Cuda G. Modeling Cardiac Disease Mechanisms Using Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Progress, Promises and Challenges. Int J Mol Sci 2020; 21:E4354. [PMID: 32575374 PMCID: PMC7352327 DOI: 10.3390/ijms21124354] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a class of disorders affecting the heart or blood vessels. Despite progress in clinical research and therapy, CVDs still represent the leading cause of mortality and morbidity worldwide. The hallmarks of cardiac diseases include heart dysfunction and cardiomyocyte death, inflammation, fibrosis, scar tissue, hyperplasia, hypertrophy, and abnormal ventricular remodeling. The loss of cardiomyocytes is an irreversible process that leads to fibrosis and scar formation, which, in turn, induce heart failure with progressive and dramatic consequences. Both genetic and environmental factors pathologically contribute to the development of CVDs, but the precise causes that trigger cardiac diseases and their progression are still largely unknown. The lack of reliable human model systems for such diseases has hampered the unraveling of the underlying molecular mechanisms and cellular processes involved in heart diseases at their initial stage and during their progression. Over the past decade, significant scientific advances in the field of stem cell biology have literally revolutionized the study of human disease in vitro. Remarkably, the possibility to generate disease-relevant cell types from induced pluripotent stem cells (iPSCs) has developed into an unprecedented and powerful opportunity to achieve the long-standing ambition to investigate human diseases at a cellular level, uncovering their molecular mechanisms, and finally to translate bench discoveries into potential new therapeutic strategies. This review provides an update on previous and current research in the field of iPSC-driven cardiovascular disease modeling, with the aim of underlining the potential of stem-cell biology-based approaches in the elucidation of the pathophysiology of these life-threatening diseases.
Collapse
|